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ABSTRACT Automated analysis of complex systems based on multiple readouts remains a challenge.
Change point detection algorithms are aimed to locating abrupt changes in the time series behaviour of
a process. In this paper, we present a novel change point detection algorithm based on Latent Neural
Stochastic Differential Equations (SDE). Our method learns a non-linear deep learning transformation of
the process into a latent space and estimates a SDE that describes its evolution over time. The algorithm
uses the likelihood ratio of the learned stochastic processes in different timestamps to find change points of
the process. We demonstrate the detection capabilities and performance of our algorithm on synthetic and
real-world datasets. The proposed method outperforms the state-of-the-art algorithms on the majority of our
experiments.

INDEX TERMS Anomaly detection, change point detection, deep learning, machine learning, timeseries.

I. INTRODUCTION
Recognition of state changes of complex systems is a
common task in data analysis. The system’s behaviour is
represented by a signal produced by continuous monitoring
with multiple sensors. The task of unsupervised detection
of abrupt changes in the signal forms a standalone field of
research in time series analysis, and is called change point
detection (CPD). CPD arises in many applications such as
production quality control [1], chemical process control [2],
detection of climate changes [3], human motion and health
state analysis [4], aircraft monitoring [5], vibration monitor-
ing of mechanical systems [6], seismic signal processing [7],
detection of cyberattacks [8], video scene analysis [9], audio
signal segmentation [10], and many others [11].
There are numerous CPD algorithms like subspace meth-

ods [12], [13], [14], [15], [16], probabilistic methods [17],
[18], window-based [19], [20], clustering [21], stochastic
differential equation-based methods [22], [23], etc. However,
most of these methods are limited with time series dimension
(and applicable to univariate time series only), change point
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types, complexity (most of CPD algorithms are still learning-
free), or robustness. Other methods, like [24] and [25], utilize
deep learning (DL) power, but provide unstable results with
suboptimal quality. At the same time, with the development
of deep learning, most of the conventional CPD approaches
remain unchanged and do not use the full power of DL.

In this work, we propose the first SDE-based likelihood-
ratio CPD algorithm that utilizes the full power of DL.
Namely, we use deep neural networks to learn a Latent
Stochastic Differential Equation (SDE) [26], [27], which
approximates the time series. The proposed method provides
fitting time series dynamics, where the continuous flow is
described by a Latent SDE [26], [27]. In previous works [22],
[23], SDE is applied to a limited set of change points and
uses a strictly limited parametric set of drift and diffusion
functions. In contrast, we develop an unsupervised CPD
algorithm for arbitrary-dimensional signals that uses deep
learning to find the appropriate SDE and approximate its
solution. The method has no limitations on the set of drift
and diffusion functions or change point types. We evaluated
the performance of the algorithm on open CPD benchmarks:
TCPD [28], SKAB [29], TEP [30], and TSSB [21], and
compared the results with available state-of-the-art methods.
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The work has the following structure. Section II gives the
problem statement, describes related works and background,
and presents Latent SDE fit using deep neural networks.
The proposed change point detection algorithm and data
processing are described in Section III. Section IV defines
the quality metrics that we use to compare our method
with others. The experimental results and their discussion
are provided in Sections V and VI respectively. Finally, the
conclusion with the main results of this work is presented in
Section VII.

II. BACKGROUND, MOTIVATION, AND CHALLENGES
This section contains the CPD problem statement along with
the existing CPD methods overview. We also provide here
all necessary background information for our work, including
the Latent SDE inference framework.

A. PROBLEM STATEMENT
Consider a d-dimensional time series, where each obser-
vation at a moment t is described by a vector of features
xt ∈ Rd :

X = {x1, x2, x3, . . . , xν, xν+1, xν+2, . . .} (1)

We assume that the distribution of all observations with
t < ν are sampled from distribution P, and the distribution
of all observations with ν ≤ t are sampled from distribution
Q ̸= P. The moment ν ≥ 1 when the distribution changes
is called a change point. In other words, the change point
is the moment when a time series changes its behaviour.
The illustration of several change-points is demonstrated in
Fig. 1. The goal is to detect all change points in time series
data. Usually, this is an unsupervised problem in statistics and
machine learning due to the absence of the true positions of
such points. In this work, we study this problem in such an
unsupervised setting.

B. RELATED WORK
Change point detection is a long-studied problem. The first
works on the change-point detection are dated in the 50s [31],
[32] for detecting a shift in the mean value of a signal for
quality control of manufacturing processes. In the following
decades, a range of change-point detection methods was
developed that could be split into several groups based on cost
function, search method, and additional constraints [33].
One of such groups is a set of subspace methods. This

line of CPD algorithms is based on the time series subspace
analysis of the original time series, which has a strong
connection with a system identification method. This method
has been thoroughly studied in control theory [12]. Some
subspace methods, such as subspace identification (SI) [13]
and singular spectrum transformation (SST) [15], [16], are
based on classical approaches, for example, matrix and SVD
transformation of the time series. Some others use more
complicated neural network projections to a time-invariant
subspace [24].

