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Abstract 

Critical Infrastructures (CIs) are exposed to various risks, which hinder their successful operation and induce great losses. Due to 
the interdependency between risks and that between CIs, the identification of the most prominent risks becomes complex and 
challenging. However, existing studies rarely considered the dual interdependency of risks and CIs. This study proposes a double-
layer network for multiple interdependent risks and CIs. The Design Structure Matrix (DSM) and Restart Random Walk (RRW) 
algorithm are combined to determine the impact of risks on CIs by incorporating the strength of dual interdependency. The 
LeaderRank algorithm is then used to rank these risk factors and an illustrative example is given to validate the model. The proposed 
model and algorithms can systematically quantify complex interdependencies embedded in the operation of CIs susceptible to 
multiple risks, and provide decision-makers with evidence to prioritize risks. 
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1. Main text  

Critical Infrastructures (CIs) are exposed to various risks varying from natural hazards to human factors [1]. For 
instance, the 2011 earthquake in Japan with the following-up nuclear power plant explosion and natural gas leakages 
triggered widespread system breakdowns and substantial losses [2]. Due to the geopolitical conflicts between Russia 
and Ukraine and the rupture of the North Stream pipelines, disruptions on the natural gas system, electricity system 
and other CIs of EU persist, inducing severe damages on the its normal operation [3]. To guarantee public security, an 
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effective identification of prominent risks is necessary for developing risk mitigation strategies and preventing the 
failure of CIs. 

However, risk identification for CIs is immensely complex due to intricate interdependencies. On the one hand, 
interdependency exist between risk factors. For example, extremely cold weather often raises the probability of 
damages in water pipelines [3]. On the other hand, CIs are also interdependent. For example, electricity system relies 
on water system for hydropower generation, while water pumps and machinery in turn depend on electricity for 
activation [1]. Current studies mainly focused on either interdependent risks or CI interdependency. For instance, 
looking into electricity systems susceptible to earthquakes and hurricanes, Salman and Li constructed a framework for 
modelling multi-hazard risks [4]. Alon et al. proposed a comprehensive framework of multi-hazard risk assessment 
and management of mitigation strategies [5]. Based on graph theory, Johansson and Hassel proposed a modelling 
approach for risks in railway systems that captures function and geographic interdependencies [6]. Roni et al. proposed 
a conceptual framework to quantify risks in integrated water-electricity systems [7]. Whereas, the composite effects 
of dual interdependency are often underestimated, which hinders the systematic identification and prioritization of 
risks that have the most severe impacts on CIs. 

Based on the above analysis, a complex network approach will be designed for determining the most prominent 
risks affecting multiple CIs considering dual interdependency. A research framework is first proposed for clarifying 
the research procedures, then the model for quantifying dual interdependency is constructed, followed by a Restart 
Random Walk (RRW) algorithm to solve the model. Finally, a LeaderRank algorithm is adopted for ranking the 
collection of risks, and an example is illustrated to validate the model. 

2. Methodology  

2.1. Research framework 

Fig. 1. demonstrates the four-step research framework. First, interdependent CIs are clarified, and risk factors 
affecting these CIs are extracted based on literature reviews, expert interviews and close track of news. Second, the 
dual interdependency between risks and that between CIs, as well as the occurrence of risks in each CI are quantified 
using the Design Structure Matrix (DSM). Third, the model is solved using RRW algorithm and a steady-state 
probability matrix is generated that reflects the impact of each individual risk factor on each CI by incorporating dual 
interdependency. Finally, based on the results obtained from the RRW algorithm, a LeaderRank algorithm is adopted 
to rank the risk factors. 

 

Fig. 1. Research framework 
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2.2. Quantification of dual interdependency 

Due to the various categories of interdependencies, this paper adopts the DSM method for quantifying the 
interdependency between CIs and that between risks. A strong interdependency that denotes the direct connection 
between two CIs and a weak interdependency that denotes an indirect connection between two CIs are clarified. The 
calculation of the strength of strong interdependency is shown in formulation (1), where ( , )DSM i j  represents the 
strength of the dependency from iCI  to jCI , and N represents the number of CIs. 
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The weak interdependency refers to the connection between CIs through a third-party CI as the intermediary node. 
The calculation of the interdependency strength is shown in formulation (2), where 1N is the number of adjacent 
nodes from iCI  to jCI , 2N  represents the number of CIs affecting iCI  in the network, and 3N  represents the 
number of CIs affected by jCI . 
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The overall interdependency strength from iCI  to jCI  can then be calculated as in formulation (3): 

( , ) ( , ) ( , )i j i j i jTS CI CI SI CI CI WI CI CI= +     (3) 

The interdependency strength between risk factors can also be calculated using the above method and ( , )R i j is 
then generated. 

