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Abstract 

When developing scoring models, Weight of Evidence (WOE) transformation is actively used, which is in demand to improve the 
discriminating power of the factors included in the model. For WOE transformation, various binning methods are used, the 
dimension of which is limited by the available statistics. As an alternative, the method of continuous transformation of model 
factors is proposed, which is applied when the target binary variable depends nonmonotonically on these factors. Two types of 
one-parameter families of transformations and strict conditions are proposed that determine the need for "healing" of factors, as 
well as determining the appropriate type of transformation (Φ or Ψ). The method for calculating transformation parameters is 
substantiated, and practical examples are presented. The use of the proposed transformation in the practice of developing scoring 
models in the banking sector confirms that the use of ΦΨ - transformations to correct the nonmonotonicity of the model factors 
gives a significant increase in the discriminating power at the level up to 10% of the Gini index of applied models for binary 
classification.  
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1. Introduction  

Let the scoring factor x be dimensionless and have passed the standardization stage convenient for the developer, the 
direction of its action on the rating is predominantly positive (from worse to better with growth of x) or neutral. This means 
that the Gini index is Gini = AR{x} ≥ 0. Without loss of generality, we can assume that the factor is continuous, in the 
case of its finite sampling, the ROC curve can be linearly interpolated. In the case of a convex ROC-curve (Receiver 
Operating Characteristic), such Fig. 1 left, it is enough to carry out quantile normalization2 of the factor, having 
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2 In other words, this is the quantile transformation of the original factor 𝑋𝑋𝐹𝐹 into its dimensionless quantile image 𝐹𝐹 = 𝐺𝐺(𝑋𝑋𝐹𝐹), distributed 
uniformly on the segment [0,1]. Where 𝐺𝐺(∙) is cumulative distribution function of 𝑋𝑋𝐹𝐹. 
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achieved its uniform distribution on the segment [0,1]) and then introduce the factor into the scoring model. The 
question is more difficult, how to be in case of violation of the convexity of the ROC-curve, built on statistically 
significant objective binary observations (see Fig. 1 right)? 

Traditionally, for such parameters, they resort to a WOE transformation, performing binning (data discrete binning), 
i.e. dividing (often empirically) the range of a variable into segments (bins) and setting the weights of each bin based 

on the statistics of the implementation of a binary variable [1]. Binning methods are widely used in exploratory data 
analysis and as an algorithm to speed up learning tasks [12]. In particular, binning is widely used in credit risk 
modeling, being an important tool for modeling credit performance to maximize the distinction between high and low 
risk observations, as well as for modeling expected credit losses. 

There are several unsupervised and supervised binning methods. Common unsupervised methods are tying intervals 
of equal width and the same size or equal frequency. On the other hand, well-known supervised fusion-based methods 
are Monotone Adjacent Pooling Algorithm (MAPA), also known as Maximum Likelihood Monotone Coarse 
Classifier (MLMCC) [20] and ChiMerge [10], whereas other methods based on decision trees are CART  [3], 
Minimum Description Length Principle (MDLP) [6] and method of Conditional Inference Trees (CTREE) [8]. 

Binning that uses WOE transforms to prepare a non-convex factor (i.e., not monotonic with respect to the binary 
target variable) for transfer to the model has a number of disadvantages:  

- the binning process requires compliance with certain restrictions. These limits can range from requiring a minimum 
number of entries per cell to monotonicity limits. This variant of the process is known as the optimal binning process. 
The optimal pooling is usually solved by iteratively pooling the initial fine-grained discretization until the imposed 
constraints are met. Performing the manual fine-tuning is likely to be unsatisfactory as the number of constraints 
increases leading to sub-optimal or even unworkable solutions. It should be noted that this manual setting has been 
encouraged by some authors [19], legitimizing the existing interaction of “art and science” in the binning process; 

- statistical limit on the number of bins. As the number of bins increases, the statistical error of the WOE weights 
increases. With a small number of bins, a “rounding error” appears (this is when two essentially different values of 
an indicator fall into a common bin, for example, a profitability equal to 2% and 10%). This leads to the risk of 
losing the accuracy of the model; 

- each bin weight is a separate model parameter with increased error due to outliers (low robustness), the more bins, 
the higher the error. This creates an increased risk of overtraining of the model; 

- the interpretation of factor weights in the scoring model becomes more complicated.  The uninterpretability arises 
because of the individual setting of each WOE-transformed variable. Understanding which factor is stronger or 
weaker is significantly blurred. A factor with a weight of 10% may have a stronger effect than one with a weight of 
20%, depending on the distribution of bin weights and hit frequencies. 
Results of some investigations (for example, [14]) suggest that using WOE transformation with logistic regression 

decreased the discriminatory power across a majority of the evaluation metrics compared to the models that did not 
use factors WOE transformed. Given the disadvantages of the approach based on the binning of WOE-transformed 
factors, including the risk of overlearning and instability, then such a model should be given increased attention in 
validation and reduce the life cycle (from validation to validation) by increasing the frequency of monitoring. 

In the presented work, we propose an alternative approach to the WOE-transform tool. Bearing in mind that if the 
factor of model is convex, then the WOE transform does not give any increase in discriminating power at all 
(monotonic transformation does not change the discriminating power), and most likely, it will even give it a decrease 
due to the “rounding error”. For a non-monotonic (i.e., non-convex) factor, there is a means to "healing of dent" with 
only one additional parameter, which is determined statistically from the ROC curve (from the statistics of the 

Fig. 1. Convex ROC curve (left) and Non-convex 
ROC curve (right). Left parameter-factor is Current 
liabilities/Revenue, Industry: manufacturing, 
Segment: Medium business, Gini=39%. Right 
parameter-factor is Current liabilities / EBITDA 
(inverse). Industry: trade. Segment: Medium 
business, Gini=3% 
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development sample). The uniqueness of the transformation parameter and a clear algorithm for its calculation 
guarantees the minimum loss of robustness (resistance to noise) of the decision-making system. For the first time, the 
new transformations were proposed in [15] for practical use, but the proofs and conditions of application were not 
given in full.  