Another common group of change-point detection meth-
ods is based on a comparison of the empirical probability
density distributions before and after change points. The
CUSUM [32], [34] algorithm assumes that these distri-
butions are known and detects a change point using a
sequential hypothesis test procedure. The GLR [11], [35]
method supposes that the parameters of the distribution
after the change point are unknown and estimates it by
likelihood minimization. Change forest [36] is a likelihood
ratio classifier based on random forests that uses class
probability predictions to compare different change point
configurations. Generally, these methods use hypothesis
comparison tests, comparing null and alternative hypothesis
likelihoods in each point [37], [38], [39], [40], [41].
Usually [17], [35], [42], a null hypothesis suggests that no
change points occur in the timestamp, whereas an alternative
hypothesis suggests that a change point is present in the
timestamp.

The next group of methods is based on estimation of
some statistics. For instance, a Gaussian process (GP) is a
probabilistic method to describe stationary time series anal-
ysis and prediction [18]. Another method, called Bayesian
Change Point Detection (BCPD) [17], estimates the posterior
distribution over an auxiliary variable run length rt which
represents the time that elapsed since the last change point.
Given the run length at a time instant t , the run length at
the next time point can be either reset back to 0, if a change
point occurs at this time, or increased by 1, if the current state
continues for one more time unit.

A range of CPD approaches is based on direct probability
densities ratio estimation for two samples without the need
to know the individual densities [43]. One of the first such
algorithms uses logistic regression on RBF kernels [44].
Later, other methods based on RBF kernels were proposed:
KLIEP [45], uLSIF [46], and RuLSIF [47]. Their application
in change-point detection are described in [12], [14], and [48].

Another group of methods also splits the time series into
windows and then uses a kernel-based statistical test to assess
the homogeneity between subsequent windows [19]. One of
such recent deep learning kernel-based methods is called
KL-CPD [25]. It uses maximum mean discrepancy (MMD)
statistical test [20] between distributions P andQ of windows
before and after the change point respectively (see previous
section II-A).
Onemore group of CPDmethods is based on cost functions

[49]. These methods estimate the discrepancy score between
two segments of a time series by comparing cost function
values before and after splitting the segment into two by a
change-point. The most popular algorithms of this group are
Binseg [50], Pelt [51], [52], and Window [49].
Graph-based CPD methods first infer a graph by mapping

observations (i.e., windows or sets of time series) to nodes and
connecting nodes by edges if their pairwise similarity exceeds
a predefined threshold. Next, a bespoke graph statistic is
applied to split the graph into subgraphs leading to change
points in the time series [53].
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FIGURE 1. Example of a time series with two change points at times ν1 = 200 and ν2 = 400. At these moments, the mean value of the signal changes
with jumps.

From a different perspective, the problem of change point
detection can be considered as a clustering problem with a
known or unknown number of clusters, such that observations
within clusters are identically distributed, and observations
between adjacent clusters are not. If a data point at the time
stamp t belongs to a different cluster than the data point at
the time stamp t + 1, then a change point occurs between the
two observations. One of such recently introduced methods
is the Classification Score Profile (ClaSP) which performs
segmentation of the time series [21] using KNN classification
procedure.

However, most of the aforementioned CPD algorithms do
not use deep learning power behind the implementation, and
tend to overfit on time series outliers, or can be used in
a supervised setting only. We believe that the main reason
for this is the lack of labeled data in most real-world tasks,
the specifics of each individual CPD case data with the
resulting complexity of transfer learning, and the complexity
of generalizing the aforementioned conventional approaches
to a DL generalization.

In this work, we evolve conventional SDE approaches [22],
[23] and propose a novel robust Latent Stochastic Differential
Equation’s likelihood ratio method for the change point
detection problem. Unlike the previous algorithms, the
proposedmethod combines a limited conventional time series
analysis approach based on SDE with the full power of deep
learning. Themethod is entirely unsupervised and requires no
labeled change points in the training dataset.

C. LATENT STOCHASTIC DIFFERENTIAL EQUATIONS
Consider a D-dimensional time series X = {xt ∈ RD

}t∈T in
time interval T = [0,T ], {wt }t∈T is a D-dimensional Wiener
process.

Then, a stochastic process {xt }t∈T ∈ RD can be defined by
an Itô SDE:

dxt = µ(xt , t)dt + σ (xt , t)dwt , (2)

if x0 is independent of the σ -algebra generated by wt , and

xT = x0 +

∫ T

0
µ(xt , t)dt +

∫ T

0
σ (xt , t)dwt , (3)

where, µ(xt , t) : RD
× T → RD is the drift function,

σ (xt , t) : RD
× T → RD is the diffusion function and the

second integral in (3) is the Itô stochastic integral [54]. When
the functions are globally Lipschitz, that is,

||µ(x, t) − µ(y, t)|| + ||σ (x, t) − σ (y, t)|| ≤ L||x − y||

∀x, y ∈ RD, t ∈ T (4)

for some constant L > 0, there exists a unique t-continuous
strong solution to (2) [26], [54].

