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MATHEMATICAL PROBLEMS OF NONLINEARITY

MSC 2010: 37C15, 37C27, 37D15

Topology of Ambient 3-Manifolds of Non-Singular
Flows with Twisted Saddle Orbit

O. V.Pochinka, D.D. Shubin

In the present paper, nonsingular Morse – Smale flows on closed orientable 3-manifolds are
considered under the assumption that among the periodic orbits of the flow there is only one
saddle and that it is twisted. An exhaustive description of the topology of such manifolds is
obtained. Namely, it is established that any manifold admitting such flows is either a lens space
or a connected sum of a lens space with a projective space, or Seifert manifolds with a base
homeomorphic to a sphere and three singular fibers. Since the latter are prime manifolds, the
result obtained refutes the claim that, among prime manifolds, the flows considered admit only
lens spaces.

Keywords: nonsingular flows, Morse – Smale flows, Seifert fiber space

1. Introduction and formulation of results

In the present paper, we consider NMS-flows f t, that is, nonsingular (without fixed points)
Morse – Smale flows defined on closed orientable 3-manifolds M3. The nonwandering set of such
flows consists of a finite number of periodic hyperbolic orbits. It is known from Asimov’s work [1]
that the ambient manifold in this case has a round handle decomposition. However, in the case of
a small number of periodic orbits, the topology of the manifold can be significantly refined. For
example, only lens spaces are ambient for NMS-flows with exactly two periodic orbits. Moreover,
in [2] it is proved that for every lens space there are exactly two equivalence classes of such flows,
except for the 3-sphere S

3 and the projective space RP 3, on which there is one equivalence class.
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In [3], it is stated that the lens space is also the only prime (homeomorphic to S
2 × S

1 or
irreducible — any cylindrically embedded 2-sphere bounds the 3-ball) 3-manifold which is ambient
for NMS-flows with a unique saddle periodic orbit. However, this is incorrect. In the previous
work of one of the authors [4], NMS-flows with exactly three periodic orbits (attractive, repelling
and saddle) are constructed on a countable set of pairwise nonhomeomorphic mapping tori that
are not lens spaces. Moreover, in [5] necessary and sufficient conditions for the topological
equivalence of such flows are obtained.

In this paper, we recognize the topology of all orientable 3-manifolds that admit NMS-flows
with exactly one saddle periodic orbit, assuming that it is twisted (its invariant manifolds are
nonorientable).

Let us proceed to the formulation of the results.
Let M3 be a connected closed orientable 3-manifold, f t : M3 →M3 an NMS-flow and O —

its periodic orbit. In the neighborhood of the hyperbolic periodic orbit O, the flow can be simply
described (up to topological equivalence). Namely, there exist a linear diffeomorphism of the
plane, given by the matrix with positive determinant and real eigenvalues with absolute value
different from one, and a tubular neighborhood VO homeomorphic to the solid torus D

2 × S
1,

in which the flow is topologically equivalent to the suspension over this diffeomorphism (see,
for example, [6]). If both eigenvalues are greater (less) than one in absolute value, then the
corresponding periodic orbit is called repelling (attractive) and saddle otherwise. In this case,
a saddle orbit is called twisted if both eigenvalues are negative and untwisted otherwise.

Let TO = ∂VO. Let us choose meridian MO ⊂ TO (a null-homotopic curve on VO and
essential on TO) and longitude LO ⊂ TO (the curve homologous in the VO to the orbit O). We
assume that the meridian MO is oriented so that the pair of oriented curves MO, LO determines
the outer side of the solid torus boundary. Thus, the homotopy types 〈LO〉 = 〈1, 0〉, 〈MO〉 =
= 〈0, 1〉 of knots LO, MO are generators of the homotopy types 〈K〉 of oriented knots K on
torus TO, that is,

〈K〉 = 〈lO, mO〉 = lO〈LO〉+mO〈MO〉, (1.1)

where lO, mO ∈ Z are numbers of twists of the oriented knot K around the parallel and the
meridian, respectively. Note that the choice of the longitude does not influence the following
reasoning, since only the remainder of the division of lO by mO matters in the subsequent
discussion.