2. Numerical criteria for determining the nonconvexity of the ROC-curve  

In [16] new second-order accuracy metrics for scoring models were proposed that show the model's target 
preference for better diagnosing "good" objects or better diagnosing "bad" objects for a constant generally accepted 
discriminant determined by the well-known first-order metric AUROC (Gini index). There are two second-order 
metrics, and they have both an integral representation and a numerical one. The numerical representation based on 
point binary outcomes for the Gini index 𝐴𝐴𝐴𝐴 = 2 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴 − 1 has a well-studied relationship with the Wilcoxon statistic 
[7].  

Let statistical binary data on a binary indicator (e.g., credit risk) be provided, among which: 𝑁𝑁 – not defaults (binary 
indicator is equal zero) have ratings 𝑆𝑆𝑛𝑛, 𝑛𝑛 = 1 … 𝑁𝑁, D – defaults (binary indicator is equal one) have ratings   𝑆̂𝑆𝑑𝑑, 𝑑𝑑 =
1 … 𝐷𝐷. All ratings are ordered from “bads” to “goods” 𝑆𝑆𝑛𝑛+1 ≥ 𝑆𝑆𝑛𝑛, 𝑆̂𝑆𝑑𝑑+1 ≥ 𝑆̂𝑆𝑑𝑑. The frequency of defaults in a given 

sample will be  𝑃𝑃𝑃𝑃 = 𝐷𝐷
𝐷𝐷+𝑁𝑁.  Define the function 𝛿𝛿𝑢𝑢(𝑤𝑤) = {

1, 𝑖𝑖𝑖𝑖  𝑢𝑢 > 𝑤𝑤
1
2 , 𝑖𝑖𝑖𝑖 𝑢𝑢 = 𝑤𝑤
0, 𝑖𝑖𝑖𝑖 𝑢𝑢 < 𝑤𝑤

.  

Then the ROC curve at the points 𝑥𝑥𝑛𝑛 = 0 … 𝑛𝑛
𝑁𝑁 … 1, will take on the values  𝑅𝑅𝑂𝑂𝑂𝑂0 = 0, 𝑅𝑅𝑅𝑅𝐶𝐶𝑛𝑛 = 1

𝐷𝐷 ∙ ∑ 𝛿𝛿𝑆𝑆𝑛𝑛(𝑆̂𝑆𝑑𝑑)𝐷𝐷
𝑑𝑑=1  . The 

first-order discriminating metric AR (Gini index) is calculated by the formula: 

𝐴𝐴𝐴𝐴 = 2 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴 − 1, where 𝐴𝐴𝐴𝐴𝐴𝐴 = 1
𝑁𝑁∙𝐷𝐷 ∙ ∑ ∑ 𝛿𝛿𝑆𝑆𝑛𝑛(𝑆̂𝑆𝑑𝑑)𝐷𝐷

𝑑𝑑=1
𝑁𝑁
𝑛𝑛=1   (1) 

Numerical representation second-order metrics LAR/RAR [16] has the form: 

𝐿𝐿𝐿𝐿𝐿𝐿 = 2 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 − 1  (2) 

𝑅𝑅𝑅𝑅𝑅𝑅 = 2 ∙ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 1  

for the for the left second-order metric (LAR) and right one (RAR) respectively, where 

(3) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝑁𝑁

∑ |
∑ ∑ 𝛿𝛿𝑆𝑆𝑛𝑛(𝑆̂𝑆𝑑𝑑)𝐷𝐷

𝑑𝑑=1
𝑘𝑘
𝑛𝑛=1
𝑘𝑘∙∑ 𝛿𝛿𝑆𝑆𝑘𝑘(𝑆̂𝑆𝑑𝑑)𝐷𝐷

𝑑𝑑=1
 , 𝑖𝑖𝑓𝑓 ∑ 𝛿𝛿𝑆𝑆𝑘𝑘(𝑆̂𝑆𝑑𝑑)𝐷𝐷

𝑑𝑑=1 ≠ 0

0 , 𝑖𝑖𝑓𝑓 , ∑ 𝛿𝛿𝑆𝑆𝑘𝑘(𝑆̂𝑆𝑑𝑑)𝐷𝐷
𝑑𝑑=1 = 0

𝑁𝑁
𝑘𝑘=1   , 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 1

𝐷𝐷
∑ |

∑ ∑ 𝛿𝛿𝑆𝑆𝑘𝑘(𝑆̂𝑆𝑛𝑛)𝑁𝑁
𝑘𝑘=1

𝐷𝐷
𝑛𝑛=𝑑𝑑

(𝐷𝐷−𝑑𝑑+1)∙∑ 𝛿𝛿𝑆𝑆𝑘𝑘(𝑆̂𝑆𝑑𝑑)𝑁𝑁
𝑘𝑘=1

 , 𝑖𝑖𝑖𝑖 ∑ 𝛿𝛿𝑆𝑆𝑘𝑘(𝑆̂𝑆𝑑𝑑)𝑁𝑁
𝑘𝑘=1 ≠ 0

0 , 𝑖𝑖𝑖𝑖 ∑ 𝛿𝛿𝑆𝑆𝑘𝑘(𝑆̂𝑆𝑑𝑑)𝑁𝑁
𝑘𝑘=1 = 0

𝐷𝐷
𝑑𝑑=1   . 

