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ABSTRACT

In this paper we study the next basket recommendation problem.
Recent methods use different approaches to achieve better perfor-
mance. However, many of them do not use information about the
time of prediction and time intervals between baskets. To fill this
gap, we propose a novel method, Time-Aware Item-based Weight-
ing (TAIW), which takes timestamps and intervals into account.
We provide experiments on three real-world datasets, and TAIW
outperforms well-tuned state-of-the-art baselines for next-basket
recommendations. In addition, we show the results of an ablation
study and a case study of a few items.
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1 INTRODUCTION

Next Basket Recommendation (NBR) has become an important
problem in the field of recommender systems due to the growth of
e-commerce platforms [2, 12]. A lot of effort has gone into creating
accurate algorithms. However, the current progress in NBR seems
to be questionable [11]. User behaviour shows a high degree of
repetition across different open source datasets. Items bought in the
past tend to appear in the next transactions. This means that we can
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easily count the personalised frequency of past purchases. These
are good predictors for next basket recommendations [3, 6, 11, 19].
However, such a simple heuristic recommends new items in a non-
personalised way and does not model the dynamics of the user.

To overcome these and other limitations, researchers are devel-
oping different models. According to recent reviews of NBR [11, 19],
frequency-based methods outperform many deep learning-based ap-
proaches. A representative example is TIFU-KNN [6]. This method
introduces Personalised Item Frequency (PIF) vectors to represent
user interests. The authors introduced two types of weighting in-
teractions to capture the dynamics of user preferences. However,
TIFU-KNN has some limitations. The first is that the weights depend
only on the ordinal number of the basket. While this is a potential
area for improvement, the algorithm does not handle time intervals
between baskets. The second limitation is that the weights do not
vary between items. If someone bought milk in the last basket, they
can buy milk again in the next basket. But if someone has bought
washing powder, they may not need it for a long time, because a
packet of powder can last a long time. The final possible limitation
is that TIFU-KNN does not take into account the time gap between
the last known interaction and the time of the prediction. All of
these limitations have the potential to limit the performance.

In this paper, we present a novel method called Time-Aware
Item-based Weighting (TAIW) for next-basket recommendation
that overcomes both limitations. We are inspired by the simplicity
and superiority of TIFU-KNN. However, TAIW uses more flexible
weights for each item based on the current time of prediction. We
use the Hawkes process [9], which helps to estimate relevance
scores for previously purchased items based on time intervals be-
tween interactions. The contributions of this paper can be listed as
follows:

o We have described a novel method, Time-Aware Item-based
Weighting (TAIW for short), for next-basket recommenda-
tions. It overcomes the limitations of TIFU-KNN. To encour-
age reproducibility and future research, we share the imple-
mentation of TAIW as well as other baselines in our experi-
ments online.

e We conducted experiments on three real-world datasets and
demonstrated the superiority of TAIW over well-tuned high-
performance baselines for the NBR task.

e We conducted an ablation study, a temporal context impor-
tance analysis and a case study to gain insight into TAIW.
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Figure 1: A general overview of the proposed TAIW model. It has two modules, the Repurchase Module and the Neighbourhood
Module. The Repurchase Module uses the Hawkes process to take into account the contribution of historical purchases of each
item at the current moment. Base intensity allows the estimation of relevance scores for both consumed and unconsumed
items. The final user vector is the sum of these two vectors. The Neighbourhood Module stores vectors of all users and helps to
find preferences of similar users to improve recommendation performance.

2 RELATED WORK

Next basket recommendation is a well-studied problem. Early work
used Markov chains [16], recurrent neural networks [1, 23] and
attention-based mechanisms [5, 14]. Such approaches help to con-
sider baskets sequentially in terms of the order in which they ap-
pear in user history. Despite their power in other areas of machine
learning, recent reviews [11, 19] have shown that frequency-based
methods still achieve state-of-the-art performance compared to
other deep learning methods.

The main reason for this is that high-frequency items are more
likely to appear in subsequent baskets due to the repetitive nature
of user behaviour. For example, UPCF [3] uses purchase frequencies
calculated over a fixed time window. This method calculates scores
for new items based on some similarity measures such as UserKNN
[17] or ItemKNN [22]. Another example of these methods is TIFU-
KNN [6]. The authors introduced Personalised Item Frequency (PIF)
vectors and applied the UserKNN approach. PIF vectors have two
types of weights based on the ordinal numbers of the baskets. These
weights help to capture the dynamics of users’ interests.

