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Abstract

Pythagorean fuzzy (PF) set is widely employed in multi-attribute decision making (MADM) process as it provides excellent
convenience in describing the inference information of decision makers. In this paper, we develop a new PF MADM framework
with incomplete weight information. Firstly, a linear programming model based on PF decision matrix and PF judgment matrix
is introduced to determine the weights of attribute. Secondly, a new additive consistency checking index based on the order σ
discriminant PF information is proposed. Then, we present the PF Yager weighted averaging aggregation operator to aggregate
the PF decision information based on Yager triangular norms, which has the desirable property of being monotonic with respect
to the total order. Finally, a comprehensive MADM framework is constructed by integrating the above elements, and a case of
purchasing air conditioner is given to illustrate the applicability of the proposed approach.
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1. Introduction

Multi-attribute decision making (MADM) is the process by which the decision maker (DM) evaluates the
alternatives and selects the superior alternative from them, with the constraints implicit in the attributes [1]. Since
in most cases there is no alternative optimizing all criteria, compromised solution has to be made [2, 3, 4, 5].
In today’s complex socio-economic environment, MADM problems have been introduced into the fuzzy and
imprecise decision-making environment [6, 7, 8].

The quantitative study of fuzzy environments originated from fuzzy set theory [9], and subsequently various
fuzzy sets were derived to express fuzzy information [10, 11]. The concept of Pythagorean fuzzy sets (PFSs) was
proposed by Yager [12],which features that the square sum of the membership degree and the non-membership
degree is equal to or less than one. Compared to intuitionistic fuzzy sets (IFS) [10], it has greater advantages in
membership and non-membership grades space. Pythagorean fuzzy preference relation (PFPR) is the extension
of PFS, which inherits the advantages of PFS and allows DMs to express their preferences through a two-by-
two comparison between alternatives [13]. This property enables that PFPR has an excellent performance in
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capturing the motivation of DMs [14, 15]. Consistency is a key focus in PFPR studies, as lacking of consistency for
PFPRs can lead to unreasonable or incorrect conclusions. Many scholars have worked on developing consistency
checking indices and iterative algorithms to ensure that the judgment matrices provided by DMs are not self-
contradictory based on entropy [16], distance[17], similarity [18], etc. However, they ignore the possibility that
the information gain of an event is neither bounded at both ends nor defined at all points, and that the additive
property of independent events does not carry any additional weight when measuring information uncertainty.

The aggregation of Pythagorean fuzzy (PF) information is particularly important [19, 20] for PF MADM.
Based on different t-norms (t-NMs) and t-conorms (t-CMs), a sea of aggregation operators has been developed in
the existing studies [19, 20, 21, 22]. A problem is that these aggregation operators are monotone with respect to
the partial order ≤L defined as < u1, v1 > ≤L < u2, v2 > ⇐⇒ u1,≤u2, and v1≥v2 rather than total order, which
means these aggregation operators are not suitable for aggregating general PF information [23]. The monotonicity
of these PF aggregation operators maybe is inconsistent with their application in practical MADM problems.
Therefore, there is a need to develop some aggregation operators that are monotone with respect to total order.

Since it is difficult to know the weight of each attribute when the DMs do not have particular knowledge of the
prioritization of the attributes in practical decision making, the study of techniques for assigning attribute weights
when the attribute weights are incomplete is drawing attention [24], such as the Analytic Hierarchy Process (AHP)
[25], Delphi [26], the maximizing deviations apporach[27] and the entropy weight method [28], etc. However, all
of the above apporaches are only simply consider the decision matrix or judgment matrix as the information base
to calculate the weights of the attributes, which fails to take adequately advantage of the initiative of DMs.

From the above analysis, there are still three research gaps in the existing PF MADM research, including
1) lacking of capacity of existing consistency test indices; 2) lacking of aggregation operators that can aggre-
gate general PF information and 3) the initiative and motivation of DMs is underutilized in assigning attribute
weights.Therefore, the core of this paper lies in constructing a PF MADM framework with incomplete weight in-
formation, which is innovative in that it contains three elements: an iterative algorithm to improve the consistency
of PFPRs; a PF aggregation operator with the ability to aggregate general PF decision information and a linear
programming model to determine the attribute weights.

The paper is structured as follows. In Section 2, relevant terminology and basic concepts are reviewed. Section
3 presents an intergating MADM framework by incorporating a linear programming model for determining the
weights of attribute, an iterative algorithm of improving the consistency for self-contradictory PFPRs and the
PF Yager weighted averaging operator on total order. The next section provides an application of the proposed
method through a numerical example. In the end, some concluding comments are added.

2. Preliminaries

This section reviews some indispensable concepts and definitions about PFSs and PFPR.

Definition 1. [29] Considering U to be a discourse universe, a PFS P in U is a form specified by P = {⟨x, αP(x),
βP(x)⟩ : x ∈ U} , where αP(x) : U → [0, 1], βP(x) : U → [0, 1] incorporating the condition: 0 ≤ α2

P(x)+β2
P(x) ≤ 1

for each x in U.

For every PFS P in U, the numbers αP(x) and βP(x) serve as the “membership degree” and the “non-membership
degree” of the element x in the set P, respectively. The number π(x) is considered as the “indeterminacy degree”

of the element x in the set P with the relationship of π(x) = 2

√
1 − α2

P(x) − β2
P(x). The pairs P = ⟨αP, βP⟩ is called

an Pythagorean fuzzy number (PFN) for convenience.
In order to visually measure the value of PFNs, Zhang et al.[30] defined the score function and the accuracy

function of a PFN as S (P) = α2 − β2 and H(P) = α2 + β2, where S (P) ∈ [−1, 1] and H(P) ∈ [0, 1].
Dependent upon the score and accuracy functions of PFSs, the ranking of total order is developed.

Definition 2. [30] Let P1 = ⟨αP1 , βP1⟩ and P2 = ⟨αP2 , βP2⟩ be two any PFNs, then the total order is described
as: (1) If S (P1) < S (P2), then P1 < P2; (2) If S (P1) > S (P2), then P1 > P2; (3) If S (P1) = S (P2), then ; (a)
If H(P1) < H(P2), then P1 < P2; (b) If H(P1) > H(P2), then P1 > P2; (c) If H(P1) = H(P2), then P1 = P2.

As an extension of PFS, the relevant studies of PFPR are defined below.
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Definition 3. [31] A PFPR Q on a finite set of alternatives X = {x1, x2, · · · , xn}(n ≥ 2) is characterized by
a membership function uq : X × X → [0, 1] and a non-membership function vq : X × X → [0, 1] such that
0 ≤ u2

q(xi, x j) + v2
q(xi, x j) ≤ 1 with u2

q(xi, x j) = ui j interpreted as the certainty degree up to which xi is preferred to
x j; v2

q(xi, x j) = vi j interpreted as the certainty degree up to which xi is non-preferred to x j.

