
Research Article
Prediction after a Horizon of Predictability: Nonpredictable
Points and Partial Multistep Prediction for Chaotic Time Series

Vasilii A. Gromov and Philip S. Baranov

HSE University, Pokrovsky Boulevard 11, Moscow, Russia

Correspondence should be addressed to Vasilii A. Gromov; stroller@rambler.ru

Received 6 February 2023; Revised 11 May 2023; Accepted 21 August 2023; Published 21 September 2023

Academic Editor: Hiroki Sayama

Copyright © 2023Vasilii A. Gromov and Philip S. Baranov.Tis is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Tis paper introduces several novel strategies for multi-step-ahead prediction of chaotic time series. Introducing a concept of
“generalized z-vectors” (vectors of nonsuccessive time series observations) makes it possible to generate sets of possible prediction
values for each point we are trying to predict. Trough examining these sets, unifed predictions are calculated, which are in turn
used as a basis for predicting subsequent points. Te key diference between the strategy presented in this paper and its
conventional counterparts is the concept of “nonpredictable” points (points which the algorithm categorized as “incalculable” and
excluded from the calculations altogether). Te results obtained for the benchmark and real-world time series indicate that while
typically the number of nonpredictable points tends to grow exponentially with the number of steps ahead to be predicted, the
average error for predicted points remains small and nearly constant. Tus, we redefne the problem of multi-step-ahead
prediction as a two-objective optimization problem: on one hand, we aim to minimize the number of nonpredictable points and
the average error among the predictable ones. Te resulting strategy demonstrates accurate results for both benchmark and real-
world time series, with the number of predicted steps exceeding that of any other published algorithm.

1. Introduction

Tere are countless examples of chaotic systems in the world,
which is evidenced by the constantly increasing number of
chaotic time series forecasting algorithms. However, while
those dealing with one-step-ahead prediction demonstrate
remarkable efciency [1], their multi-step-ahead prediction
counterparts are still in their infancy. Tis may be attributed
to the exponential growth of an average prediction error
with increasing prediction horizon (the number of steps
ahead to be predicted).

Tis exponential growth refects Lyapunov instability,
inherent to any chaotic system. According to the defnition
of Lyapunov instability, any initial diference between any
two neighboring trajectories, however small, grows expo-
nentially over time; its exponent equals to the highest
Lyapunov exponent λ [2, 3]. Lyapunov instability leads to
another concept, that of the horizon of predictability,
sometimes referred to as “Lyapunov time” [4]. For a given

observational error ε(0) and the maximum prediction error
εmax, the aforementioned exponential growth satisfes the
constraint ε(t) � ε(0)eλt, where ε(t) represents error at the
moment t and λ, the highest Lyapunov exponent (which is
positive for chaotic time series and negative for the non-
chaotic ones). ε(t)≤ εmax gives an estimated horizon of
predictability T ∼ 1/λ lnεmax/ε(0) [2, 3]. In the context of the
multi-step-ahead prediction, it follows that the smallest
diference between true and predicted values at any in-
termediate position between the last observable point and
the point to be predicted triggers an exponential error
growth in all subsequent points, regardless of the employed
prediction method. It should be noted that the horizon of
predictability should not be confused with the prediction
horizon, the former being a theoretical upper boundary for
the number of steps to be predicted (given ε(0) and εmax),
and the latter being simply the number steps to be predicted.
Most of the time, the prediction horizon h is signifcantly less
than the horizon of predictability T: h≪T. However,

Hindawi
Complexity
Volume 2023, Article ID 6689371, 21 pages
https://doi.org/10.1155/2023/6689371

https://orcid.org/0000-0001-5891-6597
https://orcid.org/0000-0001-8672-5405
mailto:stroller@rambler.ru
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/6689371

predictive clustering approach provides the necessary tools
for dealing with exponential growth of the average pre-
diction error [5, 6].

First, predictive clustering utilizes motifs, repeated se-
quences of data in a series. If a section of a time series
resembles an initial part of a motif “closely enough,” it is
likely that the subsequent points of the series will closely
match the subsequent points of the motif, thus enabling the
use of motifs for forecasting the time series at hand. Motifs
can be obtained by clustering vectors of observations and
calculating their centers. It should be noted that whereas
most available prediction methods attempt to construct
a single unifed prediction model, the motifs provided by
predictive clustering form a set of local prediction models.

Second, Gromov and Borisenko [6] proposed using
generalized z-vector templates, vectors of nonsuccessive
observations, which are spaced out according to some
predefned pattern. A pattern is a vector of distances between
positions of series observations. Te resulting vector gen-
eralizes a conventional z-vector (successive observations),
which corresponds to a pattern (1, 1, . . . , 1) L − 1 times.
Figure 1 demonstrates a z-vector constructed according to
a pattern k1, k2, . . . , kL−1, ki ∈ N, whereas Figure 2 illustrates
the way z-vectors are clustered into motifs and also how
motifs are used for obtaining predictions. Te process of
generating z-vectors can be visualized as placing a “comb”
with L teeth spaced out according to some pattern, with all
the other teeth “broken of.”While moving the “comb” along
the series, we can obtain a vector of observations under the
teeth of the “comb” (yt, yt+k1

, . . . , yt+k1+...+kL−1
) for each

position t. Each pattern k1, k2, . . . , kL−1, ki ∈ N has its own
set of such vectors (the sample corresponding to a given
pattern). Each such a sample is then clustered separately.
Tis approach obtains a set of possible values for each point
to be predicted. Each set is comprised of predicted values
obtained using motifs corresponding to diferent templates.
Since the number of patterns can be arbitrarily large, so can
sizes of sets of possible prediction values for points we are
trying to predict. Despite the fact that points in those sets are
not always statistically independent, a great deal of algo-
rithms determining a unifed predicted value based on these
sets can be designed.

Tird, the concept of nonpredictable points can be ex-
tended. However, previously a point was considered to be
nonpredictable if it did not have corresponding motif(s), and
now it can also be considered nonpredictable if it is impossible
to calculate a unifed predicted value for this particular point
based on its set of possible prediction values. An example of the
latter would be a point which set of possible prediction values
consists of two equally-sized clusters with diferent centers.
Present work introduces a novel concept of nonpredictable
points that the authors have not yet encountered in any lit-
erature on the topic. It should be noted that while in our
previous paper, we employed only the former type of non-
predictable points, but we use both in this one.

Introduction of a concept of non-predictable points
renders the problem two-objective: on one hand, we have to
minimize the total number of non-predictable points, and on

the other, the average error among the predictable ones.
Discarding some of points as nonpredictable has proven to
have a positive efect on the results, and it is better for the
algorithm to skip some of the points rather than force
a prediction at each point. Tis approach is actually quite
natural in some areas: for example, stock market traders do
not have to make trades at every single moment in time, as
they could simply choose the moments that the algorithm
had recognized as predictable.

Furthermore, since the patterns k1, k2, . . . , kL−1, ki ∈ N
with distance d � kL−1 − kL−2 > 1 exist, the fact that the point
at position t is nonpredictable does not imply that the points
at subsequent positions t + 1, t + 2, . . . will be non-
predictable as well. Tis is fundamentally important for the
multi-step-ahead prediction: if a point t + h needs to be
predicted, iterative strategy would be used (or rather its
modifcations based on nonsuccessive observations).
Namely, the intermediate values between points t and t + h

are predicted step-by-step, with nonpredictable points being
identifed along the way and ignored.

In the context of dynamic systems [2, 3], each cluster of
vectors (which by defnition represent similar sections of
a trajectory) corresponds to a particular area of a strange
attractor. Areas with a high value of an invariant measure are
associated with larger clusters (i. e., more frequently ob-
served motifs), and vice versa. Te number of clusters in-
creases with the size of their respective training set, whereas
the number of nonpredictable points and the average error
among the predictable ones decrease. A large-scale simu-
lation for the Lorenz series [7] supports this conclusion.

In conclusion, however, the algorithm does not calculate
a prediction for each point (thus the word “partial” in the
title), it does make predictions up to the horizon of pre-
dictability (sometimes even surpassing it). Te paper pres-
ents several methods of identifying nonpredictable points
and corresponding strategies for the multi-step-ahead
prediction, as well as examples of partial predictions be-
yond the horizon of predictability, for the benchmark and
real-world time series.

Te rest of the paper is organized as follows:

(i) Section 2 reviews recent advances in the feld
(ii) Section 3 formally states the problem
(iii) Section 4 outlines the employed clustering tech-

nique and ways of identifying nonpredictable points
and calculating predictions

(iv) Section 5 provides the results for predicting the
Lorenz series and hourly electric grid load values in
Germany

(v) Section 6 contains conclusions

2. Related Works

Most of the recently published papers discussing chaotic
time series prediction [1, 6, 8–11] concern themselves only
with the one-step-ahead prediction problem, whereas the
number of papers tackling the problem of multi-step-ahead
prediction (MSAP) is considerably lower.

2 Complexity

An MSAP algorithm for chaotic time series consists of
two parts, which are equally responsible for the accuracy of
the fnal prediction.Te frst part is a technique used tomake
one- or few-steps-ahead predictions, whereas the second one
“assembles” the results of the previous part into a fnal multi-
step-ahead prediction.

Algorithms used to make a one-step-ahead prediction
employ nearly all felds of data mining and machine
learning, such as

(i) Support vector regression and its modifcations [9]
(ii) Multilayer perceptron [12]
(iii) Clustering algorithms in predictive clustering

[13–16]

(iv) LSTM neural networks [10]
(v) Voronoi diagrams [17]
(vi) Ridge polynomial neural networks [18]
(vii) Wavelet neural networks [19, 20]
(viii) Dilated convolution networks [21]

Another factor of fundamental importance is a strategy
that “assembles” one-step-ahead predictions into a multi-
step-ahead one. It involves two basic strategies of MSAP, the
iterated (recursive) and direct strategies [22, 23].Te iterated
one implies that multi-step-ahead prediction is a process
carried out step-by-step: new predicted values are calculated
based on the predictions made in the previous steps. Te

yt

yt

yt+k1+k2+k3+k4

yt+k1+k2+k3

yt+k1+k2yt+k1

t

35302520151050

k1

k2

k3

k4

1.0

0.8

0.6

0.4

0.2

0.0

Figure 1: A sample z-vector (yt, yt+k1
, yt+k1+...+kL−1

) concatenated for a pattern k1, . . . , kL−1, ki ∈ N.