However, using only ordinal numbers may limit the quality of
recommendations. For example, in the next item recommendation,
TiSASRec [10] with explicit modelling of time intervals outper-
forms SASRec [7] using only ordinal numbers of interactions. An
interesting approach SLRC [21] uses the Hawkes process [9] to
estimate the probabilities that interactions will repeat. This allowed
the impact of past interactions to be calculated based on the time
to the moment of prediction. Similar methods have already been
developed for next basket recommendations. ReCaNet [1] uses GRU
layer to handle time intervals between repurchases of each item. In
this work [8] a hyper-convolutional model learns purchase cycles
and recommends items from history at the right time. Both methods
focus only on the repurchase part of the NBR problem, they do not
predict new items in the next basket.

Finally, the authors [13] introduced a modified TIFU-KNN-TA
that works with timestamps and weights interactions based on
real time intervals between baskets. However, this model does

not learn item-specific weights. In addition, the weights decrease
monotonically from more recent to earlier interactions. These two
limitations could limit recommendation performance.

3 PROPOSED METHOD

In this section, we define the NBR problem and describe a new model
for this task called Time-Aware Item Specific Weights (TAIW). We
are inspired by the aforementioned superiority and simplicity of
TIFU-KNN, the time awareness of TIFU-KNN-TA and the item
specific weights in SLRC. An overview of TAIW is shown in Figure
1. The proposed method has two modules: the Repurchase Module
and the Neighbourhood Module, which are described below.

3.1 Problem Definition

Let U be the set of users and V - the item set. We can repre-
sent the consumption history of user u € U as a sequence B¥ =

u,j u,j .
{(b%, ), s (erul,tf%ul)}, where b}f = {v; J"“’”lbg-‘l} is an un-

ordered set of items (in other words, a basket) purchased by user u at

the corresponding timestamp t;.‘ € R*. We assume that t}’ < t}‘HV J.

: : u
Given a target timestamp t|B"\+1’

u
basket blB“|+1

our goal is to predict the next

of user u.

3.2 TAIW Overview

Repurchase Module. As mentioned above, there are many sim-
ilarities in the repurchase behaviour of different users, namely a
short-term and a long-term pattern in the distribution of inter-
consumption gaps [20, 21]. The former refers to the user’s desire
to repurchase the item immediately after the previous purchase.
The latter refers to the lifespan of the purchased item. It is worth
noting that these patterns vary from item to item, which means
that the target time tﬁ;u 41 MY be an appropriate time to repur-
chase some items rather than explore new items. The aim of the
Repurchase Module of the proposed method is to learn patterns of
inter-consumption gaps for all items and to rank items according

to their relevance at the target timestamp tﬁB“IH' To do this, we
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use a scoring function similar to SLRC [21], which comes from the
Hawkes process [9]. The relevance score /Iu,i(tﬁgu |+l) ofitemi eV

u can be calculated as

for user u € U at the target timestamp Hgu) 41

follows:

Au,i(tu

Y _
|B“\+1) =Nyt

yi(tluBu|+l - t}")a
(b}‘,t}‘)eBu; ieb}.‘, t}.‘<t"§u‘+l

1
where Ag’i is some base intensity score of user u to buy item i. The
function y; is a scoring function of the time interval between the
last basket containing item i and the prediction time. It should be
proportional to the probability of repurchasing the item after the
interval. The parameter ¢; is an item-specific importance factor of
the repurchase component.

To properly rank items at the target time ¢

|B%|+1
their relevance at that time, y; needs to fit item-specific patterns.
Similar to [21], we model short- and long-term repurchase patterns

with the following family of functions:

according to

vi(Ar) = ' E(At] f1) + (1= 2 )N (At] ', o), @
where E(At| %) is the probability density function (PDF) of the
exponential distribution with parameter A = g/, N (At| i, o*) is the
PDF of the Gaussian distribution with parameters i = y!, o = o,
! is the coefficient of the linear combination of different patterns.
According to our research on the datasets considered, for the vast
majority of items the interval between purchases is exponentially
distributed, indicating the dominance of short-term patterns. How-
ever, for some items a high repurchase frequency can be observed
after rather long time intervals. As a result, the chosen family of
functions could potentially fit the majority of existing pattern forms.
The basic intensity /1231. of user u to buy item i has been intro-
duced in the SLRC model for recommending new items. The authors
used models such as BPR [15] and NCF [4] with trainable user em-
beddings to model this basic intensity. It can be considered as a
limitation in practice [18] due to the fact that this model cannot
be applied to unseen users in an inductive scenario. The proposed
method gives the possibility of recommending new items by an-
other module. Therefore, we can consider an inductive version of
TAIW without learning user-ID based embeddings:

(U _ (U _4u
Au,l(t|Bu|+1) = Yl(tlBuH_l tj ). (3
(bY,12) €Bu: iebY, i<t

|BY|+1

We call the corresponding model inductive TAIW or TAIWI. We
will show below that TAIWI outperforms other state-of-the-art
methods.

Neighbourhood Module. Inspired by the success [11] of user-
based k-Nearest Neighbour (kNN) methods (TIFU-KNN [6] and
UPCF [3]) for NBR, we introduce a Neighbourhood Module. We
define the representation of user u € U at the target timestamp
tluB"\+1 as follows:

u — u u
F gy g) = Gt (Ggupyg)s o A v (G gug41)) )
It is then possible to calculate vector representations for other
users. Note that neighbours must be calculated without information
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leakage from test or validation sets. For simplicity, the neighbours’
representations can be computed at the timestamps of their last
baskets from the training set. As a result, there is a set of other
users’ representations {f(u, t|uB“|)| ueU}.

Once we have the target user’s representation and the other
users’ vectors, we can calculate similarity scores between them.
Inspired by TIFU-KNN, we define the final prediction vector as
a linear combination of the representation of the target user u at
the target timestamp tluB" +1 and the average vector of the nearest

neighbours representations from the set {f(u, tll%“\)l ueU}:

Puzasflutly )r(-asr > f@tt) )

U€kNN (u)

where kNN (u) is a set of k users from the training set with the
smallest Euclidean distance to the representation of the target user.

3.3 Training Setup

The Repurchase Module of the proposed models has a number of
trainable parameters. These are 0 = {7, E, i, 0}, which refer to
item-specific repurchase patterns. Unlike TAIWI, TAIW has & and
basic intensity model parameters to train. We use the BPR model
to calculate basic intensities in TAIW. Pairwise ranking loss is used
to train the parameters of the Repurchase Module:

P = Z Z Ino(Au,i(t]) = Aui- (), (6)

U U i U
uelU (bj,tj )eB% zebj

where i” € V\(b} Uby U...U b'l‘Bu‘) is a random negative element.
For the TAIW model we include the standard L2-regularisation
of the basic intensity model in Z. Moreover, the Neighbourhood
Module provides our models with several hyperparameters: k and
a. In addition, there are such common hyperparameters as learning
rate, batch size. The TAIW model includes hyperparameters of the

basic intensity model.

4 EXPERIMENTS

We have provided experiments to answer the following research
questions:

¢ RQ1: How does the TATW model perform against well-tuned
baselines for the next basket recommendation task on real-
world datasets?

e RQ2: How does the quality of TAIW and other methods
depend on the time gap between the last known basket and
the time of prediction?

e RQ3: How do different components of the TATW model
affect performance?

e RQ4: What insights can be found in the learned parameters
of the model?

e RQ5: Can specific repurchase preferences of different users
be generalised?
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Table 1: Metrics of the proposed models compared to the baselines. The best and the second best models are indicated by
boldface and underline respectively. A% shows the improvement of our models compared to the best baseline.