Consider the class G−
3

(
M3

)
of NMS-flows f t : M3 → M3 with a unique saddle orbit, as-

suming that it is twisted. Since the ambient manifold M3 is the union of the stable (unstable)
manifolds of all its periodic orbits, the flow f t ∈ G−

3

(
M3

)
must have at least one attracting and

at least one repelling orbit. In Section 3, we will prove the following fact.

Lemma 1. The nonwandering set of any flow f t ∈ G−
3

(
M3

)
consists of exactly three

periodic orbits S, A, R, saddle, attracting and repelling, respectively.

Since the flow f t in the neighborhood of a periodic orbit is equivalent to a suspension over
the linear diffeomorphism, the stable and unstable manifolds of these orbits have the following
topology:

• W u
S
∼=W s

S
∼= R ×̃ S

1 (open Moebius strip);

• W s
A
∼=W u

R
∼= R

2 × S
1;

• W u
A
∼=W s

R
∼= S

1.
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This fact and Lemma 1 immediately imply the following proposition (for more details,
see [5]).

Proposition 1. The ambient manifold M3 of any flow f t ∈ G−
3

(
M3

)
is represented as the

union of three solid tori :
M3 = VA ∪ VS ∪ VR

with disjoint interiors being tubular neighborhoods of A, S, R orbits, respectively, with the fol-
lowing properties :

• TS = ∂VS is the union of tubular neighborhoods T uS , T sS of knots Ku
S = W u

S ∩ TS, Ks
S =

=W s
S ∩ TS, respectively, such that T uS ∩ T sS = ∂T uS ∩ ∂T sS ;

• the torus TA = ∂VA is the union of the annulus T uS and a compact surface T (an annulus
or disjoint union of a handle with a disk) with disjoint interiors, and the knot Ku

S has
homotopy type

〈Ku
S〉 = 〈lA, mA〉

with generators LA, MA, respectively ;

• the torus TR = ∂VR is the union of the annulus T sS and the surface T with disjoint interiors,
and the knot Ks

S has homotopy type

〈Ks
S〉 = 〈lR, mR〉

with generators LR, MR, respectively.

(a) essential (b) inessential

Fig. 1. Knot Ku
S

Thus, both knots Ku
S ⊂ TA, Ks

S ⊂ TR are either inessential or essential (see Fig. 1). For
every flow f t ∈ G−

3

(
M3

)
we determine a quadruple of integers

Cf t = (l1, m1, l2, m2)

as follows:
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• if the knots Ku
S , Ks

S are essential on tori TA, TR, then

Cf t = (lR, mR, lA, mA);

• if the knots Ku
S , Ks

S are inessential on tori TA, TR, then

Cf t = (0, 2, l2, m2),

where 〈l2, m2〉 is the homotopy type of the knot on torus TR which is the meridian on
torus TA.

Note that the classG−
3

(
M3

)
is not empty, because by [5] every quadruple C = (l1, m1, l2, m2)

with gcd(li, mi) = 1, i = 1, 2 and quadruple C = (0, 2, l2, m2) with gcd(l2, m2) = 1 are realiz-
able by a flow f t ∈ G3

(
M3

)
such that C = Cf t .

The main result of the paper is the following theorem (all the necessary information about
the objects mentioned below is given in Section 2).

Theorem 1. Ambient manifolds of the flows in G−
3

(
M3

)
are lens spaces Lp,q, connected

sums of the form Lp,q#RP 3 and Seifert manifolds of the form M
(
S
2, (2, 1), (α1, β1), (α2, β2)

)
.