1

0.5

0

-0.5

-1

x
(t)

x
(t)

100 150 200 250 300 350
t

400 450 500 550 600

1800175017001650160015501500
t

1

0.5

0

-0.5

-1
1300 1350 1400 1450

Figure 2: Representation of the way the algorithm fnds similar sections in a series (top), clusters them (middle), and uses the center of the
obtained cluster to make predictions for the test set (bottom).

Complexity 3

direct strategy aims for getting the results immediately
without calculating predicted values for intermediate posi-
tions. Tis strategy applies prediction techniques for various
prediction horizons, thereby providing multiple predictions
for any position to be predicted. Ben Taieb et al. [22] review
diferent methods based on these two basic strategies.
Sangiorgio and Dercole [10] apply both strategies with
multilayer perceptrons and LSTM nets employed as tools to
make one-step-ahead predictions.

Unfortunately, MSAP methods designed in the afore-
mentioned strategies sufer from the same exponential error
growth, thus giving rise to a number of hybrid strategies
aiming to resolve it. In their review, Ben Taieb et al. [8]
compare the two basic and three novel strategies (DirRec,
MIMO, and DIRMO). DirRec (Direct + Recursive) com-
bines the two basic strategies and uses the direct approach to
predict values with the number of inputs being enlarged
iteratively to include values of the most recently predicted
positions. When it comes to MIMO (multiple input multiple
output) strategy [24, 25], an array of values is produced for
the positions between the observed values and a prediction
horizon (inclusively). Tis reveals any correlations the time
series may have and allows them to be stored within pre-
dicted values.

DIRMO (DirRec +MIMO) strategy divides the series
(up to some prediction horizon) into chunks and applies
MIMO strategy to each chunk separately. Te authors test
these fve strategies on a reasonably large sample of diferent
time series (NN5 competition), which refects various ir-
regularities inherent to time series. Bao et al. [9] compare
efciency of the iterated, direct, and MIMO strategies by
performing a one-step-ahead prediction using a modifed
support vector regression. According to the authors, the
MIMO strategy compares favourably with the other two (all
other factors being equal).

Chaotic time series prediction methods that rely on
reservoir computing would mark a diferent approach
[26, 27]. Canaday et al. indicate that the method demon-
strates excellent results for small prediction horizons;
however, their performance worsens greatly when applied to
larger horizons [28].

Multiple-task learning can be viewed as a strategy of its
own for multi-step-ahead prediction. Chandra et al. [12]
propose an algorithm to determine a neural network
structure to solve MSA prediction problems; their approach
can be considered a combination of the direct and iterated
strategies. Wang et al. [29] utilise a neural model in order to
combine periodic approximations for longer periods and
machine learning models for the shorter ones. Tis could be
viewed as a separate strategy when dealing with data with
a marked periodicity. Ye and Dai [11] employ multitask
learning for multistep prediction. Kurogi et al. [17] make use
of an out-of-bag model for selecting models for multistep
prediction.Te authors aim at predicting chaotic series as far
as possible (the largest possible prediction horizon), whereas
retaining reasonable accuracy. Te authors present their
results for the Lorenz series.

Te importance of being able to make accurate pre-
dictions up to an increasing number of steps was named

“Run for the Horizon” by the authors of the current paper in
one of their previous publications [7]. Te series of works by
Sangiorgio et al. [10, 30] (that culminated in a monograph
[25] in 2021) approach multi-step-ahead forecasting by
using neural networks, classic feed-forward, and recurrent
architectures (LSTM) nets. Te latter are traditionally
trained with a supervisor, thus forcing the algorithm the
speed up the convergence of the optimization. Te authors
managed to make adequate predictions up to six Lyapunov
times on the benchmark series (logistic and Hénon maps as
well as two generalized Hénon maps). Even though the
authors did manage to considerably delay the exponential
error growth, they failed to avoid it completely; the results
indicate that after six Lyapunov times the error starts to
increase exponentially. It should also be noted that the
predictions achieved in [31], which relied on reservoir
computing with the data calculated by the integration of the
Lorenz-96 model, are similar in terms of prediction
intervals.

To summarize, none of the aforementioned strategies are
immune to the exponential growth of an average prediction
error with an increasing prediction horizon. Te present
paper discusses a few novel strategies with the main dif-
ference from their classical counterparts being the concept of
nonpredictable points and an ability not to take into account
clearly erroneous predictions at intermediate positions [6],
thus weakening the exponential nature of the growth rate.

3. Problem Statement

Tis paper deals with an h-steps-ahead prediction for
a chaotic time series Y � y0, y1, . . . , yt, . . .􏼈 􏼉, h> 0 ∈ N. We
assume that all transient processes are completed, and that
the series itself refects the movement of a trajectory in the
neighborhood of a strange attractor. Te third assumption is
that the series meets the conditions of the Takens’ theorem
(which makes the analysis of the attractor structure based on
the series observations possible) [2, 3].

We divide the series into two parts: Y1 � Y1(t) �

y0, y1, . . . , yt􏼈 􏼉, the observable part used as a training set,
and the test set Y2 � Y2(t) � yt+1, yt+2, . . . , yt+h, . . .􏼈 􏼉,
Y � Y1 ∪Y2, Y1 ∩Y2 � ∅. When the algorithm makes
a prediction at a position t + h of the test set, is has access to
observations [yt−s+1, yt−s+2 . . . , yt]; however, it does not
have any information on observations [yt+1, yt+2, . . . yt+h−1].
Tus, 􏽢yt+h � 􏽢yt+h(yt, yt−1 . . . , yt−s+1􏼈 􏼉), where s is a param-
eter of the algorithm.

Predictive clustering algorithms and a large number of
used patterns make it possible to construct a set of possible
predicted values 􏽢St+h � 􏽢y

(1)
t+h, . . . , 􏽢y

(Nt+h)

t+h􏽮 􏽯 for each point to
be predicted, where Nt+h is the number of possible predicted
values calculated by the algorithm and y

(i)
t+h, i � 1..Nt+h is the

i-th predicted value. A set 􏽢S
(p)

t+h � 􏽢St+1, . . . , 􏽢St+h􏽮 􏽯 is com-
prised of all sets of possible predicted values for the points
[yt+h−p, yt+h−p+1, . . . , yt+h], where p indicates the type of
algorithm employed (usually p is equal to 1 or h). For p � 1,
􏽢S

p

t+h consists of sets of possible predicted values for the point

4 Complexity

yt+h exclusively; for p � h, it consists of sets of possible
predicted values for the points [yt, yt+1, . . . , yt+h]. We de-
note the algorithm that constructs sets of possible predicted
values 􏽢St+h as fh: 􏽢St+h � fh(yt, . . . , yt−s+1􏼈 􏼉).

Te concept of nonpredictable points implies that two
operators are applied to the set 􏽢S

(p)

t+h. Te frst checks if
a position is predictable:

ζ 􏽢S
(p)

t+h􏼒 􏼓 �
1, if position is predictable,

0, otherwise,
􏼨 (1)

where ζ(∅) � 0 for any function ζ.
Te second operator determines a unifed predicted

value for a set of possible predicted values (provided the
position is predictable):

􏽢yt+h � g 􏽢S
(p)

t+h􏼒 􏼓. (2)

Using these two operators, we can defne the multi-step-
ahead prediction process as a twofold optimization problem:

I1 � 􏽘
t+h∈Y2

1 − ζ 􏽢S
(p)

t+h􏼒 􏼓􏼒 􏼓,

I2 �
1

Y2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏽘

t+h∈Y2

ζ 􏽢S
(p)

t+h􏼒 􏼓 g 􏽢S
(p)

t+h􏼒 􏼓 − yt+h

������

������.

(3)

Both functionals sum over all observations of the test set,
with frst one minimizing the total number of non-
predictable points and the second one minimizing the av-
erage error among the predictable ones. Te present paper
attempts to solve this two-objective problem.

3.1. Algorithm. Te subsection is organized as follows:

(i) Te process of generating samples from the time
series according to predefned patterns

(ii) Employed clustering techniques
(iii) Generating sets of possible prediction values
(iv) Quality measures of identifcation of nonpredictable

points
(v) Ways of identifying nonpredictable points

3.2. Training Set. Te series is assumed to be normalized.
Patterns (arrays of distances between nonsuccessive ob-
servations) are used to generate samples. Each pattern is an
L − 1-dimensional vector of integers (k1, k2, . . . , kL−1),

1≤ kj ≤Kmax, where Kmax is the maximum distance between
any two consecutive observations in the pattern.

For example, let us consider a three-point pattern
(2,3,4). Te frst vector of the corresponding training set
would be (y0, y2, y5, y9) (the frst z-vector); the next vector
would then become (y1, y3, y6, y10) and so forth. Te last
vector of the training set would be (yt−9, yt−7, yt−4, yt) with
yt being the last observable value of the training set.

In the context of predictive clustering, the conven-
tionally used z-vectors comprising successive observations
have proven to be less efcient than their counterparts
comprising nonsuccessive observations [6]. We attribute it
to the fact that vectors of nonsuccessive observations have
more chances to store information about salient observa-
tions (minima, maxima, tipping points, etc.) and correla-
tions between them.

A set of all combinatorically possible patterns
ℵ(L, Kmax) is used for generating training sets. Each set is
generated separately, according to corresponding pat-
tern α ∈ ℵ(L, Kmax). Vectors from these training sets can
be used either “as-is” (i.e,. each vector is treated as
a separate motif), or they can be clustered frst, with the
center of each of the formed clusters becoming a motif of
its own.

We denote a set of motifs corresponding to the pattern
α � (kα

1 , kα
2 , . . . , kα

L−1), α ∈ ℵ(L, Kmax) as
Ψα � Cα􏼈 􏼉, Cα � (ηα1 , ηα2 , . . . , ηαL). Te obtained motifs can
only be used with the pattern α. Te set of all motifs is
denoted as Ψ � (α,Ψα)􏼈 􏼉, α ∈ ℵ(L, Kmax).