2.3. Model solution with RRW 

This paper uses the RRW algorithm to analyze the impact of one specific risk factor on each CI. The basic principle 
is that one actor starting from any node in the network can choose to move to adjacent nodes or to return to the starting 
point with a certain probability and start a new walk [8]. Firstly, a random walk matrix is constructed in formulation 
(4): 
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where β  is the probability that the actor chooses to jump to another layer (from the risk layer to the CI layer), and
1 β−  is the probability that the actor continues to walk in the current layer (in the interdependent risk layer or the CI 
layer). CI  denotes matrix of interdependency strength between CIs, R  denotes the matrix of dependency strength 

between risks, and A  denotes the matrix of interdependency from risks to CIs. , ,CI R A
∼ ∼ ∼

 are the standardized 
matrices obtained from the above matrices, and TA  is the transposition of A . 
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( 1) ( ) (0)(1 )t T tp v W p vp+ = − +    (6) 

( 1) ( )t tp p ε+∆ = − <    (7) 

Formulation (5) indicates that starting from any risk factor in the risk layer, the initial probability matrix (0)p  can 
be constructed by simulating n  times, where n  is the number of risk factors, and λ  indicates the weight of 
interdependency between the risk layer and the CI layer. The iteration is performed according to Formulation (6), 
where W  denotes the random walk matrix of the actor, and v  represents its probability of returning to the starting 
point to begin a new walk, while 1 v−  is the probability of continuing to walk in the network. The iteration ceases 
when formulation (7) is satisfied, and the obtained matrix ( 1)tp +  denotes the probability matrix in the steady state. 

2.4. Risk ranking with LeaderRank algorithm 

LeaderRank introduced a ground node and bidirectional edges between that node and all other nodes in the network, 
solving the problems of parameter generality and equal transition probability for each node. Based on the steady-state 
probability matrix obtained in the RRW algorithm, the weighted LeaderRank algorithm is used to rank the risk factors. 
Formulation (8) describes the specific calculation formulation, with each node denoting a risk factor, is  means the 
score of node i , and ijω  means the path weight from node j  to i .  
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3. Illustrative example 

To validate the model, an illustrative example of risk identification for CIs in city B is shown to construct a dual-
layer network of CIs and risks. The risk layer consists of four factors, which are hurricane, flood, design defect, and 
pipeline failures, represented by 1 2 3 4, , ,R R R R , respectively. The CI layer consists of six CIs susceptible to these risk 
factors. The CI interdependency strength matrix, risk interdependency strength matrix, and risk-CI interdependency 
matrix are shown in Fig. 2. 

 

Fig. 2. (a) CI interdependency strength matrix; (b) risk interdependency strength matrix; (c) risk-CI interdependency matrix. 

After applying the RRW algorithm, the steady-state probability matrix can be obtained in Fig. 3. To 
comprehensively consider the impact of risk factors on CIs, this paper adopts the LeaderRank algorithm to rank the 
risk factors, with the order from low to high being 1 2 3 4, , ,R R R R . 
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Fig. 3. Steady-state probability matrix 

4. Conclusions 

Accurately clarifying the impact of multiple risks on CIs is extremely challenging due to the complex 
interdependency between risks and that between CIs. A double-layer risk-CI network was constructed and the DSM 
method was adopted to calculate the interdependency strength. By using the RRW algorithm to analyze the constructed 
network, the impact of specific risks on each CI was calculated by incorporating dual interdependency. The 
LeaderRank algorithm was applied to rank the risk factors. This study contributes to the community by providing a 
systematic framework for quantifying dual interdependency in risk identification of CIs, yet the interdependency 
between each CI components have been ignored due to the complexity, which will be the focus of the future research.  
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