Namely, let the flow f t ∈ G−
3

(
M3

)
correspond to the collection Cf t = (l1, m1, l2, m2). Then

1) if l1 = 0 and l2 �= 0, then M3 is homeomorphic to the manifold Ll2,m2
#RP3;

2) if l1 �= 0 and l2 = 0, then M3 is homeomorphic to the manifold Ll1,m1
#RP3;

3) if l1 = 0 and l2 = 0, then M3 is homeomorphic to S
2 × S

1#RP3;

4) if |l1| = 1 and |l2| > 1, then M3 is homeomorphic to the lens space Lp,q, where p = 2β2−l2b,
q =

l2(b+1)
2 − β2, β2m2 ≡ 1 (mod l2), b ≡ 1 (mod 2);

5) if |l2| = 1 and |l1| > 1, then M3 is homeomorphic to the lens space Lp,q, where p = 2β1−l1b,
q =

l1(b+1)
2 − β1, β1m1 ≡ 1 (mod l1), b ≡ 1 (mod 2);

6) if |l1l2| = 1, then M3 is homeomorphic to the lens space Lb,2, b ≡ 1 (mod 2);

7) if |l1| > 1 and |l2| > 1, then M3 is homeomorphic to the prime Seifert manifold
M

(
S
2, (2, 1), (l1, β1), (l2, β2)

)
, βimi ≡ 1 (mod li), i = 1, 2 and is not homeomorphic

to any lens space.

2. Necessary information on the topology of 3-manifolds

2.1. Lens spaces

Everywhere below we assume that generators of homotopy types of knots on boundary ∂V
of the standard solid torus V = D

2 × S
1 are meridian M =

(
∂D2

)
× {y}, y ∈ S

1 with homotopy
type 〈0, 1〉 and parallel L = {x} × S

1, x ∈ ∂D2 with homotopy type 〈1, 0〉.
Lens space is a three-dimensional manifold Lp,q = V1 ∪

j
V2, which is the result of gluing

together two copies of the solid torus V1 = V, V2 = V by some homeomorphism j : ∂V1 → ∂V2
such that j∗(〈0, 1〉) = 〈p, q〉.

Proposition 2 ([7]). Two lens spaces Lp,q, Lp′,q′ are homeomorphic (up to preserving the
numbering of copies) if and only if p = ±p′, q ≡ ±q′ (mod |p|).
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2.2. Dehn surgery along knots and links

Suppose the following data are given:

1) a closed 3-manifold M ;

2) a knot γ ⊂M ;

3) a tubular neighborhood Uγ of γ with standard generators on ∂Uγ : meridian Mγ and longi-
tude Lγ ;

4) a homeomorphism h : ∂V → ∂Uγ inducing an isomorphism such that h∗(〈0, 1〉) = 〈β, α〉.

A manifold

Mγ,h = (M \ intUγ)∪
h
V

is called the manifold obtained from M by Dehn surgery along the knot γ.
Naturally, the manifold M is restored from Mγ,h by inverse surgery. Namely, we denote

by pγ,h : (M \ intUγ)�V →Mγ,h the natural projection. Let γ̃ = pγ,h
(
{0} × S

1
)
, Uγ̃ = pγ,h(V),

h̃ = pγ,hh
−1 : ∂Uγ → ∂Uγ̃ . Then

M ∼= (Mγ,h)γ̃,˜h. (2.1)

The following assertions follow directly from the relation (2.1).

Proposition 3. Let γ ⊂M be equipped with β, α. Then

M ∼= (Mγ)γ̃ ,

where γ̃ is equipped with −β, ξ satisfying ξα+ νβ = 1.

Proposition 4. Let Lp,q = V1 ∪
j
V2, where j∗(〈0, 1〉) = 〈p, q〉 and S

3 = V1 ∪
j0
V2, where

j0∗(〈0, 1〉) = 〈1, 0〉. Then

Lp,q
∼= S

3
M1
,

where M1 is the meridian of the torus V1, equipped with q, p.