In case of high dimension D of time series X , a more
efficient use of SDE on latent spaces {zt ∈ Rd

|d ≤ D} can
be used [26], [27]. In [27], the authors propose an efficient
variational inference framework for such latent SDE models.
In particular, given observations X , they parameterize both a
prior over functions and an approximate posterior of latent Z
using SDEs:

dz̃t = µθ (z̃t , t)dt + σ (z̃t , t)dwt , (prior)

dzt = µφ(zt , t)dt + σ (zt , t)dwt , (approx. posterior)

z̃0 = z0 ∼ ψ(x0), (initial latent state)

xt = f (zt ), (decoded states)

where µθ , µφ , and σ are Lipschitz in both arguments.
µθ is a prior drift function with prior parameters θ , µφ
is an approximate posterior drift function with variational
parameters φ, ψ is an encoder, and f is a decoder. In such a
setting, the evidence lower bound (ELBO) can be written [27]
as:

log p(x1, x2, . . . , xN |θ )

≥ Ezt

[
6N
i=1 log p(xti |zti ) −

∫ T

0

1
2
|u(zt , t)|2dt

]
, (5)

where u(zt , t) : Rd
× R → Rd is:

u(zt , t) =
µθ (zt , t) − µφ(zt , t)

σ (zt , t)
, (6)

where the expectation is taken over the approximate
posterior process defined by (approx. posterior). u(zt , t)
can be considered as a Kullback–Leibler (KL) divergence
between the approximate posterior and prior, which regu-
larizes when the approximate posterior is far from the prior
at a point (zt , t). The likelihoods of observations x1, . . . , xN
at times t1, . . . , tN depend solely on latent states zt at
corresponding times and a predefined likelihood function
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p(xt |zt ). In practice, this function is set [26] as a Gaussian
distribution:

p(xt |zt ) = N (xt |f (zt ),C), (7)

where f is the decoder, N (xt |f (zt ),C) is a Gaussian
distribution p.d.f. with mean f (zt ) and diagonal variance
matrix C .

D. CHANGE POINT DETECTION USING SDE
In [22], the authors propose the following SDE model of
volatility change point:

dxt = µ(xt )dt + θtσ (xt )dwt (8)

and find a time ν when the diffusion coefficient θν−1 ̸=

θν is changed. However, one of the main limitations of the
method is that volatility may have more complicated kind of
change than up to a multiplier θ .
In [23], a more complicated volatility change point model

is used:

dxt = µ(xt )dt + σ (xt ; θ )dwt (9)

Here, the time when the diffusion parameter θ is changed
is also considered as a change point.

However, the aforementioned CPD algorithms [22], [23]
still have a set of limitations. In first, they are designed
to detect volatility change points only. In second, they are
strictly limited with a set of drift and diffusion functions µ(·),
and σ (·; θ ).
For instance, in [55] the drift and diffusion functions have

the following forms:

µ(x) = (2 − x) (10)

σ (x; θ ) = θ (11)

In [56], the forms are following:

µ(x) = x (12)

σ (x; θ) = (1 + x2)θ (13)

III. PROPOSED METHOD
In contrast to the previous works [22], [23], we propose a new
CPD method based on Latent SDE, which approximates drift
and diffusion functions with arbitrarily neural networks. The
proposed method is aimed to find different types of change
points in an arbitrarily multivariate time series with unknown
drift and diffusion functions.

In the following section, we describe the proposed
algorithm with all the related preprocessing and post-
processing stages.

A. PREPROCESSING
First, the original time series is preprocessed with a standard
scaling technique. Very often, a time series has a trend and
seasonality, and its observations xi can be autocorrelated.
In some cases, these properties can complicate the detection
of change points. To remove the trend and autocorrelation,

we use the SARIMAX [57] model implemented in the
Statmodels [58] package. We fit the model for the whole time
series with the (5, 1, 0) order of AR parameters, differences,
andMA parameters respectively. The prediction of the model
for a time moment i is denoted as xSARIMAXi . Residuals
of the predictions ri are used for further analysis and are
estimated as

ri = xi − xSARIMAXi . (14)

In this work, we optionally use this preprocessing as
a hyperparameter of our model for each dataset (14).
Furthermore, the positional encoding features are passed as
input instead of time t [59].

B. POSTPROCESSING
The output of our algorithm is multidimensional, containing
the scores for all the original and auxiliary dimensions
from the previous section III-A. In the post-processing stage,
we use max aggregation over all the dimensions. That choice
of aggregation is justified by the fact that the change point in
one dimension denotes the change point of all the time series,
and the most likely dimension change point at each time is
taken.

Moreover, we use prominence post-processing [24] to
remove the duplicated peaks around the top one.

