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Abstract

We investigate steady flow moving purely in the azimuthal direction on a rotating sphere and having
a meridionally localized jet structure. An exact solution for a stratified inviscid fluid, which admits a
depth-dependent velocity profile below the surface, is constructed in spherical coordinates. This solution is
relevant to the modelling of the Antarctic Circumpolar Current. We show that the stratification enables us
to dispense with the nonconservative body force that was invoked in recent spherical-coordinate models to
produce realistic flow profiles.
© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The wind-driven Antarctic Circumpolar Current (ACC) is the only ocean current to close
upon itself in a circumpolar loop [8,23]. The ACC is crucial to the Earth’s climate because its
vast zonal transport links the southern regions of the Atlantic, Pacific and Indian Oceans (see
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Fig. 1), mixing the water between these basins and thus enabling a global ocean circulation. The
ACC’s continuous nearly-zonal band of eastward flow, largely between 40°S—-60°S, effectively
isolates the Antarctic continent from the tropical regions, thus contributing toward making it the
coldest place on Earth. The narrowest constriction to the flow of the ACC is Drake Passage (about
700 km across, at the southern tip of South America), but away from it the ACC is typically 2000
km wide. In contrast to other major ocean currents, the ACC is not a single flow but a fragmented
system consisting of several high-speed, vertically coherent, seafloor-reaching jets, separated by
zones of low-speed currents. The magnitude of the ACC’s zonal flow component greatly exceeds
its meridional component, with the vertical velocity overall negligible. ACC currents extend
throughout the water column, declining monotonically with depth from a mean surface speed of
about 20 cms™! to a few cms™! near the bottom [12]. The fastest jet is the subantarctic front,
marking the northern boundary of the ACC (see Fig. 1), with speeds in excess of 1 ms~!. The
primary source of momentum for the ACC is wind stress imparted by some of the strongest
winds on the planet — the persistently strong westerly winds, punctuated by frequent gales, led
sailors to christen the southern latitudes the roaring forties, furious fifties and screaming sixties.
The fact that the ACC currents reach the 4 km deep sea floor is a result of the weak stratification
in the Southern Ocean and of a pressure gradient force that is quite evenly distributed over the
water column, due to the combined effect of consistently large wind speeds with little variation
in wind direction [22].

The ACC flow is nearly zonal, practically following a circle of latitude in the regions of the
abyssal plains of the Southern Ocean, located in the three major basins where the depth exceeds
4 km (the Pacific-Antarctic Basin, the Australian-Antarctic Basin in the Indian Ocean sector, and
the Atlantic-Indian Basin). However, some bottom topography features of the Southern Ocean
with scales similar to terrestrial mountain ranges and spanning distances of the order of 1000 km
have a significant effect on steering the path of the seafloor-reaching ACC flow [17]:

e a sharp northward shift is caused by the 2 km deep Scotia Ridge (between 55° and 40° W,
downstream of South America), formed by continental fragments that once formed a land
bridge between South America and Antarctica, and containing numerous islands;

e poleward shifts occur at the Southwest Indian Ridge (between 20° and 30°E) and through
the fracture zones in the Pacific-Antarctic Ridge (between 145° and 120° W), the average
water depth to the top of these ridges being 2.5 km and 3 km, respectively;

e the ACC’s continuous nearly-zonal band of eastward flow widens in the southwestern In-
dian Ocean due to the obstruction of the 3 km deep Kerguelen Plateau near 70°E, but no
significant departure of the current direction across the plateau is observed [22].

In light of the above descriptions of the flow pattern of the ACC, it is of interest to derive
exact solutions to the nonlinear governing equations for steady ocean flow moving purely in the
azimuthal direction and having a meridionally localized jet structure. While exact solutions are
rare and capture only partly the inherent complexity of physical phenomena, they are precise in
their validity and offer detailed insight into basic features of the flow pattern. Exact solutions
are also a useful starting point for a perturbation analysis. Current advances in computing en-
hance the feasibility of numerical simulations of perturbed flows that can capture a wider range
of effects, whose importance can be ascertained by comparison with the exact solutions. Non-
linearity is considered to be inherent to the ACC flow and from the perspective of perturbation
theory it is desirable to incorporate nonlinear effects already at leading order, rather than merely
as perturbations of a linear background flow.
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Fig. 1. Satellite image (courtesy of NASA’s SeaWiFS project) of sea surface temperature revealing two main jets of the
eastward flowing ACC: 1) the polar front, 2) the subantarctic front. Overall there are nine circumpolar jets, each about 50
km wide [16]. The subtropical front, marked 3), is the northern boundary of the Southern Ocean but is not circumpolar,
its path being interrupted by South America.

