
Boosting TCP & QUIC Performance
in mmWave, Terahertz, and Lightwave

Wireless Networks: a Survey
E. Khorov∗†, A. Krasilov∗†, M. Susloparov∗†, L. Kong‡

∗HSE University, Moscow, Russia
†Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia

‡Shanghai Jiao Tong University, Shanghai, China
E-mail: {ekhorov, akrasilov, msusloparov}@hse.ru, linghe.kong@sjtu.edu.cn

Abstract—Emerging wireless systems target to provide multi-
Gbps data rates for each user, which can be achieved by
utilizing ultra-wide channels available at mmWave, terahertz,
and lightwave frequencies. In contrast to the traditional spectrum
below 6 GHz, these high-frequency bands raise many issues,
complicating their usage. For example, because of high signal
attenuation and blockage by obstacles, the data rates in a high-
frequency band may quickly vary by several orders of magnitude.
This peculiarity is often considered a challenge for modern
transport layer protocols, such as Transmission Control Protocol
(TCP) or Quick UDP Internet Connections (QUIC). Their key
component is the Congestion Control Algorithm (CCA), which
tries to determine a data sending rate that maximizes throughput
and avoids network congestion. Many recent studies show that
the performance of the existing CCAs significantly degrades
if mobile devices communicate with high-frequency bands and
propose some solutions to address this problem. The goal of
this survey is twofold. First, we classify the reasons for poor
TCP & QUIC performance in high-frequency bands. Second, we
comprehensively review the solutions already designed to solve
these problems. In contrast to existing studies and reviews that
mainly focus on the comparison of various CCAs, we consider
solutions working at different layers of the protocol stack, i.e.,
from the transport layer down to the physical layer, as well
as cross-layer solutions. Based on the analysis, we conclude the
survey with recommendations on which solutions provide the
highest gains in high-frequency bands.

Index Terms—TCP, QUIC, Wi-Fi, 5G, 6G, wireless networks,
mmWave, Terahertz, Lightwave communications

I. INTRODUCTION

Wireless communication technologies continuously evolve,
providing higher and higher data rates to end users. Modern
Wi-Fi and cellular systems that operate in traditional low-
frequency bands (i.e., below 6 GHz) provide goodput up to
several hundreds of Mbps per user [1]. The next frontier
is to achieve multi-Gbps data rates, which are required to
support emerging applications, such as augmented/virtual re-
ality, cloud gaming, eHealth, autonomous transportation sys-
tems, etc. Since the low-frequency bands are overpopulated,
a promising way to achieve this goal is to use wide channels
available in mmWave (30 GHz to 300 GHz), Terahertz (300

Support from the Basic Research Program of the National Research
University Higher School of Economics is gratefully acknowledged.

GHz to 3 THz), Infrared (300 THz to 420 THz) and Visible
Light (420 THz to 750 THz) bands. In particular, recent
Wi-Fi amendments [2] and the fifth generation (5G) cellular
systems [3] already use mmWave bands for data transmission.
IEEE 802.11 Working Group is finalizing its work on the IEEE
802.11bb standard aka Li-Fi, which extends Wi-Fi to Light-
wave (LW) bands [4], [5]. High frequencies are candidates for
various future wireless communication systems [6]–[8].

A common drawback of these high-frequency bands is
extremely high propagation loss and blockage by obstacles,
which: (i) shrinks the coverage and (ii) makes data rates
quickly fluctuate. In particular, an obstacle appearing between
a mmWave transmitter and a receiver can instantly drop the
data rate from several Gbps down to dozens of Mbps [9], [10].
For higher frequencies, e.g., LW, the link can be completely
blocked. To overcome these issues, Wi-Fi and 5G systems
can jointly use low-frequency bands that provide continuous
coverage and high-frequency bands to boost data rate when
the channel conditions are favorable [11]–[13]. For example,
New Radio (NR) — a new radio access technology (RAT) de-
veloped by the 3rd Generation Partnership Project (3GPP) —
employs both traditional low-frequency bands below 6 GHz
and high-frequency bands from 24 to 71 GHz. Aggregating
up to 16 channels1, each of 400 MHz width (i.e., the total
bandwidth of 6.4 GHz) available in the mmWave band, NR
can reach, in theory, 140 Gbps [14], which is far beyond the
5G requirements [15]. Similarly, Wi-Fi can jointly use 2.4, 5,
6 GHz, mmWave, and LW bands [5]. No doubt that future
devices supporting THz bands will follow this paradigm.

Many existing mobile applications, e.g., web browsers,
messengers, video players, and social networks clients use
Transmission Control Protocol (TCP) to provide reliable and
in-sequence communications between a mobile device and a
server. A key component of TCP that significantly affects its
performance is the Congestion Control Algorithm (CCA). This
algorithm is implemented at the TCP sender and dynamically
selects the data sending rate that maximizes throughput and

1The base station supports up to 16 channels. Due to lower processing
capabilities and battery power supply, mobile devices use only a few channels.

avoids congestion. That is why most of the studies related to
TCP are focused on designing new congestion control algo-
rithms or their enhancements (see Section VI-A for details).

Recently Google has started a campaign to replace TCP
with a new protocol called Quick UDP Internet Connections
(QUIC). QUIC was developed as an experimental protocol
to improve the Chrome browser’s performance and then sub-
mitted to Internet Engineering Task Force (IETF) [16]. Now
QUIC is implemented in almost all modern web browsers,
and approximately 9% of websites support communication via
QUIC [17]. Despite architectural changes, QUIC implements
congestion control ideas similar to TCP. Consequently, it
inherits many peculiarities of TCP and only slightly improves
goodput, as reported by numerous studies, e.g., [18]–[21].

Initially, TCP developers considered only wired networks
where the endpoint devices typically have access links (i.e.,
the links between the client devices and the network) with
almost constant capacity. However, today the largest part of
the Internet traffic belongs to wireless clients [1]. In contrast to
wired links, the capacity of wireless ones significantly changes
with time because of the fluctuation of both the channel quality
and the number of devices sharing the same channel. As the
data rates in the wireless networks are typically lower than in
the wired ones, the wireless link becomes a bottleneck on the
path between the device and the server and, thus, limits the
performance of the corresponding TCP or QUIC connection.
That is why during the last three decades, IETF — the main
developer of TCP — and other researchers have proposed
many algorithms and protocol modifications to improve TCP
& QUIC performance in wireless networks [16], [22], [23].

Many recent studies [24]–[29] show that the properties of
mmWave bands (such as highly fluctuating data rates, frequent
link quality drops and path changes, etc.) significantly degrade
the performance of TCP & QUIC. While the authors of these
papers develop new solutions aimed to improve TCP & QUIC
performance in particular scenarios, our paper investigates
general problems arising in high-frequency wireless systems.
Although the problems inherent to mmWave, THz, and LW
bands have much in common, the observed effects, as well as
the solutions, may differ. Specifically, the obstacles which only
degrade the mmWave channel quality may completely block
the LW signal. On one side, the usage of higher frequencies
leads to wider channels and higher data rates. On the other
side, as higher frequencies reduce the coverage, we need
much more THz or LW base stations to cover a given area.
Consequently, they shall be cheap. Both high data rates and
low costs limit the complexity of the implemented approaches
to improve TCP & QUIC performance. This survey takes
into account these peculiarities and studies: (i) whether the
identified problems can be solved with the existing approaches
or whether we need to develop new ones, (ii) which approaches
can work with TCP & QUIC and which limitations are caused
by specific bands, (iii) which approaches provide the best
performance.

Recent surveys [30]–[34] confirm the research community’s
high interest in enhancing the performance of transport layer

TABLE I: List of acronyms.

3GPP 3rd Generation Partnership Project
5G Fifth Generation
6G Sixth Generation
ACK Acknowledgment
AIMD Additive Increase/Multiplicative Decrease
ANDSF Access Network Discovery and Selection Function
AQM Active Queue Management
BDP Bandwidth Delay Product
CA Congestion Avoidance
CAPEX/OPEX Capital expenditures/Operational expenses
CDN Content Delivery Network
CoMP Coordinated Multi-Point
CWND Congestion Window
DNS Domain Name System
ECN Explicit Congestion Notification
FIFO First-In-First-Out
FST Fast Session Transfer
HTTP HyperText Transfer Protocol
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IP Internet Protocol
LW LightWave
LOS Line of Sight
MAC Medium Access Control
MC Multi-Connectivity
MEC Multi-access Edge Computing
MIMO Multiple-Input Multiple-Output
ML Machine Learning
MP Multipath
MSS Maximum Segment Size
NFV Network Functions Virtualization
NLOS Non-Line of Sight
NR New Radio
OS Operating System
OSI Open Systems Interconnection
PDCP Packet Data Convergence Protocol
PEP Performance Enhancing Proxy
PGW Packet Gateway
PHY Physical Layer
PTO Probe TimeOut
RAT Radio Access Technology
RIS Reconfigurable Intelligent Surface
RL Reinforcement Learning
RTO Retransmission TimeOut
RTT Round Trip Time
RWND Receive Window
SNR Signal to Noise Ratio
SSThr Slow Start Threshold
TCL Traffic Control Layer
TCP Transmission Control Protocol
TLS Transport Layer Security
QoS Quality of Service
QUIC Quick UDP Internet Connections
UDP User Datagram Protocol
UE User Equipment

protocols in wireless systems operating in high-frequency
bands. In particular, [30] reviews recently developed solutions
aiming to improve the performance of transport layer pro-
tocols in modern wired/wireless systems. Surveys [31], [32]
analyze TCP and multi-path TCP performance issues arising
in mmWave systems and consider various solutions operating
at the transport layer that can address them. Authors of [33],
[34] review a wide range of congestion control algorithms
and study which of them provide the best performance in 5G
wireless systems. While the mentioned surveys focus on the
solutions working only at the transport layer (e.g., congestion
control algorithms, multi-path TCP & QUIC extensions), we

Fig. 1: The structure of the survey.

consider solutions working at different layers of the protocol
stack (from the transport layer down to the physical one)
and also consider cross-layer solutions. Moreover, in contrast
to the existing works that consider only the mmWave band,
we analyze how various solutions can be applied to higher
frequency bands (i.e., THz and LW bands).

The contributions of the survey are as follows:
1) We investigate and classify the problems leading to poor

TCP & QUIC performance in high-frequency wireless
systems and show that these problems are common for
all mmWave, LW, and THz bands, though the scale of
the problems may differ.

2) We analyze the existing solutions to these problems pro-
posed by IETF, 3GPP, IEEE, and the research commu-
nity. Note that, typically, these solutions are applicable
to all types of high-frequency bands. Otherwise, we
emphasize band-related issues.

3) We enrich the analysis of various solutions with numer-
ical results obtained under the same conditions to com-
pare them quantitatively rather than only qualitatively.

4) We discuss the implementation complexity of various
solutions and provide recommendations for network
operators and service providers on which of them shall
be used to achieve high TCP & QUIC performance.

The rest of the survey is organized as follows (see Fig. 1).
In Section II, we provide a brief introduction to TCP and
QUIC. In Section III, we consider typical scenarios for high-
frequency wireless systems and study the problems that lead to
TCP & QUIC performance degradation. Section IV contains
a taxonomy of various solutions aiming to improve TCP
& QUIC performance, while Sections V–VII provide their
detailed description. Finally, in Section VIII, we summarize
our findings and discuss the directions for future research.
Table I lists used acronyms.

II. BRIEF INTRODUCTION TO TCP AND QUIC

In this section, we introduce TCP and QUIC — the two
most widely used protocols that provide reliable commu-

nication between a mobile device and a server. Note that
there exist other reliable transport protocols such as Stream
Control Transmission Protocol (SCTP). However, SCTP has
not obtained wide adoption on the mobile Internet because of:
(i) the transport layer ossification problem and a low number
of operating systems and applications supporting it [30], [35].
We start with the description of TCP in Section II-A. Then
we discuss QUIC, paying more attention to the key QUIC
novelties aimed to improve its performance compared to TCP.

A. TCP fundamentals

Since the early 1980s, when the first TCP specification [36]
was published, many enhancements have been proposed to
improve TCP performance in various scenarios. An interested
reader can find a brief review of the TCP enhancements
specified over the last 40 years by IETF in [22]. Some of
these enhancements were widely deployed, i.e., they were
implemented in various Operating Systems (OSs), while the
others are still experimental. Note that various OSs may
implement these enhancements differently.

In this section, we briefly review the key TCP features
that are widely deployed (i.e., used by default in various
OSs) and describe what can be called “standard” TCP be-
havior. Non-standard (experimental) enhancements developed
by IETF and/or the research community are considered in
Section V–VII, focusing on those enhancements that improve
TCP performance in high-frequency wireless networks.

TCP is a transport layer protocol that works at endpoints,
e.g., a server located on the Internet uses TCP to send data
to a User Equipment (UE) as shown in Fig. 3(a). Because of
transport layer abstraction, the TCP sender considers the whole
path between the server and the UE as the black box ignoring
the peculiarities of particular links, e.g., a link between the
base station and the UE. The goal of the TCP sender is to
send such an amount of data that the network path is fully
used without congestion (i.e., loss of data at the intermediate
nodes because of overload). The whole network path can be
characterized by two parameters: (i) Round Trip Time (RTT),
which is the time between sending a packet and receiving an
acknowledgment (ACK) for it, and (ii) bottleneck capacity C,
i.e., the maximum data rate that can be served by the network
without congestion. Once the sender generates traffic with a
rate above C, the link with the lowest capacity along the path
becomes overloaded, which leads to packet losses. Currently,
the wireless link is typically a bottleneck2, which requires the
transport protocol to consider its peculiarities.

To control the sending rate, the TCP sender uses a sliding
window approach and keeps an internal variable called Con-
gestion Window (CWND) that limits the amount of data the
TCP sender can send without obtaining ACKs for this data. In
addition, the TCP receiver can indicate the size of its receive
buffer (called Receive Window, RWND) in ACKs sent back to
the TCP sender. According to [36], the TCP sender can send

2The capacity of backhaul links, i.e., the links connecting base stations and
the core network, typically exceeds that of wireless links.

no more than min(CWND, RWND) bytes without obtaining
an ACK. Note that if no specific optimizations are used (see
Section V), RWND is typically much higher than CWND.
Thus, the sending rate is mainly limited by CWND.

Since ACKs arrive RTT after the transmission of data
packets, the average sending rate of TCP connection can be
estimated as W/RTT , where W is the size of CWND in bytes.
If the rate is less than C, the network path is underutilized.
Otherwise, if the sending rate is higher than C, the queue at
the bottleneck link will continuously grow, eventually leading
to packet losses (i.e., congestion). Therefore, the TCP sender
should keep CWND as close as possible to Wopt = C ·RTT
called Bandwidth Delay Product (BDP).

While RTT can be measured at the TCP sender as the
time between sending a packet and receiving an ACK for this
packet, the capacity C of the bottleneck link is unknown at
the TCP sender. The core function of the TCP sender called
the congestion control algorithm is to properly select CWND
in order to keep it as close as possible to BDP. In turn, BDP
can vary with time because the wireless channel quality and/or
the number of competing flows changes.

According to [37], any congestion control algorithm can be
split into four algorithms: Slow Start, Congestion Avoidance
(CA), Fast Retransmit, and Fast Recovery, see Fig. 2. Apart
from CWND, the TCP sender keeps an internal variable called
Slow Start Threshold (SSThr) to select which algorithm to use:
if CWND is below SSThr, the TCP sender uses the Slow Start
algorithm; otherwise, it uses the CA algorithm. When some
packets are lost, the TCP sender uses Fast Retransmit and Fast
Recovery algorithms to retransmit lost packets.

After the TCP connection is established, SSThr is set to a
high value3 and the Slow Start algorithm is used to increase
CWND to reach BDP. A detailed description of the Slow Start
algorithm is provided in Section III-B. When CWND exceeds
BDP, the buffer size at the bottleneck link increases, eventually
leading to buffer overflow and packet losses. When the TCP
sender detects that some packet is lost, it: (i) finishes the Slow
Start algorithm, (ii) updates SSThr, (iii) reduces CWND to
limit data sending rate, (iv) retransmits the lost packet (i.e.,
performs the Fast Retransmit algorithm), and (iv) enters the so-
called Fast Recovery algorithm [37]. During the Fast Recovery
algorithm, the TCP sender shall retransmit and, eventually,
deliver all the lost packets. Additionally, the TCP sender can
transmit new data packets to use the available link capacity.
When all the packets considered lost are recovered, the TCP
sender enters the CA algorithm.

Most of the widely used CA algorithms are based on
Additive Increase Multiplicative Decrease (AIMD) principle
that works as follows. The TCP sender gradually increases
CWND until a congestion event occurs. For example, the
widely used CUBIC algorithm [38] increases CWND with
time as a cubic function until the congestion event occurs
(see Fig. 2). After a congestion event, the TCP sender reduces

3If the server uses the data path for the first time, it sets SSThr to the
infinite value. Otherwise, a previously saved value may be used [37].

Fig. 2: CWND as the function of time for CUBIC. CWND is
managed by the algorithms responsible for Slow Start (SS),
Congestion Avoidance (CA), Fast Retransmit (FRetx), and
Fast Recovery (FRec).