‘g Metrics
g Baseline Precision@10 Recall@10 NDCG@10
A
GP-Pop 0.0572 0.1308 0.1084
TIFU-KNN 0.0574 0.1360 0.1179
o, DNNTSP 0.0502 0.1306 0.1120
§ SLRC 0.0621 0.1458 0.1194
E TIFU-KNN-TA 0.0615 0.1503 0.1248
UPCF 0.0576 0.1365 0.1154
TAIW 0.0644 (A3.7%) 0.1565 (A4.1%) 0.1267 (A1.5%)
TAIWI 0.0671 (A8.1%) 0.1642 (A9.2%) 0.1261 (A1.0%)
GP-Pop 0.0115 0.1116 0.0741
TIFU-KNN 0.0077 0.0749 0.0524
o DNNTSP 0.0002 0.0016 0.0012
& SLRC 0.0116 0.1118 0.0801
E;‘?s TIFU-KNN-TA 0.0078 0.0763 0.0543
UPCF 0.0085 0.0824 0.0553
TAIW 0.0122 (A5.2%) 0.1177 (A5.3%) 0.0815 (A1.7%)
TAIWI 0.0123 (A6.0%) 0.1190 (A6.4%) 0.0810 (A1.1%)
GP-Pop 0.1091 0.1577 0.1490
. TIFU-KNN 0.1157 0.1653 0.1613
£ DNNTSP 0.0613 0.0929 0.0931
2 SLRC 0.1192 0.1727 0.1675
£ TIFU-KNN-TA 0.1162 0.1705 0.1593
A UPCF 0.1167 0.1663 0.1600
TAIW 0.1214 (A1.8%) 0.1791 (A3.7%) 0.1706 (A1.9%)
TAIWI 0.1211 (Ao1.6%) 0.1773 (A2.7%) 0.1713 (A2.3%)

4.1 Experimental Settings

Datasets. We use popular real-world datasets to evaluate our
method and other state-of-the-art baselines. Dunnhumby! con-
tains household level retail transactions over two years from a
group of 2,500 households. TaFeng? contains transaction data from
Chinese grocery stores over 4 months. TaoBao? is provided by Al-
ibaba and contains user behaviour from Taobao. The preprocessing
step in our experiments includes filtering out users and items with
few associated interactions (the filtering threshold depends on the
dataset). In addition, users who made all their transactions within
one day or who made too many transactions (compared to other
users) are also removed. The detailed steps can be found online at
the link below.

Metrics. We use standard metrics to evaluate ranking quality
such as Precision@K, Recall@K and NDCG@K. For NDCG@K we
use a standard binary relevance function.

Baselines. Due to space limitations, only the strongest base-
lines for NBR are included. GP-Pop is a simple heuristic that rec-
ommends items from the history ordered by the frequency of the

https://www.kaggle.com/datasets/frtgnn/dunnhumby-the- complete-journey
https://www.kaggle.com/datasets/chiranjivdas09/ta-feng- grocery-dataset
3https://tianchi.aliyun.com/dataset/649

user’s purchases. TIFU-KNN [6] is a state-of-the-art method for
NBR based on the frequency-based User-KNN method. UPCEF [3]
works in a similar way. We include TIFU-KNN-TA [13] as a recent
improvement to TIFU-KNN. DNNTSP [24] is a graph-based model
that sometimes outperforms TIFU-KNN, according to [11]. Finally,
we add SLRC [21], which has not been used for NBR benchmarks
before, but can be easily applied to NBR without any special effort.

Implementation Details. We looked carefully at the list of
frameworks for reproducibility4, but none of them have Next Bas-
ket Recommendation baselines. So we tried our best to create repro-
ducible and reliable experiments. We implemented the TAIW and
TAIWI models using PyTorch. For the baseline models, we used
implementations provided by the authors. The code is available
online®. All experiments were conducted using the environment
provided by Google Colaboratory® (including standard NVIDIA T4
Tensor Core GPUs).

Evaluation protocol. We used a standard leave-one-basket
protocol to evaluate the NBR models. We took each user’s last
basket for testing, the penultimate basket for validation and the

*https://github.com/ACMRecSys/recsys-evaluation-frameworks
Shttps://github.com/alexeyromanov-hse/time_aware_item_weighting
®https://colab.research.google.com/
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Figure 2: NDCG@K w.r.t. different K values and models across all included datasets.
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Figure 3: NDCG@10 w.r.t. different gaps between the last known basket and the target timestamp (all users are divided into 5
equal buckets according to this gap, a larger number of buckets means a larger gap).

remaining baskets for training. The computation of all metrics
involved ranking items from V for each test user and recommending
the top-k items as the user’s next basket. Final metrics are reported
for the test dataset using tuned hyperparameters (see below) by
repeating the training process with different random seeds and
averaging the result (3 - 5 different seeds depending on the dataset).

Hyperparameter tuning. We chose the Optuna framework’
for the hyperparameter tuning. We followed the same steps for
each baseline and the proposed models. Namely, Optuna sampled
the same number of different sets of hyperparameters to find the
best one (25 for each model). The hyperparameter grid is available
online due to space limitations. The best set of hyperparameters is
the one that maximises NDCG@10 in the validation dataset.