It is worth noting that the computational volume of the calculation of first-order metrics has the dimension 𝐷𝐷 ∙ 𝑁𝑁 
(for AR), the volume of calculations for second-order metrics is significantly larger:  𝐷𝐷 ∙ 𝑁𝑁2

2⁄  for LAR and 𝑁𝑁 ∙ 𝐷𝐷2
2⁄  

for RAR. Consequently, in the case of large data, when calculating second-order accuracy metrics, it may be necessary 
to resort to thinning methods [9] to save computing resources.  

The minimum value of LAR/RAR while maintaining the convexity of the ROC curve is  

min𝐿𝐿𝐿𝐿(𝐴𝐴𝐴𝐴) = 𝐴𝐴𝐴𝐴 + (1 − 𝐴𝐴𝐴𝐴) ∙ ln(1 − 𝐴𝐴𝐴𝐴)  (4) 

Given the limited number of measurements in the calculation of the metrics of the first and second order, it is 
necessary to take into account the statistical error. A fairly accurate estimate of the statistical error of the AUC (AR) 
metric was proposed in [4], but from a conservative point of view, it suffices to take the upper estimate [2] 

𝜎𝜎𝐴𝐴𝐴𝐴 ≅ √(2𝑁𝑁+1)⋅(1−𝐴𝐴𝑅𝑅2)−(𝑁𝑁−𝐷𝐷)⋅(1−𝐴𝐴𝐴𝐴)2

3⋅𝑁𝑁⋅𝐷𝐷  . (5) 
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On condition 𝐷𝐷
𝑁𝑁 ≪ 1, 𝐷𝐷 ≫ 1 , you can use the asymptotes (5) in the form  

 𝜎𝜎𝐴𝐴𝐴𝐴 ≅ √(1−𝐴𝐴𝐴𝐴)∙(1+3𝐴𝐴𝐴𝐴)
3∙𝐷𝐷 ∙ (1 + 1

2𝑁𝑁 ∙ 1+𝐴𝐴𝐴𝐴
1+3𝐴𝐴𝐴𝐴 + 𝑜𝑜 (1

𝑁𝑁)) . 
 

The statistical error in estimating the second-order metrics (2), (3) has not been studied to the extent necessary. But 
considering that min𝐿𝐿𝐿𝐿 depends only on 𝐴𝐴𝐴𝐴, it is possible to formulate a statistical rule, from the fulfillment of which 
follows the need for a nonmonotonic transformation of the scoring factor 

min (𝐿𝐿𝐿𝐿𝐿𝐿, 𝑅𝑅𝑅𝑅𝑅𝑅) < 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴𝐴𝐴) + 𝑡𝑡𝛼𝛼 ∙ 𝜎𝜎𝐴𝐴𝐴𝐴 ∙ ln (1 − 𝐴𝐴𝐴𝐴) ,        (6) 

Where AR/LAR/RAR are calculated by formulas (1), (2), (3), 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴𝐴𝐴)  – (4), 𝜎𝜎𝐴𝐴𝐴𝐴  – (5), 
 𝑡𝑡𝛼𝛼 = 𝑁𝑁−1 (1+𝛼𝛼

2 ) – coefficient for trust level  𝛼𝛼. Multiplier  −ln (1 − 𝐴𝐴𝐴𝐴) is the derivative (4) with respect to AR. 

3. ΦΨ transformations that increase the discriminating power of non-convex factors of scoring model 

Let a rating factor is quantile normalized and therefore uniformly distributed one 𝑥𝑥 ∈ [0,1], ranked from worst to 
best (Normalization №1), then the index Gini{x} = 𝐴𝐴𝐴𝐴{x} ≥ 0. A factor is convex if its ROC-curve is convex. Let 
ROC(x) be continuous, for example, prepared by applying linear or higher interpolation.  

Definition 

One-parameter transformations 𝜱𝜱 𝑎𝑎𝑎𝑎𝑎𝑎 𝜳𝜳  called: 

𝜱𝜱: 𝑦𝑦 = 𝛷𝛷(𝑥𝑥, 𝜑𝜑), 𝛷𝛷(𝑥𝑥, 𝜑𝜑) = (𝑥𝑥−1
2𝜑𝜑)

2

(1−1
2𝜑𝜑)

2 , 𝜑𝜑 ∈ (0,1], 𝜳𝜳: 𝑦𝑦 = 𝛹𝛹(𝑥𝑥, 𝜓𝜓),   𝛹𝛹(𝑥𝑥, 𝜓𝜓) = (1 + 𝜓𝜓)(2 − (1 + 𝜓𝜓) ∙ 𝑥𝑥) ∙ 𝑥𝑥,

𝜓𝜓 ∈ (0,1],  𝑥𝑥 ∈ [0,1] . 
Graphs  𝛷𝛷 𝑎𝑎𝑎𝑎𝑎𝑎 𝛹𝛹 transformations presented on Fig. 2 Second-order metrics are calculated:  𝐿𝐿𝐿𝐿𝐿𝐿{x}, 𝑅𝑅𝐴𝐴𝐴𝐴{x} (2), 

(3).  The minimum value of LAR, RAR for a convex ROC will be calculated by formula (4), considering (5). Denote  

 m𝐿𝐿𝐿𝐿𝛼𝛼 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅(𝐴𝐴𝐴𝐴{x}) − Δ𝛼𝛼𝑚𝑚𝑚𝑚, where  Δ𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 = −𝑡𝑡𝛼𝛼 ∙ 𝜎𝜎𝐴𝐴𝐴𝐴{x} ∙ ln (1 − 𝐴𝐴𝐴𝐴{x}). 
Statistical criterion (6) selection of 𝚽𝚽 𝒐𝒐𝒐𝒐 𝚿𝚿- transformations 