CWND by multiplying it by some parameter β < 1 and uses
Fast Retransmit and Fast Recovery algorithms to recover lost
packets. After the successful delivery of all lost packets, it
enters the CA algorithm again. So, in the case of stable link
characteristics and a high amount of transmitted data, the TCP
sender runs the CA algorithm most of the time.

Because of the mentioned fact, during the last decades,
the Slow Start algorithm remained almost unchanged, while
much research was focused on finding the best CA algorithm.
However, a wide variety of bottleneck links (e.g., wired,
wireless, satellite) and a wide variety of network deployment
scenarios do not allow finding a single algorithm that fits all
cases. Moreover, in recent years, the appearance of ultra-high
bandwidth mmWave links having highly fluctuating data rates
has led to a novel cycle of the CA algorithms development,
e.g., see [39]–[42]. In this survey, we analyze in detail the
issues that cause poor TCP performance for the existing
congestion control algorithms and analyze possible alternatives
(see Section VI-A).

B. QUIC Fundamentals

TCP is implemented in the OS kernel. On the one hand, it
can efficiently process thousands of parallel TCP connections,
which is important for servers. On the other hand, even small
protocol changes require OS kernel upgrades, which may take
a long time and require much effort to make these changes
widespread. This problem is known as the transport layer
ossification [35]. The long TCP evolution process was one
of the reasons why Google proposed a novel protocol called
QUIC and then submitted it to IETF as an alternative to
TCP [16], [43]. The key idea behind QUIC is to move the main
TCP functions (connection management, congestion control,
loss recovery) from the transport layer to the application layer.
Being implemented in the user space (e.g., in browsers), QUIC
can be easily modified, which significantly speeds up the
protocol evolution and design of innovative solutions.

While, formally, QUIC operates at the application layer and
uses the User Datagram Protocol (UDP) as the underlying

transport layer protocol, QUIC itself is considered a transport
protocol because it uses many features similar to TCP. Below,
we focus on new features introduced in QUIC and discuss
how they improve its performance with respect to TCP. The
Internet-scale evaluation of QUIC done by Google can be
found in [44].

1) Connection management: QUIC introduces a novel con-
nection management procedure. Each QUIC connection is
identified by a unique eight-byte number called Connection ID.
When two end-points establish a new QUIC connection, they
exchange service packets in which they negotiate a new Con-
nection ID, security keys (obtained with the Transport Layer
Security (TLS) protocol, which is integrated with QUIC), and
other transmission parameters. This procedure lasts one RTT,
and after it finishes, the end-points can transmit data over
the secured connection. In contrast, TCP requires at least two
RTTs to set up a new secure connection: one RTT to set up
a TCP connection and one RTT to negotiate security keys
because TLS works on top of TCP. If the end-points have
already agreed on security parameters during previous QUIC
connections, for subsequent QUIC connections, it is possible
to send the user data in the very first packet. This feature is
known as “0-RTT connection setup”, and it is very fruitful
for applications that rarely send low amounts of data (e.g.,
machine-type communication, web search/assistance, etc.)

Another advantage of QUIC connection management is the
resilience to frequent handovers, e.g., when users switch be-
tween Wi-Fi and cellular networks. If the networks be-
long to different operators, the user changes its Internet
Protocol (IP) address. As QUIC operates at the application
layer and a QUIC connection is identified by a Connection ID,
a change of ports and addresses for the underlying IP and UDP
protocols does not influence the QUIC connection. In contrast,
when TCP is used and the client changes its IP address, all
ongoing TCP connections shall be re-established, which takes
much time. Moreover, the applications shall retransmit data
from scratch.

2) Header encryption: As QUIC operates at the application
layer, it uses TLS to encrypt both the header and payload. Only
a few QUIC header fields (e.g., Flags, Connection ID) are
transmitted unencrypted. QUIC developers argue that this fea-
ture is very important and protects QUIC connections from the
negative influence of middleboxes, i.e., intermediate network
nodes that modify packet headers to achieve local performance
improvement. As shown in several studies (e.g., [44], [45]),
if several middleboxes operate independently, they can apply
inconsistent solutions resulting in poor overall performance.

In contrast to QUIC, all fields of the TCP header are open,
which enables many popular performance-enhancing solutions
that break TCP connections or modify the TCP header. In
Section V-B, we analyze the benefits and drawbacks of such
solutions and discuss which of them can be applied to QUIC.

3) Multi-streaming: QUIC supports concurrent transmis-
sion of several data streams between end-points. This feature
is especially useful for web traffic that typically consists of
multiple objects (e.g., text, scripts, pictures). QUIC can create

a separate stream for each object. Thus, each object can be
independently transmitted, processed, and displayed to a user.
This feature solves the Head-of-Line (HOL) blocking problem
inherent to TCP [46]. Note that by design, TCP supports
only a single byte stream between end-points. For this reason,
if even a single packet belonging to one object is lost, the
TCP receiver cannot process packets belonging to subsequent
objects until the lost packet is recovered.

4) Congestion control: The general QUIC congestion con-
trol architecture specified [47] is similar to that of TCP [37]. In
particular, a QUIC sender state machine consists of Slow Start,
Congestion Avoidance, and Recovery states. The latter state
combines Fast Retransmit and Fast Recovery used in TCP.
Thus, a plethora of congestion control algorithms designed for
TCP and described in detail in Section VI-A can be applied
to QUIC. In particular, the default QUIC congestion control
algorithms (i.e., NewReno, CUBIC) are inherited from TCP.
Nevertheless, QUIC developers introduced several features
aiming to enhance loss recovery with respect to TCP.

First, the QUIC sender assigns a unique sequence number
to each sent packet. When the QUIC receiver creates an
ACK for this packet, it includes this sequence number in the
ACK header. Thus, the QUIC sender can easily infer which
particular transmission is acknowledged. This feature allows
resolving the so-called “retransmission ambiguity” problem
inherent to TCP: in case of several transmissions of the same
packet, the TCP sender cannot determine which particular
transmission attempt is acknowledged.

Second, the QUIC header has a special field that contains
a delay between the reception of the data packet at the QUIC
receiver and the transmission of the corresponding ACK. This
information and the unique packet sequence numbers allow
the QUIC sender to obtain more accurate RTT estimation.

Third, QUIC changes the loss detection procedure. The TCP
sender detects a packet loss when it receives three ACKs in a
row with the same sequence number (called duplicate ACKs)
or when the retransmission timeout (RTO) timer expires4.
In the latter case, the TCP sender shrinks CWND to one
packet and retransmits the packet for which RTO was initiated.
Instead of RTO, QUIC introduces the probe timeout (PTO)
mechanism. PTO is set based on RTT estimation. When PTO
expires, the QUIC sender does not shrink the congestion
window and sends the so-called probe packet (e.g., the pre-
viously unsent data packet or retransmission) that should be
acknowledged. Only when persistent congestion is detected,
the QUIC sender reduces the congestion window. This feature
improves QUIC performance when tail data packets or ACKs
are lost.

Many studies compare the performance of TCP and QUIC
congestion control. The results show that the overall perfor-
mance significantly depends on the considered scenario, used
parameters, and even peculiarities of implementation [18]–

4RTO is set based on RTT estimation at the TCP sender. The minimal value
of RTO according to RFC 6298 is 1s [48] while Linux implementations use
200ms [49].

(a)

(b)

Fig. 3: Characteristics of high-frequency wireless links:
(a) network with two mmWave gNBs operating in
1 GHz@28 GHz channel, one LTE/NR gNB operating in
100 MHz@3.6 GHz channel, (b) Shannon capacity of the
corresponding wireless links.

[21]. So, there is now an unequivocal advantage of QUIC
congestion control over TCP.

III. TCP & QUIC PERFORMANCE ISSUES

In contrast to low-frequency links, high-frequency ones may
provide much higher but very unstable capacity, degrading
TCP performance, as described below. Notably, being inherited
from TCP, QUIC suffers from almost the same issues as TCP.

A. Peculiarities of high-frequency wireless links

Let us study the peculiarities of high-frequency links focus-
ing on an example of a 5G mmWave system and discussing
possible differences between THz and LW links.

We consider a typical 5G deployment scenario illustrated
in Fig. 3(a). In this scenario, the network operator uses two
frequency bands: (i) a traditional low-frequency band, e.g., a
100 MHz channel at 3.6 GHz carrier frequency, and (ii) a
mmWave band, e.g., a channel with an aggregate bandwidth
of 1 GHz at 28 GHz. The low-frequency band provides
continuous coverage while the mmWave band boosts network
performance in hotspot areas. We consider a User Equipment
(UE) moving parallel to the line of one low-frequency and two
mmWave base stations (called gNBs) with a constant speed of
10 m/s. Starting from 15s till 25s, an obstacle blocks the line
of sight between the UE and the first mmWave gNB.

To model this and other scenarios considered in the paper,
we use NS-3 [50], which is a popular open-source network
simulator actively developed by the research community. NS-
3 enables flexible customization of every layer of the OSI
protocol stack, as well as implementing novel methods and
solutions. Compared to other simulators (e.g., OMNeT++,
OPNET, NetSim), NS-3 is widely used for modeling TCP &
QUIC performance in wireless systems because it contains
the detailed and validated models of: (i) various Radio Access
Technologies (RATs) including those operating in mmWave
band [51], (ii) various TCP & QUIC congestion control
algorithms, (iii) various applications (e.g., web, video, file
download). In the numerical results presented in the paper,
we show throughput, latency, and other indicators measured
at the application layer, which show the overall performance
of the whole protocol stack, i.e., including effects arising at
the transport layer, link/physical layer of a wireless network,
and, if enabled, the effects of cross-layer solutions.

In Fig. 3(b), we show the capacities of the mmWave and
the low-frequency links as the functions of time obtained
with NS-3. First, we can see that the maximum capacity
of the mmWave link (achieved when the UE is close to
the corresponding gNB) is approximately ten times higher
than the capacity of a low-frequency link because of the ten
times higher channel bandwidth. However, the capacity of the
mmWave link significantly degrades with the distance, which
is caused by the much higher attenuation of a mmWave signal
compared to a low-frequency signal. Thus, the coverage of
mmWave gNB is limited by several hundreds of meters [13],
[52]. As for higher frequency bands (i.e., THz and LW bands),
they will potentially contain ten times wider channels than
mmWave ones: hundreds of GHz for the THz band vs. tens of
GHz for the mmWave band. However, because of much higher
path loss and lower power spectral density, which result in low
Signal to Noise Ratio (SNR), THz and LW links capacities are
expected to be only several times higher than mmWave one
with the coverage of dozens of meters [8], [53]–[55].

Second, Fig. 3(b) shows that an obstacle (e.g., buildings,
cars, people, trees) between the first mmWave gNB and the
UE significantly reduces the capacity of the mmWave link.
This problem is caused by a short wavelength of the mmWave
signal. When the wavelength becomes smaller than the size of
an obstacle, the waves almost do not bend around the obstacle,
and propagation becomes more optic-like [56]. Several stud-
ies [9], [10], [57], [58] demonstrate that mmWave penetration
loss can reach dozens of dB and, thus, significantly decrease
the link capacity. When the Line of Sight (LOS) is blocked
(at 15s of the experiment), the gNB can still communicate
with the UE using reflections from other objects, i.e., using
a Non-Line of Sight (NLOS) path. However, SNR on the
NLOS path is much lower than that for the LOS path, which
drops the link capacity. The link capacity jumps up at 25s
when the obstacle disappears from the LOS path and the gNB
switches to the beam following the LOS path. The described
above effect, i.e., frequent LOS/NLOS transitions, leads to
significant fluctuation of the mmWave link capacity. Note

that the LOS/NLOS period is a random value that depends
on the environment. The LOS/NLOS fluctuation problem is
exacerbated in THz and LW bands, where an obstacle typically
causes a link blockage/outage, i.e., almost zero capacity [53].

To conclude, the usage of high-frequency bands brings very
high capacity (up to dozens or even hundreds of Gbps) on the
one side but, on the other side, results in a huge and almost
unpredictable fluctuation of the capacity, which, as shown in
the following sections, degrades TCP & QUIC performance.

B. Slow Start problem

After a connection setup or after a period of silence (i.e., no
data transmission during RTO), TCP and QUIC use the Slow
Start algorithm to probe the network capacity and increase
CWND [37]. Since the sender does not know the network
capacity at the beginning of the connection, it starts with
a relatively low CWND W = WIW and increases it by
one Maximum Segment Size (MSS) each time it receives an
ACK. MSS is the maximum data packet size that can be sent
without fragmentation by the intermediate network nodes. The
described above algorithm effectively doubles CWND each
RTT, i.e., the growth of CWND with time is exponential.

In [37], the IETF community has agreed to set WIW =
10·MSS, where MSS is limited by 1460 bytes (i.e., MSS that
fits the maximum transmission unit of Ethernet links). Such
choice of WIW was justified by a requirement of supporting
a wide variety of Internet links having capacity from several
hundreds of Kbps up to several Gbps.

Although CWND grows exponentially with time during the
Slow Start algorithm, reaching BDP may take a sufficiently
long time for network paths/links with high capacity and
RTT. They are called high-BDP paths/links. For example,
if C = 10 Gbps and RTT = 30 ms, it takes around
tBDP = RTT log2(C · RTT/WIW) = 0.34 s to reach BDP.
During this time interval, the network path is underutilized.
This problem is called the Slow Start problem [59].

High-frequency links are exactly high-BDP links that suffer
from the Slow Start problem. Let us use existing analytical
models (e.g., from [60], [61]) to evaluate how the Slow Start
problem influences TCP & QUIC performance depending on
the wireless link capacity C, RTT between the server and
the UE, and the amount of data (file size) S the server sends
to the UE. In the model, we assume that after reaching BDP,
CWND does not reduce. Thus, the file is transmitted with a
rate limited by the wireless link capacity C.

Figure 4 shows the file download time tDL (including the
time needed to set up a connection) and the channel resource
utilization η that is defined as the ratio of the actual file
download rate S/tDL and the link capacity C: η = S

C·tDL
.

We can see that when the wireless link capacity C < 1 Gbps,
which corresponds to the existing 4G/Wi-Fi systems, the Slow
Start problem does not influence TCP & QUIC performance:
(i) the file download time is inversely proportional to C, i.e.,
tDL = S/C (ii) the channel resource utilization is close to one.
However, when the link capacity exceeds 10 Gbps, typical for
mmWave, THz, and LW links, we can see that: (i) the channel

(a)

(b)

Fig. 4: Slow Start problem: (a) file download time and (b)
channel resource utilization as the functions of the channel
capacity, overall path RTT, and file size.

becomes underutilized if the transmitted files are small, and
(ii) the download time reaches a plateau. The reason for such
behavior is that for very high values of BDP (i.e., higher than
the file size), the sender executes the Slow Start algorithm
during which it sends small portions of data (i.e., limited by
small CWND) each RTT. Since the data-sending rate (i.e.,
the ratio of CWND and RTT) is much smaller than the link
capacity, we can see significant link underutilization. Besides
that, we can see that the time need to deliver a file tDL mainly
depends on RTT rather than on the link capacity.

We can conclude that in contrast to the existing wireless
technologies providing channel capacities up to 1 Gbps, ultra-
high bandwidth wireless links suffer from the Slow Start prob-
lem (especially for high RTT values) that leads to significant
underutilization of the available channel capacity.

C. Channel fluctuation problem

Consider a scenario with the transmission of a bulk flow
(e.g., ultra-high-definition or 3D video flow) over a mmWave
link when the channel periodically changes from LOS to
NLOS state and back (e.g., an obstacle periodically appears
between the transmitter and the receiver). In addition to the
bulk flow, we also run a ping application that rarely sends
small UDP packets to measure packet transmission delay.

In Fig. 5, we consider the case when LOS to NLOS
transition period is equal to 20 s, i.e., from 0 to 20 s the
channel state is LOS, from 20 s to 40 s the channel state is

(a)

(b)

(c)

Fig. 5: Illustration of the channel fluctuation problem in
mmWave communications: (a) TCP throughput, (b) CWND,
(c) one-way delay of UDP packets.

NLOS, etc. We plot: (a) the throughput of a TCP connection,
i.e., the average amount of data delivered in a time unit, (b)
CWND at the sender, and (c) the one-way delay experienced
by UDP packets. In the experiment, we vary RTT between the
server and the gNB and the gNB buffer size. The case “infinite
buffer” at the gNB is achieved by setting RWND at the UE
to 30 MBs and the gNB buffer size greater than RWND. In
such a case, the buffer at the gNB does not overflow (i.e., no
packets are lost). Thus, CWND increases to infinity (see the
corresponding curve in Fig. 5(b)). However, as mentioned in
Section II-A, the data sending rate is limited by the minimum
of RWND and CWND.

From 0s to approximately 1s, we can see an exponential
increase in CWND because the sender executes the Slow

Start algorithm after the TCP connection setup. When CWND
becomes greater than the current BDP value plus gNB buffer
size, several packets are dropped at the gNB. When the
sender detects losses it transits to the Fast Retransmit and Fast
Recovery algorithms during which it reduces CWND several
times (to make it lower than BDP) and retransmits lost packets.
At approximately 2s, all lost packets are recovered and the
sender starts executing the CA algorithm.