Definition 4. [32] Let A =

[a−i j, a

+
i j]


n×n
be a PF judgment matrix, where a−i j = ui j, a+i j =


1 − v2

i j,i, j ∈
{1, 2, · · · , n}, if there exists a normalized priority vector ω = (ω1, ω2, · · ·ωn)T , such that ui j ≤

√
2/2 (ωi−ω j+1) ≤

1 − v2
i j, where ωi ≥ 0, i = 1, 2, · · · , n,n

i=1 ωi = 1, then A is called an additive consistent PF judgment matrix.

Definition 5. [32] For two PFPRs Q = (qi j)n×n with qi j = ⟨ui j, vi j⟩ and Q̄ = (q̄i j)n×n with q̄i j = ⟨ūi j, v̄i j⟩, if there
exists a normalized PF weight vector ω̃ = (ω̃1, ω̃2, · · · ω̃n)T such that

q̄i j = (ūi j, v̄i j) =


(
√

2/2,
√

2/2) i f i = j

(


(ωu
i )2+(ωv

j)
2

2 ,


(ωv

i )2+(ωu
j )

2

2 ) i f i � j
(1)

where ω̃i = ⟨ωu
i , ω

v
i ⟩, ωu

i , ω
v
i ∈ [0, 1], (ωu

i )2+(ωv
i )2 ≤ 1, and

n
j=1
j�i
ωu

j +


1 − (ωv

i )2 ≤ 1,
n

j=1
j�i


1 − (ωv

j)
2+ωu

i ≥ 1

for i = 1, 2, · · · , n, then Q̄ = (q̄i j)n×n is called the additive consistent PFPR of Q = (qi j)n×n.

Given that, Zhang, Li and Zhou et al [32] proposed a linear model to solve for PF weight vector ω̃ =
(ω̃1, ω̃2, · · · ω̃n)T .

3. Pythagorean fuzzy MADM approach

For a MADM problem under PF environment, let X = {x1, x2, · · · , xn} be a set of alternatives to be selected,
C = {C1,C2, · · · ,Cm} be a set of attribute to be evaluated, and Λ be the set of possible weights of the attributes
determined by the known partial weight information. The performance of alternative xi(i = 1, 2, · · · , n) under the
criterion C j( j = 1, 2, · · · ,m) is expressed as a PFN di j = (αi j, βi j). When all the performances of the alternatives
are provided, the PF decision matrix are obtained as D = (di j)n×m =


(αi j, βi j)


n×m

. In addition, in order to take
advantage of the initiative and motivation of the DM, the DM provides two-by-two comparison information for
alternatives xi(i = 1, 2, · · · , n) and constructs the PF judgment matrix Q = (qi j)n×n =


(ui j, vi j)


n×n
.

3.1. Linear programming model for determining the weights of attributes
According to the score function, the score matrix of the Pythagorean fuzzy decision matrix D can be calculated

as S =

s(di j)


n×m

, where s(di j) ∈ [−1, 1](i = 1, 2, · · · , n; j = 1, 2, · · · ,m). Normalizing the score matrix

S =

s(di j)


n×m

to S̄ =

s̄(di j)


n×m

using the following equation

s̄(di j)=
s(di j) −min

i
{s(di j)}

max
i
{s(di j)} −min

i
{s(di j)}

, (i=1, 2, · · · , n; j = 1, 2, · · · ,m), (2)

we can further get the combined weighted score value of each alternative as s̄(di) =
m

j=1 wj s̄(di j), (i = 1, 2, · · · , n),
where w = (w1,w2, · · ·wm)T is the weight vector of the attribute, satisfying wj > 0, j = 1, 2, · · · ,m, m

j=1 wj =

1. Then, the additive consistency complementary judgment matrix Q̄ = (q̄i j)n×n can be constructed as q̄i j =√
2/2 (s̄(di) − s̄(d j) + 1), (i, j = 1, 2, · · · , n).

Considering the additive consistency complementary judgement matrix Q̄ has some deviation from the PF

judgement matrix Q of the DM, the inequality ui j − ε−i j ≤
√

2/2
m

k=1 wk


s̄(dik) − s̄(d jk)


+ 1

≤


1 − v2
i j + ε

+
i j

holds with the relaxation variables ε−i j and ε+i j(i=1, 2, · · · , n − 1 j = i + 1, · · · , n), where ε−i j and ε+i j are both non-
negative real numbers.
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formation, which is innovative in that it contains three elements: an iterative algorithm to improve the consistency
of PFPRs; a PF aggregation operator with the ability to aggregate general PF decision information and a linear
programming model to determine the attribute weights.

The paper is structured as follows. In Section 2, relevant terminology and basic concepts are reviewed. Section
3 presents an intergating MADM framework by incorporating a linear programming model for determining the
weights of attribute, an iterative algorithm of improving the consistency for self-contradictory PFPRs and the
PF Yager weighted averaging operator on total order. The next section provides an application of the proposed
method through a numerical example. In the end, some concluding comments are added.

2. Preliminaries

This section reviews some indispensable concepts and definitions about PFSs and PFPR.

Definition 1. [29] Considering U to be a discourse universe, a PFS P in U is a form specified by P = {⟨x, αP(x),
βP(x)⟩ : x ∈ U} , where αP(x) : U → [0, 1], βP(x) : U → [0, 1] incorporating the condition: 0 ≤ α2

P(x)+β2
P(x) ≤ 1

for each x in U.

For every PFS P in U, the numbers αP(x) and βP(x) serve as the “membership degree” and the “non-membership
degree” of the element x in the set P, respectively. The number π(x) is considered as the “indeterminacy degree”

of the element x in the set P with the relationship of π(x) = 2

√
1 − α2

P(x) − β2
P(x). The pairs P = ⟨αP, βP⟩ is called

an Pythagorean fuzzy number (PFN) for convenience.
In order to visually measure the value of PFNs, Zhang et al.[30] defined the score function and the accuracy

function of a PFN as S (P) = α2 − β2 and H(P) = α2 + β2, where S (P) ∈ [−1, 1] and H(P) ∈ [0, 1].
Dependent upon the score and accuracy functions of PFSs, the ranking of total order is developed.

Definition 2. [30] Let P1 = ⟨αP1 , βP1⟩ and P2 = ⟨αP2 , βP2⟩ be two any PFNs, then the total order is described
as: (1) If S (P1) < S (P2), then P1 < P2; (2) If S (P1) > S (P2), then P1 > P2; (3) If S (P1) = S (P2), then ; (a)
If H(P1) < H(P2), then P1 < P2; (b) If H(P1) > H(P2), then P1 > P2; (c) If H(P1) = H(P2), then P1 = P2.

As an extension of PFS, the relevant studies of PFPR are defined below.
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Definition 3. [31] A PFPR Q on a finite set of alternatives X = {x1, x2, · · · , xn}(n ≥ 2) is characterized by
a membership function uq : X × X → [0, 1] and a non-membership function vq : X × X → [0, 1] such that
0 ≤ u2

q(xi, x j) + v2
q(xi, x j) ≤ 1 with u2

q(xi, x j) = ui j interpreted as the certainty degree up to which xi is preferred to
x j; v2

q(xi, x j) = vi j interpreted as the certainty degree up to which xi is non-preferred to x j.