Dehn surgery is naturally generalized to the case where γ = γ1 � . . . � γr ⊂ M is a disjoint
union (link) of equipped knots. The resulting manifold Mγ in this case is called the manifold
obtained from the manifold M3 by Dehn surgery along the equipped link γ. A link γ = γ1 � . . .�
�γr ⊂M is called trivial if knots γ1, . . . , γr bound pairwise disjoint 2-discs d1, . . . , dr ⊂M .

Proposition 5 ([7]). Let γ = γ1 � . . . � γr ⊂M be a trivial link equipped with q1, p1, . . . ,
qr, pr. Then

Mγ
∼=M#Lp1,q1# . . . Lpr,qr .
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2.3. Seifert fiber space

A solid torus V split into fibers of the form {x} × S
1 is called a trivially foliated solid torus.

Consider the solid torus V = D
2 × S

1 as the cylinder D
2 × [0, 1] with the bases glued due to

the 2πν
α angle rotation for coprime integers α, ν, α > 1. The partition of the cylinder into

segments of the form {x} × [0, 1] determines the partition of this solid torus into circles called
fibers. The segment {0} × [0, 1] generates a fiber which we call exceptional, all other (ordinary)
fibers of the solid torus wrap α times around the exceptional fiber and ν times around the
solid torus meridian. The number α is called the multiplicity of the exceptional fiber. A solid
torus with such a partition into fibers is called a nontrivially fibered solid torus with orbital
invariants (α, ν).

A Seifert manifold is a compact, orientable 3-manifold M decomposed into disjoint simple
closed curves (fibers) in such a way that every fiber has a neighborhood consisting of fibers,
fiberwise homeomorphic to a foliated solid torus. Such a partition is called Seifert fibration. The
fibers which correspond to the exceptional fiber under such homeomorphism of a nontrivially
foliated solid torus are called exceptional.

Two Seifert fibrations M , M ′ are called isomorphic if there exists a homeomorphism h : M →
→M ′ such that the image of each fiber of one bundle is a fiber of the second bundle. It is easy
to show (see, for example, [8, Proposition 10.1]) that two bundles of a solid torus with orbital
invariants (α1, ν1); (α2, ν2) are isomorphic (preserving the orientation of fibers) if and only
if α1 = α2 (= α); ν1 ≡ ν2 (mod α).

The base of a Seifert manifold M is a compact surface Σ =M/∼, where ∼ is an equivalence
relation such that x ∼ y if and only if x and y belong to the same fiber. It is easy to show (see,
for example, [8, Proposition 10.2]) that the base of any solid torus bundle is a disc. The base of
any Seifert manifold is a compact surface and Seifert bundles with nonhomeomorphic bases are
not isomorphic (see, for example, [8]).

Thus, any Seifert fiberingM with a given base Σ and orbital invariants (α1, ν1), . . . , (αr, νr),

r ∈ N is obtained from the manifold Σ×S
1 by Dehn surgery along the link γ =

r⊔
i=1

γi, where γi =

= {si} × S
1, si ∈ Σ is a knot with equipment βi, αi, νiβi ≡ 1 (mod αi). Therefore, the

conventional notation for such a Seifert fibration is

M(Σ, (α1, β1), . . . , (αr, βr)).

Proposition 6 ([8, 9]). Seifert fibrations M(Σ, (α1, β1), . . . , (αr, βr)) and
M ′ (Σ′, (α′

1, β
′
1), . . . ,

(
α′
r′ , β

′
r′
))

are isomorphic if and only if there exists δ = ±1 such that :

• Σ is homeomorphic to Σ′;

• r = r′; αi = α′
i; βi ≡ δβ′i (mod αi) for i ∈ {1, . . . , r};

• if the surface Σ is closed, then
r∑
i=1

βi
αi

= δ
r∑
i=1

β′
i
α′
i
.