C. ALGORITHM
In this work, we present a novel likelihood-ratio CPDmethod
based on latent stochastic differential equations. We use the
following criterion of change point for our algorithm:

CPD(xt ) =

L∑
l=1

log
(

p(xt |t)
p(xt |t − l)

)
, (15)

where p(x|t) is a probability to observe x at time point
t , and L > 0 is a time lags range, which is considered
as a hyperparameter of the algorithm. To estimate the
conditional likelihood p(xt |ν), we use the following Monte-
Carlo approximation:

p(xt |ν) =

∫
p(xt |zν, ν)p(zν |ν)dz (16)

= Ezν∼p(zν |ν)p(xt |zν, ν) (17)

≈
1
N

N∑
i=1

p(xt |ziν, ν), (18)

where N trajectories ziν ∼ p(zν |ν) are sampled from the
pretrained latent SDE model [27]. The SDE dynamics of
latent Z = {zt } is approximated by maximizing the ELBO (5)
described in the previous section. If latent trajectories
ziν are complex enough, the likelihood function becomes
p(xt |ziν, ν) ≈ p(xt |ziν), and can be defined as in (7). So, we use
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the following form of CPD score at each point xt :

CCPD(xt ) =

L∑
l=1

log
( p(xt |t)
p(xt |t − l)

)
(19)

≈

L∑
l=1

log
( ∑N

i=1N (xt |f (zit ),C)∑N
i=1N (xt |f (zit−l),C)

)
, (20)

where f is a decoder, L = 5 (lags range) and C = 0.1 · I
(diagonal prior variance matrix) are hyperparameters. The
final algorithm is shown in Algorithm 1.

Algorithm 1 Change Point Detection With Latent SDE
Input: D-dimensional time series of observations

X = {xt ∈ RD
}
T−1
t=0 at times T = {ti}

T−1
i=0 respectively,

Variational encoder ψ and decoder f with parameters
2ψ and 2f respectively, diffusion function σp(z, t) with
parameters p, prior drift function µθ (z, t) = −z, approximate
posterior drift functionµφ(z, t) with parameters φ, number of
epochs K , learning rate η, lags range L, and prior variance C ,
SARIMA preprocessing option, PE is a positional encoder,
N is a number of trajectories to sample

1: X = StandardScaling(X )
2: if SARIMA then
3: R = X − (X )SARIMAX

4: X = {X ,R} ▷ Add SARIMA residuals feature(s)
5: end if
6: for epoch = 1, . . . ,K do
7: Set zt = z0 +

∫ t
0 µφ(zν,PE(ν))dν +∫ t

0 σp(zν,PE(ν))dWν

∣∣
z0=ψ(x0)

8:

9: for i = 1, . . . ,T − 1 do
10: Set u(zti ) =

µθ (zti ,PE(ti))−µφ (zti ,PE(ti))
σp(zti ,PE(ti))

11: end for
12: Zt = {zti}

T−1
i=0

13: 2 = {2ψ ,2f , φ, p} ▷ Neural networks parameters
14: Calculate ELBO loss L = EZt

[ ∑N
i=1 log p(xti |zti )−∫ T

0
1
2 |u(zt )|

2dt
]

15: Update parameters 2 := 2+ η ∂L
∂2

▷ any other
gradient optimization can be used here

16: end for
17: for i = 1, . . . ,N do
18: Sample latent trajectories zi ∼ p(z|X )
19: end for
20: for i = 0, . . . ,T do

21: CPD(xt ) =
∑L

l=1 log
( ∑N

i=1N (xt |zit ,C)∑N
i=1N (xt |zit−l ,C)

)
22: end for

Output: change point scores for observations X

D. THEORETICAL PROPERTIES
In this section, we provide a range of theoretical properties
of the proposed algorithm for change point detection.

We demonstrate that the CPD(xt ) score (15) is capable to
detect changes of mean, trend, and variance of the given
signal. To show that, let’s estimate an approximate analytical
form of the score, which is defined in Theorem 1.
Theorem 1: Let ν ∈ T is time moment, L > 0 is a

predefined time lags hyperparameter (15), and zν is latent
state in time ν. Consider the following normal form of the
p(f (zν)|ν) and p(xt |f (zν), ν) distributions:

p(f (zν)|ν) = N (f (zν)|bν,3ν), (21)

p(xt |f (zν), ν) = N (xt |f (zν),C). (22)

Then, the change point detection score CPD(xt ) (15) takes
the following analytical form:

CPD(xt ) =

×
1
2

L∑
l=1

[(
log(|C +3t−l |)

+ (xt − bt−l)T (C +3t−l)−1(xt − bt−l)
)

−
(
log(|C +3t |)+

+ (xt − bt )T (C +3t )−1(xt − bt )
)]

(23)

Proof: Let’s substitute Equations (22) and (21) into the
definition of p(xt |ν). Since the distributions p(xt |f (zν), ν) and
p(f (zν)|ν) are conjugate normal, p(xt |ν) is also normal:

p(xt |ν) =

∫
p(xt |f (z), ν)p(f (z)|ν)df (z)

=

∫
N (xt |f (z),C) ×N (f (z)|bν,3ν)df (z)

= N (xt |bν,C +3ν), (24)

log p(xt |ν) = −
D
2
log(2π) −

1
2
log(|C +3ν |)

−
1
2
(xt − bν)T (C +3ν)−1(xt − bν). (25)