Definition 4. [32] Let A =

[a−i j, a

+
i j]


n×n
be a PF judgment matrix, where a−i j = ui j, a+i j =


1 − v2

i j,i, j ∈
{1, 2, · · · , n}, if there exists a normalized priority vector ω = (ω1, ω2, · · ·ωn)T , such that ui j ≤

√
2/2 (ωi−ω j+1) ≤

1 − v2
i j, where ωi ≥ 0, i = 1, 2, · · · , n,n

i=1 ωi = 1, then A is called an additive consistent PF judgment matrix.

Definition 5. [32] For two PFPRs Q = (qi j)n×n with qi j = ⟨ui j, vi j⟩ and Q̄ = (q̄i j)n×n with q̄i j = ⟨ūi j, v̄i j⟩, if there
exists a normalized PF weight vector ω̃ = (ω̃1, ω̃2, · · · ω̃n)T such that

q̄i j = (ūi j, v̄i j) =


(
√

2/2,
√

2/2) i f i = j

(


(ωu
i )2+(ωv

j)
2

2 ,


(ωv

i )2+(ωu
j )

2

2 ) i f i � j
(1)

where ω̃i = ⟨ωu
i , ω

v
i ⟩, ωu

i , ω
v
i ∈ [0, 1], (ωu

i )2+(ωv
i )2 ≤ 1, and

n
j=1
j�i
ωu

j +


1 − (ωv

i )2 ≤ 1,
n

j=1
j�i


1 − (ωv

j)
2+ωu

i ≥ 1

for i = 1, 2, · · · , n, then Q̄ = (q̄i j)n×n is called the additive consistent PFPR of Q = (qi j)n×n.

Given that, Zhang, Li and Zhou et al [32] proposed a linear model to solve for PF weight vector ω̃ =
(ω̃1, ω̃2, · · · ω̃n)T .

3. Pythagorean fuzzy MADM approach

For a MADM problem under PF environment, let X = {x1, x2, · · · , xn} be a set of alternatives to be selected,
C = {C1,C2, · · · ,Cm} be a set of attribute to be evaluated, and Λ be the set of possible weights of the attributes
determined by the known partial weight information. The performance of alternative xi(i = 1, 2, · · · , n) under the
criterion C j( j = 1, 2, · · · ,m) is expressed as a PFN di j = (αi j, βi j). When all the performances of the alternatives
are provided, the PF decision matrix are obtained as D = (di j)n×m =


(αi j, βi j)


n×m

. In addition, in order to take
advantage of the initiative and motivation of the DM, the DM provides two-by-two comparison information for
alternatives xi(i = 1, 2, · · · , n) and constructs the PF judgment matrix Q = (qi j)n×n =


(ui j, vi j)


n×n
.

3.1. Linear programming model for determining the weights of attributes
According to the score function, the score matrix of the Pythagorean fuzzy decision matrix D can be calculated

as S =

s(di j)


n×m

, where s(di j) ∈ [−1, 1](i = 1, 2, · · · , n; j = 1, 2, · · · ,m). Normalizing the score matrix

S =

s(di j)


n×m

to S̄ =

s̄(di j)


n×m

using the following equation

s̄(di j)=
s(di j) −min

i
{s(di j)}

max
i
{s(di j)} −min

i
{s(di j)}

, (i=1, 2, · · · , n; j = 1, 2, · · · ,m), (2)

we can further get the combined weighted score value of each alternative as s̄(di) =
m

j=1 wj s̄(di j), (i = 1, 2, · · · , n),
where w = (w1,w2, · · ·wm)T is the weight vector of the attribute, satisfying wj > 0, j = 1, 2, · · · ,m, m

j=1 wj =

1. Then, the additive consistency complementary judgment matrix Q̄ = (q̄i j)n×n can be constructed as q̄i j =√
2/2 (s̄(di) − s̄(d j) + 1), (i, j = 1, 2, · · · , n).

Considering the additive consistency complementary judgement matrix Q̄ has some deviation from the PF

judgement matrix Q of the DM, the inequality ui j − ε−i j ≤
√

2/2
m

k=1 wk


s̄(dik) − s̄(d jk)


+ 1

≤


1 − v2
i j + ε

+
i j

holds with the relaxation variables ε−i j and ε+i j(i=1, 2, · · · , n − 1 j = i + 1, · · · , n), where ε−i j and ε+i j are both non-
negative real numbers.
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Clearly, the smaller the deviation variables ε−i j and ε+i j, the closer the additive consistency complementary
judgement matrix Q̄ is to the Pythagorean judgement matrix Q of the DM. Therefore, the following optimization
model is developed.

(M-1)
φ = min

n−1

i=1

n

j=i+1


ε−i j + ε

+
i j



s.t.



√
2/2
m

k=1
wk


s̄(dik) − s̄(d jk)


+ 1

+ ε−i j ≥ ui j

√
2/2
m

k=1
wk


s̄(dik) − s̄(d jk)


+ 1

− ε+i j ≤


1 − v2

i j

w = (w1,w2, · · · ,wm)T ∈ Λ, wk ≥ 0, (k = 1, 2, · · · ,m),
m

k=1
wi = 1

ε−i j, ε
+
i j ≥ 0, (i=1, 2, · · · , n − 1 j = i + 1, · · · , n)

Solving the model yields the optimal deviation quantities ε̇−i j and ε̇+i j(i=1, 2, · · · , n − 1; j = i + 1, · · · , n).
A sufficient condition for the complementary judgment matrix Q̄ of additive consistency to be identical to the

Pythagorean judgment matrix Q is φ = 0. If φ � 0, then the following linear programming models are further
developed based on the optimal deviation quantities ε̇−i j and ε̇+i j(i=1, 2, · · · , n − 1 j = i + 1, · · · , n).

(M-2)
w−k = min wk (w+k = max wk)

s.t.



√
2/2
m

k=1
wk


s̄(dik) − s̄(d jk)


+ 1

+ ε̇−i j ≥ ui j

√
2/2
m

k=1
wk


s̄(dik) − s̄(d jk)


+ 1

− ε̇+i j ≤


1 − v2

i j

w = (w1,w2, · · · ,wm)T ∈ Λ, wk ≥ 0, (k = 1, 2, · · · , n),
m

k=1
wk = 1

i=1, 2, · · · , n − 1 j = i + 1, · · · , n
Solving model (M-2) yields the set of attribute weight vectors.

Υ1 =


w = (w1,w2, · · · ,wm)T | wk ∈ [w−k ,w

+
k ],wk ≥ 0(k = 1, 2, · · · ,m),

m

k=1
wk = 1


(3)

At this point, the weighting interval for the attributes are arrived. In order to acquire the optimal weight
vector of attribute from the weight interval, we construct the following linear programming model based on the
Pythagorean fuzzy decision matrix D = (di j)n×m =


⟨αi j, βi j⟩


n×m
.

(M-3)
φ∗ = max

n

i=1

m

j=1
(


1 − β2
i j − αi j)wj

s.t. w = (w1,w2, · · · ,wm)T ∈ Ῡ

The optimal attribute weight vector w∗ = (w∗1,w
∗
2, · · · ,w∗m)T is determined by solving the model.