Proposition 7 ([9, Proposition 1.12]). All closed orientable Seifert manifolds are prime
except M

(
S
2, (2, 1), (2, 1), (2, 1), (2, 1)

) ∼= RP 3#RP 3.

Proposition 8 ([10]). A 3-manifold admits a Seifert fibration with sphere base and at most
two singular fibers if and only if it is homeomorphic to a lens space, so that
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• the only manifold which admits fibering without singular fibers is S
2 × S

1;

• M
(
S
2, (α, β)

) ∼= Lβ,α;

• M
(
S
2, (α1, β1), (α2, β2)

) ∼= Lp,q, where p = β1α2 − α1β2, q = β1ν2 − α1ξ2 and ν2β2 −
− α2ξ2 = 1.

It follows from the above statement, in particular, that any lens space admits more than
one Seifert fibrations. However, as the result below shows, any such fibration with base sphere
cannot have more than two exceptional fibers.

Proposition 9 ([8]). Any lens space does not admit a Seifert fibration with base homeo-
morphic to sphere and more than two exceptional fibers.

3. Dynamics of the flows G−
3 (M

3)

This section is devoted to the proof of Lemma 1: the nonwandering set of any flow f t ∈
∈ G−

3

(
M3

)
consists of exactly three periodic orbits S, A, R, saddle, attracting and repelling,

respectively.

Proof. The basis of the proof is the following representation of the ambient manifold M3 of
the NMS flow f t with the set of periodic orbits Perf t (see, for example, [11])

M3 =
⋃

O ∈ Perf tW
u
O =

⋃
O∈Per

ft

W s
O, (3.1)

as well as the asymptotic behavior of invariant manifolds

cl (W u
O) \W u

O =
⋃

˜O∈Per
ft

: Wu
O∩W s

O 	=∅

W u
˜O,

cl (W s
O) \W s

O =
⋃

˜O∈Per
ft

: W s
O∩Wu

O 	=∅

W s
˜O.

In particular, it follows from the above relations that any NMS flow has at least one attracting
orbit and at least one repelling one. Moreover, if an NMS flow has a saddle periodic orbit,
then the basin of any attracting orbit has a nonempty intersection with an unstable manifold
of at least one saddle orbit (see [12, Proposition 2.3]) and a similar situation with the basin of
a repelling orbit.

Now let f t ∈ G−
3

(
M3

)
and S be its only saddle orbit. It follows from the relation (3.1)

that W u
S \ S intersects only basins of attracting orbits. Since the set W u

S \ S is connected and
the basins of attracting orbits are open, W u

S intersects exactly one such basin. Denote by A the
corresponding attracting orbit. Since there is only one saddle orbit, there is only one attracting
orbit. Similar reasoning for W s

S leads to the existence of a unique repelling orbit R. �
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4. Topology of ambient manifolds of flows of class G−
3 (M

3)

In this section, we prove Theorem 1: flows of class G−
3

(
M3

)
admit all lens spaces Lp,q,

all connected sums of the form Lp,q#RP 3 and all Seifert manifolds of the form M
(
S
2, (2, 1) ,

(α1, β1), (α2, β2)
)
. Namely, let the flow f t ∈ G−

3

(
M3

)
have the invariant Cf t = (l1, m1, l2, m2).

Then

1) if l1 = 0 and l2 �= 0, then M3 is homeomorphic to the manifold Ll2,m2
#RP3;

2) if l1 �= 0 and l2 = 0, then M3 is homeomorphic to the manifold Ll1,m1
#RP3;

3) if l1 = 0 and l2 = 0, then M3 is homeomorphic to S
2 × S

1#RP3;

4) if |l1| = 1 and |l2| > 1, then M3 is homeomorphic to the lens space Lp,q, where p = 2β2−l2b,
q =

l2(b+1)
2 − β2, β2m2 ≡ 1 (mod l2), b ≡ 2 (mod 2);