In this experiment, we consider a CA algorithm called
CUBIC, which is the default CA algorithm in Linux-based
OSs and iOS [38]. The key idea of CUBIC is to gradually
increase CWND with time according to a cubic function. The
parameters of this function (i.e., the cubic function inflection
point and shape) are selected so that CWND is close to
the current BDP estimation at the sender. Specifically, the
parameters of a cubic function are chosen as follows. When
a congestion event occurs, the sender: (i) reduces CWND:
W = β ·FlightSize, where FlightSize is the current amount
of sent and unacknowledged data and β = 0.7 is the fixed
algorithm parameter, (ii) saves FlightSize as the current
BDP estimation, (iii) starts Fast Retransmit and Fast Recovery
algorithm. After Fast Recovery, the CA algorithm increases
CWND according to a new cubic function for which the inflec-
tion point is selected based on the previous BDP estimation.

Consider what happens when the LOS to NLOS transi-
tion occurs at 20 s. The channel capacity instantly drops
approximately ten times. The sender tries to reduce CWND
several times to react to the change in BDP, but it cannot
do it instantly. Thus, we can see a significant increase in
packet delays (see Fig. 5(c)). This problem is known in the
literature as bufferbloat [62]. As discussed in [62], developers
of wireless technologies prefer to keep long buffers at wireless
links. On the one side, long buffers are beneficial for achieving
high link throughput. But, on the other side, they significantly
increase packet delays (up to several seconds), which is
harmful to real-time and interactive applications that share the
same buffer with a bulk TCP or QUIC flow.

When the channel switches back from NLOS to LOS at 40 s,
the channel capacity instantly increases. The CA algorithm
monotonically increases CWND according to a cubic function.
However, the CWND growth is very slow because of outdated
BDP estimation. Only after 50 s, the cubic function changes
its slope and starts increasing much faster. Figure 5(a) shows
that in the case of a low buffer at the gNB, the NLOS to
LOS transition leads to a significant channel underutilization.
In contrast, a high buffer at the gNB allows instantly filling up
the link and utilizing the available channel capacity. However,
it leads to the bufferbloat problem during the NLOS state.

From the considered example, we see that high channel
fluctuation inherent to mmWave links can lead to the following
problems: (i) bufferbloat when the link changes from LOS
to NLOS state, (ii) link capacity underutilization when the
link changes from NLOS to LOS state. Similar problems
are reported in many papers considering other existing CA
algorithms [63]–[65]. The main reason is that the existing CA
algorithms try to smoothly change CWND and cannot instantly

Fig. 6: Illustration of the channel fluctuation problem in Li-Fi
(IEEE 802.11bb): TCP connection throughput.

react to channel capacity changes, leading to overestimating
or underestimating the required CWND.

Notably, switching from mmWave to THz and LW only
aggravates this problem because these frequencies have worse
propagation properties and even a thin object can block the
signal. Figure 6 shows TCP performance over a single LW
link between a Wi-Fi access point mounted on the ceil and
a laptop. When a user closes the LW receiver with his arm
(between 20s and 40s), the throughput drops to zero and then
slowly recovers. Replacing TCP with QUIC does not solve the
problem and the curves are similar to those shown in Fig. 5–6.

The paper considers two main directions to solve the
problems mentioned above. The first one includes novel CA
algorithms, which more accurately estimate BDP or predict
LOS/NLOS transitions (see Section VI-A). The second one
is Active Queue Management (AQM) algorithms, which are
deployed at the gNB/UE and control the amount of the
enqueued data so that the wireless link is fully utilized while
limiting packet delay (see Section VI-B).

D. Link blockage problem

As mentioned in Section III-A, high-frequency wireless
links are subject to high outage probability and have very low
coverage. This problem is especially crucial for future THz
and LW systems, where an obstacle appearing in the LOS
path typically leads to link blockage.

This problem can be solved in different ways. The straight-
forward approach is to boost the density of gNBs to increase
the probability that at least one strong LOS path exists
between each UE and some gNB [53]. However, this approach
requires high capital expenditures and operational expenses
(CAPEX/OPEX).

In recent years, Reconfigurable Intelligent Surfaces
(RIS) [66], [67] received much attention as a possible direc-
tion to improve coverage and the quality of high-frequency
communications. In contrast to usual surfaces, e.g., walls that
scatter and attenuate the signal, RIS can focus the signal to
the intended receiver, thus, significantly increasing the signal
strength of the corresponding NLOS path. Being technology-
agnostic, much cheaper, and easier to deploy than gNBs, RIS
is considered a promising alternative approach to highly dense

Fig. 7: Taxonomy of the solutions boosting TCP & QUIC
performance in high-frequency wireless networks.

gNBs. However, many issues are still open, e.g., how to imple-
ment low-complexity calibration and instant re-configuration
of the RIS to each ongoing transmission.

While RIS is under investigation, currently, the common
approach is to use additional low-frequency links that are more
stable to environment changes (we consider other ways in
Section VII-A). In particular, the 5G specifications allow a UE
to connect to several gNBs. This feature is called dual/multi-
connectivity [68], [69] which, in theory, allows achieving
the throughput equal to the sum of the throughputs of the
corresponding wireless links. For example, in Fig. 3, when
the UE is in the NLOS state, a part of its traffic can be
forwarded to the low-frequency link, which increases the total
throughput. In case of link blockage, the low-frequency link
allows retaining connectivity but with a much lower data rate.

From the transport-layer perspective, multi-connectivity can
be used in two ways. The first way is to use multi-path
extensions of TCP [70] or QUIC [71]. These extensions allow
the TCP & QUIC sender to set up and control several physical
data paths. In such a case, the sender itself determines which
fraction of traffic is sent over each data path. The second way
is to hide from the TCP & QUIC sender that several physical
data paths exist and manage traffic balancing at the link layer.
In this case, several gNBs cooperatively manage data packet
transmission while UE makes packet ordering and duplicate
removal. As a result, the TCP & QUIC sender sees a single
aggregated data path with specific properties.

Both described above ways have a common fundamental
problem of traffic balancing between several data paths with
different capacities and RTT. To address this problem, in
this paper, we analyze in detail the existing solutions aimed
to improve TCP & QUIC performance in case of frequent
switching between high-frequency and low-frequency links.

IV. SOLUTIONS TAXONOMY

During the last three decades, IETF, wireless communi-
cations standardization bodies (i.e., 3GPP and IEEE), and
the research community proposed a vast number of solutions
improving TCP & QUIC performance in both wired and
wireless systems. The main goal of this survey is to identify the
key ideas behind the existing solutions and analyze whether

they can be directly applied or extended to boost TCP and
QUIC performance in high-frequency wireless networks.

We propose a two-dimensional classification for the con-
sidered solutions, see Fig. 7. The first dimension covers
approaches used to improve TCP and QUIC performance. The
second dimension defines the layer of the OSI protocol stack
where modifications are performed.

In the first dimension, the first approach changes the net-
work architecture (see Section V). For example, some extra
nodes can be deployed on a path between a server and a client,
or the path properties (e.g., RTT) can be changed. The second
approach includes various solutions that control the amount of
traffic transmitted between the client and the server such that
the available bandwidth is fully used without inducing con-
gestion/bufferbloat at the intermediate nodes (see Section VI).
The third approach uses multipath communications in modern
wireless systems when the client is connected to the network
via several wireless channels (see Section VII).

The second dimension for the classification is the layer
of the OSI protocol stack at which a particular solution is
implemented. Specifically, a vast number of solutions work
at the transport layer, i.e., these solutions extend or modify
the TCP or QUIC protocols or the algorithms implemented
at a TCP/QUIC sender. The other group of solutions works
below the transport layer. Such solutions indirectly influence
TCP/QUIC flow (e.g., by prioritizing or dropping packets at
intermediate nodes) in order to improve the overall perfor-
mance. Also, we consider cross-layer solutions that benefit
from interaction between the transport layer and other layers
(e.g., the link layer of a base station).

In the following sections, we consider in detail each group
of solutions and analyze whether they can address three prob-
lems identified in Section III. Since TCP is a more mature and
widespread transport layer protocol, most of the solutions were
designed for TCP. We analyze them in detail and determine
which solutions can be directly applied or extended for QUIC.
In Table II, we summarize the benefits of the considered
solutions, discuss their implementation complexity, determine
which of the three problems they can address, and list the
band-related issues.

V. NETWORK ARCHITECTURE

This group of solutions modifies network architecture
to speed up transport-layer protocols. Specifically, in Sec-
tion V-A, we consider solutions that reduce the RTT of a
path between a server and a client. Lower RTT allows a
TCP/QUIC sender to establish a connection more quickly and
promptly react to the changes in the network path properties.
In Section V-B, we consider Performance Enhancing Proxies
(PEP). PEPs are special network nodes deployed on the
path between a server and a client aimed to improve the
performance of a TCP/QUIC flow.

A. RTT reduction

One of the key factors influencing TCP & QUIC per-
formance is RTT between a server and a user. A lower

RTT speeds up the control loop, i.e., it allows the server to
quickly increase CWND during the Slow Start and Congestion
Avoidance phases and promptly react to congestion events.

As shown in Fig.3(a), in cellular systems, the whole RTT
between a server and a user consists of three main components:
(i) RTTS−PGW is the RTT between the server located on
the Internet and the Packet Gateway (PGW), i.e., the gateway
of the cellular system to the Internet, (ii) RTTPGW−gNB

is the RTT inside the core network, i.e., between the PGW
and the serving gNB, (iii) RTTgNB−UE is the RTT of the
wireless link between the gNB and the UE. Below we describe
solutions to reduce each component of the RTT.

1) Solutions to reduce RTT:
a) RTT between server and PGW: The RTT between a

server and a PGW mainly depends on the geographic locations
of these nodes. For example, the RTT between a server located
in the USA and a PGW in Europe may exceed 100 ms. To
reduce RTT, many content/service providers employ Content
Delivery Networks (CDNs). The main idea of CDN is to
deploy a distributed network consisting of many servers (called
replica servers) that are located as close as possible to end
users. Servers periodically synchronize their content (web
pages, video files, etc.) to keep them up-to-date. When a UE
wishes to download some content, it first finds the address
of the closest replica server, e.g., by using the Domain Name
System (DNS) query. Then, the UE establishes a TCP or QUIC
connection with the found replica server.

The key problem in designing CDNs is determining how
many and where replica servers should be placed to reduce
RTT with the lowest increase in CAPEX/OPEX. During the
last two decades, much research has been done in this area. We
refer the interested reader to a recent survey on this topic [72].

A network operator can further reduce RTT by caching
the most popular data inside the network (e.g., on caching
routers) [118]–[120]. When a router sees a HyperText Transfer
Protocol (HTTP) request of some content cached inside the
network, the request can be redirected to the corresponding
node. Caching routers typically have considerably smaller
cache sizes compared to replica servers. However, the most
popular data can be located close to the user than the replica
server. The major drawback of caching routers is that they
assume that the application layer data (e.g., HTTP request)
can be accessed at the routers, which is not possible with
modern end-to-end encryption protocols (e.g., TLS).

Content routers [121], an advanced version of caching
routers, mainly identify packets by content characteristics
(e.g., application header fields, content service name) instead
of IP addresses to categorize and prioritize content types.
In [122], authors propose a caching method that estimates
content popularity based on data request statistics and uses this
information for cache management. In [123], authors develop
a content caching design for 5G systems that dynamically
controls caching decisions to maximize the average requested
data rate without using the knowledge of content popularity.

At the early stage of CDN development, each service
provider had to deploy and manage its physical servers or rent

TABLE II: Summary of the solutions aimed to improve TCP & QUIC performance in high-frequency wireless networks.

Solution
Type

Modification/
Subtype Implementation Applicability

to QUIC
Slow
Start

Channel
fluctu-
ation

Link
blockage

Benefit Issues related to mmWave,
THz, and LW bands

1 RTT
reduction

Between server
and wireless
gateway [72]–
[74]

Content/service provider
deploys additional CDN
replica servers

Applicable + + - Lower RTT improves
congestion control
algorithms convergence,
thus, increasing data
download/upload rate and
reducing queueing delays

RTT reduction does not
depend on the used band

Inside core net-
work [75]

Network operator deploys
(virtual) PGWs close to
base stations

Applicable + + -

On a wireless
link [3], [76]

Network operator
uses/deploys modern
RATs that reduce data
delivery time

Applicable + + -

Increasing frequency from
mmWave to LW shortens
slots and reduces the wireless
link RTT

2 Transport-
Layer
Perfor-
mance
Enhanc-
ing
Proxies

Split
connection
PEP [77]–[79]

A TCP flow shall be
served by the same PEP
during the link
degradation/blockage

Not
applicable
because
of QUIC
header
encryption

+ + - PEPs deployed inside the
core network can obtain
information about wireless
links characteristics and
shape TCP and QUIC flow
accordingly

As moving obstacles may
block THz or LW links, the
PEP shall be deployed in the
core network and connected
with the base stations operat-
ing in various bands

Transparent
PEP [80]–[82]

Only PEPs
that do
not use
information
from QUIC
header

- + -

Implementation is indepen-
dent of the used band. How-
ever, the hardly predictable
quality of THz and LW links
requires the design of new
decision-making algorithms.

3 Congestion
Control
Algorithms

Slow Start
Modifica-
tions [83]–[86]

Implemented at endpoint
devices: servers (for DL
traffic) and mobile
devices (for UL traffic)

Applicable + - -
Different CA algorithms
aim to find a tradeoff
between throughput and
latency. However, there is
no single algorithm that
provides Pareto
improvement in all
scenarios

Existing Slow Start and CA
algorithms are too slow to
quickly adapt CWND for
highly fluctuating BDP in
THz/LW bands. Inherent to
THz and LW long link
blockage may induce
multiple RTOs and
significantly degrades the
performance.

Congestion
Avoidance Al-
gorithms [30],
[33], [87]

Applicable - + -

4 Active
Queue
Manage-
ment
(AQM)

Single-queue
AQM [88]–[95] Implemented at the link

layer of base stations
and/or mobile devices

Applicable
if QUIC
flows are
treated at
the link
layer as
congestion
responsive
flows

- + -

Provide limited queueing
delay. However, the
throughput of a bulk flow
can degrade due to rapid
wireless link capacity
degradation

Required buffer size grows
when switching from
mmWave to THz and LW
bands, which increases the
complexity and cost of base
stations

Multi-queue
AQM [96]–
[103]

- + -

Provide both high through-
put for bulk flows and
limited queueing delay for
delay-sensitive flows

5
Cross-
layer
solutions

In-device cross-
layer solutions
[104]–[106]

Endpoint devices can
exchange the cross-layer
information between
the link layer and the
transport layer protocols

Applicable + + - Control information (e.g.,
the capacity of a wireless
link) can assist CWND
selection at endpoint
devices. Proper CWND
selection allows efficiently
utilizing the available
wireless link capacity and
reducing latency

Cross-layer solutions increase
the complexity of base
stations. Thus, lightweight
versions should be designed
for low-cost THz/LW base
stations. As the frequency
grows, the wireless link
capacity becomes less
predictable, which requires
new algorithms for
transmission parameters (e.g.,
CWND) selection at
endpoints.

TCP/IP header
modifica-
tion [107],
[108]

Endpoint devices and
wireless network devices
(e.g., base stations)
exchange cross-layer
information via TCP/IP
headers

Partially,
only IP
header
fields can
be modified
(e.g., the
ECN bit)

+ + -

Special service
protocols [28],
[109], [110]

Endpoint devices and the
core network devices shall
support common service
protocols

Applicable + + -

6 Multi-
connectivity

Algorithms
balancing
traffic between
several wireless
links [69],
[111], [112]

Implemented at the link
layer of base stations and
mobile devices. Imple-
mentation depends on the
used RAT

Applicable - + +

Provide higher total
throughput by utilizing
resources of several
wireless links. Enable fast
traffic re-routing in case of
link outage

Advanced MC features (e.g.,
COMP) are hardly possible in
LW and THz bands because
of too high complexity un-
affordable to cheap THz/LW
devices. It is worth extending
3GPP Multi-radio Dual Con-
nectivity and Wi-Fi Multi-link
for THz/LW bands.

7
Multi-
path
TCP/QUIC

Congestion
Control
Algorithms for
the multi-path
case [113]–
[117]

Implemented at endpoint
devices: both servers and
mobile devices

Applicable - + +

Provide higher total
throughput by utilizing
resources of several data
paths (e.g., a mobile
device can be connected
to different RATs). Long
traffic re-routing in case of
path congestion/blockage

The performance of
MPTCP/MPQUIC
significantly degrades if
a link is frequently blocked
(e.g., in THz/LW bands).

them from other third-party companies (e.g., Akamai, Ama-
zon) and/or large telco operators. The emergence of the Net-
work Functions Virtualization (NFV) paradigm standardized
by ETSI has led to the appearance of so-called Cloud-based
CDN [72]. According to the NFV paradigm, various server
functions (storage, image/video rendering) are implemented
in software and potentially can be executed on any type of
hardware (e.g., even at a gNB having enough computational
and storage resources). NFV allows the service/CDN provider
to dynamically configure and place virtual functions based on
current user demands without the need to deploy or rearrange
existing hardware infrastructure.