3.3. Clustering Technique. As a trajectory moves repeatedly
through the same area of a strange attractor, similar re-
curring sequences of values associated with that particular
area can be observed in the trajectory’s time series.
Centers of clusters of sequences associated with diferent
areas of the attractor serve as simplest prediction models
for the respective areas of the attractor [14]. We used the
clustering method outlined below to cluster sequences of
observations. We employ a modifed version of the
Wishart clustering technique [32, 33] developed by Lapko
and Chentsov [34]. It uses graph theory concepts and
a nonparametric probability density function estimator of
r-nearest neighbors. Some of the difculties associated
with the application of this algorithm to forecasting are
discussed in [6].

A signifcance value of a point x is defned as
p(x) � r/Vr(x)n, where Vr(x) and dr(x) are the volume
and the radius of a minimum-size hypersphere containing at
least r observations, centered at point x (n is the number of
sample vectors). Te method relies on a proximity graph
G(Zn, Un), vertices of which correspond to samples and
edges defned as Un � (xi, xj): d(xi, xj)≤ dr(xi), i≠ j􏽮 􏽯.
G(Zq, Uq) is a subgraph of G(Zn, Un) with a vertex set Zq �

xj, j � 1..q􏽮 􏽯 and an edge set comprised of all edges of Un in
a such a way that its vertices belong to Zq. Let w(xq) be
a cluster number label of xq. A cluster cl, l> 0 is said to be
height-signifcant with respect to the height value μ> 0 if
maxxi,xj∈cl

|p(xi) − p(xj)|􏽮 􏽯≥ μ Algorithm 1.
Tus, the algorithm consists of the following steps:
After performing large-scale simulations for diferent

parameter values, we determined the best values of r and μ to
be 11 and 0.2, respectively.

Complexity 5

3.4. Sets of Possible Predicted Values. We consider a set of
motifs Ξα for each pattern α ∈ ℵ(L, Kmax), α �

(kα
1 , . . . , kα

L−1) and construct a set of possible prediction
values 􏽢S

p,α
t+h associated with the pattern α. Namely, we

compose a vector of time series observations corresponding
to the pattern α: C � (yt+h−kαL−1

, yt+h−kαL−1−kαL−2
, . . . ,

yt+h−kαL−1−kαL−2−...−kα1
) for a position t + h we are trying to

predict (all elements of C are assumed to be either observed
or predicted in the previous step(s)). Te next step is to
calculate the Euclidean distance d betweenC and a truncated
motif Cα,trunc, Cα ∈ Ξα, a vector comprised of all elements of
a motif except for the last one, Cα,trunc � (ηα1 , . . . , ηαL−1) for
Cα,trunc � (ηα1 , . . . , ηαL). If d< ε (where ε is a parameter of the
algorithm) then the last element of the motif Cα becomes
a possible predicted value at the position t + h. Tus, the set
of possible predicted values at position t + h for pattern α is
defned as 􏽢S

p,α
t+h � ηαL−1: ρ(Cα,trunc)≤ ε􏽮 􏽯.

In turn, a set of sets of possible predicted values cor-
responding to all patterns 􏽢S

(p)

t+h becomes a union of sets 􏽢S
(p,α)

t+h

and can be defned as 􏽢S
(p)

t+h � ∪ α∈ℵ􏽢S
(p,α)

t+h . Finally, unifed
prediction value 􏽢yt+h is calculated as a function of 􏽢S

(p)

t+h.
Previously predicted intermediate positions 􏽢yt+i are used as
inputs for the new iterations of the algorithm until a pre-
diction horizon h is reached. Let us label each distinct it-
eration as a “prediction step.” Performing the prediction step
repeatedly produces an operator fh: 􏽢St+h � fh

(yt, . . . , yt−s+1􏼈 􏼉), which yields a set of possible predicted
values for position t + h. Te size of the set is directly pro-
portional to the number of employed patterns. It allows for an
implementation of algorithms for determining the fnal, unifed
predicted value at t + h as well as identifying nonpredictable
points. Tese algorithms are discussed later in the paper.

In addition to the set of possible prediction values 􏽢S
(p)

t+h,
we can calculate a set of weights Ωt+h � ωi

t+h􏼈 􏼉, i � 1..Nh,
which characterizes comparative signifcance of individual
possible prediction values 􏽢yi

t+h. Alternatives presented below
can be used to determine weights.

Te frst technique relies on the notion of a “reliability”
of individual intermediate predictions, used to calculate 􏽢yi

t+h.
Each prediction step results in a greater error of the fnal
prediction at position t + h. Tus, in order to ofset this error
growth, we can assign a weight to an element of a sets of
possible predicted values based on the number of prediction
steps made in order to calculate it. We assign weights ωi � 1
to observed values (thus indicating that they are 100% re-
liable). Given a possible prediction value 􏽢yi

t+h (either at the
fnal point i � t + h or intermediate points t< i< t + h),
calculated based on preceding points yt+h−kαL−1

, yt+h−kαL−1−kαL−2
,

. . . , yt+h−kαL−1−...−kα1
(predicted or observed) with corre-

sponding weights ωt+h−kαL−1−...−kα1
using a pattern

α � (kα
1 , . . . , kα

L−1), the weight of 􏽢yi
t+h is calculated as an

average of weights of the preceding points of α times a step-
down factor λ:

ωi
t+h � λ

1
L − 1

􏽘

L−1

l�1
ω

t+h−􏽐
l

j�1kαj
. (4)

Te step-down factor λ ensures that predicted points re-
ceive a progressively smaller weight compared to the observed
and earlier predicted points. We typically used λ � 0.99. We
used the average weight of those possible predicted values that
were used to calculate the unifed predicted value in order to
calculate the weight of this unifed predicted value (either at the
fnal of intermediate points).

determine dr(xq) � distance to the sample’s r-nearest neighbor;
sort dr(xq) in ascending order;
q� 1;
for each subgraph G(Zq, Uq):
while q≤ n:
xq � newly added vertex of the subgraph;
if xq is not connected to any clusters:
start new cluster;

else:
if xq connected to the vertices of clusters c1, c2, . . . , cl, l≥ 1:
if all clusters are completed:

w(xq) � 0;
else:

k(μ) �number of signifcant clusters;
if k(μ)> 1 or c1 � 0:

w(xq) � 0;
label signifcant clusters as completed;
delete labels of insignifcant clusters;

else:
merge clusters c2, . . . , cn into c1;
w(xq) � c1;
set w(xi) � c1 for samples in c2, . . . , cn;

q� q+ 1;

ALGORITHM 1: Te Wishart clustering algorithm.

6 Complexity

Te second technique considers ωi to be inversely
proportional to the distance between observed values and
the motif chosen for the prediction:

ωi
t+h �

ε − ρ C, C
α
trunc(􏼁

ε
, (5)

where ε is a small threshold (typically equal to 0.05 for the
purposes of the current simulation).

Te third approach calculates ωi as a product of the
results of the previous two methods.

3.5. Unifed Predicted Value. Te method of calculating
a unifed predicted value (UPV) depends on whether the
algorithm’s parameter p � 1 or p> 1. If it is, the UPV is
calculated based solely on the set of possible prediction
values associated with the current position:
􏽢yt+h � g(􏽢S

(p)

t+h) ≡ g(􏽢St+h). Tere are several techniques that
can be used to extract UPV from 􏽢St+h:

(1) [avg] Averaging over 􏽢St+h: 􏽢yt+h � 1/Nt+h􏽐
Nt+h

i�1 􏽢yi
t+h.

(2) [wavg] Taking a weighted average of 􏽢St+h:
􏽢yt+h � 1/􏽐Nt+h

j�1 ωj􏽐
Nt+h

i�1 ωi 􏽢y
i
t+h.

(3) [clc] Clustering 􏽢St+h using the DBSCAN algorithm
and selecting center of the largest cluster Qj∗ :

􏽢St+h �

∪ jQj, Qi ∩Qj � ∅, qj � |Qj|, j∗ � argmaxj(qj).
DBSCAN [35] demonstrates good performance for
one-dimensional data and was deemed acceptable
for the task.Te exact value of the UPV in this case is
􏽢yt+h � 1/|Qj∗ |􏽐􏽢y

(i)

t+h∈Qj∗
􏽢y

(i)
t+h.

(4) Clustering only elements of 􏽢St+h with weights ex-
ceeding some threshold ω0.

(5) Two previous techniques can be applied to fuzzy sets.
Normalized weights can be viewed as values of
a membership function that indicates belonging to
a set of possible predicted values.

(6) Clustering 􏽢St+h and picking the center of a randomly
chosen cluster based on the sum of weights of its
elements relative to the sum of weights of all possible
prediction values (roulette wheel).

(7) [mf] Choosing the mode of 􏽢St+h.
(8) [mfp] Choosing the mode of 􏽢St+h and adding a small

amount of uniformly distributed noise to it:

􏽢yt+h � 1/|Qj∗ |􏽐􏽢y
(i)

t+h∈Qj∗
􏽢y

(i)
t+h + ζ(Δ), where ζ(∆) is

a normally distributed random variable with zero
mean and variance ∆≥ 0.

In the case when p> 1, we introduce a concept of
a “prediction trajectory” (a sequence of possible prediction
values for every position from t to t + h). Let us denote an s-th

possible prediction trajectory (PPT) as 􏽢ξ
(s)

t+h � (􏽢y
(s)
t+1, . . . , 􏽢y

(s)
t+h)

with 􏽢ξ
(s)

t+h(i) � 􏽢y
(s)
t+i being its value at i-th position and Smax

being the maximum number of trajectories. Ten the set of all
PPTs ending at position t + h would be defned as 􏽢Ξt+h, with
􏽢Ξt+h(i) being a set of values of its trajectories at position i.
Naturally, 􏽢St+h ≡ 􏽢Ξt+h(h) Algorithm 2.

Base prediction algorithm:
We have employed several diferent ways of calculating

possible prediction trajectories:

(1) [trp] Randomly perturbed trajectories, where a UPV
is calculated for each intermediate position using
technique number 8.

(2) Starting a new trajectory at the center of each cluster
of 􏽢St+h, thus making the total number of trajectories
increase exponentially with the number of steps (a
garden of forking trajectories).