Given the specific features of the ACC, it is advantageous to use spherical coordinates rather
than performing f-plane or B-plane approximations that impose flat-space geometry — see also
the discussion in [6]. Recently, exact solutions in spherical coordinates were presented in [3,5,10]
for equatorial flows. More importantly, such solutions for the ACC were obtained in [4] under
the simplifying assumption of constant density, hypothesis motivated by the weak stratification
of the Southern Ocean. However, in the constant-density setting a nonconservative body force
has to be invoked to produce realistic flow profiles — see also [11,14] for related investigations.
We will show that accounting for stratification (incorporating the effects of temperature, salinity
and depth on the variations of the density by means of an adequate equation of state) enables us
to dispense with this additional assumption. With regard to the alternative nonlinear gyre models
of the ACC that were pursued recently in [1,9,15], note that the gyre approach, which requires
comparable orders of magnitude for the zonal and meridional velocity components and does not
incorporate depth-dependence, is only adequate for the near-surface ocean flow.

The plan of the paper is to outline in Section 2 the problem in rotating spherical coordinates,
by presenting the nonlinear equations to which the governing equations reduce for steady ocean
flow moving purely in the azimuthal direction and having a meridionally localized jet structure.
In Section 3 we derive the general exact solution for a realistic stratification. We conclude with
a discussion of the flow features of the ACC that are highlighted by means of the structural
properties of the exact solutions that were obtained in this paper.
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Fig. 2. The rotating spherical coordinate system, where 6 is the angle of latitude, ¢ is the azimuthal angle and r’ = |r/| is
the distance from the origin at the Earth’s centre. The North/South Poles are at § = £ /2 and the Equator is on 6 =0,
while the Antarctic Circumpolar Current sits at about 6 = — /4.

2. Formulation of the problem

Since the ACC envelopes entire latitude circles, it is adequate to use spherical coordinates
rather than the f-plane or 8-plane setting. We introduce a set of (right-handed) spherical coor-
dinates, (¢, 6, r): r is the distance (radius) from the centre of the sphere, 6 € (—m /2, 7/2) is the
angle of latitude and ¢ € [0, 27) is the azimuthal angle i.e. the angle of longitude, measured with
respect to the prime meridian (see Fig. 2). The unit vectors in this (¢, 8, r)-system, for all points
but the two poles (where e, and eg are not well-defined, an unavoidable feature since the sphere
does not possess a continuously differentiable field of unit tangent vectors — see the discussion
in [2]), are (ey, €y, €,), respectively, and the corresponding velocity components are (u, v, w),
with e, pointing from West to East, ey from South to North and e, upwards (see Fig. 2). The
(¢, 0, r)-system is associated with a point fixed on the sphere which is rotating about its polar
axis (with an angular speed £2’ ~7.29 x 107 rads~!).

We consider an inviscid stratified ocean flow. The Euler equation and the equation of mass
conservation are, respectively,

(a+ “_9 4 vo a)( )+ L (Cuvtan6 +uw, i tand + 2 0?)
— —+—-——+w—)(u,v,w)+ —(—uvtan uw, u” tan vw, —u° —v
at rcosf dp r a0 ar r

+ 282 (—vsinf + wcosH, usinf, —ucosb) +r? (0, sinf cos ¥, —00529)
1 1 odp lop op

T (rcose g’ r 390 or

) +(0,0,—g), @.1)

and

a u 9d v o a 1 ou 1 d
Do, U Do vio, B0l Kl

— — —+
rcosf dp  rcosf 90

19
0)+ 5 - (Pw)| =0,
ot ' rcos@ dg  r a6 " or (weosf) + 5 5, W)

(2.2)
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where ¢ is time, p(@, 0, r, t) is the pressure and p (¢, 9, r, t) the density, with g = constant ~ 9.81
ms~2, a reasonable choice for the depths of the oceans on Earth.