A complimentary to the CDN paradigm that emerged
in recent years is Multi-access/Mobile Edge Computing
(MEC) [73], [74]. Many existing and future mobile applica-
tions (e.g., cloud gaming, cloud augmented and virtual reality,
intelligent transportation [124], [125], etc.) require a high
amount of computing resources and cannot be executed on
a mobile device. For this reason, a computation task should
be sent (in particular, by using TCP or QUIC) and executed
at some remote server. Besides computing resources, such
applications typically require very low latency to execute a
computation task (i.e., low RTT). To provide a low RTT, MEC
also uses NFV and allows the cellular operator to place virtual
functions close to the radio access network (i.e., at gNBs or
close to them).

To improve the network performance for HTTP traffic,
the network operator can deploy HTTP proxies [126]. HTTP
proxy is an intermediate server inside the operator core net-
work that either filters and redirects the HTTP request to the
original server or sends the data to the client itself if the
required data are found in the cache. Besides that, with an
HTTP proxy, two separate TCP connections are established:
(i) between the client and the proxy, and (ii) between the
proxy and the server. Similar to TCP split connection PEP
(see Section V-B), it allows speeding up Slow Start because
each TCP connection has a lower RTT. HTTP proxy can be
easily implemented since it only requires configuration of the
software (e.g., browser) at users. However, due to additional
proceeding delays at HTTP proxies, the performance in some
cases can even degrade.

b) RTT between PGW and gNB: If the content or a
virtual function is placed on a third-party server (i.e., the server
that does not belong to the operator’s core network), the corre-
sponding data flow shall traverse PGW. In 4G systems, a PGW
is a separate network node typically executed on specialized
hardware. Network operators deploy few PGWs taking into
account geographical and CAPEX/OPEX constraints. Thus,
the RTT between the gNB and PGW RTTPGW−gNB can be
comparable to RTTS−PGW . In contrast, the novel 5G core
network architecture employs the NFV paradigm according
to which PGW functions can be considered virtual network
functions and executed on any appropriate hardware [75].
Thus, if PGW functions are executed at the gNB or close
to it, we can achieve almost zero RTTPGW−gNB .

c) RTT between gNB and UE: This component of RTT
depends on the used RAT and its characteristics. In cellular
systems, the time axis is divided into slots. The base station
schedules data transmission in each slot. In 4G systems, the
slot duration is fixed and equals 1 ms. However, the transmitter
and receiver require additional time to schedule, encode and
decode data, which takes approximately four slots. In the
case of transmission failure, every additional retry takes at
least eight slots. Thus, in 4G systems, RTTgNB−UE can
reach several dozens of milliseconds, which is comparable to
RTTS−PGW and RTTS−PGW .

The 5G specifications [3] introduce a novel RAT called
New Radio (NR). In NR, the slot duration can be selected
flexibly, depending on the served traffic. In particular, the
authors of [76] propose to use short slots of hundreds of
microseconds during the Slow Start phase and demonstrate
that short slots significantly increase the data download rate.

2) Applicability to QUIC: The described above solutions
do not depend on the considered transport layer protocol
and, therefore, they improve the performance of both TCP
and QUIC. Note that QUIC establishes connections faster
than TCP (see Section II-B). Thus, QUIC reduces the overall
transmission time. However, this effect is notable only for the
case of very short data sizes (i.e., dozens of kB corresponding
to the default value of initial CWND) and high RTT [18].

3) Benefits of lower RTT and impact of various bands:
Let us analyze how short RTT improves TCP & QUIC
performance. In Fig. 4, we consider three reference RTT
values: (i) 30 ms that corresponds to a remote server, (ii) 5 ms
that corresponds to a local server or the usage of CDN, (iii)
1 ms that corresponds to the MEC or Cloud CDN approaches
when the server is located near the gNB. We can see that
low RTT values partially solve the Slow Start problem, i.e., it
increases resource utilization and reduces file download time.
Moreover, many papers (e.g., [24], [63], [127]) show that low
RTT speeds up the control loop of CA algorithms. Thus, they
promptly react to changes in link capacity and properly select
the CWND (see the results presented in Fig. 5–6).

The usage of high-frequency bands may additionally speed
up the control loop by further reducing RTT over a wireless
link as follows. The higher is the frequency, the wider are
the used channels and the smaller is the transmission range.
Consequently, the wireless devices can use higher order nu-
merology, i.e., they can shorten the slots well beyond hundreds
of microseconds mentioned in Paragraph V-A1c. Thus, the
usage of THz and LW bands may additionally accelerate the
TCP & QUIC control loop and improve their performance.

B. Transport-Layer Performance Enhancing Proxies

TCP was initially developed for wired networks in which
the data path between a server and a user is composed of
links with almost constant characteristics: capacity and trans-
mission delay. However, the rapid development of wireless
technologies, both satellite and terrestrial ones, has led to
a situation when some links (typically, last-hop links) have
unique characteristics. For example, the earlier RATs did not

Fig. 8: Performance Enhancing Proxy (PEP) architecture: (a)
split connection PEP, (b) transparent PEP.

provide link-layer retransmissions leading to packet losses be-
cause of transmission errors. However, TCP treats any packet
loss as a congestion signal and tries to reduce CWND and data
sending rate. Thus, for high transmission error rates inherent to
wireless links, TCP performance significantly degrades [128],
[129]. Another example is a satellite link that has a varying
capacity and extremely high RTT.

As mentioned in Section II-A, because of transport layer
abstraction, TCP cannot take into account the characteristics
of each link. To improve the performance of TCP in the case
when the data path contains a link with specific character-
istics, researchers proposed to employ special entities called
Performance Enhancing Proxies (PEPs). PEP is an entity
that is deployed at some network node (typically close to
links with unique characteristics) to “help” TCP endpoints
overcome losses or performance issues caused by these links.
In particular, to hide from TCP-endpoint transmission errors,
PEP deployed at a wireless link (e.g., at the base station) can
retransmit lost packets without waiting for long retransmission
from the server [128], [129].

During the last three decades, many PEP architectures
have been proposed to improve TCP performance in various
environments. IETF describes some of them in [130]. Accord-
ing to [130], PEPs operating at the transport layer5 can be
classified into two main categories: (i) split connection PEPs,
(ii) transparent PEPs.

1) Description of PEPs:
a) Split connection PEPs: As the name states, a split

connection PEP divides the original TCP connection into
two separate TCP connections: (i) from the server to the
PEP and (ii) from the PEP to the user (see Fig. 8(a)). In
such an architecture, PEP represents an intermediate server
that downloads data from the original server using the first
TCP connection and then delivers the data to the user using
the second TCP connection. Note that even with the split
connection PEP, it is possible to hide from endpoints that
the connection is split into two or more parts by properly

5PEPs operating at other layers (e.g., HTTP proxy, caching routers) that
aim to reduce effective RTT are considered in Section V-A.

modifying TCP header fields (IP addresses and ports). With
this scheme, the endpoints consider that they obtain TCP
packets from the other endpoint.

The benefits of split connection PEPs are as follows. First,
RTT on each TCP connection becomes lower than that of
the original TCP connection. Specifically, PEP can send TCP
ACKs on behalf of the user without waiting for the original
TCP ACKs from the user. However, by doing such a trick,
PEP becomes responsible for delivering the corresponding data
packet to the user and obtaining TCP ACK from it. Second, as
PEP becomes a TCP sender on a connection between the PEP
and the user, it can use any TCP congestion control algorithm
and set any value of the TCP internal parameters. For example,
a wireless network operator deploying a split connection PEP
can adjust the initial CWND.

Many studies show that split connection PEPs improve TCP
performance in cellular [77] (specifically, in 5G [78]) and Wi-
Fi networks [79]. Specifically, if the PEP uses a high initial
CWND, it can increase the file download rate by accelerating
Slow Start. The gain is especially high when the RTT between
the PEP and the server is lower than that between the PEP and
the user [78]. Because of a short RTT between the PEP and the
user, existing CA algorithms have a faster control loop to adapt
CWND to varying wireless link characteristics [24]. Moreover,
a split connection PEP installed close to wireless links (e.g., at
the gNB) can use its own CA algorithms. In [79], the authors
propose selecting CWND based on BDP estimation measured
at the mmWave link and showing that it allows efficiently
using fast varying mmWave link capacity.

The main drawback of split connection PEPs is that they
break the end-to-end semantics of TCP. When the PEP sends
a TCP ACK on behalf of the user, the server assumes that
the data are delivered to the user and removes it from its
send buffer. However, PEP cannot ensure further delivery of
this packet to the user (e.g., the user can disconnect from
the wireless network). Developers advocating the usage of
split connection PEPs state that applications using reliable
TCP transport should not rely on TCP ACKs to ensure
successful data delivery [130]. Instead, the server should rely
on specific application layer acknowledgments. For example,
when File Transfer Protocol finishes the transmission of a
file, the receiver sends a short message with the command
indicating successful file delivery.

b) Transparent PEPs: In contrast to split connection
PEPs, transparent PEPs retain end-to-end semantics. Trans-
parent PEPs are deployed on the path between a server and
a user and can affect TCP data flows as follows: (i) they can
buffer/delay TCP packets, both data and ACKs (see Fig. 8(b)),
(ii) they can retransmit some TCP packets without waiting
for the retransmission from the original server, (iii) they can
modify some TCP header fields (e.g., the size of RWND).
Transparent PEPs are typically deployed in the operator’s core
network and use the knowledge of the characteristics of the
wireless link to improve data delivery.

Many papers propose transparent PEPs to improve TCP per-
formance in 5G mmWave networks. In [80], [81], the authors

propose a mmWave PEP (mmPEP) that buffers data packets
during the NLOS channel state and dispatches them when the
channel switches to the LOS state. Also, mmPEP retransmits
packets if some of them were dropped at the gNB because
of buffer overflow or link outage. The authors of [80], [81]
demonstrate that mmPEP alleviates the bufferbloat problem
by reducing sending rate during the NLOS state and increases
channel utilization by increasing sending rate during the LOS
state. A similar idea is considered in [82] in which PEP buffers
data packets and dispatches them with the rate corresponding
to the current BDP estimation. To avoid PEP buffer overflow,
the authors of [82] recommend changing the RWND field
in TCP ACKs that are sent back to the server. Thus the
receiver makes the server reduce the rate with which it injects
packets into the network. Managing RWND at PEP to avoid
bufferbloat problems is also considered in [131], [132].

2) Applicability to QUIC: As detailed in Section II-B, the
QUIC header is encrypted, therefore, intermediate networks
nodes (e.g., PEPs) cannot: (i) split QUIC connection and (ii)
modify QUIC header. So, a very limited set of PEP-based
solutions can be adapted for QUIC. For example, the described
above mmPEP solution that buffers and dispatches packets can
be used. However, since PEP cannot reveal ACK sequence
numbers encrypted in QUIC packets, fast retransmission of
lost data packets is not possible.

3) Implementation of PEPs with various bands: In theory,
PEPs can be deployed at any intermediate node including base
stations, and used with any high-frequency band. However,
in practice, it is better to locate PEPs in the core network,
rather than at the base stations, especially in the case of Split
Connection PEP.

When a moving obstacle completely blocks the high-
frequency link between a user device and a base station –
which is especially relevant to THz and LW bands — the
connection needs to be (re)established via another base station
operating in the same band or even in a low-frequency one.
Thus, sending the data to the PEP located at the old base
station and then to the new one results in an extensive load
of the backhaul links between the core network and the
base stations. Note that, as the coverage reduces for higher
frequencies, not all mmWave base stations, to say nothing
about THz and LW, are collocated with the low-frequency
ones. Besides that, the computational power of THz and LW
base stations is limited, which also prevents the usage of PEPs
at base stations.

Another issue is that prediction of the quality of THz and
LW channels and, consequently, their capacity is more com-
plicated than for mmWave [133], which requires the design of
new decision-making algorithms for Transparent PEPs.

VI. TRAFFIC CONTROL

Traffic control for TCP/QUIC connection should provide the
highest throughput without inducing congestion/bufferbloat
at intermediate nodes. This task can be solved at different
layers of the protocol stack. First, it is solved at the transport
layer with a congestion control algorithm implemented at the

TCP/QUIC sender. In Section VI-A, we review numerous
congestion control algorithms proposed so far and determine
which of them are promising for high-frequency wireless
links. Second, intermediate nodes (e.g., base stations) can
shape the TCP/QUIC flow by dropping or prioritizing some
packets. Therefore, in Section VI-B, we analyze various Active
Queue Management algorithms. Third, in Section VI-C, we
consider cross-layer solutions that use the interaction between
the transport layer and the lower layers (e.g., the link layer of
wireless devices) to improve traffic control.

A. Congestion Control Algorithms

As detailed in Section II-A, the congestion control algorithm
is a key algorithm executed at the TCP sender that determines
the data sending rate and, therefore, the overall TCP connec-
tion performance. For long TCP connections, most of the time,
packets are transmitted without losses, and the TCP sender
tries to probe available bandwidth using either Slow Start
or CA algorithms. In particular, after TCP connection setup
or after a major congestion event, i.e., after a retransmission
timeout (RTO) expiration, the TCP sender uses the Slow Start
algorithm. During the other time, it uses the CA algorithm.
During the last decades, researchers and IETF have proposed
numerous modifications of the Slow Start algorithm and novel
CA algorithms aiming to improve TCP performance for high-
BDP links. Some of them became widely spread and are
implemented in the existing OSs, while others are still exper-
imental. In this section, we classify these numerous proposals
and analyze which of them are promising for improving TCP
performance in high-frequency wireless networks.

1) Congestion Control Improvements:
a) Slow Start modifications: The rapid increase in access

links capacities (both wired and wireless ones) from tens of
Mbps to several Gbps has led to a situation when most TCP
connections are operating over high-BDP links (i.e., links with
BDP of several megabytes). As described in Section III-B,
the Slow Start algorithm doubles CWND each RTT. In other
words, the TCP sender uses a binary search procedure to
find optimal CWND. As shown in many papers [84], [85],
[134], in high-BDP links, with a high probability, this binary
procedure overshoots the optimal CWND, leading to severe
packet loss. Consequently, the TCP sender needs to use a
long Fast Recovery procedure or even restart the Slow Start
procedure starting from 1 MSS if the RTO timer expires.

To address mentioned above problem, several Slow Start
algorithm modifications were proposed. In particular, RFC
3742 [83] describes a Limited Slow Start (LSS) modification.
The idea of LSS is to slow down CWND growth when
CWND reaches a given threshold LSSThresh. By default,
LSSThresh is set to 100 MSS. After reaching LSSThresh,
the TCP sender starts increasing CWND linearly, i.e., by
LSSThresh/2 on each RTT. The main drawback of LSS is
that it uses a fixed value of LSSThresh for all scenarios.
In fact, LSSThresh should be adaptively selected depending
on the actual bottleneck link BDP that is unknown at the TCP
sender.

A more sophisticated solution called Hybrid Start (HyStart)
is proposed in [85]. In contrast to LSS, HyStart tries to
adaptively determine the time moment when the bottleneck
link becomes congested and, thus, exit Slow Start earlier
without high packet loss. To detect congestion the TCP sender
measures the following variables: (i) the interval between con-
sequently received ACKs (called ACK train length), and (ii)
RTT estimation for each packet. When one of the two variables
starts increasing quickly, the TCP sender switches from Slow
Start to CA algorithm. Simulations and experimental results
show that HyStart provides sufficiently low false-positive con-
gestion detection probability. Thus, HyStart often exits Slow
Start when CWND reaches BDP without significant packet
loss [85]. HyStart is currently implemented and used by default
in Linux-based OSs. Recently, HyStart++ modification was
proposed that combines HyStart and LSS [86]. Specifically, if
HyStart++ detects high RTT growth, the TCP sender switches
from Slow Start to LSS.

As the described above solutions aim to avoid massive
packet losses during Slow Start, they are very conservative
in increasing CWND, e.g., some of them slow down CWND
growth when it approaches BDP. Therefore, these solutions do
not address the Slow Start problem described in Section III-B.

b) Congestion Avoidance Algorithms: As mentioned in
Section II-A, in case of a low packet loss rate, most of the
time, the TCP sender is executing the CA algorithm. The
goal of the CA algorithm is to smoothly increase CWND
to fully use the available bandwidth while reducing CWND
when the bottleneck link becomes congested. So far, more
than a hundred CA algorithms have been developed to improve
TCP performance for different types of links (wired, wireless,
satellite) and network scenarios. In this section, we follow a
taxonomy of CA algorithms proposed in [30] (other recent
taxonomies and analysis of exiting CA algorithms can be
found in [33], [87]). We describe the main design principles
of different types of algorithms, provide examples of the most
widely used algorithms and analyze which of them provide
better performance in high-frequency wireless networks.

Loss-based algorithms were proposed in the earlier 1980s
following the advent of TCP. As the name states, they increase
CWND until the buffer at the bottleneck link overflows, and
the TCP sender detects packet losses. In other words, they
consider packet loss as an indication of congestion.

RFC 5681 [37] (i.e., the IETF document describing the
standard architecture of TCP congestion control) proposes the
so-called Reno algorithm as a reference CA algorithm. Reno
implements the AIMD principle described in Section II-A:
each RTT, Reno increases CWND by one MSS until the first
packet is lost. When Reno detects a packet loss, it halves
CWND, recovers lost packets (i.e., runs the Fast Recovery
procedure), and again starts linearly increasing CWND. Thus,
CWND follows a sawtooth-like function of time. In [135],
IETF proposed the modification of Reno called NewReno that
improves the performance during the Fast Recovery procedure.
Currently, NewReno is considered a reference/standard CA
algorithm that is implemented in all existing OSs.