4.2 Results

To answer RQ1, we conducted a series of experiments according to
the evaluation protocol described. Table 1 shows the final metrics
of the considered baselines and the proposed methods. Our TAIW
and TATWI methods outperform all baselines across all datasets
and metrics. In addition, we can define SLRC and TIFU-KNN-TA as
the most powerful baseline models. Furthermore, Figure 2 shows
how the size of the recommendation list affects the metrics for the
most powerful baseline models and the proposed methods across

"https://optuna.org/

all datasets. The experiments conducted show the superiority of
the proposed methods over the considered baselines.

To study RQ2, we divided users into five equal-sized buckets ac-
cording to the number of days between the last training basket and
the test basket to examine the predictive power of the considered
methods for different time gaps. Figure 3 shows the result. User
preferences can drift over t|133“|+1 - tlz%"\ due to specific repurchase
patterns. As a result, TIFU-KNN may suffer from long gaps. On the
other hand, TIFU-KNN-TA, SLRC and TAIW take this gaps into
account. We can see that TIFU-KNN-TA is better than TIFU-KNN
for longer time intervals. The performance of TAIW and TAIWI
degrades more slowly than other models. This may indicate the
importance of adjusting the item-specific weights for the temporal
context.

Figure 4 shows the results of an ablation study covering RQ3. A
series of experiments were carried out to assess the importance of
different components of the proposed models. Firstly, the perfor-
mance gap between the transductive and inductive variants of the
proposed models (TAIW and TAIWI) is investigated. The results
demonstrate that the difference between the models is small. As
a consequence, the advantages of the inductive model [18] can be
used without loss of predictive power. Secondly, Figure 4 shows
the performance of both TAIW and TAIWI without the Neighbour-
hood Module (SLRC and Hawkess respectively). This leads to the
conclusion that the use of the Neighbourhood Module brings a
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Figure 4: NDCG@K w.r.t. different K values and configurations across all included datasets.
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Figure 5: Inter-consumption gap distribution and estimated intensity functions for specific Dunnhumby items.
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Figure 6: NDCG@10 and Recall@10 w.r.t. different « hyperparemeter values.

significant increase and robustness to the considered metrics across
all datasets.

To answer RQ4, we analysed the estimated intensity functions
from equation 2 for different items from Dunnhumby;, as this dataset
has interpretable item categories. Figure 5 shows the results for
cheese, toothpaste and hair conditioner. The actual distributions

of the consumption gaps and the estimated functions are quite
close. We can see that all three items have decreasing short-term
repurchase patterns. However, there is an increase in repurchases
after 150-250 days for toothpaste and cheese, while hair conditioner
is most often repurchased after 50-100 days. It is worth noting
that the Dunnhumby dataset includes transactions from different
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households that are likely to repurchase household goods after
a long period of time. In general, TAIW parameters successfully
handle different repurchase patterns for each item.

To test RQ5, we analysed the dependence of the predictive power
of TAIW on the contribution of the nearest neighbours to the pre-
diction. Figure 6 shows how our target metrics NDCG@10 and
Recall@10) change as a function of a hyperparameter of the Neigh-
bourhood Module. The resulting dependence allows us to conclude
that repurchase patterns are not fully generalisable. In fact, there is
a significant drop in TAIW performance when « takes values close
to zero and the predictions depend only on the users’ neighbours.
This could mean that in practice we have a limited number of differ-
ent users, which is why searching for very similar neighbours for
them can be a challenge. However, the optimal « value is less than
0.5. As a result, the contribution of the neighbourhood is more sig-
nificant than the contribution of the user representation for the best
configuration of TAIW. This could mean that repurchase patterns
can still be generalised to some extent.

5 CONCLUSION

In this paper, we propose a novel method TAIW for next basket
recommendations with an open source implementation. TAIW ad-
dresses the limitations of the current state-of-the-art TIFU-KNN
by dealing with timestamps instead of ordinal numbers of baskets.
In addition, it uses item-specific weights to predict the relevance
scores of items at the time of prediction. According to our experi-
ments with well-tuned state-of-the-art next basket recommenders,
TAIW outperforms them by 3%-8% on average across three real-
world datasets. It shows more stable results when the time gap
between the last known training basket and the test basket is large.
An ablation study has shown that an inductive version of TAIW
performs similarly.
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