At a given confidence level 𝛼𝛼, the choice of the form of Φ or Ψ-transformation is made under the following 
criteria: 
 - If 𝐿𝐿𝐿𝐿𝐿𝐿{𝑥𝑥}< m𝐿𝐿𝐿𝐿𝛼𝛼, then the 𝜱𝜱 transformation is applied, 𝜱𝜱: 𝑦𝑦 = 𝛷𝛷(𝑥𝑥, 𝜑𝜑); 
- If 𝑅𝑅𝑅𝑅𝑅𝑅{𝑥𝑥}< m𝐿𝐿𝐿𝐿𝛼𝛼 , then the 𝜳𝜳 transformation is applied, 𝜳𝜳: 𝑦𝑦 = 𝛹𝛹(𝑥𝑥, 𝜓𝜓); 

- If 𝐿𝐿𝐿𝐿𝐿𝐿{𝑥𝑥}> 𝑚𝑚𝑚𝑚𝑚𝑚𝛼𝛼 and  𝑅𝑅𝑅𝑅𝑅𝑅{𝑥𝑥}> 𝑚𝑚𝑚𝑚𝑚𝑚𝛼𝛼, then the identity transformation remains valid y=x; 
If both upper criteria are true at the same time, then the factor is not allowed in the model. 
Optimal 𝜑𝜑∗, 𝜓𝜓∗: 

𝜱𝜱: 𝑦𝑦 = 𝛷𝛷(𝑥𝑥, 𝜑𝜑), 𝜑𝜑∗ = 𝑎𝑎𝑎𝑎𝑎𝑎 max
𝜑𝜑∈(0,1]

𝐴𝐴𝐴𝐴{𝑦𝑦}, 𝜳𝜳: 𝑦𝑦 = 𝛹𝛹(𝑥𝑥, 𝜓𝜓), 𝜓𝜓∗ = 𝑎𝑎𝑎𝑎𝑎𝑎 max
𝜓𝜓∈(0,1]

𝐴𝐴𝐴𝐴{𝑦𝑦}. (7) 

Theorem  

Let the ROC curve of an untransformed factor {𝑥𝑥} be twice continuously differentiable ( 𝑁𝑁, 𝐷𝐷 → ∞) and the 
following conditions are met 
1. equation (7) is holds,  

Fig. 2. 𝛷𝛷 𝑎𝑎𝑎𝑎𝑎𝑎 𝛹𝛹 transformations 
(PHI and PSI) 
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2. there is a single inflection point 𝑥𝑥𝑏𝑏 of the curve ROC(x), such as  |𝑅𝑅𝑅𝑅𝑅𝑅′′(𝑥𝑥𝑏𝑏)| ≥ 𝜀𝜀 > 0, 
3. there exist at least one point 𝑥𝑥0 such that: 2 ∙ 𝑅𝑅𝑅𝑅𝑅𝑅 (𝑥𝑥0

2⁄ ) > 𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥0) for 𝛷𝛷 – transformation  

or 2 ∙ 𝑅𝑅𝑅𝑅𝑅𝑅 ( 1
1+𝑥𝑥0) > (1 + 𝑅𝑅𝑅𝑅𝑅𝑅 (1−𝑥𝑥0

1+𝑥𝑥0)) for 𝛹𝛹 – transformation.  

Then there is a unique solution for parameters 𝜑𝜑∗, 𝜓𝜓∗ (7) according to the equations: 

𝚽𝚽:    𝑅𝑅𝑅𝑅𝑅𝑅(𝜑𝜑∗) = 2 ∙ 𝑅𝑅𝑅𝑅𝑅𝑅 (𝜑𝜑∗

2 ) 𝚿𝚿:    1 + 𝑅𝑅𝑅𝑅𝑅𝑅 (1−𝜓𝜓∗

1+𝜓𝜓∗) = 2 ∙ 𝑅𝑅𝑅𝑅𝑅𝑅 ( 1
1+𝜓𝜓∗)               

(8) 
 

The proof is given in the Appendix. Initial approximation3: 𝜑𝜑∗, 𝜓𝜓∗ = 1 − 𝐴𝐴𝐴𝐴{x}.  

The order of operations with a transformable factor is as follows:  

- for a scoring factor that satisfies the non-convexity condition (6), a quantile Normalization №1 is required; 
- the position of the rating factor on the scale “bad – good” is considered on the scale 𝒚𝒚 (after 𝚽𝚽𝚽𝚽- transformation); 
- the distribution of the transformed factor y ceases to be uniform, and since the economic interpretation of the 

weight and value of this indicator is important, it must be additionally normalized (Normalization №2). This 
operation does not affect the discriminating power, i.e., the quality of the resulting model, since the transformation 
is monotonic and the variable y is already convex.  

Normalization №2 is  𝑦𝑦 → 𝑌𝑌, for this, a transformation (9) is applied; 

𝚽𝚽:    𝑌𝑌(𝑦𝑦) = {
(2 − 𝜑𝜑∗)√𝑦𝑦, 𝑖𝑖𝑖𝑖 𝑦𝑦 ≤ ( 𝜑𝜑∗

2−𝜑𝜑∗)
2

𝜑𝜑∗

2 + (1 − 𝜑𝜑∗

2 ) √𝑦𝑦,   𝑖𝑖𝑖𝑖 𝑦𝑦 > ( 𝜑𝜑∗

2−𝜑𝜑∗)
2

 
, 𝚿𝚿:    𝑌𝑌(𝑦𝑦) = {

1−√1−𝑦𝑦
1+𝜓𝜓∗ , 𝑖𝑖𝑖𝑖 𝑦𝑦 ≤ 1 − 𝜓𝜓∗2

1 − 2√1−𝑦𝑦
1+𝜓𝜓∗ ,   𝑖𝑖𝑖𝑖 𝑦𝑦 > 1 − 𝜓𝜓∗2 

   , (9) 

- the scoring model (for example, built by logistic regression based on the maximum Gini index) gets the 
transformed variable Y, for which the weights are optimized together with the weights of other factors. 