With the appearance of high-BDP links, the researchers
found that the NewReno linear increase function is too slow to
reach BDPs of several megabytes. Therefore, many new loss-
based CA algorithms for high-BDP links were proposed, e.g.,
HighSpeed [136], BIC [137], and CUBIC [38]. As detailed in
Section III-C, CUBIC increases CWND as a cubic function
of time. The CWND growth function has two regions: (i) flat
region where CWND is close to the current BDP estimation
and (ii) fast-increasing region where CWND is far from
that estimation (see Fig. 5(b)). Because of its simplicity and
other useful properties (e.g., RTT-fairness [138]), CUBIC is
currently a default CA algorithm used in almost all existing
OSs: Linux, iOS, and Windows starting from Windows 10.

Delay-based algorithms use RTT statistics to detect con-
gestion. Specifically, when the bottleneck link becomes con-
gested, its buffer starts growing, which increases the overall
RTT. So, in contrast to loss-based algorithms, this type of
algorithms can detect congestion earlier and, therefore, reduce
or even avoid packet losses.

The simplest example of delay-based algorithms is called
Vegas [139]. Vegas keeps a variable RTTmin that is the
minimal measured RTT (typically, the minimal RTT is ob-
served after TCP connection setup). For the current RTT
measurement RTT , Vegas estimates the size of the bottleneck
buffer as ∆ = CWND(1−RTTmin/RTT). If ∆ is greater
than threshold ∆high the bottleneck link is considered to be
congested, and CWND is decreased by 1 MSS. If ∆ is lower
than threshold ∆low, the bottleneck link is underutilized, and
CWND is increased by 1 MSS. In other cases, CWND is
not changed. During the last decades, several enhancements
of Vegas (namely, Vegas-A [140], Vegas-V [141], NewVe-
gas [142]) and more sophisticated delay-based algorithms,
such as Verus [143] and Nimbus [144] have been proposed.

Delay-based algorithms have several advantages, such as
low delay and low probability of packet loss. However, com-
pared with loss-based algorithms, delay-based algorithms are
too conservative: if two TCP flows that use loss-based and
delay-based CA algorithms share the same bottleneck link
buffer, the loss-based TCP flow will eventually occupy the
whole buffer reducing the throughput close to zero for delay-
based TCP flows. Since more aggressive loss-based algorithms
were designed and implemented historically first, delay-based
algorithms did not become widely spread. An interesting ex-
ception is Low Extra Delay Background Transport (LEDBAT),
specifically developed by IETF [145] for software updates
and BitTorrent applications. The traffic of these applications
has low priority and can occupy resources based on the left-
over principle. So, the described properties of delay-based
algorithms exactly fit the requirements of background traffic.

Hybrid algorithms combine the benefits of loss-based and
delay-based approaches. A well-known example of hybrid
algorithms implemented in Windows is Compound TCP [146].
Compound TCP keeps two congestion windows: (i) a loss-
based window that is managed by the Reno algorithm and
(ii) a delay-based window that is controlled by a Vegas-
like algorithm. The resulting CWND is the sum of the two

windows. When the TCP sender detects a high increase
in RTT, it reduces the delay-based CWND component and
behaves similarly to Reno. Otherwise, CWND increases faster
than Reno, improving the utilization of high-BDP links.

Another example of hybrid algorithms is TCP Illinois [147].
Similar to Reno, it uses the AIMD principle. However, instead
of fixed additive increase and multiplicative decrease factors,
it varies these factors based on the measured RTT. Other
examples of hybrid algorithms include TCP Veno [148],
and Yet Another Highspeed TCP (YeAH-TCP) [149]. These
algorithms are still experimental in contrast to the mentioned
above algorithms, which are implemented in Linux.

Capacity-based algorithms implement an idea to estimate
the bottleneck link capacity C and the minimal RTT RTTmin.
Given these measurements, CWND can be set to the following
estimation of BDP: CWND = C ·RTTmin. While RTTmin

can be easily obtained from RTT measurements, it is difficult
to obtain an accurate estimation of C using local measure-
ments available at the TCP sender.

An example widely studied in the literature is West-
wood [150]. Westwood estimates C using the series of ACK
reception times Ti and the number of bytes Bi acknowledged
by each ACK. Since ACK is generated after reception of
the corresponding data packet, the capacity sample can be
estimated as Ci = Bi/∆Ti, where ∆Ti = Ti − Ti−1 is
the interval between two consequent ACKs. To smoothen the
high fluctuation of capacity samples, Westwood uses a low-
pass filter. While the described above approach is easy to
implement, it has several drawbacks that can induce signif-
icant errors in estimated bottleneck capacity. First, ACKs that
traverse the reverse path can experience additional delays (e.g.,
processing and queuing delays at intermediate nodes) that bias
the distribution of ∆Ti. Second, in wireless systems, several
ACKs can be aggregated into one long packet, which results
in the so-called ACK compression problem, i.e., almost zero
∆Ti samples. To address these problems, a modification of
Westwood called Westwood+ was proposed in [151]. The idea
of Westwood+ is to consider the ACK arrival process during
a sufficiently long time interval (e.g., during one RTT) to
obtain average estimation Cavg(S) =

∑
i∈S Bi/

∑
i∈S ∆Ti,

where S is the set of ACKs received during one RTT. While
Westwood+ efficiently solves the ACK compression problem,
its performance is still influenced by possible congestion at the
reverse path, which biases the ACK arrival times and causes
wrong estimations of bottleneck link capacity [152].

Another example of capacity-based algorithms recently de-
veloped by Google is called Bottleneck Bandwidth and Round-
trip propagation time (BBR) [153]. Most of the time, BBR
operates in the steady state by setting CWND to the product of
measured C and RTTmin. To measure C, BBR periodically
switches to the ProbeBW state, in which it inflates CWND
to probe higher link capacity. In turn, to update RTTmin,
BBR periodically switches to the ProbeRTT state, in which it
significantly reduces CWND to decimate the bottleneck queue.

In recent years, BBR received much attention from
academia and industry. Real-life experiments performed by

Google [153] demonstrate that in contrast to loss-based algo-
rithms (e.g., CUBIC), BBR fully uses the available capacity
without inducing the bufferbloat problem. However, many
studies report open issues among which: (i) high packet loss in
the presence of short buffers [154], (ii) unfair behavior to ex-
isting loss-based TCP flows [155], [156], (iii) low performance
in wireless networks with high user mobility [157], [158]. Note
that the third issue is relevant to high-frequency wireless links
that intrinsically have fast varying capacity. Some issues were
addressed in BBR version 2 [159]. Currently, BBR is under
wide area testing in Google services such as YouTube and
Google Cloud.

ML-based algorithms use Machine Learning (ML) meth-
ods to improve TCP congestion control. Most of the algo-
rithms proposed so far (e.g., QTCP [39], TCP-RL [160],
SmartCC [161]) are based on Reinforcement Learning (RL)
approach. According to this approach, the TCP sender, called
the agent, can make actions (e.g., send packets, or change
CWND). In response to these actions, the environment (i.e.,
the network) provides a reward that can be measured in terms
of throughput and/or RTT. The agent tries to find an optimal
policy (i.e., a sequence of actions) providing the maximum
reward. The key problem in designing efficient RL-based CA
algorithms is how to define the set of possible actions and
select a proper reward function. Besides that, the algorithm
should quickly learn, i.e., adapt the optimal policy for fastly
varying network conditions. We refer the interested reader to
a recent survey [162] for a detailed analysis of the existing
ML-based algorithms.

We should note that the research on ML-based CA al-
gorithms is still in its infancy. While the authors report
the advantages of the proposed ML-based algorithms with
respect to the legacy rule-based algorithms such as CUBIC
and NewReno, their analysis is based on pure simulations and
is limited to specific scenarios. Thus, more effort is required
to implement and validate novel algorithms in real systems,
prove their stability and ensure their fair coexistence with the
legacy algorithms.

c) Evaluation of CA algorithms: The research on CA
algorithms has been continuing for over thirty years. The
appearance of ultra-high capacity mmWave links with the
unique properties described in Section III-A has led to a new
cycle of research interest in CA algorithms providing both
high throughput and low latency over such links. In particular,
many papers analyze and compare the performance of the
existing CA algorithms in mmWave networks using analyt-
ical models [25], [127], simulations [24], [26], [33], [63],
[64], and channel traces from real mmWave networks [163].
Other papers propose new CA algorithms, e.g., based on
ML approaches that try to predict the behavior of mmWave
channels [41], [164]–[166].

The results presented in these studies show that there is
no clear “leader” that provides the best performance in all
scenarios. There is a tradeoff between throughput and latency.

To demonstrate this tradeoff, we use the NS-3 simulator that
contains the models of the most widely used CA algorithms.

(a)

(b)

Fig. 9: Evaluation of CA algorithms: (a) average throughput,
(b) 90th percentile of latency. RTT between server and gNB
is 30 ms.

We run a scenario in which the mmWave link between gNB
and UE experiences periodic LOS/NLOS transitions due to
periodically appearing obstacles (see the detailed description
in Section III-C). In Fig. 9, we plot the average throughput
of a bulk TCP flow and the 90th percentile of the latency
experienced by packets generated by the ping application. We
can see that, for example, the CUBIC algorithm provides high
throughput for all the considered scenarios (obstacle periods),
but it suffers from the bufferbloat problem. In contrast, Vegas
and YeAH achieve low latency, but their throughput signifi-
cantly degrades. Some algorithms can provide a good balance
between throughput and latency for some scenarios (e.g., see
BBR performance for low and high obstacle periods), but their
performance degrades for other scenarios (see high latency
of BRR for 5s period). Thus, it is still an open research
question whether it is possible to design a CA algorithm that
can achieve Pareto improvement in terms of throughput and
latency over highly varying mmWave links.

In the following sections, we show that even with the exist-
ing CA algorithms, it is possible to achieve high throughput
and address the bufferbloat problem using solutions working
at other layers of the protocol stack, e.g., active queue man-
agement working at the link layer and cross-layer solutions.

2) Applicability to QUIC: As mentioned in Section II,
TCP and QUIC have similar congestion control algorithm
architecture, thus, a plethora of congestion control algorithms
developed for TCP and described in the previous section can

be easily adapted for QUIC. We refer to Section II-B4 for the
detailed comparison of TCP and QUIC congestion control.

3) Impact of various bands on CCA: High-frequency bands
increase throughput by several orders of magnitude (e.g., up
to 100 Gbps for THz band [133]). As the end-to-end latency
cannot be reduced by the same order, TCP & QUIC will
experience much higher BDP that quickly fluctuates with time,
especially for THz and LW bands. As the existing Slow Start
and CA algorithms are too slow to quickly adapt CWND,
many channel resources will be underutilized (see Fig. 4).

Apart from that, long link blockages, which are inherent
to THz and LW, may induce multiple RTOs and significantly
degrade performance. Note that this problem is less relevant
to mmWave bands, in which the NLOS path can still provide
considerable throughput.

The mentioned problems can be addressed by: (i) multi-
connectivity solutions described in Section VII-A that allow
aggregating THz/LW links with low-frequency ones, and (ii)
cross-layer interaction between the transport layer and the
link layer of high-frequency base stations as discussed in
Section VI-C.

B. Active Queue Management

The results presented in Section III-C show that TCP
performance significantly depends on how the bottleneck link
queue is managed. The simplest queuing algorithm, First-In-
First-Out (FIFO) with Tail Drop policy, works as follows. A
device keeps a single queue (buffer) having a limited size,
either in bytes or in the number of packets. When the device
accesses the medium (wired or wireless), it pulls packets from
the head of the queue. Packets arriving from the upper layers
are put at the end of the queue. The queue length grows if
the device pulls packets from the queue at a rate lower than
the packet arrival rate. Eventually, no free space is left in
the queue, and newly arriving packets are dropped. Currently,
vendors prefer to keep large buffers on wireless devices. For
example, as demonstrated in Fig 5, this strategy allows fully
utilizing the available wireless link capacity. However, when
the link capacity suddenly drops (e.g., because of LOS to
NLOS transition), packets stay too long in the queue leading
to the bufferbloat problem. The researchers proposed various
Active Queue Management (AQM) algorithms to address this
problem. In contrast to the simple “passive” FIFO Tail Drop
algorithm, AQM algorithms can: (i) start dropping packets well
before the queue overflows, which is treated by responsive
TCP flows as congestion indication, (ii) shape the load of
unresponsive UDP flows, (iii) prioritize packets of interactive
applications over bulk TCP flows, etc. During the last three
decades, many AQM algorithms have been developed. Most of
them have been implemented in Linux as part of the so-called
Traffic Control Layer (TCL). Below, we shortly describe the
TCL architecture and classify various AQM algorithms.

1) Approaches to managing queues:
a) TCL architecture: As Fig. 10 shows, TCL operates

between the network layer (i.e., the IP protocol) and the link

Fig. 10: Traffic control layer architecture.

layer of a network device. So, it is referred to as a Layer 2.5
(L2.5) solution and it works as follows.

Consider a device with RAT-specific links. The device keeps
one or several hardware queues6 from which it can immedi-
ately pull packets when the device accesses the medium. These
queues are typically implemented in hardware as FIFO queues.
The queue sizes are selected such that the amount of buffered
data is enough to use the capacity of the corresponding link
when the device asynchronously accesses the medium without
inducing additional delays. All other packets that cannot be
accommodated in hardware queues are kept at TCL.

TCL can be considered as intermediate packet storage be-
tween the network layer and the physical interface. TCL keeps
software queues that are managed according to some AQM
algorithm (in Linux notation, it is called queuing discipline).
When a packet arrives from the network layer, it is put into
a specific software queue or dropped depending on the used
queuing discipline.

The network device monitors the occupancy of the hard-
ware queue(s). When it detects a free space in a hardware
queue, it calls the dequeue function of the corresponding
queuing discipline that performs the following actions. First,
it selects the software queue(s) from which it pulls packets
(i.e., executes the scheduling function). Second, the queuing
discipline decides which packets to forward to the network
device and which packets to drop (e.g., because of their
lifetime expiration).

AQM algorithms proposed so far differ in how many queues
they use and how they implement enqueueing and dequeuing
functions. Let us consider them in more detail.

6For example, Wi-Fi devices keep four queues having different priorities
to access the wireless medium.

b) Single-queue algorithms: In this type of algorithms,
packets of different flows share a single software queue and
are processed according to the FIFO principle. Thus, the AQM
algorithm should only decide when and which packets to drop.

One of the oldest AQM algorithms designed to improve
TCP performance is Random Early Detection (RED) [167].
As the name states, RED starts to drop packets earlier than
the queue becomes full. Specifically, each incoming packet is
dropped with some probability that depends on the average
queue length. When the queue is almost empty, this prob-
ability is equal to zero. Starting from some queue length, it
increases linearly. When the queue is full, packets are dropped
with a probability equal to one. In contrast to Tail Drop,
RED provides earlier congestion signals to the TCP sender
that allows reducing the TCP sending rate without inducing
massive packet losses. The main problem of RED is that
its performance is significantly influenced by the parameters
that determine the slope of the linear drop function. Numer-
ous modifications of RED were proposed (see the detailed
overview in [88]), among which: (i) Adaptive RED [89] that
dynamically selects the parameters of the drop function, (ii)
Nonlinear RED [90] in which linear function is replaced with
quadratic one. However, these modifications have not become
widespread because of their unpredictable performance in
terms of queuing delay and unfairness issues between TCP
flows that use different CA algorithms [91].

To provide limited queuing delay Controlled Delay Man-
agement (CoDel) algorithm was recently developed [92], [93].
For each packet, CoDel estimates its queuing delay based on
the timestamp added to the packet by the enqueuing function.
CoDel monitors the minimal queuing delay Dmin observed
during time interval T . Initially, T is set to 100 ms. When
Dmin becomes greater than the target queuing delay Dtar (by
default, Dtar = 5 ms), CoDel switches to a dropping state.
During this state, CoDel drops a packet at the end of each
interval T (N) = T/

√
N , where N is the counter increased

after each drop. CoDel exits the dropping state when Dmin

goes below Dtar, and resets N to one.
The benefit of the described above CoDel dropping rule is

that it allows signaling TCP sender(s) to reduce load without
losing many packets. However, this rule is too gentle for
unresponsive flow, e.g., UDP flows that do not implement
any CA algorithm. To solve this problem, the researchers
have proposed COBALT (CoDel and BLUE Alternate) that
combines CoDel and BLUE algorithms [94]. First, COBALT
changes the behavior of CoDel when it exits the dropping state.
Instead of resetting N to one, it gradually decreases N after
each interval when Dmin is below the target delay. Second,
COBALT uses an additional dropping rule that follows the
BLUE algorithm. The BLUE algorithm [95] drops packets
with some probability p that depends on the queue length. If
the queue is empty for a long time interval, p is set to zero. If
during a fixed interval TBLUE (by default, TBLUE = 100 ms)
packets are dropped because of the queue overflow, p is
increased by some fixed increment. Otherwise, if no packets
are dropped during interval TBLUE , p is decreased by some

fixed decrement. Authors of COBALT show that it effectively
combats the bufferbloat problem in case of unresponsive UDP
flows while providing the same performance as CoDel for
responsive TCP flows.