(3) Starting a new trajectory at the center of each cluster
of 􏽢St+h and assigning a weight to each trajectory as
a product of the weights of its individual points;
trajectories with weights lower than a certain
threshold are fltered out at each step of the iteration
and do not form new trajectories.

Regardless of the technique used, the UPV is calculated
as an average of the last points of all trajectories from the set
􏽢Ξt+h: 􏽢yt+h � 1/Smax􏽐

Smax
j�1

􏽢ξ
j

t+h(h). Based on the results of the
research, the frst technique proved to be the most
efcient one.

3.6. Quality Measures of Identifcation of Nonpredictable
Points. Determining whether a point is predictable or not
relies on either its set of possible prediction values or its set
of prediction trajectories. For each prediction horizon h, we
may consider the following set:

NP(t, m, h) � (t + i: t + m≤ t + i≤ t + h)& yt+i ∈ Y2&ζ 􏽢S
(p)

t+i􏼒 􏼓 � 0􏼒 􏼓􏼚 􏼛. (6)

A set of nonpredictable points at intermediate positions
is defned as NIP(t, h) � NP(t, 1, h). A full set of all non-
predictable points from the test set is defned as follows:

NP(h) � ∪ t+h: yt+h∈Y2
NP(t, h, h) ≡ t + h: yt+h ∈ Y2&ζ 􏽢S

p

t+i􏼐 􏼑 � 0􏽮 􏽯. (7)

Complexity 7

In other words, this is a set of all positions that the
algorithm failed to produce a prediction value for. It should
be said that a point becomes nonpredictable if any of the
following cases are true:

(1) Its set of possible predicted values is empty
(2) It is impossible to calculate a unifed prediction value

based on its set of possible predicted values

Tese sets rely heavily on the specifc one-step-ahead
prediction algorithm used, the value of, and the technique of
identifying nonpredictable points. In order to develop
evaluation criteria for algorithms identifying nonpredictable
points, we need to consider two extreme cases:

(1) Not identifying nonpredictable points at all (the
algorithm always uses the closest available motif);

(2) Assuming that the algorithm possesses a priori in-
formation about the actual values at intermediate
positions. Te point is marked as nonpredictable if
the diference between the predicted and actual
values d≥ ε. It is worth noting that the algorithm
does not replace its predictions with the true values:
it simply excludes clearly erroneous predictions from
the following prediction operations instead. In our
internal team’s slang, this algorithm is named “the
daemon”, Socrates is known to have had his own
daemon, who gave him advice in his most painful
situations.

Remaining points comprise a set of ground-truth
nonpredictable points for a given algorithm. We can cre-
ate a set

GTNP(t, m, h) � t + i: (t + m≤ t + i≤ t + h)& yt+i ∈ Y2(􏼁& ρ yt+i, 􏽢yt+i(􏼁≥ ε(􏼁􏼈 􏼉, (8)

for each point t + h that we are predicting, where 􏽢yt+i �

g(􏽢S
(p)

t+i) is the unifed prediction value of the set of possible
prediction values 􏽢S

(p)

t+i . Consequently, the set of positions that

the algorithm failed to make a prediction for is defned as
follows:

GTNP(t, h) � GTMP(t, 1, h)

� t + i: (t + 1≤ t + i≤ t + h)& yt+i ∈ Y2(􏼁& ρ yt+i, 􏽢yt+i(􏼁≥ ε(􏼁􏼈 􏼉.
(9)

Also, the set of nonpredictable points as follows:

(1) procedure Base prediction (Y1, h)
(2) ε⟵0.01
(3) normalize observations Y1
(4) t← index of last known observation
(5) for i⟵1..h do
(6) for αϵℵ(L, kmax) do, α � (k

(α)
1 , . . . , k

(α)
L−1)

(7) for l⟵1..L do
(8) η(α)

l ⟵y
t−k

(α)

L−1−...−k
(α)

L−i+1(9) end for
(10) Cα⟵(η(α)

l , . . . , η(α)
L)

(11) C⟵(y
t+h−k

(α)

L−1−...−k
(α)

1
, y

t+h−k
(α)

L−1−...−k
(α)

2
, . . . , y

t+h−k
(α)

L−1
)

(12) Trunc(Cα)⟵(η(α)
l , . . . , η(α)

L)

(13) if ρ(C,Trunc(Cα))< ε then, ρ—Euclidian distance
(14) add η(α)

L to 􏽢St+i

(15) end if
(16) end for
(17) if point t + i is predictable then
(18) calculate 􏽢yt+h using corresponding algorithm
(19) end if
(20) end for
(21) end procedure

ALGORITHM 2: Te prediction procedure.

8 Complexity

GTNIP(t, m, h) � t + i: (t + m≤ t + i≤ t + h)& yt+i ∈ Y2(􏼁& ρ yt+i, 􏽢yt+i(􏼁≥ ε(􏼁􏼈 􏼉. (10)

Ten, the set of ground-truth nonpredictable points
becomes

GTNP(t, m, h) � ∪ t+h:yt+h∈Y2
GTNP(t, h, h) ≡ t + h: yt+h ∈ Y2(􏼁& ρ yt+i, 􏽢yt+i(􏼁≥ ε(􏼁􏼈 􏼉. (11)

Simulations reveal that the second case is almost com-
pletely independent of the threshold value ε. Naturally,
“real” algorithms do not possess a priori information about
actual values at intermediate positions yt+i, since they deal
only with either sets of possible predicted values 􏽢S

(p)

t+i or sets
of predicted trajectories 􏽢Ξt+i. Nevertheless, this method of
identifying nonpredictable points is useful for determining
a lower boundary of the prediction error. Methods of
identifying nonpredictable points should be developed in
such a way as to approximate this boundary as closely as
possible. In the team’s internal slang, we referred to them as
“approximating the daemon.”

Graphs in the Figure 3 exemplify dependences of the
number of nonpredictable points (Figure 3(a)) and the
average error on predictable points (Figure 3(b)) on the
prediction horizon h for the two extreme cases. Te blue
curves correspond to the frst extreme case (intermediate
nonpredictable points are not identifed at all), and orange,
to the second (intermediate nonpredictable points are
identifed with a priori information). It can be seen that in
the frst case the number of nonpredictable points is equal to
zero and the prediction error grows exponentially with h.
Te second extreme algorithm demonstrates the opposite:
the number of nonpredictable points grows exponentially
with h, while the prediction error function remains nearly
constant, bounded, and rather small. It is obvious that the
frst algorithm minimizes the functional (3), neglecting the
functional (4); the second one minimizes the functional (4),
neglecting the functional (3).

Figures 4(a) and 4(b) display the true values (blue solid)
and intermediate predicted values (red dashed) for the
Lorenz series for the frst (Figure 4(a)) and second
(Figure 4(b)) extreme cases. From the latter subfgure, we
notice that the second algorithm does not make a prediction
for all points, while making rather accurate predictions
where it “decides” to predict. On the other hand, we notice
that in the frst case the predicted trajectory diverges from
the true one just after the point (a green disk in Figure 4(a))
that is identifed as nonpredictable by the second algorithm,
the frst algorithm must predict at this point (as with any
point), and this immediately ruins the MSA prediction
process, causing the predicted trajectory to diverge from the
true one.

Te results of algorithms identifying nonpredictable
points fall somewhere between these two extreme cases. In
the context of multi-step-ahead prediction, the second case
presents more interest since it allows one to make

a prediction up to a fairly large number of steps ahead. From
this point, all algorithms discussed are attempt to follow it.

A large-scale simulation suggests that a forecast algo-
rithm will be efcient only if its set of identifed non-
predictable points is sufciently close to the set of ground-
truth nonpredictable points GTNP(h). Diference between
the two constitutes an auxiliary quality measure for the
techniques of identifying nonpredictable points:

I3 �
GTNP(h)

NP(h)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
∪

NP(h)

GTNP(h)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (12)

Two possible opposite scenarios can be observed: either
the diference |GTNP(h)/NP(h)| is large whereas the dif-
ference |NP(h)/GTNP(h)| is small, or vice versa. Te frst
case corresponds to an overly optimistic algorithm, whereas
the second, to an overly conservative one.

4. Identification of Nonpredictable Points

Before we begin talking about diferent ways of identifying
nonpredictable points, we need to establish a concept of
a “perfectly predictable” point. A “perfectly predictable”
point is the one which set of possible prediction values
consists of a single cluster containing the vast majority of its
possible predicted values. On the other hand, sets of possible
prediction values for nonpredictable points tend to either
consist of multiple equally sized clusters or be nonclusterable
at all. In terms of probability distributions, predictable
points correlate with a unimodal symmetric distribution
with a relatively small variance, whereas nonpredictable ones
correlate either with a uniform distribution or with a dis-
tribution with several pronounced modes.

In order to characterize nonpredictable points, we
employed the following quantities:

(1) Multimodality: a percent of possible predicted values
remote from the main mode

(2) Diference between α and 1 − α percentiles
(3) Second, third, and fourth central moments, as well as

kurtosis of the distribution and its entropy

We performed a large-scale simulation on the validation
set Y3 by calculating sets of nonpredictable points NP(h)

and the ground-truth nonpredictable points GTNP(h) for
each feature separately. A comparison of these sets makes it
possible to estimate the best threshold values for each fea-
ture. It revealed that each feature by itself does not cause the

Complexity 9

100806040200
h

Non – Predictable Points

0

N

20

40

60

80

100

(a)

100806040200
h

0.10

0.08

0.06

0.04

0.02

0.00

Er

Root – mean – square error

(b)

Figure 3: Lorenz series.Te number of nonpredictable points (a) and RMSE (b) vs. a prediction horizon for the two extreme cases.Te blue
curves correspond to the frst extreme case (intermediate nonpredictable points are not identifed at all); orange corresponds to the second
one (intermediate nonpredictable points are identifed with a priori information).

yt

The Lorenz Series.Actual and Predicted Values

60 70 80 90 100 110
t

1.0

0.8

0.6

0.4

0.2

0.0

(a)

yt

The Lorenz Series.Actual and Predicted Values

60 70 80 90 100 110
t

1.0

0.8

0.6

0.4

0.2

0.0

(b)

Figure 4: True (blue solid) and intermediate predicted (red dashed) values for the Lorenz series for the frst (a) and second (b) extreme cases.
A green dot indicates a point that the algorithm that uses a priori information identifes as nonpredictable.