3.2. The additive consistency checking index

In solving the minimum deviation model for the weight interval of the attributes, we ignore the acceptable
range of minimum deviations. If the additive consistency complementary judgement matrix constructed using the
linear transformation function is too far away from the Pythagorean judgement matrix of the DM, this will allow
the DM’s decision information to be weakened in the decision making process. Obviously, such a decision process
is not reasonable, which will lead to inaccurate decision results.

Accordingly, in this subsection, we present a consistency checking index based on the order σ discriminant
information of PFSs for judgment of whether the DM’s PFPR satisfies acceptable consistency.
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Let Q = (qi j)n×n be a PFPR with qi j = ⟨ui j, vi j⟩, and its additive consistent PFPR Q̄ = (q̄i j)n×n with q̄i j =

⟨ūi j, v̄i j⟩. To make Q approximate Q̄ as much as possible, we define CI(Q) as a consistency index (CI) as

CI(Q) =
1

2σn − 2n

exp

(σ − 1)
n

i=1

u2
i j ln

2u2
i j

u2
i j + ū2

i j

+ v2
i j ln

2v2
i j

v2
i j + v̄2

i j

+ π2
i j ln

2π2
i j

π2
i j + π̄

2
i j




+ exp

(σ − 1)
n

i=1

ū2
i j ln

2ū2
i j

u2
i j + ū2

i j

+ v̄2
i j ln

2v̄2
i j

v2
i j + v̄2

i j

+ π̄2
i j ln

2π̄2
i j

π2
i j + π̄

2
i j


 − 2



(4)

Trivially, the smaller the CI(Q), more consistent the PFPR Q. Especially, CI(Q) = 0 if and only if Q is an
additive consistent PFPR. In most cases, the construction of an additive-consistent PFPR is impractical as DMs
are susceptible to many factors in the decision making process. Accordingly, an acceptable additive consistent
PFPR will be further developed to allow a certain degree of deviation.

Let Q = (qi j)n×n be a PFPR, and there is a threshold value CI, if the additive consistency index satisfies
CI(Q) ≤ CI, then we call a PFPR Q with acceptably additive consistency. The value of CI can be determined
according to the preferences of the DM or the actual situation of the problem. For the PFPR that do not reach an
acceptable consistency, the following algorithm can be applied to adjust or repair the inconsistent PFPR Q(t) =

(q(t)
i j )

n×n
until it has acceptable additive consistency.

Algorithm 1 Consistency checking and improving process

1: Input: The original PFPR Q = (qi j)n×n = ⟨ui j, vi j⟩n×n, the parameter σ ∈ (0, 1) that is the trade-off param-
eter between the inconsistent preference relation and the corresponding consistent preference relation, the
maximum number of iterations t∗, and the threshold value CI ∈ (0, 1].

2: Output: The adjusted PFPR Q̃ = (q̃i j)n×n = ⟨ũi j, ṽi j⟩n×n, and the consistency index CI(Q̃).
3: step1: Let Q(0) = ⟨u(0)

i j , v
(0)
i j ⟩n×n

= Q = ⟨ui j, vi j⟩n×n, t = 0. Construct the additive consistent PFPR Q̄(0) =

⟨ū(0)
i j , v̄

(0)
i j ⟩n×n

, where Q̄(0) = Q̄(i), i = 1, 2, · · · , t + 1.
4: step2: Compute the consistency index CI(Q(t)).
5: step3: If CI(Q(t)) ≤ CIort ≥ t∗, then go to the Step5; otherwise, go to the Step4.

6: step4: Let Q(t+1) = (q(t+1)
i j )

n×n
= ⟨u(t+1)

i j , v
(t+1)
i j ⟩n×n

, where u(t+1)
i j =


(1 − σ)(u(t)

i j )
2
+ σ(ū(t)

i j )
2
, v(t+1)

i j =
(1 − σ)(v(t)

i j )
2
+ σ(v̄(t)

i j )
2
, π(t+1)

i j =


(1 − σ)(π(t)

i j )
2
+ σ(π̄(t)

i j )
2
. Set t = t + 1 and go to Step2.

7: step5: Let Q̃ = Q(t). Output the modified PFPR Q̃ and its consistency index CI(Q̃).
8: step6: End

3.3. The aggregation operator based on Yager triangular norms
To aggregate the weights of attributes and decision information, we will propose an aggregation operator based

on Yager t-NMs and t-CMs [8] , in this subsection, which have desirable monotonic properties in total ordering.
For any two PFNs P1 = ⟨uP1 , vP1⟩ and P2 = ⟨uP2 , vP2⟩, the generalized intersection P1 ⊕ P2 based on Yager

t-NMs T Y
p and its dual t-CMs S Y

p can be written as P1 ⊕ P2 = ⟨T Y
p (uP1 , uP2 ), S Y

p(vP1 , vP2 )⟩, where the family T Y
p of

Yager t-NMs and the family S Y
p of Yager t-CMs can be find in reference [8] Given that, the PF Yager weighted

averaging (PFYWA) operator can be defined.

Definition 6. Let Pϕ = ⟨uPϕ , vPϕ⟩(ϕ = 1, 2, · · · , ρ) be an arrangement of PFNs and θ = (θ1, θ2, · · · , θρ)T be the
weight vector of Pϕ(ϕ = 1, 2, · · · , ρ), with θϕ > 0 and

ρ
ϕ=1 θϕ = 1. we can obtain the PFYWA aggregation operator

as

PFYWAθ(P1, P2, · · · , Pρ) =
ρ
⊕
ϕ=1
θϕPϕ =

ρ

ϕ=1
θϕu

p
Pϕ

1/p
, 1 −
ρ

ϕ=1
θϕ(1 − vPϕ )

p
1/p 

(5)

where p ∈ (0,∞). In particular, if p = 1, then the PFYWA aggregation operator is reduced to the following:

PFYWAθ(P1, P2, · · · , Pρ) =
ρ
⊕
ϕ=1
θϕPϕ =

ρ

ϕ=1
θϕuPϕ ,

ρ

ϕ=1
θϕvPϕ


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Clearly, the smaller the deviation variables ε−i j and ε+i j, the closer the additive consistency complementary
judgement matrix Q̄ is to the Pythagorean judgement matrix Q of the DM. Therefore, the following optimization
model is developed.

(M-1)
φ = min

n−1

i=1

n

j=i+1


ε−i j + ε

+
i j



s.t.



√
2/2
m

k=1
wk


s̄(dik) − s̄(d jk)


+ 1

+ ε−i j ≥ ui j

√
2/2
m

k=1
wk


s̄(dik) − s̄(d jk)


+ 1

− ε+i j ≤


1 − v2

i j

w = (w1,w2, · · · ,wm)T ∈ Λ, wk ≥ 0, (k = 1, 2, · · · ,m),
m

k=1
wi = 1

ε−i j, ε
+
i j ≥ 0, (i=1, 2, · · · , n − 1 j = i + 1, · · · , n)

Solving the model yields the optimal deviation quantities ε̇−i j and ε̇+i j(i=1, 2, · · · , n − 1; j = i + 1, · · · , n).
A sufficient condition for the complementary judgment matrix Q̄ of additive consistency to be identical to the

Pythagorean judgment matrix Q is φ = 0. If φ � 0, then the following linear programming models are further
developed based on the optimal deviation quantities ε̇−i j and ε̇+i j(i=1, 2, · · · , n − 1 j = i + 1, · · · , n).