A demonstration on practical use of the "correction of dents" of the ROC curve using ΦΨ - transformation is shown 
in next Section. 

4. Application of ΦΨ transformations 

To demonstrate the preparation of factors for inclusion in the scoring model, calculations are presented based on 
publicly available data from Russian non-profit organizations (NPOs) (see Fig. 3). Table 1 presents the results of the 
analysis of condition (6), the necessary transformation is determined and the final result of the "healing" is given. 
Obviously, there is a significant increase in the Gini factors.  The following Table 2 presents the intervals of real 
values of indicators (EBIT/Equity and Net Operating Income), distributed by deciles of the corresponding factor, 
which is included in the scoring model.  

 

Fig. 3. An object: NPOs. Left graph: Φ-transformation, factor: Ratio EBIT/Equity. Right graph: Ψ-transformation, factor: Net operating income 
(Thousand RUR). 

 

                                                           
3 In practice, it may be quite satisfactory 



242	 Mikhail Pomazanov  / Procedia Computer Science 221 (2023) 237–244
6 Author name / Procedia Computer Science 00 (2019) 000–000 

 

Table 1. Analysis of the fulfillment of the conditions for applying the ΦΨ-transformation and the result of the transformation 
Factor 𝑨𝑨𝑨𝑨{𝒙𝒙} original Second order metric 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 Error 𝜟𝜟𝟗𝟗𝟗𝟗%𝒎𝒎𝒎𝒎𝒎𝒎 Condition (6) Type 𝜱𝜱𝜱𝜱 𝑨𝑨𝑨𝑨{𝒚𝒚} after 𝜱𝜱𝜱𝜱 
EBIT/Equity 12.0% LAR=-15% 0.75% 0.05% Yes 𝝋𝝋 = 𝟎𝟎. 𝟕𝟕𝟕𝟕 32.4% 
Net operating income 6.1% RAR=-13% 0.19% 0.05% Yes 𝝍𝝍 = 𝟎𝟎. 𝟖𝟖𝟖𝟖 30.1% 

Table 2 shows that the first transformation (Normalization №1, i.e. quantile transformation) gives continuous 
intervals, which is obvious. The next transformation (ΦΨ-transformation plus Normalization №2) gives two intervals 
for most of the deciles of the factor. All intervals do not intersect. If the value of the real indicator falls within one of 
the intervals, then the factor is assigned the value of the corresponding decile. In the continuous case, intervals can be 
obtained with any precision greater than a decile. 
Table 2. Intervals of real values of the factor corresponding to the decile of the transformed factor. (Net Operating Income in Thousand RUR) 

EBIT/Equity decile (%) Interval of factor up to  𝜱𝜱𝜱𝜱  Interval of factor after 𝜱𝜱𝜱𝜱  
0 10 −∞  -42.4 -0.5 0.0 0.0 0.6 
10 20 -42.4 -7.5 -1.1 -0.5 0.6 2.2 
20 30 -7.5 -1.8 -2.1 -1.1 2.2 5.9 
30 40 -1.8 -0.4 -4.2 -2.1 5.9 13.1 
40 50 -0.4 0.8 -8.7 -4.2 13.1 36.1 
50 60 0.8 7.1 -19.8 -8.7 36.1 130 
60 70 7.1 46.9 -52.8 -19.8 130 6158 
70 80 46.9 12343 −∞  -52.8 6158 12943 
80 90 12343 12806 12806 12943   
90 100 12806 +∞  12943 +∞    
Net Operating Income decile (%) Interval of factor up to  𝜱𝜱𝜱𝜱   Interval of factor after 𝜱𝜱𝜱𝜱  
0 10 −∞  -17 288 −∞  -31 956 109 813 +∞  
10 20 -17 288 -4 039 -31 956 -13 497 22 398 109 813 
20 30 -4 039 -1 113 -13 469 -6 656 7 953 22 398 
30 40 -1 113 -310 -6 656 -3 274 3 463 7 953 
40 50 -310 -54 -3 272 -1 685 1 469 3 459 
50 60 -54 27 -1 685 -932 633 3 463 
60 70 27 476 -932 -494 247 633 
70 80 476 2 696 -494 -259 61 247 
80 90 2 696 15 329 -259 -109 0 61 
90 100 15 329 +∞  -109 0     

The experience of applying the ΦΨ-transformation in model development practice shows that after transforming 
some of the long-list factors and improving their discriminating characteristics, it became possible to build a model 
with an updated short-list of variables. Versions of the models using ΦΨ-transformation improved the Gini index by 
5-10%. This gave a noticeable annual economic profit to the credit business at the level of the obtained Gini delta 
multiplied by half of the amount of reserves for expected losses [17]. 