Then, the change point detection score, defined in
Equation (15), takes the following form:

CPD(xt ) =

=

L∑
l=1

log
(

p(xt |t)
p(xt |t − l)

)

=

L∑
l=1

[
log(p(xt |t)) − log(p(xt |t − l))

]
=

1
2

L∑
l=1

[(
log(|C +3t−l |)+

+ (xt − bt−l)T (C +3t−l)−1(xt − bt−l)
)
−

−
(
log(|C +3t |)+

+ (xt − bt )T (C +3t )−1(xt − bt )
)]

(26)

□
This theorem shows how the change point detection score

behaves with different alternations of the signal. We assume
that the mean vector bt and the covariance matrix C + 3t
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represent the observed values. Thus, all changes of the time
series are reflected in the score values.

Using Theorem (1), let’s estimate the behaviour of the
change point detection score for three popular cases. Consider
a multivariate time series with a change point at time moment
t . In the first case, we assume, that the mean value of the
signal is changed in some time. In the second case, the trend
of the signal is changed. Finally, in the third case, the variance
of the signal alternates. Corollaries 1, 2, and 3 define the score
values for these three change points.
Corollary 1: Consider amultidimensional time series with

themean jump1b at a time t. It means, that,3t−l = 3t = 3,
bt = b + 1b, and bt−1 = bt−2 = . . . = bt−L = b. Then,
the change point detection score CPD(xt ) has the following
form:

CPD(xt ) =
L
2

(
(xt − b)T (C +3)−1(xt − b)

− (xt−b−1b)T (C +3)−1(xt−b−1b)
)
.

(27)

Corollary 2: Consequence of (1). Consider a multidimen-
sional time series x with the trend jump12b at the time t and
its first difference time series x1 with a constant covariance
matrix31 and mean jump1b1 = 12b at a time t. It means,
that, 31t−l = 31t = 31, b1t = b1 + 12b, b1t−1 = b1t−2 =

· · · = b1t−L = b1, x10 = 0, and x1t = xt − xt−1|t > 0. Then,
the change point detection score CPD(x1t ) has the following
form:

CPD(x1t )

=
L
2

(
(x1t − b1)T (C +31)−1(x1t − b1)

− (x1t − b1 −12b)T (C +31)−1(x1t − b1 −12b)
)

(28)

The Corollary (2) proves that trend changes can be also
detected if first difference preprocessing is performed over
the original time series x and used as input to the model.
Corollary 3: Consider amultidimensional time series with

the covariance change 31 → 32 at a time t. It means, that,
bt−l = bt = b, 3t = 32, 3t−1 = 3t−2 = . . . = 3t−L =

31. Then, the change point detection score CPD(xt ) has the
following form:

CPD(xt ) =
L
2

[(
log(|C +31|) − log(|C +32|)

)
+ (xt − b)T

(
(C +31)−1

− (C +32)−1)(xt − b)
]
. (29)

The theorem and corollaries considered in this section
provide theoretical foundation for the proposed algorithm.
They demonstrate the ability of the algorithm to detect all
three main types of change points on multivariate time series
and predict the score values for different cases.

IV. METRICS
Recently, some change point detection benchmarks were
introduced: TCPD [28], SKAB [29], TSSB [21], and
TEP [30]. In this work, we use four metrics in our
experiments: Covering [28], F1 [28], Relative Change Point
Distance (RCPD) [21], [60], and NAB [61], that were
presented in the benchmarks. This section is addressed to a
detailed explanation of the change point evaluation metrics
used in this work.

A. F1
Consider a time series with several change points. Follow-
ing [28], we define T̂ = {τ̂i}m as a set of change point
locations provided by a detection algorithm and let T = {τi}n
be a combined set of all human annotations. For a set of
ground truth locations T , they denote a set of true positives
TP = {τi|∃τ̂j : |τ̂j−τi| < M}, whereM = 5 [28]. That means
the algorithm change point prediction can be away from
ground truth not farther thanM . We also ensure that only one
τ̂j can be used for a single τi. The latter requirement is needed
to avoid double-counting, and M = 5 is the allowed margin
of error. Then, precision (P) and recall (R) are defined as,

P =
|TP|

|T̂ |
, R =

|TP|

|T |
(30)

Then, F1 is used as a quality measure of change point
detection:

F1 =
2PR
P+ R

(31)

B. COVERING
The second quality metric is based on a segmentation
approach, where each change point is considered as a border
between two separate segments of a time series. By analogy
with other segmentation tasks, the Jaccard score can be used
here:

J (A,A′) =
|A ∩A′

|

|A ∪A′|
, (32)

where A is a ground-truth segment and A′ is a segment
formed by the found change points. To expand this metric
to a multiple segments case, the authors of [28] propose the
Covering metric:

C(G,G′) =
1
T

∑
A∈G

|A| · max
A′∈G′

J
(
A,A′

)
, (33)

where G and G′ correspond to ground truth and algorithm
segmentation, respectively, T is a time series length. In the
case of multiple annotators, the metric was averaged over the
annotators labels.