At the free surface, r = R + h(6, ¢), where R =~ 6378 km is the (mean) radius of the Earth,
we impose a surface pressure and the kinematic boundary condition:

p=P(p,0) on r=R+h(p,0), 2.3)

and

M A v R+ h(p.0) 2.4)
w_rcosea(p r 06 "= ¢ '

respectively. At the bottom of the ocean, » = R + d(¢, 6), which we take to be an impermeable,
solid boundary, we have the corresponding kinematic boundary condition:

u_od  vod R+d(.6) 2.5)
w= —+—-— on r= ,0). .
rcosf dp r 90 ¢

We investigate a steady flow propagating purely in the azimuthal direction, with a flat free
surface over a flat bed, so 7 = hg > 0 (constant), d = 0 and v = w = 0 throughout the relevant
ocean region. Further, this flow does not vary in the azimuthal direction, so u = u(r, ), with p =
p(r,0), P = P(0) and p = p(r, #). The equation of mass conservation (2.2) and the kinematic
boundary conditions (2.4)—(2.5) are now satisfied, with the equations of fluid motion (2.1) taking
the form

u? . 7 . 1 ap
— tan6 4+ 2Q2usinf + r2°sinf cosf = — — — | (2.6)
r pr 06
2
190
— Y 20ucost —r@%costo=—- P _ g 2.7)
r p or

in the region R <r < R + hg, and with the surface pressure condition (2.3) simplifying to
p=P@®) on r=R+hy. (2.8)

The seawater density p is governed by temperature 7', salinity s and depth r. The salinity
of the Southern Ocean ranges from 34 to 35 ppt, with sea-surface values decreasing with the
distance to the South Pole, being predominantly influenced by the sea-ice cover and by thawing
icebergs (see [7]). Also, the temperature variations are rather small — the difference between the
surface and the bottom water does not exceed 4 °C, about 20% of the difference found in tropical
regions (see [22]). For these reasons, the depth is the main stratification factor and it is adequate
to consider the following form of the equation of state:

p=p(T,s,r)~po(r) —a(T —To) + B(s —s0) , 2.9
where T and s are mean surface values, & ~ 53 x 1073 kg K~! m™3 is the thermal expansion
coefficient multiplied by the average density and B &~ 785 x 10~3 kg m 3 is the saline contraction

coefficient [20]. Since the water density varies between 1026 and 1028.5 kg m~3,(2.10) captures
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Fig. 3. Sketch of the invariance of the velocity profile for a homogeneous ocean; O marks the centre of the spherical
Earth, E the position of the Equator and S the South Pole. The free surface of the ocean is drawn in blue, the bed in
brown, and P is a point in the Southern Ocean, at latitude 6 and depth r — (R + d). The line through P parallel to the
polar axis intersects the equatorial plane in P,, the ocean bed in P, and the ocean surface in Py, with the velocity u
constant along the segment Pj, Py due to (3.6) for constant density p.

the fact that the density variation is mainly due to depth changes. The distributions of temperature
and salinity across the ACC reveal the characteristic southward upward tilt of surfaces parallel
to the polar axis (see Fig. 3) on which the values of certain physical characteristics are nearly
uniform [12,13]. We therefore consider the density distribution

p=po(r) +yrcoso, (2.10)
where py is a decreasing function and y > 0 is a constant.
3. General solution

Expressing

u(r,0)= f(rs)

with s =rcosf, 3.1
p=F(rs)

in the latitude band 6 € [—40°, —60°] (to which the Antarctic Circumpolar Current is confined)
and for 7 € [R, R + hg] (corresponding to the depth range of the Southern Ocean), we transform
the equations (2.6)-(2.7) into

oF
P (ry 082, 3.2)
as K

oF

—=-pg., (3.3)
ar

in the region R <r < R + hg. From (2.10) and (3.3) we get
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R+ho
F(r,s)=g / po(r'Ydr’ — ysr+ A(s) (3.4)

r

with the surface pressure condition (2.8) specifying

A(s) = P(arccos <R ul

n ho)) +y(R+ho)s,  se[LR+ho), (R+ho)cos0°)]. (3.5

From (3.4) and (3.2) we now obtain

s(%(s) —yr)

5 Z_Q
Jr) ==\ = s

, (r,s) € [R, R+hol x 3R, (R+ho)cos(40°)]. (3.6)

This completes the derivation of the general solution to the system (2.6)-(2.7) for a density distri-
bution of the form (2.10). Note that the values of A(s) for s € [% R, %(R + ho)) are not specified,
so that we have a large family of exact solutions. The only constraint that has to be imposed on
the definition of the function A on the interval [1R, J(R + ho)) is

a(s) > yr+ 27s[po(r) + ys], 3.7

to ensure an eastward flow. The inequality (3.7) has also to hold for s € [%(R + ho), (R +
ho) cos(40°)]. Setting r = R + h in the relation

dA s 942.(6)
=9 L y(R+hy),

ds (Rt ho)? =52

ensured by (3.5), this can only be the case if the sea level pressure throughout the latitude band
of the ACC increases with the distance to the South Pole, a feature confirmed by field data (see
[19]).