The main problem of single-queue AQM algorithms is that
all flows, even if they require different service rates, share the
same queue. Thus, rarely arriving packets of delay-sensitive
flows should wait until packets of other flows (e.g., a bulk
TCP flow) are served.

c) Multi-queue algorithms: Multi-queue algorithms use
several queues to separate packets of different flows. In
addition to the drop function, multi-queue AQM algorithms
define specific classification and scheduling functions.

The classification function determines in which queue an
incoming packet shall be put. Typically, it is based on the
packet headers, e.g., IP and UDP/TCP headers. Several ap-
proaches are used to classify packets. The first one is to
define several traffic classes, e.g., based on the Type of Service
(ToS) field of the IP header. The classification function simply
determines the relation of traffic class to a specific queue. The
second approach used in modern AQM algorithms, e.g., in a
multi-queue variant of CoDel called Flow Queue CoDel (FQ-
CoDel) [96], is to allocate a separate queue for each flow.
To reduce complexity, this approach is typically implemented
as follows. A high number of queues (e.g., 1024) is created.
Based on pair of source and destination IP addresses and pairs
of TCP/UDP ports, a hash function determines a queue for
a packet. Assuming a low number of concurrent flows and
low collision probability of the used hash function, each flow
occupies a separate queue. The scheduling function determines
the order in which packets are pulled from different queues.
Existing scheduling algorithms can be split into three groups.

The first one, called Fair Queueing (FQ), aims to provide
equal shares of the link capacity to all queues. For exam-
ple, FQ-CoDel uses the Deficit Round Robin (DRR) sched-
uler [97], [98], which dequeues the same number of bytes from
each active queue within a given time interval. Other examples
of FQ-based schedulers are Stochastic Fairness Queueing [99]
and Quick Fair Queueing [100].

The second group is called Strict Priority Queueing
(SPQ) [101]. With SPQ, all queues are sorted according to
their priority that is determined, for example, based on the
served traffic class. A non-empty queue with the highest
priority is served first. Only when a high-priority queue is
exhausted the next queue having a lower priority is served.

The third group, called Weighted Fair Queueing
(WFQ) [102], [103] is an extension of FQ that allows
various queues to obtain different shares of the link capacity.
Specifically, the share of the link capacity obtained by a
queue is proportional to the weight assigned to this queue
that, in turn, is determined based on the served traffic Quality
of Service (QoS) requirements. As intermediate nodes (e.g.,
base stations, routers) typically have no information about
QoS requirements of various flows, FQ is the most widely
used scheduler type for serving TCP traffic.

(a)

(b)

Fig. 11: Evaluation of AQM algorithms: (a) average through-
put, (b) 90th percentile of latency. RTT between server and
gNB is 30 ms.

The benefit of multi-queue AQM algorithms with the FQ
scheduler is that they provide short-term fairness between TCP
flows that generate different amounts of traffic. For example,
if a bulk TCP flow generated by a video application and an
interactive TCP flow generated by a messenger share the same
queue, a packet from the interactive TCP flow is put at the end
queue. Thus, the packet shall wait until all currently enqueued
packets from the bulk TCP flow are served. If different queues
are used for the flows, a packet from the interactive TCP flow
is served almost instantly. Thus, multi-queue AQM algorithms
are promising to avoid the bufferbloat problem for a mixture
of bulk and interactive TCP flows.

2) Evaluation of AQM algorithms: In Fig. 11, we compare
the performance of various AQM algorithms. Similar to Sec-
tion VI-A, we consider a scenario in which a mmWave link
between a gNB and a UE experiences periodic LOS/NLOS
transitions. Two flows are transmitted in downlink: (i) a bulk
TCP flow for which we measure the average throughput,
and (ii) an interactive TCP flow periodically generating small
packets for which we measure one-way transmission delay.
Unless otherwise explicitly stated, the size of the buffer at
gNB is set to 30 MB, which is higher than the maximum
BDP. The TCP sender uses the CUBIC CA algorithm.

Let us first consider the results for the single-queue AQM
algorithms that put packets of different flows in the same
queue. Depending on the buffer size, the Tail Drop policy
either maximizes throughput but suffers from the bufferbloat

problem or provides low latency and low throughput (see the
results for 1 MB buffer). To keep queuing delay low, other
algorithms (RED, CoDel, COBALT) drop several packets
when the link transits to the NLOS state, significantly reducing
CWND for a bulk TCP flow. However, when the link returns
to the LOS state, the amount of buffered data is not enough to
fully use the available link capacity. Similar observations for
single-queue AQM algorithms were reported in other studies
(e.g., see [26], [63], [168], [169]).

In contrast to these studies, we also evaluate multi-queue
AQM algorithms: (i) FQ-CoDel, which keeps separate queues
for different flows and applies CoDel packet dropping policy
for each queue, (ii) FQ-Tail Drop, which is a modification of
FQ-CoDel with Dtar set to infinity (i.e., packets are dropped
only when the total amount of enqueued data exceeds buffer
size). We can see that the usage of separate queues provides
minimal delay for the interactive flow. As for bulk TCP flow,
its throughput is similar to that of the corresponding single-
queue algorithm. Thus, proper configuration of multi-queue
AQM algorithm at the bottleneck link can provide Pareto
improvement in terms of throughput and latency compared
to the cases of single-queue AQM algorithms and various CA
algorithms that can be used at TCP sender (see also the results
in Fig 11). It should be noted that in cellular systems, the gNB
already keeps separate queues for each UE and use specific
schedulers to share wireless channel resources between UEs.
However, TCP flows belonging to the same UE are typically
put in a single FIFO queue leading to the intra-UE bufferbloat
problem. As shown above, a promising solution is to use
the FQ-Tail Drop queuing discipline that provides short-term
fairness between different flows of the same UE.

3) Applicability to QUIC: Since AQM is implemented at
the link layer, there is no direct dependency between the used
algorithm and the transport layer protocol. In other words, the
same algorithm can be applied for both TCP flows and QUIC
flows that are encapsulated in UDP flows. RFC 7567 [170]
providing IETF recommendations regarding AQM divides data
flows into two categories: (i) TCP-friendly flows that reduce
their sending rate in response to congestion notifications (e.g.,
packet drops), (ii) non-responsive flows that do not adjust
its rate in response to congestion notification. QUIC flows
correspond to the first category. Thus, the AQM algorithms
designed for TCP can be applied to QUIC. Moreover, a QUIC
flow can be identified by the destination port field in the UDP
header. Specifically, port 443 is assigned for QUIC.

4) Impact of high-frequency bands on AQM: As high-
frequency bands increase BDP, the AQM approaches require
larger buffers (e.g., an order of GB for THz/LW bands), which
increases the complexity of base stations. However, the small
coverage, especially for THz/LW bands, and a high density
of base stations limit their cost and complexity. One of the
approaches to solve this problem proposed in [171] is called
Virtual AQM. With this approach, a part of the buffer can be
kept at other devices located close to base stations. However,
the open question is how to manage buffers distributed over
several nodes. Another approach is to use cross-layer solutions

that adapt CWND based on the current estimation of BDP. If
CWND is selected close to BDP, the traffic and link quality
fluctuations can be smoothed with the small buffer.

C. Cross-layer solutions

As mentioned in Section II-A, because of transport layer
abstraction, the TCP sender considers the whole path between
endpoints as a black box and does not know the characteristics
of each intermediate link. Thus, the TCP sender can use
only local measurements to select transmission parameters
(e.g., CWND and SSThr) and employ sophisticated congestion
control algorithms considered in Section VI-A to adapt these
parameters to varying characteristics of specific intermediate
links (e.g., mmWave links).

One of the promising ways to improve TCP performance
widely studied in recent years is to use cross-layer interaction.
The idea is to obtain additional measurements at intermediate
network nodes (e.g., router, gNB) operating at the physical/link
layer of the protocol stack and provide them to the TCP sender
operating at the transport layer. The main problem is how to
organize such cross-layer interaction between different layers
of the protocol stack, especially when these layers are operat-
ing at different physical devices. Below, we consider three
approaches to provide cross-layer interaction: (i) in-device
interaction, (ii) interaction via TCP/IP header modifications,
and (iii) usage of special service protocols.

1) Cross-Layer Approaches:
a) In-device interaction: With in-device cross-layer in-

teraction, the TCP sender is located on a device (e.g., UE
or gNB) that can directly measure the characteristics of the
wireless link. In particular, several works [104]–[106] consider
uplink data transmission when a UE is the TCP sender.
In such a case, it is possible to deliver physical and link-
layer measurements (e.g., link capacity) to the transport layer.
Assuming that the wireless link is a bottleneck, the TCP sender
can set CWND to the current BDP estimation and, thus, fully
use the available link capacity.

In the case of a downlink transmission, the authors of [79]
propose to use a split PEP approach according to which the
TCP sender of the second TCP connection (see Fig. 8(a)) is
located at the gNB or close to the gNB. Similar to the uplink
case, it can use channel measurements available at the gNB
to estimate BDP and properly select CWND.

b) Interaction via TCP/IP header modification: Another
way to implement cross-layer interaction is to use TCP/IP
headers. With this approach, the control information, such
as congestion notification or link capacity measurements, can
be delivered to a TCP sender using special fields in the
TCP/IP headers of the corresponding data and ACK packets.
The intermediate network devices can modify these fields to
include the actual control information.

A simple example of such cross-layer interaction is the
Explicit Congestion Notification (ECN) mechanism specified
in [107]. If endpoint devices and an intermediate device sup-
port the ECN mechanism, the intermediate device can signal
congestion events to the TCP sender by setting appropriate bits

in the TCP/IP headers without packet dropping. The support
of the ECN mechanism by all intermediate devices allows
avoiding packet losses and performance degradation caused by
excessive retransmissions of lost packets during the execution
of Fast Retransmit and Fast Recovery algorithms [172].

Another existing example of “in-flow” cross-layer interac-
tion is the Quick-Start mechanism specified in [108]. Quick-
Start uses the TCP options that are special containers pig-
gybacked to the TCP header. The idea of the Quick-Start
mechanism is to determine the bottleneck link capacity during
the TCP connection establishment phase. Specifically, in the
first packet of a TCP connection, the TCP sender adds the
Quick-Start Request option that contains the value of the
expected data sending rate (typically, it is set to a sufficiently
high value). The intermediate device that receives a packet
with the Quick-Start Request option checks whether it can
support the requested sending rate. If the corresponding link
data rate is lower than requested, it can reduce the value indi-
cated in the Quick-Start Request. Thus, hop-by-hop traversing
the path to the TCP receiver Quick-Start Request option will
contain the value of the bottleneck link data rate. The TCP
receiver sends back the obtained minimal value of the sending
rate in the Quick-Start Response option. As the result of the
described procedure, the TCP sender obtains the data rate
of the bottleneck link, and the estimation of RTT needed to
calculate BDP. Further, the obtained value of BDP can be used
as the initial value of CWND and SSThr.

The authors of Quick-Start note that usage of a high initial
value of CWND can cause the transmission of a burst of
packets that may lead to massive packet losses. To avoid this
problem, they recommend using the TCP pacing feature [173]
according to which packets are sent with some delay. Specif-
ically, the delay between two consequent packets can be
selected as the ratio of RTT and the selected packet sending
rate. Authors of Quick-Start show that implementation of this
mechanism can address the Slow Start problem and increase
resource utilization in networks with high BDP-links [174].

Although the described above mechanisms have clear bene-
fits, they have not obtained wide deployment for the following
reasons. First, to make these mechanisms work, all or almost
all intermediate devices on the Internet shall support novel
mechanisms, which is impossible due to high CAPEX/OPEX
and wide heterogeneity of Internet devices, their vendors, and
owners. Second, as detailed in [35], some intermediate devices
called middleboxes (e.g., old firewalls) can modify TCP/IP
headers by cutting off unrecognized/unsupported options or
even can drop such packets, thus, vanishing all the benefits
from the novel mechanisms.

c) Interaction via special service protocols: One of the
approaches to avoiding the harmful influence of middleboxes
is to use special service protocols. These protocols create
a tunnel (e.g., a TCP connection) between two devices that
can be used to transmit cross-layer information. An example
of such a cross-layer protocol called xStream is proposed
in [109]. xStream enables the communication between a 5G
system and endpoint devices (e.g., a UE and a server). Specif-

gNB

Server
Client xNode

xNode

Core network

Control
connection

Control
connection

Data connection

UE

Fig. 12: xStream architecture [109]

ically, an operator of a 5G system deploys in its core network
a special logical node called xNode (see Fig. 12). With a
special DNS query, endpoint devices can obtain the network
address of xNode and establish a TCP connection with xNode.
This TCP connection can be used to exchange various types
of control information between the 5G system and endpoint
devices. For example, xNode can gather information about
the channel capacity of the gNB serving a particular pair of
endpoints and send this information to them. Thus, similar to
Quick-Start, a TCP sender located at the server can use this
information to estimate BDP and properly select CWND and
TCP pacing rate. A similar approach is considered in [110].
However, the authors do not describe the details of the used
service protocol.

The benefit of the described above approach based on novel
service protocols, such as xStream, is that it does not require
all the devices on the data path to support this novel protocol.
Thus, this approach has significantly lower implementation
complexity than the approach introducing new TCP options.
Moreover, information transmitted over a separate control TCP
connection is protected from middlebox influence. However,
the information provided by xNode can be limited to specific
links (e.g., wireless links) that are assumed to be bottlenecks.
Thus, the TCP sender shall still use legacy congestion control
algorithms. For example, it shall react to packet losses that
may occur outside the 5G system. So, the obtained control
information should be considered as a recommendation to
assist CWND choice rather than direct command.

2) Applicability to QUIC: As QUIC does not allow inter-
mediate nodes to modify its headers, the solutions described in
Section VI-C1b based on the cross-layer information provided
in the TCP option field cannot be adapted for QUIC. However,
the ECN mechanism that uses the ECN flag in the IP header
is supported by QUIC [16]. The in-device interaction and
interaction between wireless devices and QUIC sender/receiver
requires the design of special cross-layer protocols. An exam-
ple of such a protocol can be found in [28].

3) Benefits and drawbacks of cross-layer solutions with
various bands: Let us consider how cross-layer solutions can
improve TCP & QUIC performance. Figure 13 shows the
results of an experiment with a single mmWave gNB serving
several UEs downloading files. The file size is a random
variable drawn from a truncated lognormal distribution with
the average value of 10 MB, minimal and maximum values

(a)

(b)

Fig. 13: Evaluation of solutions for the Slow Start problem:
(a) RTT=5 ms (b) RTT=30 ms.

of 1 MB and 100 MB, respectively. We plot the average file
download rate, defined as the ratio of the file size and the
total time required to download the file. We also consider an
“Upper bound” case in which the server uses infinite initial
CWND, and all intermediate devices have infinite buffers. In
this case, after a connection setup, a file is immediately put into
the gNB buffer without a long Slow Start procedure. We can
see that the cross-layer information provided by the xStream
protocol significantly increases file download rate close to
the upper bound. The gain becomes even higher for higher
RTT between the server and the gNB. For comparison, we
also plot the results for the split PEP solution. We can see
that split PEP increases the download rate when the RTT
between the server and the gNB is low, and it does not
change the download rate when the RTT is high. So, we can
conclude that the implementation of novel service protocols
that provide additional cross-layer information is a promising
way to address the Slow Start problem and improve TCP &
QUIC performance over high-frequency wireless links.

The main drawback of cross-layer solutions is their com-
plexity. Switching from mmWave to THz/LW bands signif-
icantly increases the throughput, which means that the base
station requires to process more and more packets, e.g., parse
and modify their TCP/IP headers.

Many cross-layer solutions are based on the estimation
of the wireless link capacity which is then provided to the
transport-layer protocols to select transmission parameters
(e.g., CWND). Since this information is delivered with some

delay it may become outdated. This problem is especially
important for THz/LW bands in which throughput can quickly
fluctuate by several orders of magnitude. Thus, an important
problem for future research is how to design effective trans-
mission parameters selection algorithms in case the input data
(e.g., the link throughput) significantly changes with time and
is hardly predictable.

VII. MULTIPATH COMMUNICATIONS

Multipath communications is a promising approach to im-
prove TCP/QUIC performance in high-wireless systems be-
cause the usage of several physical paths between a server
and a client may increase both throughput and reliability. A
key problem of multipath communications is how to control
the transmission of data over several network paths. This
problem can be solved: (i) at the data link and physical
layers of wireless devices with a special feature called Multi-
Connectivity and considered in Section VII-A, (ii) at the
transport layer with the multipath extensions of TCP/QUIC
that are analyzed in Section VII-B.

A. Multi-connectivity

Multi-Connectivity (MC) is an essential feature of modern
wireless networks that allows a client device to connect to
several serving base stations simultaneously. It is supported
by Wi-Fi, various 3GPP technologies, and even a mixture of
3GPP and non-3GPP ones. MC is beneficial for mmWave,
THz, and Light communications, as it: (i) increases the overall
capacity between endpoints and (ii) allows overcoming out-
ages of high-frequency links. This section considers how MC
is implemented in various wireless technologies and estimates
the time such implementations require to react to quality
fluctuations of high-frequency wireless links.