C. NAB
The Numenta Anomaly Benchmark (NAB) score was
introduced in [61] and uses a distance-weighted score for
predicted change points within and outside the predefined
region around ground truth change points. The region starts
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at the ground truth position of a change point. Thus,
all the change point predictions before the ground truth
and all others outside the region are considered as false
positives (FP). Within the region, only the nearest prediction
is considered as a true positive (TP). All the rest of the
predictions within the region are ignored.

For each predicted change point τ̂ ∈ T̂ , NAB score is
calculated in the following way:

σA(τ̂ ) = (ATP − AFP)
(

1

1 + e5|τ̂−τ |

)
− 1, (34)

where |τ̂ − τ | is a relative position of the detected τ̂

within the region. Here, the profile coefficients A =

{ATP,AFP,AFN ,ATN } are predefined. In this work, we use
3 different profiles for the evaluation:

AStandart = {1.0,−0.11,−1.0, 1.0}, (35)

ALowFP = {1.0,−0.22,−1.0, 1.0}, (36)

ALowFN = {1.0,−0.11,−2.0, 1.0}. (37)

In our work, NAB score for these three profiles is
denoted as NAB.Standart, NAB.LowFP, and NAB.LowFN
respectively.

We use default region sizes in NAB scores computation.
In [61], the authors show that the region size has a minor
impact on the final metric value and is chosen to be in the
range from 5

|T |
% to 20

|T |
% of the time series length T . For the

predictions T̂ , the raw score is:

ST̂ =

∑
τ̂∈T̂

σA(τ̂ )

 + AFN |FN |, (38)

where |FN | is a number of false negatives (empty windows
with no detections around the ground truth).

Then, the final NAB score for the predictions T̂ is written
in the following rescaled form:

NABT̂ = 100
ST̂ − Snull
Sperf − Snull

(39)

where Sperf denotes a raw score for ‘‘perfect’’ detector (one
that outputs all true positives and no false positives) and Snull
denotes a raw score for ‘‘null’’ detector (one that outputs no
anomaly/change point detections).

D. RELATIVE CHANGE POINT DISTANCE (RCPD)
RCPD was introduced in [60] and later used in the ClaSP
change point algorithm [21]. It computes an average distance
between the predictions {τ̂ ∈ T̂ } and nearest change points
{τ ∈ T }:

RCPD =
1

T |T̂ |

∑
τ̂∈T̂

min
τ∈T

|τ − τ̂ |, (40)

where T is a time series length regarding the aforementioned
notation in the section.

TABLE 1. Toy synthetic benchmark (Univariate). Each row (except header)
represents the results of a specific algorithm. The first column contains
algorithm names. All the rest columns correspond to specific metrics
listed in the header. On each cell, a metric value averaged over all the
datasets is shown. The best values for each metric are highlighted with
bold. The uncertainty for each algorithm is estimated on 5 different runs.

TABLE 2. Toy synthetic benchmark (Multivariate). Each row (except
header) represents the results of a specific algorithm. The first column
contains algorithm names. All the rest columns correspond to specific
metrics listed in the header. On each cell, a metric value averaged over all
the datasets is shown. The best values for each metric are highlighted
with bold. The uncertainty for each algorithm is estimated on 5 different
runs.

V. EXPERIMENTAL RESULTS
In this section, we describe an evaluation of our model
along with a comparison of state-of-the-art CPD algorithms
like KL-CPD [25], TIRE [24], ClaSP [21], BOCPD [17],
BINSEG [62], CHANGE_FOREST [36] and ruptures [49]
algorithms like PELT, OPT, KERNEL, and WIN. Each
algorithm is evaluated at the best threshold for each quality
metric described in the previous section. If the algorithm
does not return detection scores, the optimal number of
the predicted change points is taken for each metric.
Univariate algorithms, like ClaSP and BOCPD are evaluated
on univariate datasets only. For uncertainty estimation, each
algorithm was trained and evaluated on each dataset 5 times
from different initialization seeds.

In further subsections, we describe all the evaluation
corpuses in detail and provide aggregated results tables over
each corpus. A detailed models and hyperparameters setup
is described in Appendix VII-A. All other implementation
details and datasets are available at our public paper
repositories for source code1 and data2 respectively.

A. OUR SYNTHETIC STUDIES
To test the model performance, we first take a simple set of
synthetic experiments using artificial datasets. The aim of
this synthetic experiment is to check how well our algorithm
detects different kinds of change points: trend changes, mean

1https://gitlab.com/lambda-hse/neural-sde-for-cpd
2https://gitlab.com/lambda-hse/change-point/datasets/

104706 VOLUME 11, 2023



A. Ryzhikov et al.: Latent Stochastic Differential Equations for Change Point Detection

FIGURE 2. In these figures, the behaviour of our algorithm on three main
types of change points is shown. On (a), the mean change point (step) is
shown. On (b), the trend change point (fracture) is figured. On (c), the
volatility change point is shown. The top halves of the figures contain
original time series with averaged SDE dynamics. The bottom halves of
the figures represent the score of our algorithm, maximized over all the
original and auxiliary dimensions.

jumps, and volatility changes on univariate and multivariate
cases. Each experiment represents noisy data generation with
further models quality and robustness estimation.