(M-2)
w−k = min wk (w+k = max wk)

s.t.



√
2/2
m

k=1
wk


s̄(dik) − s̄(d jk)


+ 1

+ ε̇−i j ≥ ui j

√
2/2
m

k=1
wk


s̄(dik) − s̄(d jk)


+ 1

− ε̇+i j ≤


1 − v2

i j

w = (w1,w2, · · · ,wm)T ∈ Λ, wk ≥ 0, (k = 1, 2, · · · , n),
m

k=1
wk = 1

i=1, 2, · · · , n − 1 j = i + 1, · · · , n
Solving model (M-2) yields the set of attribute weight vectors.

Υ1 =


w = (w1,w2, · · · ,wm)T | wk ∈ [w−k ,w

+
k ],wk ≥ 0(k = 1, 2, · · · ,m),

m

k=1
wk = 1


(3)

At this point, the weighting interval for the attributes are arrived. In order to acquire the optimal weight
vector of attribute from the weight interval, we construct the following linear programming model based on the
Pythagorean fuzzy decision matrix D = (di j)n×m =


⟨αi j, βi j⟩


n×m
.

(M-3)
φ∗ = max

n

i=1

m

j=1
(


1 − β2
i j − αi j)wj

s.t. w = (w1,w2, · · · ,wm)T ∈ Ῡ

The optimal attribute weight vector w∗ = (w∗1,w
∗
2, · · · ,w∗m)T is determined by solving the model.

3.2. The additive consistency checking index

In solving the minimum deviation model for the weight interval of the attributes, we ignore the acceptable
range of minimum deviations. If the additive consistency complementary judgement matrix constructed using the
linear transformation function is too far away from the Pythagorean judgement matrix of the DM, this will allow
the DM’s decision information to be weakened in the decision making process. Obviously, such a decision process
is not reasonable, which will lead to inaccurate decision results.

Accordingly, in this subsection, we present a consistency checking index based on the order σ discriminant
information of PFSs for judgment of whether the DM’s PFPR satisfies acceptable consistency.
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Let Q = (qi j)n×n be a PFPR with qi j = ⟨ui j, vi j⟩, and its additive consistent PFPR Q̄ = (q̄i j)n×n with q̄i j =

⟨ūi j, v̄i j⟩. To make Q approximate Q̄ as much as possible, we define CI(Q) as a consistency index (CI) as

CI(Q) =
1

2σn − 2n

exp

(σ − 1)
n

i=1

u2
i j ln

2u2
i j

u2
i j + ū2

i j

+ v2
i j ln

2v2
i j

v2
i j + v̄2

i j

+ π2
i j ln

2π2
i j

π2
i j + π̄

2
i j




+ exp

(σ − 1)
n

i=1

ū2
i j ln

2ū2
i j

u2
i j + ū2

i j

+ v̄2
i j ln

2v̄2
i j

v2
i j + v̄2

i j

+ π̄2
i j ln

2π̄2
i j

π2
i j + π̄

2
i j


 − 2



(4)

Trivially, the smaller the CI(Q), more consistent the PFPR Q. Especially, CI(Q) = 0 if and only if Q is an
additive consistent PFPR. In most cases, the construction of an additive-consistent PFPR is impractical as DMs
are susceptible to many factors in the decision making process. Accordingly, an acceptable additive consistent
PFPR will be further developed to allow a certain degree of deviation.

Let Q = (qi j)n×n be a PFPR, and there is a threshold value CI, if the additive consistency index satisfies
CI(Q) ≤ CI, then we call a PFPR Q with acceptably additive consistency. The value of CI can be determined
according to the preferences of the DM or the actual situation of the problem. For the PFPR that do not reach an
acceptable consistency, the following algorithm can be applied to adjust or repair the inconsistent PFPR Q(t) =

(q(t)
i j )

n×n
until it has acceptable additive consistency.

Algorithm 1 Consistency checking and improving process

1: Input: The original PFPR Q = (qi j)n×n = ⟨ui j, vi j⟩n×n, the parameter σ ∈ (0, 1) that is the trade-off param-
eter between the inconsistent preference relation and the corresponding consistent preference relation, the
maximum number of iterations t∗, and the threshold value CI ∈ (0, 1].

2: Output: The adjusted PFPR Q̃ = (q̃i j)n×n = ⟨ũi j, ṽi j⟩n×n, and the consistency index CI(Q̃).
3: step1: Let Q(0) = ⟨u(0)

i j , v
(0)
i j ⟩n×n

= Q = ⟨ui j, vi j⟩n×n, t = 0. Construct the additive consistent PFPR Q̄(0) =

⟨ū(0)
i j , v̄

(0)
i j ⟩n×n

, where Q̄(0) = Q̄(i), i = 1, 2, · · · , t + 1.
4: step2: Compute the consistency index CI(Q(t)).
5: step3: If CI(Q(t)) ≤ CIort ≥ t∗, then go to the Step5; otherwise, go to the Step4.

6: step4: Let Q(t+1) = (q(t+1)
i j )

n×n
= ⟨u(t+1)

i j , v
(t+1)
i j ⟩n×n

, where u(t+1)
i j =


(1 − σ)(u(t)

i j )
2
+ σ(ū(t)

i j )
2
, v(t+1)

i j =
(1 − σ)(v(t)

i j )
2
+ σ(v̄(t)

i j )
2
, π(t+1)

i j =


(1 − σ)(π(t)

i j )
2
+ σ(π̄(t)

i j )
2
. Set t = t + 1 and go to Step2.

7: step5: Let Q̃ = Q(t). Output the modified PFPR Q̃ and its consistency index CI(Q̃).
8: step6: End

3.3. The aggregation operator based on Yager triangular norms
To aggregate the weights of attributes and decision information, we will propose an aggregation operator based

on Yager t-NMs and t-CMs [8] , in this subsection, which have desirable monotonic properties in total ordering.
For any two PFNs P1 = ⟨uP1 , vP1⟩ and P2 = ⟨uP2 , vP2⟩, the generalized intersection P1 ⊕ P2 based on Yager

t-NMs T Y
p and its dual t-CMs S Y

p can be written as P1 ⊕ P2 = ⟨T Y
p (uP1 , uP2 ), S Y

p(vP1 , vP2 )⟩, where the family T Y
p of

Yager t-NMs and the family S Y
p of Yager t-CMs can be find in reference [8] Given that, the PF Yager weighted

averaging (PFYWA) operator can be defined.