5. Conclusion 

Let's list the recommendations how to prepare the factors for implementation in the scoring model using the ΦΨ-
transformation:  

1. Normalize all standardized model variables to a uniform distribution on a single interval (quantile 
normalization). This makes some economic sense, for example, in terms of limiting the range of default 
probabilities4; 

2. Calculate first- and second-order discriminant force metrics AR/LAR/RAR (1,2,3); 
3. In case criterion (6) is valid, applying ΦΨ-transformation it is necessary to "healing" of the factor by estimating 

the optimal parameters 𝜑𝜑∗𝑜𝑜𝑜𝑜 𝜓𝜓∗  (7) or solving equation (8) and then moving to the adjusted variable y with 
an estimate of the transformed Gini index 𝐴𝐴𝐴𝐴{𝐲𝐲} > 0; 

4. Normalize again, i.e. Normalization №2 is applied  𝑦𝑦 → 𝑌𝑌 (9), in order to subsequently accurately determine 
the weight coefficients of the model after identical standardization of the distributions of untransformed and 
transformed (“healinged”) variables; 

                                                           
4 With a logistic calibration type of 𝑃𝑃𝑃𝑃(𝑅𝑅) = 1

1+𝑒𝑒𝐴𝐴∙𝑅𝑅+𝐵𝐵 , the probability of default 𝑃𝑃𝑃𝑃(𝑅𝑅) will not appear as negligible or too high (as if the rating 
score "prophesies" default within a year) 
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5. In deciding whether to include a variable in the model, be guided by the transformed discriminant power 
indicator Gini-index, VIF, IV, etc. [18] for that part of the variables, that have been "healed" by ΦΨ-
transformations;  

6. Optimize scoring model factor weights with tools using best practices  [5], [11], [13].  
The ΦΨ transformation is especially relevant for use in the case of limited statistics of measurements of the target 

binary variable (1000-10000 measurements), for example, in the segment of building scoring maps for legal entities. 
The experience of implementing the approach in the development of credit risk assessment models in the banking 
sector has shown that the ΦΨ transformation provides an effective tool to improve the quality of scoring models. The 
transformations are explicit, highly stable, and transparent for validation. After improving the discriminating power of 
individual factors and including them in the short list of working-out, it had possible to increase the aggregate discriminating 
power by 5-10% over the Gini index original. 

Appendix. Proof of the Theorem about of optimal parameters of the ΦΨ-transformation 

Let the ROC curve be given by the integral 𝑅𝑅(𝑥𝑥) = ∫ 𝑝𝑝(𝜉𝜉)𝑑𝑑𝑑𝑑𝑥𝑥
0 ,  𝑅𝑅(1) = 1, then 𝐴𝐴𝐴𝐴𝐴𝐴 = ∫ ∫ 𝑝𝑝(𝜉𝜉)𝑑𝑑𝑑𝑑𝑥𝑥

0 𝑑𝑑𝑑𝑑1
0 .  

Φ-transformation:  𝛷𝛷(𝑥𝑥. 𝜑𝜑) = (𝑥𝑥−1
2𝜑𝜑)

2

(1−1
2𝜑𝜑)

2 . 𝜑𝜑 ∈ (0.1] has roots  

{
0 < 𝑡𝑡 < 𝑡̂𝑡(𝜑𝜑) .   𝑦𝑦1 = 𝜑𝜑

2 − (1 − 𝜑𝜑
2) √𝑡𝑡.  𝑦𝑦2 = 𝜑𝜑

2 + (1 − 𝜑𝜑
2) √𝑡𝑡 

𝑡̂𝑡(𝜑𝜑) ≤ 𝑡𝑡 < 1 .   𝑦𝑦1 = 0.  𝑦𝑦2 = 𝜑𝜑
2 + (1 − 𝜑𝜑

2) √𝑡𝑡
, where 𝑡̂𝑡(𝜑𝜑) = (

𝜑𝜑
2⁄

1−𝜑𝜑
2⁄ )

2
.  

The ROC-curve corrected after the Φ-transformation will be set parametrically (𝑥̂𝑥(𝑡𝑡). 𝑅̂𝑅(𝑡𝑡)) ,  where 𝑥̂𝑥(𝑡𝑡) =
𝑦𝑦2(𝑡𝑡) − 𝑦𝑦1(𝑡𝑡),    𝑅̂𝑅(𝑡𝑡) = ∫ 𝑝𝑝(𝜉𝜉)𝑑𝑑𝑑𝑑 = 𝑅𝑅(𝑦𝑦2(𝑡𝑡)) − 𝑅𝑅(𝑦𝑦1(𝑡𝑡)) 𝑦𝑦2(𝑡𝑡)

𝑦𝑦1(𝑡𝑡) , 𝐴𝐴𝐴𝐴𝐴̂𝐴 = ∫ 𝑅̂𝑅(𝑡𝑡) ∙ 𝑑𝑑𝑥̂𝑥(𝑡𝑡)1
0  , 𝐴𝐴𝐴𝐴𝐴̂𝐴 = (1 − 𝜙𝜙

2) ∙ 𝑄𝑄(𝜙𝜙)  , 

where 𝑄𝑄(𝜙𝜙) = ∫ 1
√𝑡𝑡 (𝑅𝑅(𝑦𝑦2(𝑡𝑡)) − 𝑅𝑅(𝑦𝑦1(𝑡𝑡)))𝑑𝑑𝑑𝑑 + 1

2 ∫ 1
√𝑡𝑡 𝑅𝑅(𝑦𝑦2(𝑡𝑡))𝑑𝑑𝑑𝑑1

𝑡̂𝑡(𝜑𝜑)
𝑡̂𝑡(𝜑𝜑)

0 . Considering 𝑦𝑦1(𝑡̂𝑡(𝜑𝜑)) = 0, 𝑦𝑦2(𝑡̂𝑡(𝜑𝜑)) = 𝜑𝜑, 
𝑦𝑦1(0) = 𝑦𝑦2(0) = 𝜑𝜑

2⁄ , 𝑦𝑦2(1) = 1  ,  𝑑𝑑𝑦𝑦2(𝑡𝑡) = 1
2√𝑡𝑡 (1 − 𝜑𝜑

2) 𝑑𝑑𝑑𝑑  , 𝑑𝑑𝑦𝑦1(𝑡𝑡) = − 1
2√𝑡𝑡 (1 − 𝜑𝜑

2) 𝑑𝑑𝑑𝑑 , we has 𝐴𝐴𝐴𝐴𝐴̂𝐴 =
∫ 𝑅𝑅(𝑥𝑥)𝑑𝑑𝑑𝑑1

𝜑𝜑
2⁄ + ∫ 𝑅𝑅(𝑥𝑥)𝑑𝑑𝑑𝑑𝜑𝜑

𝜑𝜑
2⁄ + 2 ∫ 𝑅𝑅(𝑥𝑥)𝑑𝑑𝑑𝑑0

𝜑𝜑
2⁄ .  