MC can be implemented in wireless networks at different
levels of integration between the links, which affects the
flexibility of the resource utilization, packet losses in case
of link blockage, achieved throughput, and delays required
to switch between various links.

One option is that wireless technologies provide several
service access points (SAP) to the upper-layer protocols, each
corresponding to a specific wireless link. Although such an
approach is easy-to-implement, it requires transport-layer pro-
tocols or applications to manage data transmission via various
links. Thus, such protocols shall be capable of balancing
the load over multiple connections and processing the events
when some packets are lost or delayed at a link because of
its blockage or congestion. As transport-layer protocols do
not directly interact with wireless links, they slowly react
to the changes in wireless link properties, which degrades
performance, as discussed in detail in Section VII-B.

During the past decade, many efforts have been made to-
wards another option, native support of the multi-connectivity
transparent for the upper-layer protocols.

Below, we review various solutions and evaluate their im-
pact on TCP & QUIC and overall system performance, see
Table III.

TABLE III: Summary of Multi-Connectivity solutions

Layer Solution Packet retransmission delay Complexity Spectrum Efficiency Initially proposed
System/Network ANDSF seconds Low Low 3GPP Rel. 8

PHY CoMP, later: Distributed MIMO instant (no retransmission) High High 3GPP Rel. 11, a candidate feature
for Wi-Fi 7/8

PHY and MAC Relaying < 5 ms Medium Low Link Switching and link coopera-
tion in 802.11ad

MAC Carrier Aggregation < 10 ms High High 3GPP Rel. 10
MAC FST < 10 ms Medium Medium mmWave Wi-Fi
MAC Multi-Link < 5 ms High High Wi-Fi 7
PDCP Dual/Multi Connectivity 10...100 ms Medium Medium 3GPP Rel. 12

1) Approaches to Multi-Connectivity:
a) Access Network Discovery and Selection Function:

One of the first 3GPP solutions toward multi-connectivity is
Access Network Discovery and Selection Function (ANDSF),
an entity in the core network supporting intelligent offload
between 3G/4G to Wi-Fi and vice versa [175]. Notably, this
solution is designed to manage long-term paths; it cannot save
the packets on the fly if a link is blocked. So it is inefficient
in case of frequent switching between the links.

b) Coordinated Multi-Point: To overcome link blockage
and poor channel conditions, Coordinated Multi-Point (CoMP)
— or Distributed Multiple-Input Multiple-Output (MIMO),
to which it has evolved — allows multiple base stations to
simultaneously transmit the same data to a UE with poor
channel conditions (or to receive data from it) to improve
transmission reliability. CoMP is implemented in LTE Rel. 11
and was considered a candidate feature of Wi-Fi 7, which is
currently under development. Although initially proposed for
low-frequency communication, CoMP is recently shown to be
fruitful in solving the link blockage problem in mmWave 5G
systems [176]. The probability of link outage is significantly
reduced thanks to multiple nodes simultaneously transmitting
or receiving the same data. Even if a link to one base station
is lost, the other ones will deliver the data without additional
delays and, thus, without any impact on the transport-layer
protocols. The cost for such reliable delivery is enormous
overhead and the necessity of extremely wide backhaul con-
nections between base stations. It is the main reason why
CoMP is unlikely to be supported by upcoming Wi-Fi 7
technologies despite being intensively discussed.

c) Relays: The mentioned above overhead can be re-
duced by the usage of relays that are involved in the data
delivery process only when the main link degrades. For ex-
ample, in mmWave Wi-Fi networks (IEEE 802.11ad), relaying
allows a source STA S to transmit packets to a destination STA
D with the assistance of another STA R called relay in case
of blocked link S → D. IEEE 802.11ad defines two types of
relay operation.

Link switching. If the link between S and D is blocked,
S can redirect packets destined for D to relay R, which, in
turn, forwards packets to D. Depending on the capabilities of
R, particularly the number of antennas and RF chains, R may
operate either in the Full-Duplex Amplify-and-Forward (FD-
AF) mode or in the Half-Duplex Decode-and-Forward (HD-
DF) mode that increases transmission duration.

Link cooperation. In this case, R is actively involved in

direct communication between S and D. For that, first, S sends
the data packet to R. Then S and R simultaneously transmit
the copy of this packet to D, which increases the received
signal strength at D and therefore increases the probability of
successful delivery of the packet.

In both cases, LOS path blockage of a mmWave link reduces
the link capacity and increases transmission duration but does
not cause packet loss.

d) Carrier aggregation: In cellular systems, the tightest
and the most efficient cooperation between several wireless
links established between the same pair of devices (the base
station and the user equipment) is achieved with carrier
aggregation, Introduced in Rel.10 and operating at the Medium
Access Control (MAC) layer, Carrier Aggregation allows a
UE to be simultaneously connected with multiple links at
different frequencies to the same base station. Thus, in theory,
the base station can perform cross-link scheduling which
simplifies load balancing between the links and allows reacting
to channel quality degradation as soon as the MAC layer
acknowledgment is received, i.e., with a delay of several ms.
In reality, the usage of Carrier Aggregation in 5G systems
is complicated for the following reasons7. First, various 5G
bands may use different channel numerology, i.e., in various
bands, the time slot may equal 1 ms, 0.5 ms, 0.25 ms, etc.
Second, low-frequency and high-frequency bands may have
different coverage and different channel quality, which may
limit the usage of some bands by cell-edge users. Third, using
multiple links increases the power consumption of mobile
devices. Fourth, the total amount of resources to be scheduled
is so large that it is worth performing scheduling separately
in each band to reduce computational complexity. Fifth, if a
packet sent over one link is not delivered, the following data
delivered on the other link are buffered at the receiver without
forwarding to the upper-layer protocols.

e) Multi-link: A technique similar to Carrier Aggrega-
tion, called Multi-Link, is being developed for Wi-Fi 7 net-
works8. Although the standard developers assume that packets
sent via one link can be acknowledged and retransmitted via
another one, in reality, such an opportunity may be limited. Al-
though the standard claims that the transmission occurs several

7As far as we know, by now, these issues block the aggregation of both low-
frequency and high-frequency bands. In December 2020, Ericsson announced
the first cross-band aggregation of low-frequency and mid-frequency bands
(410 MHz–7125 GHz) [177]. At the same time, carrier aggregation for either
low-frequency or high-frequency bands is already supported.

8Right now only low-frequency bands are considered.

dozens of microseconds after the channel becomes idle, Wi-Fi
devices shall prepare an aggregated packet, perform channel
measurements, etc., well before the actual transmission. These
peculiarities may limit the ability to instantly retransmit a
non-delivered packet over another link, though no losses are
expected, and the induced delays may be less than 5ms, which
has a negligible impact on TCP. That is why the developers of
the IEEE 802.11bb standard for Light Communications predict
that future versions of the standard will allow the usage of
Multi-Link to improve light communications.

It is expected that Multi-Link will replace the Fast Ses-
sion Transfer (FST) mechanism that was designed for IEEE
802.11ad to allow seamless handover between mmWave and
low-frequency links such that transfer time does not exceed
5 to 10 ms. FST can be implemented in two ways. The first
one assumes a single MAC interface. So, FST runs seam-
lessly for the high-level protocols. The second one provides
several interfaces to the upper layers, and the higher layers
are responsible for managing the session transition between
different frequency bands.

f) Dual Connectivity: As for cellular systems, the most
flexible and powerful existing solution is Dual Connectivity (or
Multi-Radio Dual Connectivity). This feature has appeared in
LTE Rel.12, works at the Packet Data Convergence Protocol
(PDCP), and enables aggregation of two radio links between a
UE and two base stations (which differs from Carrier Aggre-
gation, where there is a single base station). The latter aspect
is very important for aggregating several bands with different
coverage, as the corresponding base stations can be deployed
separately with different densities. Thus, high-frequency base
stations may be closer to the users. DC supports different radio
access technologies. Since the traffic is split between the links
at the PDCP layer, lost packets may be retransmitted, but there
is no easy way to move buffered packets from one link to
another, as it is done with Carrier Aggregation if a link quality
degrades. Consequently, the following approaches have been
proposed to split the traffic.

Packet Duplication. With this approach, the same packets
are sent via several links, which increases reliability, re-
duces latency by eliminating packet retransmissions, improves
mobility robustness, and reduces losses of packets as they
are stored at several base stations [178]–[180]. However, it
multiplies radio resource consumption and thus reduces the
throughput [181], [182].

Packet Splitting. With this approach, packets are sent over
the different paths, e.g., proportionally to the capacities of
the links [183], though other approaches can be used. Packet
Splitting increases throughput as the UE receives packets from
multiple nodes and reduces delays in comparison to the case
when all the packets are sent on the fastest link. At the
same time, the reliability is not increased, and high-frequency
link blockage may lead to packet loss that affects the TCP
performance [184].

Network Coding (NC). With this approach, different en-
coded combinations of packets are sent on multiple paths. For
example, Random Linear Network Coding (RLNC) is often

used because it provides a good trade-off between bandwidth
efficiency, complexity, and delay, compared to other network
coding or forward error correction strategies [185], [186].
Network coding may balance the advantages of the other
approaches. However, it requires more sophisticated multi-
connectivity control algorithms, e.g., the paper [187] proposes
a greedy heuristic to control transmitting data with dual
connectivity and NC, which minimizes delivery delays.

2) Applicability to QUIC: All MC solutions described
above are applicable for both TCP and QUIC. However, QUIC
will provide better performance with ANDSF that splits the
data at the network layer. With ANDSF, wireless interfaces
of a UE have different IP addresses. Thus, a TCP/QUIC data
flow can be served with one interface at a time (this problem
is addressed by multipath versions of the corresponding proto-
cols, see next section). When a TCP/QUIC flow is redirected
from one wireless interface to another, TCP shall reestablish
the connection because the UE changes its address. In contrast,
QUIC does not need to reestablish the connection thanks to the
“0-RTT connection setup” feature as described in Section II-B.
Other MC solutions working at the link and the physical layers
are transparent for TCP/QUIC flow.

3) Impact of various bands on Multi-connectivity: Ad-
vanced physical layer (PHY) MC solutions (e.g., CoMP)
require high computational power at base stations and the
so-called ideal backhaul (i.e., very low latency and high-
throughput links between base stations). While such solutions
are currently considered for mmWave bands [176], their usage
in THz/LW bands is questionable because of the much higher
density of THz and LW base stations and their expected low
cost and complexity.

One of the promising MC solutions for high-frequency
bands is to keep several links with the base stations operating
in various bans (e.g., in LW and low-frequency bands). When
the LW link is blocked, traffic is quickly forwarded to the
low-frequency link. Thus, an extension of 3GPP Multi-radio
Dual Connectivity and Wi-Fi Multi-link solutions to THz/LW
bands can efficiently address the link blockage problem.

B. Multipath TCP/QUIC

1) General Idea: Several multi-connectivity solutions de-
scribed in Section VII-A require that upper-layer protocols
manage the usage of various links. It can be done with
Multipath TCP (MPTCP) [188], [189] or Multipath QUIC
(MPQUIC) [71], [190], which have been developed to control
data transmission if several paths exist between the two
endpoints. Both MPTCP and MPQUIC identify each path
by a pair of sockets that combines IP addresses and ports.
Thus, they work only if at least one device, e.g., the client,
knows that there are several paths between the communicating
nodes. For example, a UE may have two radio interfaces
for high-frequency and low-frequency bands with different IP
addresses. Also, both MPTCP and MPQUIC allow a server
to advertise additional addresses and ports on which it can be
reached [188], [190].

MPTCP and MPQUIC are designed to improve throughput
compared with single-path transport protocols that use the
best available path and provide dynamic load balancing by
selecting a less congested path while not harming legacy flows.

2) MPTCP: MPTCP inherits the functionality of traditional
TCP and is backward compatible in the following sense.
MPTCP provides a single interface to the application. So,
for the application, MPTCP operates in the same way as
usual TCP. Each MPTCP connection consists of one or several
single-path TCP connections referred to as subflows.

To achieve data integrity on one side and to follow legacy
per-subflow congestion control, each portion of data is as-
signed two sequence numbers. The first one, called multipath
sequence number, is used for segmentation and reassembly
of the data as well as retransmissions via another subflow.
The second one, the traditional TCP sequence number, is
used for congestion control. The multipath sequence number
is transmitted as a TCP option, while the subflow ones are
transmitted in the original field of the TCP header.

MPTCP uses both MPTCP connection-level and subflow-
level acknowledgments to provide a robust data delivery to the
application. Thanks to two sequence numbers, MPTCP allows
a data segment to be retransmitted on a different subflow from
that on which it was originally sent, which is fruitful in the
case of high-frequency link blockage. Also, it is suggested
to reschedule data sent via one subflow for transmission on
different subflows to reduce the delays and avoid connection
underutilization when a path breaks. Note that in all cases
with retransmissions on different subflows, the lost segments
should also be sent on the original path to maintain subflow
integrity and backward compatibility with the single-path TCP
for networking middle-boxes because they may assume single-
path TCP behavior.

3) MPQUIC: Introducing multipath operation to QUIC is
much easier than to TCP because QUIC does not use IP ad-
dresses and ports to identify a flow. Instead, it uses an explicit
Connection ID. Even single-path QUIC copes with NAT re-
binding, offloading, and IP address updates using its migration
feature, but only one path can be used simultaneously. An
MPQUIC connection is identified by a set of Connection IDs.
As QUIC packets are encapsulated in UDP, which does not
require any feedback, MPQUIC allows separating direct and
reverse data transmission and using different paths for them.
For example, the downlink transmission may use a mmWave
link, while the uplink one uses a low-frequency link.

The other basic ideas of operation of MPTCP and MPQUIC
are very similar.

4) Issues induced by MPTCP and MPQUIC and impact
of various bands: In both MPTCP and MPQUIC, conges-
tion control is an important problem. Note that the issue
of high BDP and high probability of RTO for THz/LW
bands described in Paragraph VI-A3 are also relevant to
MPTCP/MPQUIC congestion control algorithms.

As stated in the specifications [188], [190], all subflows
belonging to the same MPTCP connection shall be considered
one connection. Thus, to be fair with legacy TCP, the CWNDs

of the subflows of the same MPTCP connection shall not grow
faster than that of the legacy TCP connection.

RFC 6356 [113] proposes a coupled congestion control
algorithm, which is shown to be unfair with respect to
legacy TCP [114], [115]. The papers [114], [115] propose
two algorithms, namely, Opportunistic Linked Increases Algo-
rithm (OLIA) and the Balanced Linked Adaptation Algorithm
(BALIA), which address this problem. However, both algo-
rithms are based on the legacy design of Reno and New Reno
congestion control algorithms that show low performance
with highly dynamic mmWave links [117]. In addition to
the aforementioned congestion control algorithms, the current
Linux implementation of MPTCP supports mVegas [116].
However, the single-path version of this algorithm shows
worse performance on mmWave links [117].

In regular, single-path TCP, it is usually recommended to
set the receive buffer twice as large as the Bandwidth-Delay
Product. For MPTCP, a subflow packet loss or subflow failure
should not affect the throughput of other working subflows.
So for MPTCP, the BDP shall be computed using the largest
bandwidth and the largest delay among the links. It brings a
problem for the joint usage of high-rate mmWave, THz, or
LW links together with congested low-frequency links that
experience high delays. For example, even for the throughput
of 1 Gbps and delays of 40 ms, the buffer shall exceed 10 MB
for each MPTCP session, which may be an issue for servers
with thousands of connections. Note that in THz bands the
throughput is expected to be 100...1000 times higher.

Another issue relevant to MPTCP/MPQUIC is path manage-
ment (PM), i.e., management of the paths that shall be open
between endpoints. Specifically, PM answers the question
of how many and which subflows shall be established be-
tween two endpoints. For example, if endpoints have two and
three interfaces, correspondingly, with a full-mesh strategy,
MPTCP/MPQUIC establishes all 2x3=6 subflows which may
consume many resources (e.g., memory).

One of the most crucial challenges is the multipath sched-
uler that distributes data over various subflows. For example,
a simple round-robin scheduler cyclically sends packets over
different subflows, as long as their CWNDs allow sending
more data. However, this scheduler does not consider the
heterogeneity of high-frequency and low-frequency bands,
as well as the delays and losses in each subflow, which
significantly degrades performance [191], [192]. To improve
performance, various approaches have been proposed in the
literature: minimizing delays [193]–[198], blocking avoidance
[194], and machine learning approaches [199], [200].

The scheduling problem becomes more complicated if one
of the paths traverses via THz or LW link. With a high
probability, a THz/LW link may be blocked for a relatively
long time interval. The MPTCP/MPQUIC sender should: (i)
determine that a path is blocked, (ii) retransmit packets that
are assumed to be blocked over another path. The speed of
such a reaction is limited by the whole RTT between the
user and the server. Note that the usage of MC solutions
described in Section VII that split packets at base stations

considerably reduces the control loop and, thus, can much
faster forward packets from the high-frequency to the low-
frequency link. Therefore, we believe that link-layer MC
solutions are more promising for THz and LW bands than
the usage of MPTCP/MPQUIC.