3.1. The constant density assumption

For constant density p = po (constant) the general solution (3.6) simplifies to

J—rcost 4L(6)

,0)=—s502 , 3.8

u(r,6) séet JP0 [(R + ho)? — r?cos2g]L/4 (3-8)
with the associated pressure given by the corresponding simplification
rcosf

0)=gpo(r — R~ ho) + P( ( ). 3.9

p(r.0) =gpo(r 0) + P arccos { & T (3.9)

of (3.4)-(3.5). The solution (3.8) is not realistic since along any arc of fixed latitude the zonal
velocity u is constant on the lines r cos& = constant, which are parallel to the polar axis of
rotation: this is equivalent to the Taylor-Proudman theorem [21,18]. In this setting, the maximal
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speed would be attained at the ocean bed (see Fig. 3), which is in severe contradiction to physical
reality. To address this shortcoming, the approach in [4] invoked an additional nonconservative
forcing whose exact nature is however debatable (relevant factors might be turbulent fluxes and
the topographic form drag). Accounting for stratification destroys this alignment property and
permits us to obtain realistic flow profiles by means of formula (3.6) with y > 0 and a strictly
decreasing function r — po(r) on [R, R + hg]. We now discuss two examples, based on different
choices for the surface pressure in (2.8) as a polynomial expression in cos6. As pointed out in
the derivation of the general solution formulae (3.4) and (3.6), these choices are subject to the

traint — (0 0.
constrain d9( )<

3.2. A simple particular solution
To obtain a simple physically relevant flow pattern we choose the surface pressure of the form
P(@) = Py+ P;cosf
with Py, P; > 0 constants. In view of (3.4), we set

P

A(s)=Py+ks with k= R

+y(R+ho),

obtaining from (3.1) and (3.6) the zonal fluid velocity

(k —yr)rcosf
,0)=—8 o+ | —————, 3.10
u(r,0) rcos6 + o0(r) + yrcost ( )

that does not vanish at the flat bed r = R.
3.3. A zonal flow vanishing at the flat bed
We now show that an adequate choice of the surface pressure of the form
P@)= Py+ Picosf + P> cos? 0 + Ps cos> 0

with Py, P;, P>, P3 > 0 suitable constants, produces a flow that does not reach the bed. Taking
(3.4) into account, we set

A(s) = Py + ks + kas® + k3s®
P3 P P

with ki=—— k= —2 k=
ST RT3 T R+ho)? T Riho

+ v (R + ho),

so that (3.1) and (3.6) yield the associated zonal fluid velocity

(k1 — yr + 2kor cos @ + 3k3r? cos? 0)r cosf

3.11
po(r) + yrcosf ( )

u(r,0) = —8£2rcos6 +\/
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Consequently, the zonal flow along the flat bed » = R vanishes if

— 2 _ 1 2 2 _ 1 2 p2 3
Pi=yR(R+ho)—y(R+ho), Pr=5p0(R)2°R(R+ho)”, P3=3y82°R°(R+ho) .
4. Discussion

The presented analysis provides us with an exact zonal solution to the full set of nonlinear
governing equations for inviscid ocean flow in rotating spherical coordinates. The fact that the
Reynolds stresses and viscous terms are very small for the ACC flow permits us to use this exact
solution as a model for the background pure current flow of the ACC: the solution describes a
zonal current that is not restricted to a near-surface layer but extends to great depths (down to the
ocean floor). In contrast to the classical theory of free-surface water flows, which assumes con-
stant atmospheric pressure at the ocean surface, for this wind-drift current we allow meridional
sea-surface pressure changes, with a pressure that decreases as the latitude increases — a feature
suggested by field data. The examples presented in Section 3.2 and 3.3 show that the exact nature
of this change is related to whether the current reaches the seafloor or not. An important role in
our considerations is played by stratification. The weak stratification of the Southern Ocean is
nevertheless dynamically important since, as shown in Section 3.1, the constant density assump-
tion would produce flows that are not physically realistic. The multitude of jets associated to the
ACC can be investigated within the proposed setting simply by combining a number of zonal
currents of the type described in Section 3.

The practical benefit of an analytically tractable model of the ACC is that the very fact that
it represents a simplified version of an inherently complex flow makes it possible to reveal the
dominant features of the overall dynamics. Exact solutions serve also as a test case for numer-
ical models and open up the possibility of a perturbative approach. The solution described in
this paper is to be regarded as a background pure current flow enabling future in-depth stud-
ies of wave-current interactions, in the form of wave perturbations of this background state to
be investigated by means of an interactive exploration of analytical approaches and numerical
simulations.
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