Finally, 𝐴𝐴𝐴𝐴𝐴̂𝐴(𝜑𝜑) = 𝐴𝐴𝐴𝐴𝐴𝐴 + ∫ 𝑅𝑅(𝑥𝑥)𝑑𝑑𝑑𝑑𝜑𝜑
0 − 4 ∫ 𝑅𝑅(𝑥𝑥)𝑑𝑑𝑑𝑑

𝜑𝜑
2⁄

0 . Maximum value of 𝐴𝐴𝐴𝐴𝐴̂𝐴(𝜑𝜑) can only reach in the point 

𝐴𝐴𝐴𝐴𝐴̂𝐴′(𝜑𝜑) = 𝑅𝑅(𝜑𝜑) − 2 ∙ 𝑅𝑅(𝜑𝜑
2) = 0, i.e. provided 𝑅𝑅(𝜑𝜑∗) = 2 ∙ 𝑅𝑅 (𝜑𝜑∗

2 ).  
Let 𝑅𝑅(𝑥𝑥)  is continuous together with the second derivative, while it is convex, i.e. 𝑅𝑅′′(𝑥𝑥) < 0, with monotonicity of  
𝑅𝑅(𝑥𝑥) (by ROC definition). Then, there is no solution to the equation  𝑅𝑅(𝑥𝑥) = 2 ∙ 𝑅𝑅(𝑥𝑥 2⁄ ). Indeed, denoting 𝑔𝑔(𝑥𝑥) =
𝑅𝑅(𝑥𝑥) − 2 ∙ 𝑅𝑅(𝑥𝑥 2⁄ ), we get  𝑔𝑔(0) = 0,  wherein 𝑔𝑔′(𝑥𝑥) = 𝑅𝑅′(𝑥𝑥) − 𝑅𝑅′(𝑥𝑥 2⁄ ) < 0, and since   𝑅𝑅′′(𝑥𝑥) < 0, it is clear that 
there are no roots. However, if there is an inflection point 𝑥̂𝑥 such that  𝑅𝑅′′(𝑥𝑥) > 0  at 𝑥𝑥 ∈ (0, 𝑥̂𝑥) and 𝑅𝑅′′(𝑥𝑥) < 0  at 
𝑥𝑥 ∈ (𝑥̂𝑥 , 1), then on the interval 𝑥𝑥 ∈ (0, 𝑥̂𝑥)  will be true 𝑔𝑔′(𝑥𝑥) > 0, so  𝑔𝑔(𝑥̂𝑥) > 0 . On the other hand, by the 
hypothesis of the theorem, there is 𝑥𝑥0 such that 𝑅𝑅(𝑥𝑥0 ) − 2 ∙ 𝑅𝑅 (𝑥𝑥0 2⁄ ) = 𝑔𝑔(𝑥𝑥0 ) < 0,   hence, due to continuity, 

there exists a solution  𝑅𝑅(𝜑𝜑) = 2 ∙ 𝑅𝑅(𝜑𝜑
2⁄ ). Moreover, this solution includes a maximum, since the sign of 𝐴𝐴𝐴𝐴𝐴̂𝐴′(𝜑𝜑) 

changes from positive to negative on the segment (0, 𝑥𝑥0).  

Let’s prove the uniqueness 𝜑𝜑. If 𝜑𝜑 is not unique, then there can be at least two roots, or three in the general case 
when 𝑔𝑔(𝑥𝑥) does not touch the zero axis. In any case, there are three extrema for the function 𝑔𝑔(𝑥𝑥). Moreover, all three 
extrema are located on the interval  (𝑥̂𝑥, max {2𝑥̂𝑥, 1}), because on the interval (2𝑥̂𝑥, 1), if it exists, the function 𝑔𝑔′(𝑥𝑥) <
0 is less than zero.  The latter follows from the fact that 𝑅𝑅′(𝑥𝑥) decreases over the interval (2𝑥̂𝑥, 1). Then, denoting two 
different extremums 𝑥𝑥1, 𝑥𝑥2    𝑥̂𝑥 < 𝑥𝑥1 < 𝑥𝑥2 < max {2𝑥̂𝑥, 1} , we have 𝑔𝑔′(𝑥𝑥1) = 𝑔𝑔′(𝑥𝑥2) = 0 . This means 𝑅𝑅′(𝑥𝑥2) −
𝑅𝑅′(𝑥𝑥1) = 𝑅𝑅′(𝑥𝑥2 2⁄ ) − 𝑅𝑅′(𝑥𝑥1 2⁄ ), but this is not possible with not equal 𝑥𝑥1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥2 , because  𝑥𝑥1, 𝑥𝑥2 and 𝑥𝑥1/2, 𝑥𝑥2/2 lie 
on opposite sides of the inflection point 𝑥̂𝑥  of function 𝑅𝑅(𝑥𝑥) . Hence the root 𝜑𝜑  of eq. (8) is unique for the Φ-
transformation and the conditions of the Theorem.  
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Ψ- transformation:  𝛹𝛹(𝑥𝑥. 𝜓𝜓) = (1 + 𝜓𝜓)(2 − (1 + 𝜓𝜓) ∙ 𝑥𝑥) ∙ 𝑥𝑥.   𝜓𝜓 ∈ (0.1] has roots 