Definition 6. Let Pϕ = ⟨uPϕ , vPϕ⟩(ϕ = 1, 2, · · · , ρ) be an arrangement of PFNs and θ = (θ1, θ2, · · · , θρ)T be the
weight vector of Pϕ(ϕ = 1, 2, · · · , ρ), with θϕ > 0 and

ρ
ϕ=1 θϕ = 1. we can obtain the PFYWA aggregation operator

as

PFYWAθ(P1, P2, · · · , Pρ) =
ρ
⊕
ϕ=1
θϕPϕ =

ρ

ϕ=1
θϕu

p
Pϕ

1/p
, 1 −
ρ

ϕ=1
θϕ(1 − vPϕ )

p
1/p 

(5)

where p ∈ (0,∞). In particular, if p = 1, then the PFYWA aggregation operator is reduced to the following:

PFYWAθ(P1, P2, · · · , Pρ) =
ρ
⊕
ϕ=1
θϕPϕ =

ρ

ϕ=1
θϕuPϕ ,

ρ

ϕ=1
θϕvPϕ


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3.4. The intergated Pythagorean fuzzy MADM framework

Step 1: Calculate the score matrix S =

s(di j)


n×m

of decision matrix by the score function, and normalize it

to S̄ =

s̄(di j)


n×m

using Eq.(2).
Step 2: Construct the additive consistency complementary judgment matrix Q̄ = (q̄i j)n×n and test the con-

sistency of PF judgment matrix Q = (qi j)n×n =

⟨ui j, vi j⟩


n×n

according to the proposed additive consistency
checking index. For the unacceptable PF judgment matrix, it should be adjusted to an acceptable consistent PFPR
Q̃ = (q̃i j)n×n =


⟨ũi j, ṽi j⟩


n×n

by applying the proposed iterative algorithm.
Step 3: Calculate the optimal weight vector w∗ = (w∗1,w

∗
2, · · · ,w∗m)T of attributes by solving models (M-3).

Step 4: Aggregate PF decision matrix by PFYWA operator and produce a combined aggregated value Xi for
each alternative xi.

Step 5: Calculate and rank the scores S i(i = 1, 2, · · · , n) of each alternative by means of the score function.

4. An illustrative numerical example

This section presents a numerical example to implement the proposed approach. In this paper, since
√

2/2 is
irrational number, we make

√
2/2 ≈ 0.7071.

A family desires to purchase an air conditioner and there are now four brands Xi(i = 1, 2, 3, 4) to consider.
There are six main evaluation indicators: Security (C1); Cooling capacity and heat production (C2); Structural
properties (C3); Reliability (C4); Economical (C5); Aesthetics (C6). The weighting information for each indicator
is known to be Λ = {w1 ≤ 0.3, 0.2 ≤ w3 ≤ 0.5,w2 ≤ 0.2,w3 − w2 ≥ w5 − w4, 0.1 ≤ w5 ≤ 0.4,w4 ≤ w1,w4 ≤
0.1,w6 ≥ 0.2}. Using statistical methods, the degrees of membership αi j and non-membership βi j(i = 1, 2, 3, 4; j =
1, 2, · · · , 6) of alternative Xi to criterion C j were obtained and noted as the Pythagorean fuzzy number di j =

(αi j, βi j). This is shown in Table 1.

Table 1: Pythagorean fuzzy decision matrix D

C1 C2 C3 C4 C5 C6

X1 ⟨0.3, 0.5⟩ ⟨0.6, 0.3⟩ ⟨0.6, 0.4⟩ ⟨0.8, 0.2⟩ ⟨0.4, 0.5⟩ ⟨0.5, 0.3⟩
X2 ⟨0.7, 0.3⟩ ⟨0.5, 0.3⟩ ⟨0.7, 0.2⟩ ⟨0.7, 0.1⟩ ⟨0.5, 0.4⟩ ⟨0.4, 0.1⟩
X3 ⟨0.4, 0.3⟩ ⟨0.7, 0.2⟩ ⟨0.5, 0.4⟩ ⟨0.6, 0.3⟩ ⟨0.4, 0.3⟩ ⟨0.3, 0.2⟩
X4 ⟨0.6, 0.2⟩ ⟨0.5, 0.4⟩ ⟨0.7, 0.2⟩ ⟨0.3, 0.2⟩ ⟨0.5, 0.4⟩ ⟨0.7, 0.3⟩

The assessor provides two-by-two comparison information for four brands of air conditioners and constructs
the following Pythagorean judgment matrix Q.

Q =



⟨0.7071, 0.7071⟩ ⟨0.3500, 0.6500⟩ ⟨0.4000, 0.7000⟩ ⟨0.8000, 0.3000⟩
⟨0.6500, 0.3500⟩ ⟨0.7071, 0.7071⟩ ⟨0.7000, 0.3000⟩ ⟨0.5000, 0.6000⟩
⟨0.7000, 0.4000⟩ ⟨0.3000, 0.7000⟩ ⟨0.7071, 0.7071⟩ ⟨0.9000, 0.2000⟩
⟨0.3000, 0.8000⟩ ⟨0.6000, 0.5000⟩ ⟨0.2000, 0.9000⟩ ⟨0.7071, 0.7071⟩



Step 1: Calculate the normalized score matrix and accordingly bulid the additive consistency PFPR Q̄ as

Q̄ =



⟨0.7071, 0.7071⟩ ⟨0.3500, 0.6500⟩ ⟨0.4000, 0.6381⟩ ⟨0.7071, 0.6381⟩
⟨0.6500, 0.3500⟩ ⟨0.7071, 0.7071⟩ ⟨0.4188, 0.3500⟩ ⟨0.7179, 0.3500⟩
⟨0.6381, 0.4000⟩ ⟨0.3500, 0.4188⟩ ⟨0.7071, 0.7071⟩ ⟨0.7071, 0.4000⟩
⟨0.6381, 0.7071⟩ ⟨0.3500, 0.4188⟩ ⟨0.4000, 0.7071⟩ ⟨0.7071, 0.7071⟩


.

Set σ = 0.5,CI = 0.1 and the maximum number of iterations t∗ = 10. The consistency index CI(Q) for PFPR Q is
calculated via Eq. (4) as CI(Q) = 0.07330748 0.1 = CI. It proves that PFPR Q satisfies the acceptable consistent.
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Step 3: Based on Model (M-1), the following linear goal program is established Min φ, as shown below.

φ=min(ε−12 + ε
+
12 + ε

−
13 + ε

+
13 + ε

−
14 + ε

+
14 + ε

−
23 + ε

+
23 + ε

−
24 + ε

+
24 + ε

−
34 + ε

+
34)

s.t.