5) if |l2| = 1 and |l1| > 1, then M3 is homeomorphic to the lens space Lp,q, where p = 2β1−l1b,
q =

l1(b+1)
2 − β1, β1m1 ≡ 1 (mod l1), b ≡ 2 (mod 2);

6) if |l1l2| = 1, then M3 is homeomorphic to the lens space Lb,2, b ≡ 1 (mod 2);

7) if |l1| > 1 and |l2| > 1 then M3 is homeomorphic to the prime Seifert manifold
M

(
S
2, (2, 1), (l1, β1), (l2, β2)

)
, βimi ≡ 1 (mod li), i = 1, 2 and is not homeomorphic

to any lens space.

Proof. The idea of the proof is to recognize that the sphere S
3 is obtained by Dehn surgery

along a link consisting of a saddle orbit S of the flow f t and a knot γ from the ambient man-
ifold M3. Then, due to the relation (2.1), we have M3 ∼= S

3
˜S
γ̃ , which allows us to describe

the topology of the manifold M3 using the set Cf t = (l1, m1, l2, m2). Let us break down the
discussion into steps.

1. Dehn surgery along a saddle orbit S. Let us show that the following relation is true for
a saddle orbit S:

M3
S
∼= Lr,s.

Let us put

V+ = {(d1, d2, s) ∈ V | d1 � 0}, T+ = {(d1, d2, s) ∈ ∂V | d1 � 0},
V− = {(d1, d2, s) ∈ V | d1 � 0}, T− = {(d1, d2, s) ∈ ∂V | d1 � 0}.

Let h : ∂V → ∂VS be a homeomorphism such that

h(T+) = T uS , h(T−) = T sS .

Then h∗(〈1, 0〉) = 〈2, 1〉, which implies

h∗ =

(
2 1

b c

)
, b, c ∈ Z.

Consider the Dehn surgery M3
S on M3 along the knot S with a neighborhood VS and equip-

ment b, c. Let vS :
(
M3 \ intVS

)
� V → M3

S be the natural projection. For simplicity, we keep
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the notation of all objects on vS
(
M3 \ intVS

)
the same as it was on M3 \ intVS and set S̃ =

= vS
(
{0} × S

1
)
, V

˜S
= vS(V). Then M3

S is the union of two solid tori ṼA = VA ∪ vS(V+)

and ṼR = VR ∪ vS(V−) such that ṼA ∩ ṼR = ∂ṼA ∩ ∂ṼR and hence M3
S
∼= Lr,s for some coprime

integers a, b.
2. Reverse Dehn surgery on lens Lr,s along the knot S̃. Let T̃A = ∂ṼA, T̃R = ∂ṼR and Lr,s =

= ṼA ∪ ṼR. From Proposition 3 we find that M3 = (Lr,s)
˜S
, where S̃ is a knot with equip-

ment −b, 2. For knots δ ⊂ T̃A (= T̃R) denote by 〈δ〉A, 〈δ〉R the homotopy types of the knot δ on
tori T̃A, T̃R, respectively. Then for cases 1)–3) from the definition of Cf t we have the following
relations.

1. If l1 = 0 and l2 �= 0, then either 〈S̃〉A = 〈0, 0〉 or 〈S̃〉A = 〈0, 1〉. In the first case 〈S̃〉R =
= 〈0, 0〉 and 〈MA〉R = 〈l2, m2〉, which means r = l2, s = m2. Then by Proposition 4,
S
3
MA

= Ll2,m2
, where MA is the meridian of the torus T̃A equipped with m2, l2. Thus,

M3 ∼= S
3
˜S
MA

. Since the knots S̃ �MA form a trivial link on sphere S
3 (MA can be chosen

not to intersect S̃), by virtue of Propositions 5,

M3 = S
3
˜S
MA

∼= Ll2,m2
#L2,1 = Ll2,m2

#RP3.