{
0 < 𝑡𝑡 < 𝑡̂𝑡(𝜓𝜓) .   𝑦𝑦1 = 1

1+𝜓𝜓 (1 − √1 − 𝑡𝑡).  𝑦𝑦2 = 1 

𝑡̂𝑡(𝜓𝜓) ≤ 𝑡𝑡 < 1 .   𝑦𝑦1 = 1
1+𝜓𝜓 (1 − √1 − 𝑡𝑡).  𝑦𝑦2 = 1

1+𝜓𝜓 (1 + √1 − 𝑡𝑡)
, where 𝑡̂𝑡(𝜓𝜓) = 1 − 𝜓𝜓2. 

The ROC-curve corrected after the Φ-transformation will be set parametrically (𝑥̂𝑥(𝑡𝑡). 𝑅̂𝑅(𝑡𝑡)), where 𝑥̂𝑥(𝑡𝑡) = 1 +
𝑦𝑦1(𝑡𝑡) − 𝑦𝑦2(𝑡𝑡).   𝑅̂𝑅(𝑡𝑡) = ∫ 𝑝𝑝(𝜉𝜉)𝑑𝑑𝑑𝑑𝑦𝑦1(𝑡𝑡)

0 + ∫ 𝑝𝑝(𝜉𝜉)𝑑𝑑𝑑𝑑1
 𝑦𝑦2(𝑡𝑡) = 𝑅𝑅(𝑦𝑦1(𝑡𝑡)) − 𝑅𝑅( 𝑦𝑦2(𝑡𝑡)) + 1,

𝐴𝐴𝐴𝐴𝐴̂𝐴 = ∫ 𝑅̂𝑅(𝑡𝑡) ∙ 𝑑𝑑𝑥̂𝑥(𝑡𝑡),1
0 𝐴𝐴𝐴𝐴𝐴̂𝐴 = 1

1+𝜓𝜓 ∙ 𝑃𝑃(𝜓𝜓), where 𝑃𝑃(𝜓𝜓) = ∫ 1
2√1−𝑡𝑡 𝑅𝑅(𝑦𝑦1(𝑡𝑡))𝑑𝑑𝑑𝑑 + ∫ 1

√1−𝑡𝑡 (𝑅𝑅(𝑦𝑦1(𝑡𝑡)) + 1 −1
𝑡̂𝑡(𝜓𝜓)

𝑡̂𝑡(𝜓𝜓)
0

𝑅𝑅(𝑦𝑦2(𝑡𝑡)))𝑑𝑑𝑑𝑑. Applying active substitutions similar to the Φ-transformation, we obtain 

 𝐴𝐴𝐴𝐴𝐴̂𝐴(𝜓𝜓) = 𝐴𝐴𝐴𝐴𝐴𝐴 + 2 𝜓𝜓
1+𝜓𝜓 + ∫ 𝑅𝑅(𝑥𝑥)𝑑𝑑𝑑𝑑1

1−𝜓𝜓
1+𝜓𝜓

− 4 ∫ 𝑅𝑅(𝑥𝑥)𝑑𝑑𝑑𝑑1
1

1+𝜓𝜓
.  The function 𝐴𝐴𝐴𝐴𝐴̂𝐴(𝜓𝜓) can take the maximum value at 

the point 𝐴𝐴𝐴𝐴𝐴̂𝐴′(𝜓𝜓∗) = 0 , thus  1 + 𝑅𝑅 (1−𝜓𝜓∗

1+𝜓𝜓∗) = 2 ∙ 𝑅𝑅 ( 1
1+𝜓𝜓∗). The existence of a solution is proved similarly to the 

Φ-transformation. Let  𝑥̂𝑥  is inflection point, then 𝑅𝑅′′(𝑥𝑥) < 0  at 𝑥𝑥 ∈ (0, 𝑥̂𝑥), and 𝑅𝑅′′(x) > 0 on the interval 𝑥𝑥 ∈
(𝑥̂𝑥, 1). The function 𝑔𝑔(𝑥𝑥) = 1

2 𝑅𝑅 (1−𝑥𝑥
1+𝑥𝑥) − 𝑅𝑅 ( 1

1+𝑥𝑥) is introduced . Then 𝑔𝑔′(𝑥𝑥) = 1
(1+𝑥𝑥)2 (𝑅𝑅′ ( 1

1+𝑥𝑥) − 𝑅𝑅′ (1−𝑥𝑥
1+𝑥𝑥)) > 0,  at 

𝑥𝑥 ∈ (0, 1−𝑥𝑥  
1+𝑥𝑥  ). It is means ∫ 𝑔𝑔′(𝜃𝜃)𝑥𝑥

0 𝑑𝑑𝑑𝑑 > 0. Whence it follows that for 𝑥𝑥 ∈ (0, 1−𝑥𝑥  
1+𝑥𝑥  ) right inequality   2 ∙ 𝑅𝑅 ( 1

1+𝑥𝑥) <

(1 + 𝑅𝑅 (1−𝑥𝑥
1+𝑥𝑥)). On the other hand, by the hypothesis of the Theorem, there exists a point 𝑥𝑥0 such that  2 ∙

𝑅𝑅 ( 1
1+𝑥𝑥0) > (1 + 𝑅𝑅 (1−𝑥𝑥0

1+𝑥𝑥0)), whence it follows that under the conditions of the theorem the solution 𝜓𝜓∗ for the Ψ-

transformation exists. Uniqueness is proved similarly to the Φ-transformation.  
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