10 Complexity

objective to become larger; therefore, it becomes necessary
to take into account multiple characteristics at once.

When clustering sets of possible prediction values, we
take into consideration the following points:

(1) Total number of clusters
(2) Size of the largest cluster compared to the size of the

entire set
(3) Relative diference in the size of clusters

We use the following machine learning techniques to
separate the aforementioned features into regions corre-
sponding to predictable and nonpredictable points,
respectively:

(1) [lr] Logistic regression
(2) [svm] Support vector machine
(3) [dt] Decision tree
(4) [knn] K-nearest neighbors clustering
(5) [mlp] Multilayer perceptron with a single layer with

8 neurons

In order to test this approach, a new validation set Y3
independent of both Y1 and Y2 needs to be introduced:
Y1 ∩Y3 � ∅, Y2 ∩Y3 � ∅. We label Y3 using the set of
ground-truth nonpredictable points. Since the number of
nonpredictable points exceeds the number of predictable
ones for larger prediction horizons, a sample is balanced by
SMOTE (synthetic minority oversampling technique)
methods [36]. Tis method generates new elements in the
neighbourhood of the smaller cluster.

In addition to the above classifying methods, we employ
their ensembles:

(1) [adb] AdaBoost: an algorithm training each sub-
sequent classifer on the elements incorrectly clas-
sifed by the previous classifer

(2) [lrs] Stacking: applying several classifers to produce
a feature space for a combined algorithm

(3) [lrv] Voting: assigning a label to each element by the
classifers’ votes

When analyzing a set of possible prediction trajectories
􏽢Ξt+h using the second approach, trajectories converging at
certain points indicate predictability. Tus, predictable
points correspond to the regions of convergence of the
possible prediction trajectories.

Several techniques for identifying nonpredictable points
were developed:

(1) Calculating an average spread over sets of possible
prediction values kavg � 1/|Y3|􏽐t+h∈Y3

|􏽢Ξt+h(h)

−􏽢Ξt+h|. A point is classifed as nonpredictable if its
spread exceeds kavg times some factor ϑ.

(2) Instead of considering the spread itself, one can con-
sider its variation over a number of successive posi-
tions. Te frst point is classifed as nonpredictable if
the spread increases monotonously. Based on the re-
sults of a simulation, it appears that the best option here
is to consider three successive points.

(3) For the trajectories relying on reduced initial in-
formation, we may compare the last value of a tra-
jectory starting at position t, 􏽢yt+h � 􏽢ξ

0
t+h(h) with

a weighted average of the last values of trajectories
starting at positions t − 1, t − 2, . . . , t − a: 􏽥yt+h �

􏽐
a
j�1 ωj

􏽢ξ
j

t+h+j(h),ωj � 1/2i. A point is classifed as
nonpredictable if |􏽢yt+h − 􏽥yt+h|> ε. Te closer a tra-
jectory starts to position t, the greater its weight is.

(4) Another technique designed for trajectories that rely
on reduced initial information compares average
modulus of the diference between the last points of
trajectories starting at a position t and trajectories
starting at other positions 1/a􏽐

a
j�1|

􏽢ξ
0
t+h+j(h)−

􏽢ξ
j

t+h+j(h)| with ε.
(5) Similar to the previous case, we calculate a weighted

average of the diferences 􏽐
a
j�1ωj|

􏽢ξ
0
t+h+j(h) − 􏽢ξ

j

t+h+j

(h)| with weights ωj � 2(a − j + 1)/a(a + 1).
(6) It is also possible to apply all of the listed techniques

to a set of fnal points of 􏽢Ξt+h.

Tables in the next section include results for extreme
cases:

(i) [fp] (forced prediction) symbolizes the fact that
nonpredictable points are not identifed at all and
the calculation of predicted values is forced at all
intermediate points

(ii) [ab] (absent) implies that a set of nonpredictable
points consists only of points that the algorithm
failed to fnd motifs (􏽢Sp

t+h � ∅) for and sets of
possible prediction values are not analyzed (the frst
extreme case)

(iii) [id] (ideal): sets of possible predicted values are
constructed using a priori information (the second
extreme case)

5. Numerical Results

Methods discussed in the previous sections are applied to the
benchmark (Lorenz) and the real-world (electric grid load
values) time series. Clustering is used to generate samples
using all possible patterns consisting of four elements
(L � 4) with the maximum distance between neighboring
positions Kmax � 10.Tus, the total number of used patterns
equals |ℵ(L, Kmax)| � (Kmax)

L− 1 � 1000.
Te Lorenz series is calculated by integrating the Lorenz

system with parameters σ � 10, b � 8/3, r � 28 using the
Runge–Kutta fourth-order method with integration step
∆ � 0.1. Te result is a typical chaotic series used as a con-
ventional benchmark for testing chaotic time series fore-
casting methods.

In order to distinguish between chaotic and simply noisy
series, we check positions of entropy and complexity on their
respective planes. Te values of these for the Lorenz series
are 0.68 and 0.45, respectively, thus indicating the series as
chaotic. Furthermore, the highest Lyapunov exponent λ

Complexity 11

calculated using the Eckman algorithm for the Lorenz series
has a value of 0.92, which corresponds to the results of
Malinetskiy and Potapov [3]. Its strictly positive value
confrms an inherently chaotic nature of the series.

Numerical error of the fourth-order Runge–Kutta
method is ε(0) � Δt4 � 10− 4. If the maximum precision
error εmax is chosen as εmax � 10− 1, then an estimated ho-
rizon of predictability would be T ∼ 1/λ lnεmax/ε(0) � 7.5, or
75 integration steps.

For testing purposes, the frst 3000 observations of the
series were discarded to ensure that the trajectory moves in
the neighbourhood of its respective strange attractor. Te
sizes of the training and testing sets are 10000 and 1000
observations, respectively.

Te real-world series is a series of electric grid load
values in Germany from 2014-12-31 to 2016-02-20 mea-
sured in 1-hour intervals. Entropy and complexity of the
series are measured at 0.499 and 0.372, respectively, and
its highest Lyapunov coefcient is 0.125, which indicates
the series’ chaotic nature. Te series was analyzed in the
same way as the Lorenz series, with the results presented
in Tables 1–4.

A large-scale simulation suggests that classifying only those
points which lack corresponding motifs as nonpredictable
results in an exponential increase in both the total number of
nonpredictable points and an average prediction error. Based
on Figure 2, it may be concluded that the choice of a specifc
technique used to calculate a unifed prediction value has little
efect on the rate of growth. However, the choice of a specifc
technique of identifying nonpredictable points seems to have
a much larger impact (see Tables 5 and 6).

As a quick reminder, the unifed predicted value can be
calculated in the following ways (see Tables 5 and 6):

When it comes to identifying nonpredictable points,
several methods from various felds of machine learning and
mathematics are employed:

Te results of each combination of techniques are
presented in the graphs and tables. Te graphs present the
root mean squared error (RMSE) and the mean absolute
percentage error (MAPE) for each technique alongside those
of the two extreme cases (see Quality Measures of identifying
non-predictable points) for comparison.

Presented below are the graphs of two types.Te frst one
displays a predicted trajectory up to a certain prediction
horizon alongside a “real” trajectory; the second type shows
error measures (namely, root mean squared error, mean
absolute percentage error and the number of nonpredictable
points) for the diferent versions of the algorithm against
diferent prediction horizons. Furthermore, each graph of
the second type also contains plots of its respective error
measure for the aforementioned two extreme cases, using
a priori information, and not identifying nonpredictable
points at all.

A large-scale simulation reveals that in the frst extreme
case (only points that have no corresponding motifs are
considered nonpredictable) both the number of non-
predictable points and errors among the predictable ones
grow exponentially with the prediction horizon.

Te second extreme case (where the aforementioned
algorithms are also taken into consideration when de-
termining predictability of a point) shows an opposite sit-
uation. Figure 5 demonstrates MAPE, RMSE, and the
number of nonpredictable points as a function of the pre-
diction horizon. Orange line corresponds to the method
using a priori information; gray, to the version of the “rapid
growth” algorithm that uses the Wishart clustering

Table 1: Te Lorenz series: nonpredictable points and error measures.

Cl/Trj UPV NP
h � 1 h � 10 h � 50 h � 100

NP (%) MAPE RMSE NP (%) MAPE RMSE NP (%) MAPE RMSE NP (%) MAPE RMSE

cl

avg
cm 0 0.16 0.20 0 0.19 0.22 0 0.19 0.24 0 0.23 0.28
ap 15 0.17 0.21 40 0.18 0.21 94 0.14 0.19 99 0.28 0.28
en 36 0.0 0.01 49 0.01 0.02 76 0.16 0.19 81 0.26 0.32

wavgd cm 0 0.17 0.21 0 0.20 0.23 0 0.23 0.27 0 0.22 0.28
wavgl cm 0 0.16 0.20 0 0.18 0.22 0 0.20 0.24 0 0.24 0.29
wavgc cm 0 0.17 0.21 0 0.19 0.23 0 0.23 0.27 0 0.22 0.28

lr 15 0.0 0.02 56 0.02 0.03 97 0.03 0.04 100 — —
svm 15 0.0 0.02 25 0.02 0.03 38 0.19 0.26 40 0.23 0.29
dt 68 0.0 0.01 65 0.03 0.04 99 0.73 0.73 100 — —
knn 55 0.0 0.02 53 0.03 0.04 83 0.18 0.25 92 0.17 0.23
mlp 21 0.0 0.02 39 0.02 0.03 75 0.15 0.21 96 0.27 0.29
adblr 15 0.0 0.02 54 0.02 0.03 98 0.02 0.02 100 — —
adbsvm 21 0.0 0.02 41 0.02 0.02 85 0.18 0.28 97 0.18 0.22

lrv 20 0.0 0.02 33 0.02 0.03 59 0.16 0.22 85 0.15 0.22
lrs 24 0.0 0.02 33 0.02 0.03 58 0.18 0.25 85 0. 3 0.17
rg 0 0.02 0.03 44 0.02 0.04 69 0.12 0.17 85 0.18 0.21

rgdbscan 0 0.02 0.03 39 0.02 0.04 58 0.12 0.16 59 0.20 0.25
rgwshrt 0 0.02 0.03 11 0.03 0.04 14 0.23 0.29 11 0.20 0.25

trj avg cm 0 0.02 0.04 0 0.10 0.13 0 0.22 0.29 100 — —
ap 5 0.02 0.03 27 0.02 0.03 99 0.30 0.03 100 — —

trjp rgdbscan 0 0.08 0.0 0 0.09 0.03 84 0.13 0.04 83 0.17 0.04
Bold values represent column minimums for ease of identifcation of the corresponding algorithms.