Similarly, if 〈S̃〉A = 〈0, 1〉, then 〈MA〉R = 〈S̃〉R = 〈l2, m2〉 and so r = l2, s = m2.
Since MA can also be chosen to be disjoint from S̃, it follows that

M3 ∼= Ll2,m2
#RP3.

2. If l1 �= 0 and l2 = 0, then 〈S̃〉R = 〈0, 1〉. Then 〈MR〉A = 〈S̃〉A = 〈l1, m1〉 and, hence,
r = l1, s = m1, whence, from arguments similar to the above, we obtain

M3 ∼= Ll1,m1
#RP3.

3. If l1 = l2 = 0, then 〈S̃〉R = 〈0, 1〉. Then 〈MR〉A = 〈S̃〉A = 〈0, 1〉 and, hence, r = 0, s = 1,
whence it follows that

M3 ∼= RP3#L0,1 = RP3#S
2 × S

1.

3. Seifert fibration on manifold M3. To prove the remaining points, we note that in the
case when l1l2 �= 0, the manifold M3 = VA ∪ VS ∪ VR has a Seifert fibration. Indeed, in this
case, the fibration VS of the solid torus with exceptional fiber S and orbital invariants (2, 1)
contains the knots Ku

S and Ks
S as fibers. This fibration extends to a solid torus VA and VR

fibration with fibers A and R (which may or may not be exceptional), respectively, and with
orbital invariants (l1, m1) and (l2, m2). In this way,

M3 ∼=M(Σ, (2, b), (l1, β1), (l2, β2)), βimi ≡ 1 (mod li), b ≡ 1 (mod 2).

Let us show that the base Σ of such a bundle is a 2-sphere.
Let ∼ be an equivalence relation whose equivalence classes are the fibers of this fibration.

Figure 2 shows the meridian disks DA, DS , DR of the tori VA, VS , VR, respectively, the segments
containing equivalent points are shown in the same color. Gluing the equivalent points in the
disks DA, DS , DR, respectively, we obtain the disks D̂A = VA/∼, D̂S = VS, D̂R = VR, in which
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Fig. 2. Disks DA, DS , DR

Fig. 3. Disks D̂A, D̂S , D̂R

Fig. 4. Σ ∼= S
2

each fiber, except for the boundary fibers, is represented by one point and each boundary fiber
is represented by two points on different disks (see Fig. 3). By gluing the equivalent points in
the disks D̂A, D̂S , D̂R we obtain the sphere S

2 (see Fig. 4), which is the base of the fibration
given on M3. So,

M3 ∼=M
(
S
2, (2, b), (l1, β1), (l2, β2)

)
, βimi ≡ 1 (mod li). (4.1)

1. If |l1| = 1, |l2| > 1, then the fiber A is ordinary and, by Proposition 8,

M3 ∼=M
(
S
2, (2, b), (l2, β2)

) ∼= Lp,q,

where p = 2β2 − l2b, q =
l2(b+1)

2 − β2.

2. If |l1| > 1, |l2| = 1, then the fiber R is ordinary and, according to Proposition 8,

M3 ∼= Lp,q,

where p = 2β1 − l1b, q =
l1(b+1)

2 − β1.
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3. If |l1l2| = 1, then both fibers A, R are ordinary and, hence, by Proposition 8 and Proposi-
tion 2,

M3 ∼=M
(
S
2, (2, b)

) ∼= Lb,2.

4. If |l1| > 1, |l2| > 1, then M3 is a Seifert manifold with three exceptional fibers

M3 ∼=M
(
S
2, (2, b), (l1, β1), (l2, β2)

) ∼=M
(
S
2, (2, 1), (l1, β

′
1), (l2, β

′
2)
)
,

β′imi ≡ 1 (mod li),
β1
l1

+
β2
l2

+
b

2
=
β′1
l1

+
β′2
l2

+
1

2
.

By Proposition 7, M3 is prime and, by Proposition 9, it is not homeomorphic to a lens
space. �
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