Figure 2 shows the behaviour of the algorithm on
3 simulated change point types: mean, trend, and volatility
change points.

The averaged metric values for synthetic corpus are
listed in Tables 1,2. For univariate datasets, our algorithm
outperforms all the others on all CP metrics. For multivariate
datasets, the algorithm outperforms the others on all metrics
besides Low.FN.

TABLE 3. Results on univariate TCPD datasets [28]. Each row (except
header) represents the results of a specific algorithm. The first column
contains algorithm names. All the rest columns correspond to specific
metrics listed in the header. On each cell, a metric value averaged over all
the datasets is shown. The best values for each metric are highlighted in
bold. The uncertainty for each algorithm is estimated on 5 different runs.

TABLE 4. Results on multivariate TCPD datasets [28]. Each row (except
header) represents the results of a specific algorithm. The first column
contains algorithm names. All the rest columns correspond to specific
metrics listed in the header. On each cell, a metric value averaged over all
the datasets is shown. The best values for each metric are highlighted in
bold. The uncertainty for each algorithm is estimated on 5 different runs.

TABLE 5. Results on SKAB benchmark datasets [29]. Each row (except
header) represents the results of a specific algorithm. The first column
contains algorithm names. All the rest columns correspond to specific
metrics listed in the header. On each cell, a metric value averaged over all
the datasets is shown. The best values for each metric are highlighted in
bold. The uncertainty for each algorithm is estimated on 5 different runs.

The complete description of the synthetic corpus, along
with detailed case studies is listed in Appendix VII-B.

B. EVALUATION ON OPEN DATASETS
In this section, we evaluate our algorithm and compare it
with baselines on open datasets for change point detection:
TCPD [28], SKAB [29], TSSB [21], and Tennessee Eastman
Process(TEP) [30].
TCPD dataset consists of 37 real time series collected

for the change point detection benchmark [28]. It includes
33 univariate and 4 multivariate series with manually labeled
change points.

The SKAB corpus contains 35 individual data files. Each
file represents a single experiment and contains a single
anomaly (change point). The dataset represents a multivariate
time series collected from the sensors installed on the
testbed [29].
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TABLE 6. Results on TSSB benchmark datasets [21]. Each row (except
header) represents the results of a specific algorithm. The first column
contains algorithm names. All the rest columns correspond to specific
metrics listed in the header. On each cell, a metric value averaged over all
the datasets is shown. The best values for each metric are highlighted in
bold. The uncertainty for each algorithm is estimated on 5 different runs.

TABLE 7. Results on Tennessee Eastman Process datasets [30]. Each row
(except header) represents the results of a specific algorithm. The first
column contains algorithm names. All the rest columns correspond to
specific metrics listed in the header. On each cell, a metric value averaged
over all the datasets is shown. The best values for each metric are
highlighted with bold. The uncertainty for each algorithm is estimated on
5 different runs and 21 data samples.

TABLE 8. List of synthetic datasets. The first column contains dataset
indices. The second column contains types of change points which
presents in a dataset. The last column contains detailed dataset
description.

TSSB benchmark consists of 98 univariate datasets:
49 single change point time series, 22 datasets with two
change points each, 10 datasets with three change points each,
and 11 datasets with 4 change points each [21].

TEP benchmark contains 22 53-dimensional single change
point datasets [30].

For univariate and multivariate datasets of the TCPD
corpus, the results are shown in Tables 3,4 respectively. The
results for the SKAB, TSSB, and TEP corpuses are shown in
Tables 5,6,7 respectively.
On the TSSB benchmark, the proposed algorithm outper-

forms the others only on the F1 score. However, in all the
rest studied benchmarks, our algorithm outperforms all other
algorithms.

VI. DISCUSSION
Theorem 1 and the corresponding corollaries 1, 2, 3
prove the theoretical discriminating power on trend, jump,

FIGURE 3. Architecture of Neural SDE for CPD. In our work, we use
3-layer dense neural network to approximate posterior drift, and constant
diffusion (equal to 1 in each point). This configuration is similar to the
default configuration in the original neural SDE work [27]. Here, D
denotes the dimensionality of original dataset, n_pos_encodings denotes
the number of the added time positional encoding features. Factor
2 before the dimensionality D means that we augment each time series
with SARIMAX residuals of the same dimensionality.

TABLE 9. NAB.Stadart metric for synthetic datasets [61]. The first column
contains dataset indices. The header contains algorithm names. In cells,
NAB.Stadart metric for the corresponding dataset and algorithm is given.

TABLE 10. NAB.LowFP metric for synthetic datasets [61]. The first column
contains dataset indices. The header contains algorithm names. In cells,
NAB.LowFP metric for the corresponding dataset and algorithm is given.