12 Complexity

Ta
bl

e
2:

T
e
Lo

re
nz

se
ri
es
:s
et
s
of

no
np

re
di
ct
ab
le

po
in
ts
.

C
l/T

rj
U
PV

N
P

h
�
1

h
�
10

h
�
50

h
�
10
0

Pr
ec
isi
on

Re
ca
ll

F-
m
ea
su
re

Pr
ec
isi
on

Re
ca
ll

F-
m
ea
su
re

Pr
ec
isi
on

Re
ca
ll

F-
m
ea
su
re

Pr
ec
isi
on

Re
ca
ll

F-
m
ea
su
re

cl

av
g

cm
1.
00

0.
85

0.
92

1.
00

0.
60

0.
75

1.
00

0.
06

0.
11

1.
00

0.
01

0.
02

ap
1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

en
0.
61

0.
81

0.
70

0.
42

0.
49

0.
45

0.
33

0.
08

0.
13

—
—

—
w
av
gd

cm
1.
00

0.
85

0.
92

1.
00

0.
60

0.
75

1.
00

0.
06

0.
11

1.
00

0.
01

0.
02

w
av
gl

cm
1.
00

0.
85

0.
92

1.
00

0.
60

0.
75

1.
00

0.
06

0.
11

1.
00

0.
01

0.
02

w
av
gc

cm
1.
00

0.
85

0.
92

1.
00

0.
60

0.
75

1.
00

0.
06

0.
11

1.
00

0.
01

0.
02

lr
0.
84

0.
84

0.
84

0.
45

0.
61

0.
52

—
—

—
—

—
—

sv
m

0.
84

0.
84

0.
84

0.
72

0.
57

0.
64

0.
67

0.
07

0.
12

1.
00

0.
02

0.
03

dt
0.
31

0.
81

0.
44

0.
37

0.
63

0.
46

—
—

—
—

—
—

kn
n

0.
40

0.
76

0.
52

0.
47

0.
60

0.
52

—
—

—
—

—
—

m
lp

0.
77

0.
82

0.
79

0.
52

0.
51

0.
51

0.
50

0.
12

0.
19

—
—

—
ad
bl
r

0.
84

0.
84

0.
84

0.
48

0.
63

0.
55

—
—

—
—

—
—

ad
bs
vm

0.
77

0.
82

0.
79

0.
50

0.
51

0.
50

0.
17

0.
07

0.
10

—
—

—
lrv

0.
78

0.
83

0.
80

0.
60

0.
54

0.
57

0.
33

0.
05

0.
09

—
—

—
lrs

0.
73

0.
82

0.
77

0.
60

0.
54

0.
57

0.
33

0.
05

0.
08

—
—

—
rg

1.
00

0.
85

0.
92

0.
58

0.
63

0.
60

0.
50

0.
10

0.
16

—
—

—
rg
db
sc
an

1.
00

0.
85

0.
92

0.
62

0.
61

0.
61

0.
50

0.
07

0.
13

—
—

—
rg
w
sh
rt

1.
00

0.
85

0.
92

0.
92

0.
62

0.
74

0.
83

0.
06

0.
11

1.
00

0.
01

0.
02

tr
j

av
g

cm
1.
00

0.
73

0.
84

1.
00

0.
73

0.
84

0.
03

1.
00

0.
05

—
—

—
ap

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

tr
jp

rg
db
sc
an

1.
00

0.
73

0.
84

1.
00

0.
73

0.
84

0.
03

1.
00

0.
05

0.
05

0.
80

0.
10

Complexity 13

algorithm for clustering sets of possible predicted values;
red—to the version of the “rapid growth” algorithm that uses
DBSCAN for clustering sets of possible predicted values;
blue, to the version of the “rapid growth” algorithm that
averages sets of possible predicted values. It should be noted
that, when comparing the results with those of others [25]
that also demonstrate an ability to predict up to multiple
Lyapunov times ahead, the almost-constant (non-
exponential) error behavior intrinsic to some of the algo-
rithm’s variants allows for making predictions up to even
more Lyapunov times ahead. However, it comes at the cost
of increasing number of nonpredictable points. Te work by
Sangiorgio et al. [25] eventually demonstrates exponential
error growth.

Of all the used machine learning algorithms, logistic
regression and AdaBoost ensemble (Figure 6) stand out.
Teir error measures remain nearly constant with increasing
prediction horizon and are comparable to those produced by
the algorithm using a priori information for identifying
nonpredictable points. However, it also demonstrates an
exponential growth of the number of nonpredictable points
with increasing prediction horizon at a rate larger than that
of the second extreme case. Te method employing a mul-
tilayer perceptron, on the contrary, demonstrates amoderate
rate of growth of the number of nonpredictable points along
with a rapid error growth.

When considering diferent techniques of identifca-
tion of nonpredictable points, it should be noted that
simulations reveal that the versions of the algorithm based
on sets of trajectories perform better than their coun-
terparts based on sets of possible predicted values. It can
be seen from the tables that the number of nonpredictable

points is close to the frst extreme case (the one using
a priori information), while the average prediction error is
constrained between the two. Tis is a typical behavior for
all methods of calculating the unifed predicted value and
identifying nonpredictable points. It should be noted that
the main objective is still achieved, instead of increasing
exponentially, average prediction error remains constant
and relatively small.

Figure 7 demonstrates an example of predicted energy
load series (Tables 3 and 4).

Figure 8 indicates that the algorithm is able to predict
values up to (and sometimes exceeding) an estimated ho-
rizon of predictability of 75 steps (thus the title of the article).

In order to compare our algorithm with the results of
other researchers, we have recreated the simulation by
Prof. Kurogi and colleagues [17]. Figure 8 displays the
Lorenz series (blue), prediction made by prof. Kurogi
(green), and the values predicted by the algorithm (dashed
red line with dots). As can be discerned from the fgure,
while the trajectory predicted by prof. Kurogi diverges
from the actual one, the algorithm discussed in the present
paper does correctly identify nonpredictable points and
the predicted points approximate the true trajectory quite
accurately.

In conclusion, it should be noted that the result ob-
tained on the real-world German energy time series seems
to confrm that the efect of noise (stochasticity and
nonstationarity) dramatically afects the forecasting ac-
curacy (the prediction is reliable only for the frst day
ahead due to observation noise and the daily periodicity
that afects many real phenomena) [30, 37]. However, the
current paper did not specifcally concern itself with the

Table 3: Electricity load series: nonpredictable points and error measures.

Cl/
Trj UPV NP

h � 1 h � 10 h � 50 h � 100

NP (%) MAPE RMSE NP (%) MAPE
(%) RMSE NP (%) MAPE RMSE NP (%) MAPE RMSE

cl

avg
cm 0 0.26 0.30 0 0.21 0.25 0 0.20 0.24 0 0.22 0.27
ap 30 0.25 0.30 58 0.21 0.24 98 0.25 0.26 100 — —
en 38 0.26 0.33 64 0.29 0.35 65 0.25 0.31 74 0.18 0.22

wavgd cm 0 0.26 0.31 0 0.22 0.26 0 0.21 0.26 0 0.24 0.29
wavgl cm 0 0.26 0.30 0 0.21 0.25 0 0.20 0.24 0 0.21 0.26
wavgc cm 0 0.16 0.22 0 0.19 0.25 0 0.22 0.27 0 0.23 0.29

lr 96 0.21 0.22 13 0.21 0.27 33 0.19 0.23 51 0.25 0.29
svm 68 0.14 0.18 73 0.18 0.23 100 — — 100 — —
dt 97 0.28 0.29 85 0.16 0.22 100 — — 100 — —
knn 90 0.26 0.27 72 0.19 0.23 100 — — 100 — —
mlp 33 0.21 0.26 31 0.20 0.25 57 0.25 0.31 70 0.27 0.31
adblr 100 — — 13 0.25 0.31 48 0.20 0.25 63 0.23 0.29
adbsvm 54 0.32 0.37 45 0.26 0.32 96 0.15 0.16 100 — —
lrv 23 0.30 0.36 41 0.25 0.32 57 0.21 0.26 57 0.22 0.27
lrs 79 0.28 0.33 74 0.26 0.32 100 — — 100 — —
rg 0 0.25 0.31 26 0.23 0.27 32 0.20 0.25 44 0.26 0.31

rgdbscan 0 0.25 0.31 26 0.23 0.29 28 0.21 0.26 20 0.24 0.29
rgwshrt 0 0.25 0.31 5 0.24 0.30 14 0.19 0.24 10 0.23 0.27

trj avg cm 0 0.18 0.0 0 0.37 0.04 0 0.44 0.08 0 0.46 0.09
ap 17 0.09 0.0 28 0. 0.0 61 0. 0.0 63 0. 0.0

trjp rgdbscan 0 0.10 0.0 0 0.12 0.0 63 0.34 0.05 51 0.33 0.03
Bold values represent column minimums for ease of identifcation of the corresponding algorithms.

14 Complexity

Ta
bl

e
4:

El
ec
tr
ic
ity

lo
ad

se
ri
es
:s
et
s
of

no
np

re
di
ct
ab
le

po
in
ts
.