√
2/2 (s̄(d1) − s̄(d2) + 1) + ε−12 ≥ 0.35,

√
2/2 (s̄(d1) − s̄(d3) + 1) + ε−13 ≥ 0.4,

√
2/2 (s̄(d1) − s̄(d4) + 1) + ε−14 ≥ 0.8,

√
2/2 (s̄(d2) − s̄(d3) + 1) + ε−23 ≥ 0.7,

√
2/2 (s̄(d2) − s̄(d4) + 1) + ε−24 ≥ 0.5,

√
2/2 (s̄(d3) − s̄(d4) + 1) + ε−34 ≥ 0.9,

√
2/2 (s̄(d1) − s̄(d2) + 1) − ε+12 ≤ 0.7599,

√
2/2 (s̄(d1) − s̄(d3) + 1) − ε+13 ≤ 0.7141,

√
2/2 (s̄(d1) − s̄(d4) + 1) − ε+14 ≤ 0.9539,

√
2/2 (s̄(d2) − s̄(d3) + 1) − ε+23 ≤ 0.9539,

√
2/2 (s̄(d2) − s̄(d4) + 1) − ε+24 ≤ 0.8,

√
2/2 (s̄(d3) − s̄(d4) + 1) − ε+34 ≤ 0.9798,

s̄(d1)=0.5w2+0.3056w3+w4+0.3143w6

s̄(d2)=w1+0.1944w2+w3+0.7818w4+w5+0.2857w6

s̄(d3)=0.4107w1+w2+0.4w4+0.8889w5

s̄(d4)=0.8571w1+w3+w5+w6

ε−12 ≥ 0, ε−13 ≥ 0, ε−14 ≥ 0, ε−23 ≥ 0, ε−24 ≥ 0, ε−34 ≥ 0,

ε+12 ≥ 0, ε+13 ≥ 0, ε+14 ≥ 0, ε+23 ≥ 0, ε+24 ≥ 0, ε+34 ≥ 0,

w1+w2+w3+w4+w5+w6=1

w1=0.3,w2=0.2,w3=0.2,w3=0.5,w3-w2=w5-w4,w4=w1,w4=0.1,

w5=0.1,w5=0.4,w6=0.2,w1=0,w2=0,w3=0,w4=0,w5=0,w6=0,

Solving this model by LINGO, it follows that the optimal objective value φ = 0.7155872, and the optimal
deviation variable: ε̇−12 = ε̇

+
12 = 0, ε̇−13 = ε̇

+
13 = 0, ε̇−14 = 0.3386, ε̇+14 = 0, ε̇−23 = ε̇

+
23 = 0, ε̇−24 = ε̇

+
24 = 0, ε̇−34 =

0.3770, ε̇+34 = 0. The weight intervals for the attributes are w1 ∈ [0.1999994, 0.2], w2 ∈ [0.2000000, 0.2000000],w3
∈ [0.2000000, 0.2000003], w4 ∈ [0.0999999, 0.1], w5 ∈ [0.1000000, 0.1000003], w6 ∈ [0.2000000, 0.2000001],
and the optimal attribute weight vector is w∗ = (0.2, 0.2, 0.2, 0.1, 0.1, 0.2)T

Step 4: Aggregate the evaluation of each alternative by the PFYWA operator as X1 = (0.54037, 0.383406), X2 =

(0.593296, 0.250998), X3 = (0.50000, 0.289828), X4 = (0.593296, 0.293258).
Step 5: Based on score function, the combined score of each alternative is S 1 = 0.145, S 2 = 0.289, S 3 =

0.166, S 4 = 0.266. Since S 2 > S 4 > S 3 > S 1, the four brands of air conditioners are ranked as X2 > X4 > X3 > X1.
To better present the effectiveness of the proposed method, we compare it to the method proposed by Khan et

al.[33] based on grey relational analysis. The final results of Khan’s method are X2 > X3 > X1 > X4. The main
reason is that the ranking of alternativesby using the method proposed in Khan et al.[33] is based on gey relational
coefficient and relative relational degree, while in our approach we use the aggregation operator for the ranking of
alternatives. Moreover, in the proposed approach we utilized the PF decision matrix and judgment matrix to find
the unknown attribute weight, which take advantage of the initiative and motivation of DMs.

5. Conclusions

In this paper, we focused on the PF MADM problem with incomplete weight information and proposed a
PF MADM framwork. There are three keys to this process. First, a linear programming model is developed for
determining the incomplete weights of attribute. Second, an iterative algorithm of improving the consistency for
self-contradictory PFPRs is constructed based on the expoential consistency index. Third, we provide the PF Yager
weighted averaging operator to aggregate the general PF information. In the end, the validation of the proposed
approach is proved by a numercial example and comparsion with the method proposed by Khan et al.[33].
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3.4. The intergated Pythagorean fuzzy MADM framework

Step 1: Calculate the score matrix S =

s(di j)


n×m

of decision matrix by the score function, and normalize it

to S̄ =

s̄(di j)


n×m

using Eq.(2).
Step 2: Construct the additive consistency complementary judgment matrix Q̄ = (q̄i j)n×n and test the con-

sistency of PF judgment matrix Q = (qi j)n×n =

⟨ui j, vi j⟩


n×n

according to the proposed additive consistency
checking index. For the unacceptable PF judgment matrix, it should be adjusted to an acceptable consistent PFPR
Q̃ = (q̃i j)n×n =


⟨ũi j, ṽi j⟩


n×n

by applying the proposed iterative algorithm.
Step 3: Calculate the optimal weight vector w∗ = (w∗1,w

∗
2, · · · ,w∗m)T of attributes by solving models (M-3).

Step 4: Aggregate PF decision matrix by PFYWA operator and produce a combined aggregated value Xi for
each alternative xi.

Step 5: Calculate and rank the scores S i(i = 1, 2, · · · , n) of each alternative by means of the score function.

4. An illustrative numerical example

This section presents a numerical example to implement the proposed approach. In this paper, since
√

2/2 is
irrational number, we make

√
2/2 ≈ 0.7071.

A family desires to purchase an air conditioner and there are now four brands Xi(i = 1, 2, 3, 4) to consider.
There are six main evaluation indicators: Security (C1); Cooling capacity and heat production (C2); Structural
properties (C3); Reliability (C4); Economical (C5); Aesthetics (C6). The weighting information for each indicator
is known to be Λ = {w1 ≤ 0.3, 0.2 ≤ w3 ≤ 0.5,w2 ≤ 0.2,w3 − w2 ≥ w5 − w4, 0.1 ≤ w5 ≤ 0.4,w4 ≤ w1,w4 ≤
0.1,w6 ≥ 0.2}. Using statistical methods, the degrees of membership αi j and non-membership βi j(i = 1, 2, 3, 4; j =
1, 2, · · · , 6) of alternative Xi to criterion C j were obtained and noted as the Pythagorean fuzzy number di j =

(αi j, βi j). This is shown in Table 1.

Table 1: Pythagorean fuzzy decision matrix D

C1 C2 C3 C4 C5 C6

X1 ⟨0.3, 0.5⟩ ⟨0.6, 0.3⟩ ⟨0.6, 0.4⟩ ⟨0.8, 0.2⟩ ⟨0.4, 0.5⟩ ⟨0.5, 0.3⟩
X2 ⟨0.7, 0.3⟩ ⟨0.5, 0.3⟩ ⟨0.7, 0.2⟩ ⟨0.7, 0.1⟩ ⟨0.5, 0.4⟩ ⟨0.4, 0.1⟩
X3 ⟨0.4, 0.3⟩ ⟨0.7, 0.2⟩ ⟨0.5, 0.4⟩ ⟨0.6, 0.3⟩ ⟨0.4, 0.3⟩ ⟨0.3, 0.2⟩
X4 ⟨0.6, 0.2⟩ ⟨0.5, 0.4⟩ ⟨0.7, 0.2⟩ ⟨0.3, 0.2⟩ ⟨0.5, 0.4⟩ ⟨0.7, 0.3⟩

The assessor provides two-by-two comparison information for four brands of air conditioners and constructs
the following Pythagorean judgment matrix Q.