TABLE 11. NAB.LowFN metric for synthetic datasets [61]. The first column
contains dataset indices. The header contains algorithm names. In cells,
NAB.LowFN metric for the corresponding dataset and algorithm is given.

and volatility change points under the certain condi-
tions (21), (22). This provides a strong hint for good
phenomenological results. The obtained experimental results
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TABLE 12. F1 metric for synthetic datasets [28]. The first column contains
dataset indices. The header contains algorithm names. In cells, F1 metric
for the corresponding dataset and algorithm is given.

TABLE 13. Covering metric for synthetic datasets [28]. The first column
contains dataset indices. The header contains algorithm names. In cells,
Covering metric for the corresponding dataset and algorithm is given.

TABLE 14. RCPD metric for synthetic datasets [21]. The first column
contains dataset indices. The header contains algorithm names. In cells,
RCPD metric for the corresponding dataset and algorithm is given.

support the aforementioned theoretical properties of the pro-
posed algorithm (follow the Appendix for more details and
experiments). According to the experiments and theoretical
properties, the algorithm effectively detects all the main
types of change points and outperforms the existing CPD
methods on a wide range of benchmarks. Unlike the previous
algorithms, our method shows the best average quality both
on univariate and multivariate datasets.

We suggest the main reason for such good quality is
that our method effectively fits the latent dynamics of a
multivariate process with the robust continuous dynamics
of SDE. The proposed method generalizes the conventional
likelihood ratio CPDmethods based on stochastic differential
equations [22], [23] with modern DL techniques. To our
knowledge, this is the first DL approach that uses Latent
Stochastic Differential Equations. Moreover, unlike the
preceding SDE-based methods, our algorithm is designed for
all main types of change points, including trend, mean, and
volatility change.

Along with a good performance, our algorithm has
good scalability and computing efficiency. The training and
inference stages of the algorithm are linear with the respect to
the time series size N , whereas lots of other state-of-the-art
algorithms with comparable quality are much less scalable,
or require much higher computational complexity.

Another main property of our algorithm is flexibility,
which helps to use any deep learning based encoder-decoder
architectures behind the algorithm. Moreover, more compli-
cated preprocessing techniques can be used, particularly to
detect seasonality changes.

This way, we first provide and study a general Neural
SDE framework in a CPD setting, which makes it possible
to apply a wide range of modern deep learning techniques to
CPD problems. This fact, along with all the aforementioned
properties, provides a broad perspective for further study and
improvements of the proposed algorithm.

VII. CONCLUSION
Thework is aimed to designing an efficient DL generalization
of the conventional likelihood ratio CPD approaches based
on stochastic differential equations. To this end, we present a
first study of Latent SDE in a change point detection setting.
As a result of this work, a novel CPD algorithm on the
edge of modern deep learning approaches and conventional
CPD methods is introduced. This is the first deep learning
modification of stochastic differential equations approach to
change point detection.

It was theoretically and experimentally shown that the
proposed method is capable of detecting all the main types of
change points in multivariate time series data: trend, mean,
and volatility changes. In most of the scenarios and metrics,
the model shows high robustness and a performance which
is strongly higher than other state-of-the-art CPD algorithms
used in this work.

With all the aforementioned, the proposed algorithm
represents a big interest from theoretical and performance
perspective for change point detection problem.

APPENDIX
A. EXPERIMENT SETUP. TRAIN, INFERENCE, AND
IMPLEMENTATION DETAILS
In this auxiliary section, experimental and training specifics
details are described.

In the experiments, each algorithm is used with fixed
pre-defined hyperparameters. For BINSEG [62], PELT [49],
OPT [49], KERNEL [19], and WIN [49], the best values
for hyperparameters obtained by the authors of SKAB
benchmark were chosen [29]. For BOCPD [17], ClaSP [21],
TIRE [24], KLCPD [25], CHANGE_FOREST [36], the best
hyperparameters are taken from the corresponding papers.

Neural Stochastic Differential Equation is implemented
using torchsde3 framework with noise_type = diagonal,
sde_type = Stratonovich_SDE . The neural SDE networks
configuration is shown in Figure 3. In this work, we use
torchsde configuration as a basis for our one [27].
The configuration is trained 100 iterations on each dataset

with batch size 512. We monitor the evaluation metrics on
each epoch in inference mode and save the best values of it.

3https://github.com/google-research/torchsde
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For training, we use Adam optimizer with learning rate
10−2 and default parameters.

In all the experiments, we use a machine with single
8-core CPU Xeon E5-2689 and single Nvidia 1080 Ti GPU.
The training stage for each dataset on that hardware takes
approximately 200 minutes.

B. SYNTHETIC CORPUS
In our experiments, an additional corpus of synthetic datasets
is introduced. Wemake this corpus to see how each algorithm
works on different types of change points. To accomplish
that, a set of synthetic tests (datasets) is generated for three
main types of change points: trend, mean, and volatility
change. In Table 8, a complete set of tests is listed.
In Tables 9, 10, 11, 12, 13, 14, a detailed results for
NAB.Standart, NAB.LowFP, NAB.LowFN, F1, Covering,
and RCPD metrics are shown respectively.
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