C
l/T

rj
U
PV

N
P

h
�
1

h
�
10

h
�
50

h
�
10
0

Pr
ec
isi
on

Re
ca
ll

F-
m
ea
su
re

Pr
ec
isi
on

Re
ca
ll

F-
m
ea
su
re

Pr
ec
isi
on

Re
ca
ll

F-
m
ea
su
re

Pr
ec
isi
on

Re
ca
ll

F-
m
ea
su
re

cl

av
g

cm
1.
00

0.
70

0.
82

1.
00

0.
42

0.
59

1.
00

0.
02

0.
04

—
—

—
ap

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

en
0.
61

0.
69

0.
65

0.
27

0.
33

0.
31

0.
50

0.
03

0.
05

—
—

—
w
av
gd

cm
1.
00

0.
70

0.
82

1.
00

0.
42

0.
59

1.
00

0.
02

0.
04

—
—

—
w
av
gl

cm
1.
00

0.
70

0.
82

1.
00

0.
42

0.
59

1.
00

0.
02

0.
04

—
—

—
w
av
gc

cm
1.
00

0.
70

0.
82

1.
00

0.
42

0.
59

1.
00

0.
02

0.
04

—
—

—
lr

0.
06

1.
00

0.
11

0.
88

0.
43

0.
57

1.
00

0.
03

0.
06

—
—

—
sv
m

0.
33

0.
72

0.
45

0.
31

0.
48

0.
38

—
—

—
—

—
—

dt
0.
04

1.
00

0.
08

0.
05

0.
13

0.
07

—
—

—
—

—
—

kn
n

0.
11

0.
80

0.
20

0.
21

0.
32

0.
26

—
—

—
—

—
—

m
lp

0.
73

0.
76

0.
75

0.
81

0.
49

0.
61

0.
50

0.
02

0.
04

—
—

—
ad
bl
r

—
—

—
0.
93

0.
45

0.
61

1.
00

0.
04

0.
07

—
—

—
ad
bs
vm

0.
57

0.
87

0.
69

0.
71

0.
55

0.
62

—
—

—
—

—
—

lrv
0.
79

0.
71

0.
75

0.
67

0.
48

0.
55

1.
00

0.
05

0.
09

—
—

—
lrs

0.
24

0.
81

0.
37

0.
36

0.
58

0.
44

—
—

—
—

—
—

rg
1.
00

0.
70

0.
82

0.
71

0.
41

0.
52

1.
00

0.
03

0.
06

—
—

—
rg
db
sc
an

1.
00

0.
70

0.
82

0.
74

0.
42

0.
53

1.
00

0.
03

0.
05

—
—

—
rg
w
sh
rt

1.
00

0.
70

0.
82

0.
93

0.
41

0.
57

0.
50

0.
01

0.
02

—
—

—

tr
j

av
g

cm
1.
00

0.
83

0.
91

1.
00

0.
72

0.
84

1.
00

0.
39

0.
65

1.
00

0.
37

0.
54

ap
1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

tr
jp

rg
db
sc
an

1.
00

0.
83

0.
91

0.
82

0.
70

0.
76

0.
05

0.
14

0.
08

0.
11

0.
67

0.
19

Complexity 15

Table 5: Abbreviations for the methods to calculate the unifed prediction value.

avg Average. Averaging the set of possible prediction values or trajectories

wavgl Weighted average, length. Averaging the set of possible prediction values or
trajectories with weights being determined by a prediction length

wavgd Weighted average, distance. Averaging the set of possible prediction values or
trajectories with weights being determined by a distance to the cluster center

wavgc Weighted average, combined. Averaging the set of possible forecast values or
trajectories with weights being a product of the two previous approaches

clc Center of the largest cluster. Choosing the center of the largest cluster of the set of
possible predicted values

mf Most frequent. Choosing the most frequently observed value in the set of possible
predicted values

mfp Most frequent, perturbed. Choosing a randomly perturbed most frequently
observed value in the set of possible predicted values

trjp Trajectory, perturbed. Perturbed average of the last points of a predicted trajectory

Table 6: Abbreviations for the methods to identify nonpredictable points.

fp Forced prediction. Forcing the algorithm to make a prediction at each intermediate
point, ignoring nonpredictable points

cm Close motifs. Analyzing the number of “close motifs” of each intermediate point

en Entropy. Analyzing the entropy of the sets of possible predicted values of each
intermediate point

ap A priori. Using a priori information
lr Logistic regression. Using a logistic regression classifer

svm Support vector machine. Using an SVM classifer employing polynomial kernel
functions

dt Decision tree. Applying a decision tree employing an entropy criterion without any
restriction on the tree depth to the features of the sets of possible predicted values

knn
K-nearest-neighbors. Applying a k-nearest-neighbors classifer is applied to the
features of the sets of possible predicted values; k-nearest-neighbors value is equal to

3

mlp
Multilayer perceptron. Applying a multilayer perceptron containing 8 hidden layers
and utilizes a sigmoidal activation function to the features of the sets of possible

predicted values
adb AdaBoost. Assembling logistic regression classifers using AdaBoost

adblr AdaBoost + logistic regression. Logistic regression classifers are assembled with
AdaBoost

adbsvm AdaBoost + SVM. Assembling SVM classifers using AdaBoost
lrs Logistic regression, stacking. Stacking of logistic regression classifers
lrv Logistic regression, voting. Assembling logistic regression classifers by voting

dbscan
DBSCAN. Clustering the sets of possible predicted values at each intermediate point
using DBSCAN and calculating the growth rate of the total number of clusters over

several consecutive points

wshrt
Wishart. Clustering the sets of possible predicted values at each intermediate point
using Wishart clustering and calculating the growth rate of the total number of

clusters over several consecutive points

cwat Compare weighted average, trajectories. Comparing the main predicted trajectory
with a weighted average of other predicted trajectories

amd Average modulus of diference. Calculating an average of modulus of a diference

wamd Weighted average modulus of diference. Calculating a weighted average of
modulus of a diference

wamdt Weighted average modulus of diference, trajectory. Comparing a weighted average
of modulus of a diference of the main trajectory to that of other trajectories

rg Rapid growth. Te spread grows monotonically over several consecutive points

rgdbscan Rapid growth, DBSCAN. DBSCAN is used to obtain centers of clusters of possible
predicted values

rgwshrt Rapid growth, Wishart clustering. Wishart clustering is used to obtain centers of
clusters of possible predicted values

16 Complexity

0 10 20 30 40 50 60 70 80 90 100
Steps

0 10 20 30 40 50 60 70 80 90 100
Steps

10 20 30 40 50 60 70 80 90 1000
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n
Ab

so
lu

te
 E

rr
or

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ro
ot

 M
ea

n
Sq

ua
re

 E
rr

or

0
10
20
30
40
50
60
70
80
90

100

N
on

-P
re

di
ct

ab
le

 P
oi

nt
s (

%
)

Figure 5: RMSE, MAE, and percentage of nonpredictable points of the diferent versions of the rapid growth algorithm compared to those
of the “ideal” version. Black solid lines correspond to the basic version of the rapid growth algorithm; round red dot lines correspond to the
version of the rapid growth algorithm that uses DBSCAN to cluster sets of possible predicted values; square orange dot lines correspond to
the version of the rapid growth algorithm that usesWishart clustering algorithm; green dash lines correspond to the “ideal” version that uses
a priori information.

Complexity 17

0 10 20 30 40 50 60 70 80 90 100
Steps

0 10 20 30 40 50 60 70 80 90 100
Steps

10 20 30 40 50 60 70 80 90 1000
Steps

0
10
20
30
40
50
60
70
80
90

100

N
on

-P
re

di
ct

ab
le

 P
oi

nt
s (

%
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ro
ot

 M
ea

n
Sq

ua
re

 E
rr

or

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n
Ab

so
lu

te
 E

rr
or

Figure 6: RMSE, MAE, and percentage of nonpredictable points of various ML algorithms compared to those of the “ideal” version. Black
solid lines correspond to logistic regression with AdaBoost; round red dot lines correspond to a support vector machine with AdaBoost;
square orange dot lines-to a regular logistic regression; green dash lines-to a multilayer perceptron; blue dash dot lines correspond to
a support vector machine; long red dash line corresponds to the “ideal” version that uses a priori information. Te subplot order is the same
as in Figure 5.

18 Complexity

algorithm’s behavior in case of chaotic series with a sig-
nifcant noise component. We hope to make it the subject
of future research.

6. Conclusion

Current paper introduces several novel strategies for mul-
tistep prediction of chaotic time series. Generalized z-
vectors, comprised of nonsuccessive time series observa-
tions, allow for obtaining a set of possible values for each
point that a prediction is being made for. Upon examining
such a set, the point can be defned as either predictable (in
which case its value is estimated) or nonpredictable.

Te concept of nonpredictable points renders the
multistep prediction as a two-objective problem, with both

the number of nonpredictable points as well as the average
prediction error for the predictable ones having to be
minimized.

Te results indicate that while the number of non-
predictable points grows exponentially with the number of
steps, up to 80–90%, the average prediction error remains
constant. Tis allows for making predictions up to a con-
siderable number of steps ahead (although skipping some
intermediate points) sometimes even exceeding the horizon
of predictability. It was tested for the Lorenz and real-world
time series.

It was concluded that the choice of a technique of
identifying nonpredictable points has a much greater impact
on the accuracy of the fnal prediction than the choice of
a technique of estimating the actual value of the point itself.

20 40 60 10080
Steps

1.0

0.8

0.6

0.4

0.2

0.0

German electric grid load.Actual and predicted values

yt

Figure 7: German energy time series: true trajectory (blue curve) and predicted points (red dashed curve with disks).Te algorithm employs
possible predicted trajectories and identifes nonpredictable points using spread growth.

10 20 30 40 50 60 70 80
Steps

1.0

0.8

0.6

0.4

0.2

0.0

yt

The Lorenz Series.Comparison with results by Kurogi and colleagues

Figure 8: Te Lorenz series: true trajectory (blue curve) and predicted points (red dashed curve with dots). A green line presents results by
Kurogi and colleagues. For the sake of comparison with other literature works, note that 72 steps roughly correspond to 7 Lyapunov times.

Complexity 19

Large-scale simulation reveals that prediction methods
based on sets of possible trajectories deliver more accurate
results than those based on sets of possible values, allowing
for making predictions beyond the horizon of predictability.

Data Availability

All the data used to support the fndings of the study are
included within the article.