Q =



⟨0.7071, 0.7071⟩ ⟨0.3500, 0.6500⟩ ⟨0.4000, 0.7000⟩ ⟨0.8000, 0.3000⟩
⟨0.6500, 0.3500⟩ ⟨0.7071, 0.7071⟩ ⟨0.7000, 0.3000⟩ ⟨0.5000, 0.6000⟩
⟨0.7000, 0.4000⟩ ⟨0.3000, 0.7000⟩ ⟨0.7071, 0.7071⟩ ⟨0.9000, 0.2000⟩
⟨0.3000, 0.8000⟩ ⟨0.6000, 0.5000⟩ ⟨0.2000, 0.9000⟩ ⟨0.7071, 0.7071⟩



Step 1: Calculate the normalized score matrix and accordingly bulid the additive consistency PFPR Q̄ as

Q̄ =



⟨0.7071, 0.7071⟩ ⟨0.3500, 0.6500⟩ ⟨0.4000, 0.6381⟩ ⟨0.7071, 0.6381⟩
⟨0.6500, 0.3500⟩ ⟨0.7071, 0.7071⟩ ⟨0.4188, 0.3500⟩ ⟨0.7179, 0.3500⟩
⟨0.6381, 0.4000⟩ ⟨0.3500, 0.4188⟩ ⟨0.7071, 0.7071⟩ ⟨0.7071, 0.4000⟩
⟨0.6381, 0.7071⟩ ⟨0.3500, 0.4188⟩ ⟨0.4000, 0.7071⟩ ⟨0.7071, 0.7071⟩


.

Set σ = 0.5,CI = 0.1 and the maximum number of iterations t∗ = 10. The consistency index CI(Q) for PFPR Q is
calculated via Eq. (4) as CI(Q) = 0.07330748 0.1 = CI. It proves that PFPR Q satisfies the acceptable consistent.
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Step 3: Based on Model (M-1), the following linear goal program is established Min φ, as shown below.

φ=min(ε−12 + ε
+
12 + ε

−
13 + ε

+
13 + ε

−
14 + ε

+
14 + ε

−
23 + ε

+
23 + ε

−
24 + ε

+
24 + ε

−
34 + ε

+
34)

s.t.



√
2/2 (s̄(d1) − s̄(d2) + 1) + ε−12 ≥ 0.35,

√
2/2 (s̄(d1) − s̄(d3) + 1) + ε−13 ≥ 0.4,

√
2/2 (s̄(d1) − s̄(d4) + 1) + ε−14 ≥ 0.8,

√
2/2 (s̄(d2) − s̄(d3) + 1) + ε−23 ≥ 0.7,

√
2/2 (s̄(d2) − s̄(d4) + 1) + ε−24 ≥ 0.5,

√
2/2 (s̄(d3) − s̄(d4) + 1) + ε−34 ≥ 0.9,

√
2/2 (s̄(d1) − s̄(d2) + 1) − ε+12 ≤ 0.7599,

√
2/2 (s̄(d1) − s̄(d3) + 1) − ε+13 ≤ 0.7141,

√
2/2 (s̄(d1) − s̄(d4) + 1) − ε+14 ≤ 0.9539,

√
2/2 (s̄(d2) − s̄(d3) + 1) − ε+23 ≤ 0.9539,

√
2/2 (s̄(d2) − s̄(d4) + 1) − ε+24 ≤ 0.8,

√
2/2 (s̄(d3) − s̄(d4) + 1) − ε+34 ≤ 0.9798,

s̄(d1)=0.5w2+0.3056w3+w4+0.3143w6

s̄(d2)=w1+0.1944w2+w3+0.7818w4+w5+0.2857w6

s̄(d3)=0.4107w1+w2+0.4w4+0.8889w5

s̄(d4)=0.8571w1+w3+w5+w6

ε−12 ≥ 0, ε−13 ≥ 0, ε−14 ≥ 0, ε−23 ≥ 0, ε−24 ≥ 0, ε−34 ≥ 0,

ε+12 ≥ 0, ε+13 ≥ 0, ε+14 ≥ 0, ε+23 ≥ 0, ε+24 ≥ 0, ε+34 ≥ 0,

w1+w2+w3+w4+w5+w6=1

w1=0.3,w2=0.2,w3=0.2,w3=0.5,w3-w2=w5-w4,w4=w1,w4=0.1,

w5=0.1,w5=0.4,w6=0.2,w1=0,w2=0,w3=0,w4=0,w5=0,w6=0,

Solving this model by LINGO, it follows that the optimal objective value φ = 0.7155872, and the optimal
deviation variable: ε̇−12 = ε̇

+
12 = 0, ε̇−13 = ε̇

+
13 = 0, ε̇−14 = 0.3386, ε̇+14 = 0, ε̇−23 = ε̇

+
23 = 0, ε̇−24 = ε̇

+
24 = 0, ε̇−34 =

0.3770, ε̇+34 = 0. The weight intervals for the attributes are w1 ∈ [0.1999994, 0.2], w2 ∈ [0.2000000, 0.2000000],w3
∈ [0.2000000, 0.2000003], w4 ∈ [0.0999999, 0.1], w5 ∈ [0.1000000, 0.1000003], w6 ∈ [0.2000000, 0.2000001],
and the optimal attribute weight vector is w∗ = (0.2, 0.2, 0.2, 0.1, 0.1, 0.2)T

Step 4: Aggregate the evaluation of each alternative by the PFYWA operator as X1 = (0.54037, 0.383406), X2 =

(0.593296, 0.250998), X3 = (0.50000, 0.289828), X4 = (0.593296, 0.293258).
Step 5: Based on score function, the combined score of each alternative is S 1 = 0.145, S 2 = 0.289, S 3 =

0.166, S 4 = 0.266. Since S 2 > S 4 > S 3 > S 1, the four brands of air conditioners are ranked as X2 > X4 > X3 > X1.
To better present the effectiveness of the proposed method, we compare it to the method proposed by Khan et

al.[33] based on grey relational analysis. The final results of Khan’s method are X2 > X3 > X1 > X4. The main
reason is that the ranking of alternativesby using the method proposed in Khan et al.[33] is based on gey relational
coefficient and relative relational degree, while in our approach we use the aggregation operator for the ranking of
alternatives. Moreover, in the proposed approach we utilized the PF decision matrix and judgment matrix to find
the unknown attribute weight, which take advantage of the initiative and motivation of DMs.

5. Conclusions

In this paper, we focused on the PF MADM problem with incomplete weight information and proposed a
PF MADM framwork. There are three keys to this process. First, a linear programming model is developed for
determining the incomplete weights of attribute. Second, an iterative algorithm of improving the consistency for
self-contradictory PFPRs is constructed based on the expoential consistency index. Third, we provide the PF Yager
weighted averaging operator to aggregate the general PF information. In the end, the validation of the proposed
approach is proved by a numercial example and comparsion with the method proposed by Khan et al.[33].
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