Disclosure

Tis paper is already published in the preprint given in the
below link: “https://www.researchgate.net/publication/
347239842_Prediction_After_a_Horizon_of_Predictability_
Non-Predictable_Points_and_Partial_Multi-Step_Predictio
n_for_Chaotic_Time_Series” [38].

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Te authors are deeply indebted to Mr. Joel Cumberland for
proofreading and editing. Te results of the paper were
partially presented in Chaotic Modeling and Simulation
International Web Conference (CMSIM-2020, 22–24 Oc-
tober 2020). We are indebted to the organizers and par-
ticipants of the conference. Te publication was supported
by the grant for research centers in the feld of AI provided
by the Analytical Center for the Government of the Russian
Federation (ACRF) in accordance with the agreement on the
provision of subsidies (identifer of the agreement
000000D730321P5Q0002) and the agreement with HSE
University No. 70-2021-00139. Tis research was supported
through the computational resources of HPC facilities at the
HSE University.

References

[1] S. Aghabozorgi, A. Seyed Shirkhorshidi, and T. Ying Wah,
“Time-series clustering – a decade review,” Information
Systems, vol. 53, pp. 16–38, 2015.

[2] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis,
Cambridge University Press, Cambridge, UK, 2003.

[3] G. G. Malinetskiy and A. B. Potapov, Modern Problems of
Non-linear Dynamics, Editorial URSS, Moscow, Russia, 2002.

[4] B. P. Bezruchko and D. A. Smirnov, Extracting Knowledge
from Time Series: An Introduction to Nonlinear Empirical
Modeling, Springer-Verlag Berlin and Heidelberg GmbH &
Co. KG, Berlin, Germany, 2010.

[5] H. Blockeel, L. De Raedt, and J. Ramon, “Top-down induction
of clustering trees,” 1998, https://arxiv.org/abs/cs/0011032.

[6] V. A. Gromov and E. A. Borisenko, “Chaotic time series
prediction & clustering methods,” Neural Computing &
Applications, vol. 2, pp. 307–315, 2015.

[7] V. A. Gromov, “Chaotic time series prediction: run for the
horizon,” in Proceedings of International Conference on
Software Testing, Machine Learning and Complex Process
Analysis, Tbilisi, Georgia, November 2019.

[8] S. Ben Taieb, A. Sorjamaa, and G. Bontempi, “Multiple-output
modeling for multi-step-ahead time series forecasting,”
Neurocomputing, vol. 73, no. 10-12, pp. 1950–1957, 2010.

[9] Y. Bao, T. Xiong, and Z. Hu, “Multi-step-ahead time series
prediction using multiple-output support vector regression,”
Neurocomputing, vol. 129, pp. 482–493, 2014.

[10] M. Sangiorgio and F. Dercole, “Robustness of LSTM neural
networks for multi-step forecasting of chaotic time series,”
Chaos, Solitons & Fractals, vol. 139, Article ID 110045, 2020.

[11] R. Ye and Q. Dai, “MultiTL-KELM: a multi-task learning
algorithm for multi-step-ahead time series prediction,” Ap-
plied Soft Computing, vol. 79, pp. 227–253, 2019.

[12] R. Chandra, Y.-S. Ong, and C.-K. Goh, “Co-evolutionary
multi-task learning with predictive recurrence for multi-
step chaotic time series prediction,” Neurocomputing,
vol. 243, pp. 21–34, 2017.

[13] F. Martinez-Alvarez, A. Troncoso, and J. C. Riquelme, “En-
ergy time series forecasting based on pattern sequence sim-
ilarity,” IEEE Transactions on Knowledge and Data
Engineering, vol. 23, no. 8, pp. 1230–1243, 2011.

[14] V. A. Gromov and A. N. Shulga, “Chaotic time series pre-
diction with employment of ant colony optimization,” Expert
Systems with Applications, vol. 39, no. 9, pp. 8474–8478, 2012.

[15] V. A. Gromov and A. S. Konev, “Precocious identifcation of
popular topics on Twitter with the employment of predictive
clustering,” Neural Computing & Applications, vol. 28, no. 11,
pp. 3317–3322, 2017.

[16] V. A. Gromov, I. M. Voronin, V. R. Gatylo, and
E. T. Prokopalo, “Active cluster replacement algorithm as
a tool to assess bifurcation early-warning signs for von
Karman equations,” Artifcial Intelligence Research, vol. 6,
no. 2, pp. 51–56, 2017.

[17] S. Kurogi, R. Shigematsu, and K. Ono, “Properties of direct
multi-step ahead prediction of chaotic time series and out-
of-bag estimate for model selection,” in Neural Information
Processing, C. L. Kiong, K. Y. Siah, K. W. Wai, A. Teoh, and
K. Huang, Eds., vol. 8835pp. 421–428, 2014.

[18] W. Waheeb and R. Ghazali, “Multi-step time series fore-
casting using Ridge polynomial neural network with error-
output feedbacks,” in Communications in Computer and
Information Science, M. W. Berry, A. H. Mohamed, and
B. Y. Wah, Eds., vol. 652pp. 48–58, 2016.

[19] P. Ong and Z. Zainuddin, “Optimizing wavelet neural net-
works using modifed cuckoo search for multi-step ahead
chaotic time series prediction,” Applied Soft Computing,
vol. 80, pp. 374–386, 2019.

[20] R. K. Guntu, P. K. Yeditha, M. Rathinasamy et al., “Wavelet
entropy-based evaluation of intrinsic predictability of time
series,” Chaos, vol. 30, no. 3, Article ID 033117, 2020.

[21] R. Wang, C. Peng, J. Gao, Z. Gao, and H. Jiang, “A dilated
convolution network-based LSTM model for multi-step
prediction of chaotic time series,” Computational and Ap-
plied Mathematics, vol. 39, no. 1, 2019.

[22] S. Ben Taieb, G. Bontempi, A. F. Atiya, and A. Sorjamaa, “A
review and comparison of strategies for multi-step ahead time
series forecasting based on the NN5 forecasting competition,”
Expert Systems with Applications, vol. 39, no. 8, pp. 7067–
7083, 2012.

[23] D. R. Cox, “Prediction by exponentially weighted moving
averages and related methods,” Journal of the Royal Statistical
Society: Series B, vol. 23, no. 2, pp. 414–422, 1961.

[24] G. Bontempi, “Long term time series prediction with multi-
input multi-output local learning,” Second European Sym-
posium on Time Series Prediction, vol. 15, 2008.

20 Complexity

https://www.researchgate.net/publication/347239842_Prediction_After_a_Horizon_of_Predictability_Non-Predictable_Points_and_Partial_Multi-Step_Prediction_for_Chaotic_Time_Series
https://www.researchgate.net/publication/347239842_Prediction_After_a_Horizon_of_Predictability_Non-Predictable_Points_and_Partial_Multi-Step_Prediction_for_Chaotic_Time_Series
https://www.researchgate.net/publication/347239842_Prediction_After_a_Horizon_of_Predictability_Non-Predictable_Points_and_Partial_Multi-Step_Prediction_for_Chaotic_Time_Series
https://www.researchgate.net/publication/347239842_Prediction_After_a_Horizon_of_Predictability_Non-Predictable_Points_and_Partial_Multi-Step_Prediction_for_Chaotic_Time_Series
https://arxiv.org/abs/cs/0011032

[25] M. Sangiorgio, F. Dercole, and G. Guariso, Deep Learning in
Multi-step Prediction of Chaotic Dynamics, SpringerBriefs in
Applied Sciences and Technology, Giorgio Guariso, 2022.

[26] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, “Model-free
prediction of large spatiotemporally chaotic systems from
data: a reservoir computing approach,” Physical Review Let-
ters, vol. 120, no. 2, Article ID 024102, 2018.

[27] H. Jaeger and H. Haas, “Harnessing nonlinearity: predicting
chaotic systems and saving energy in wireless communica-
tion,” Science, vol. 304, no. 5667, pp. 78–80, 2004.

[28] D. Canaday, A. Grifth, and D. J. Gauthier, “Rapid time series
prediction with A hardware-based reservoir computer,”
Chaos, vol. 28, no. 12, Article ID 123119, 2018.

[29] K. Wang, K. Li, L. Zhou et al., “Multiple convolutional neural
networks for multivariate time series prediction,” Neuro-
computing, vol. 360, pp. 107–119, 2019.

[30] M. Sangiorgio, F. Dercole, and G. Guariso, “Forecasting of
noisy chaotic systems with deep neural networks,” Chaos,
Solitons & Fractals, vol. 153, Article ID 111570, 2021.

[31] P. R. Vlachas, J. Pathak, B. R. Hunt et al., “Backpropagation
algorithms and reservoir computing in recurrent neural
networks for the forecasting of complex spatiotemporal dy-
namics,” Neural Networks, vol. 126, pp. 191–217, 2020.

[32] D. Wishart, “Numerical classifcation method for deriving
natural classes,” Nature, vol. 221, no. 5175, pp. 97-98, 1969.

[33] H. H. Bock, Automatic Classifcation, Elsevier, Amsterdam,
Netherlands, 1974.

[34] A. V. Lapko and S. V. Chentsov, Nonparametric Information
Processing Systems, Nauka, Novosibirsk, Russia, 2000.

[35] C. C. Aggarval and C. K. Reddy, Data Clustering: Algorithms
and Applications, CRC Press, Boca Raton, FL, USA, 2013.

[36] N. V. Chawla, K. W. Bowyer, L. O. Hall, and
W. P. Kegelmeyer, “SMOTE: synthetic minority over-
sampling technique,” Journal of Artifcial Intelligence Re-
search, vol. 16, pp. 321–357, 2002.

[37] D. Patel, D. Canaday, M. Girvan, A. Pomerance, and E. Ott,
“Using machine learning to predict statistical properties of
non-stationary dynamical processes: system climate, regime
transitions, and the efect of stochasticity,” Chaos, vol. 31,
no. 3, Article ID 033149, 2021.

[38] V. A. Gromov and P. S. Baranov, “Prediction after a horizon
of predictability,” Non-predictable Points and Partial Mul-
ti-step Prediction for Chaotic Time Series, vol. 20, 2020.

Complexity 21