VIII. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this survey, we analyzed how the most popular transport
layer protocols TCP and QUIC would work in future high-
frequency wireless systems operating in mmWave, THz, and
LW bands. We showed that the common peculiarities of high-
frequency wireless links lead to severe performance degrada-
tion of TCP & QUIC, i.e., low throughput and high latency.

We thoroughly reviewed various existing solutions aimed
at improving TCP & QUIC performance developed by IETF,
3GPP, IEEE, and the research community. Based on the used
approach (i.e., network architecture changes, traffic control,
multipath communications) and the layer of the OSI protocol
stack at which the considered solution is implemented, we
divided all found solutions into seven groups. Below, we
summarize the benefits and drawbacks of various groups
of solutions, their implementation complexity, and possible
directions for future research. Also, the key findings of our
analysis are outlined in Table II.

The first group of solutions aims at reducing the overall
RTT between a user and a server by (i) deploying additional
real/virtual servers close to base stations, and (ii) using modern
RATs which reduce RTT over a wireless link. Low RTT speeds
up the convergence of congestion control algorithms and,
thus, efficiently solves the slow start and channel fluctuation
problems. However, the implementation of such solutions can
significantly increase the operator’s CAPEX/OPEX. Further
reduction of RTT can be achieved with new RATs (e.g., sixth
generation (6G) THz systems and future versions of LW Wi-
Fi), which target sub-millisecond latency.

The second group of solutions is based on deploying
transport-layer PEPs in the core network, i.e., special nodes
that modify TCP headers or shape TCP flows to meet the
current wireless link capacity. PEPs can efficiently address
the slow start and channel fluctuation problems. However,
deploying PEPs also increases CAPEX/OPEX. Also, some
PEPs, e.g., those that estimate the capacity of the wireless
link, require tight interaction with the serving base station.
Currently, many PEPs widely used in practice are designed
for TCP. Future research can be connected with designing
PEPs for QUIC taking into account QUIC header encryption
or extending QUIC to support interaction with PEP.

The third group of solutions uses novel congestion control
algorithms at endpoints that aim at increasing throughput and
reducing latency. However, recent studies of modern algo-
rithms over high-frequency links show that no single algorithm
provides the best performance in all scenarios. A promising
direction for future research is to use machine learning for
selecting CWND taking into account previous measurements
or even predicting the throughput of the high-frequency link.
Note that the deployment of new congestion control algorithms

for TCP is a long process because it requires upgrading OSs
at servers and users, while the deployment of new algorithms
for QUIC only requires application updates.

The fourth group of solutions uses modern AQM algorithms
implemented at the link layer of base stations and mobile
devices. In particular, as shown in this survey properly config-
ured multi-queue AQM algorithms provide high throughput for
bulk TCP & QUIC flows and low latency for delay-sensitive
flows irrespective of the congestion control algorithms used
at endpoints. Note that for very high data rates (> 100 Gbps
typical for THz and LW bands), base stations require buffers
of several GB, which increases their complexity and cost.
A promising approach recently proposed in [171] is called
Virtual AQM. With this approach, a part of the buffer can be
kept at other devices located close to base stations. The open
research question is how to manage buffers distributed over
several nodes.

The fifth group of solutions provides a cross-layer inter-
action between the link layer of wireless devices and the
transport layer of endpoints. In particular, the information
about the wireless link capacity provided by a base station
to a server can assist CWND selection and, thus, significantly
increase throughput and reduce latency. However, the current
OSI protocol stack provides very limited capabilities for
exchanging information between different layers of various
devices (e.g., via headers). Thus, a promising direction is to
redesign the protocol stack to enable tight cross-layer interac-
tion between various layers and devices. While currently each
layer and a device perform a local performance optimization
(e.g., congestion control algorithm selects CWND based on
the local measurements), the cross-layer interaction opens the
door for global network performance optimization.

The sixth group of solutions uses various multi-connectivity
features of the modern RATs. With these features, mobile
devices can operate in both high-frequency and low-frequency
bands transparently for TCP & QUIC endpoints. If the
throughput of the high-frequency link degrades, the whole
or a part of TCP & QUIC flow can be quickly switched to
the low-frequency link, which efficiently solves the channel
fluctuation and link blockage problems. Note that the multi-
connectivity feature is implemented independently in each
RAT. For example, if a user connects to a 5G base station
over a low-frequency link and a Wi-Fi access point over a
high-frequency link, the endpoints will see two independent
data paths. Therefore, a promising direction for future work
is to enable multi-RAT multi-connectivity that will aggregate
the wireless links belonging to various RATs and will be
transparent for the transport layer protocols.

Currently, the multi-RAT multi-connectivity is managed
by the seventh group of solutions, i.e., multipath exten-
sions of TCP & QUIC. However, re-routing the traffic with
MPTCP/MPQUIC is very slow because of the high RTT
between a user and a server, which increases the retransmis-
sion delay. However, the mmWave, THz, and LW devices are
typically located close to each other, which provides lower
RTT of wireless links (see Table III) than the overall RTT.

Summing up, the results of our analysis show that being
deployed and properly configured, existing solutions (e.g.,
CDNs, PEPs, AQM, multi-connectivity) can substantially im-
prove TCP & QUIC performance in future high-frequency
wireless systems albeit various solutions impose different
implementation complexity and cost. We identified several
directions for future research that are expected to further
improve the performance. We believe that enabling tight cross-
layer interaction between different layers of the OSI stack and
different devices will be an important tool for achieving syner-
gistic effects from the joint usage of various types of solutions
and providing global network performance optimization.

REFERENCES

[1] “Cisco Annual Internet Report (2018–2023) White
Paper.” [Online]. Available: https://www.cisco.com/c/en/us/
solutions/collateral/executive-perspectives/annual-internet-report/
white-paper-c11-741490.html

[2] IEEE, “IEEE Standard for Information Technology–
Telecommunications and Information Exchange between Systems
Local and Metropolitan Area Networks–Specific Requirements Part
11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications Amendment 2: Enhanced Throughput
for Operation in License-exempt Bands above 45 GHz,” IEEE
802.11ay-2021, 2021.

[3] “TS 38.300: NR; NR and NG-RAN Overall description; Stage-2,”
3GPP, Dec. 2021.

[4] IEEE, “Standard for Information Technology–Telecommunications and
Information Exchange Between Systems Local and Metropolitan Area
Networks–Specific Requirements - Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications
Amendment: Light Communications,” IEEE 802.11bb, 2022.

[5] E. Khorov and I. Levitsky, “Current Status and Challenges of Li-Fi:
IEEE 802.11bb,” IEEE Commun. Stand. Mag., vol. 6, no. 2, pp. 35–41,
2022.

[6] W. Saad, M. Bennis, and M. Chen, “A Vision of 6G Wireless Systems:
Applications, Trends, Technologies, and Open Research Problems,”
IEEE Netw., vol. 34, no. 3, pp. 134–142, 2020.

[7] M. Giordani et al., “Toward 6G Networks: Use Cases and Technolo-
gies,” IEEE Commun. Mag., vol. 58, no. 3, pp. 55–61, 2020.

[8] V. Petrov, T. Kurner, and I. Hosako, “IEEE 802.15.3d: First Standard-
ization Efforts for Sub-Terahertz Band Communications toward 6G,”
IEEE Commun. Mag., vol. 58, no. 11, pp. 28–33, 2020.

[9] I. Rodriguez et al., “Radio Propagation into Modern Buildings: At-
tenuation Measurements in the Range from 800 MHz to 18 GHz,” in
Proc. IEEE VTC, 2014, pp. 1–5.

[10] H. Zhao et al., “28 GHz millimeter wave cellular communication mea-
surements for reflection and penetration loss in and around buildings
in New York city,” in Proc. IEEE ICC, 2013, pp. 5163–5167.

[11] M. Polese et al., “Improved Handover Through Dual Connectivity in
5G mmWave Mobile Networks,” IEEE J. Sel. Areas Commun., vol. 35,
no. 9, pp. 2069–2084, 2017.

[12] M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, “Mobility Man-
agement for TCP in mmWave Networks,” Proc. mmNets, pp. 11–16,
Oct. 2017.

[13] P. Zhou et al., “IEEE 802.11ay-Based mmWave WLANs: Design
Challenges and Solutions,” IEEE Commun. Surv. Tutor., vol. 20, no. 3,
pp. 1654–1681, 2018.

[14] “TR 37.910: Study on self evaluation towards IMT-2020 submission,”
3GPP, Oct. 2019.

[15] (2015, Sept.) Framework and overall objectives of the future
development of IMT for 2020 and beyond. [Online]. Available:
http://www.itu.int/rec/RREC-M.2083

[16] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and
Secure Transport,” RFC 9000, May 2021.

[17] “Usage statistics of QUIC for websites.” [Online]. Available:
https://w3techs.com/technologies/details/ce-quic

[18] T. Shreedhar, R. Panda, S. Podanev, and V. Bajpai, “Evaluating QUIC
Performance over Web, Cloud Storage and Video Workloads,” IEEE
Trans. Netw. Service Manag., p. 1, 2021.

[19] M. Rajiullah et al., “Web Experience in Mobile Networks: Lessons
from Two Million Page Visits,” in Proc. TheWebConf. Association
for Computing Machinery, 2019, pp. 1532–1543.

[20] A. Yu and T. A. Benson, “Dissecting Performance of Production
QUIC,” in Proc. TheWebConf. Association for Computing Machinery,
2021, pp. 1157–1168.

[21] K. Nepomuceno et al., “QUIC and TCP: A Performance Evaluation,”
in Proc. IEEE ISCC, 2018, pp. 45–51.

[22] M. Duke, R. Braden, W. Eddy, E. Blanton, and A. Zimmermann,
“A Roadmap for Transmission Control Protocol (TCP) Specification
Documents,” RFC 7414 (Informational), Internet Engineering Task
Force, Feb. 2015.

[23] H. Inamura, G. Montenegro, R. Ludwig, A. Gurtov, and F. Khafizov,
“TCP over Second (2.5G) and Third (3G) Generation Wireless Net-
works,” RFC 3481 (Best Current Practice), Internet Engineering Task
Force, Feb. 2003.

[24] M. Zhang et al., “Will TCP Work in mmWave 5G Cellular Networks?”
IEEE Commun. Mag., vol. 57, no. 1, pp. 65–71, 2019.

[25] H. D. Le, C. T. Nguyen, V. V. Mai, and A. T. Pham, “On the Throughput
Performance of TCP Cubic in Millimeter-Wave Cellular Networks,”
IEEE Access, vol. 7, pp. 178 618–178 630, 2019.

[26] R. Poorzare and A. C. Auge, “How Sufficient is TCP When Deployed
in 5G mmWave Networks Over the Urban Deployment?” IEEE Access,
vol. 9, pp. 36 342–36 355, 2021.

[27] L. Ding et al., “Understanding commercial 5G and its implications to
(Multipath) TCP,” Comput. Netw., vol. 198, p. 108401, 2021.

[28] G. Sinha, M. R. Kanagarathinam, S. R. Jayaseelan, and G. K.
Choudhary, “CQUIC: Cross-Layer QUIC for Next Generation Mobile
Networks,” in Proc. IEEE WCNC, 2020, pp. 1–8.

[29] H. Wu et al., “Multipath Scheduling for 5G Networks: Evaluation and
Outlook,” IEEE Commun. Mag., vol. 59, no. 4, pp. 44–50, 2021.

[30] M. Polese et al., “A Survey on Recent Advances in Transport Layer
Protocols,” IEEE Commun. Surv. Tutor., vol. 21, no. 4, pp. 3584–3608,
2019.

[31] Y. Ren et al., “A survey on TCP over mmWave,” Comput. Commun.,
vol. 171, pp. 80–88, 2021.

[32] R. Poorzare and O. P. Waldhorst, “Toward the Implementation of
MPTCP Over mmWave 5G and Beyond: Analysis, Challenges, and
Solutions,” IEEE Access, vol. 11, pp. 19 534–19 566, 2023.

[33] J. Lorincz, Z. Klarin, and J. Ozegovic, “A Comprehensive Overview
of TCP Congestion Control in 5G Networks: Research Challenges and
Future Perspectives,” Sensors, vol. 21, no. 13, 2021.

[34] S. J. Siddiqi, F. Naeem, S. Khan, K. S. Khan, and M. Tariq, “Towards
AI-enabled traffic management in multipath TCP: A survey,” Computer
Communications, vol. 181, pp. 412–427, 2022.

[35] G. Papastergiou et al., “De-Ossifying the Internet Transport Layer: A
Survey and Future Perspectives,” IEEE Commun. Surv. Tutor., vol. 19,
no. 1, pp. 619–639, 2017.

[36] J. Postel, “Transmission Control Protocol,” RFC 793 (INTERNET
STANDARD), Internet Engineering Task Force, Sep. 1981, updated
by RFCs 1122, 3168, 6093, 6528.

[37] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion Control,”
RFC 5681 (Draft Standard), Internet Engineering Task Force, Sep.
2009.

[38] I. Rhee, L. Xu, S. Ha, A. Zimmermann, L. Eggert, and R. Schef-
fenegger, “CUBIC for Fast Long-Distance Networks,” RFC 8312
(Informational), Internet Engineering Task Force, Feb. 2018.

[39] W. Li, F. Zhou, K. R. Chowdhury, and W. Meleis, “QTCP: Adaptive
Congestion Control with Reinforcement Learning,” IEEE Trans. Netw.
Sci. Eng., vol. 6, no. 3, pp. 445–458, 2019.

[40] M. R. Kanagarathinam et al., “NexGen D-TCP: Next Generation
Dynamic TCP Congestion Control Algorithm,” IEEE Access, vol. 8,
pp. 164 482–164 496, 2020.

[41] W. Na, B. Bae, S. Cho, and N. Kim, “DL-TCP: Deep Learning-Based
Transmission Control Protocol for Disaster 5G mmWave Networks,”
IEEE Access, vol. 7, pp. 145 134–145 144, 2019.

[42] S. Abbasloo, Y. Xu, and H. J. Chao, “C2TCP: A Flexible Cellular TCP
to Meet Stringent Delay Requirements,” IEEE J. Sel. Areas Commun.,
vol. 37, no. 4, pp. 918–932, 2019.

[43] M. Kosek, T. Shreedhar, and V. Bajpai, “Beyond QUIC v1: A First
Look at Recent Transport Layer IETF Standardization Efforts,” IEEE
Commun. Mag., vol. 59, no. 4, pp. 24–29, 2021.

[44] A. Langley et al., “The QUIC Transport Protocol: Design and Internet-
Scale Deployment,” in Proc. ACM SIGCOMM, 2017, pp. 183–196.

[45] M. Honda et al., “Is It Still Possible to Extend TCP?” in Proc. ACM
SIGCOMM IMC, 2011, pp. 181–194.

[46] M. Scharf and S. Kiesel, “Head-of-line Blocking in TCP and SCTP:
Analysis and Measurements,” in Proc. IEEE GLOBECOM, 2006, pp.
1–5.

[47] J. Iyengar and I. Swett, “QUIC Loss Detection and Congestion Con-
trol,” RFC 9002, May 2021.

[48] V. Paxson, M. Allman, J. Chu, and M. Sargent, “Computing TCP’s
Retransmission Timer,” RFC 6298 (Proposed Standard), Internet En-
gineering Task Force, Jun. 2011.

[49] L. Torvalds. Linux kernel. [Online]. Available: https://github.com/
torvalds/linux

[50] “Network Simulator 3 (NS-3).” [Online]. Available: https://www.
nsnam.org/

[51] M. Mezzavilla et al., “End-to-End Simulation of 5G mmWave Net-
works,” IEEE Commun. Surv. Tutor., vol. 20, no. 3, pp. 2237–2263,
2018.

[52] M. R. Akdeniz et al., “Millimeter Wave Channel Modeling and Cellular
Capacity Evaluation,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp.
1164–1179, 2014.

[53] M. Polese, J. M. Jornet, T. Melodia, and M. Zorzi, “Toward End-to-
End, Full-Stack 6G Terahertz Networks,” IEEE Commun. Mag., vol. 58,
no. 11, pp. 48–54, 2020.

[54] K. L. Bober et al., “Distributed Multiuser MIMO for LiFi in Industrial
Wireless Applications,” J. Light. Technol., p. 1, 2021.

[55] IEEE 802.11bb: 802.11 Light Communications Amendment - Task
Group. [Online]. Available: https://www.ieee802.org/11/Reports/tgbb
update.htm

[56] I. A. Hemadeh, K. Satyanarayana, M. El-Hajjar, and L. Hanzo,
“Millimeter-Wave Communications: Physical Channel Models, Design
Considerations, Antenna Constructions, and Link-Budget,” IEEE Com-
mun. Surv. Tutor., vol. 20, no. 2, pp. 870–913, 2018.

[57] A. V. Alejos, M. G. Sanchez, and I. Cuinas, “Measurement and
Analysis of Propagation Mechanisms at 40 GHz: Viability of Site
Shielding Forced by Obstacles,” IEEE Trans. Veh. Technol., vol. 57,
no. 6, pp. 3369–3380, 2008.

[58] C. Anderson and T. Rappaport, “In-building wideband partition loss
measurements at 2.5 and 60 GHz,” IEEE Trans. Wirel. Commun., vol. 3,
no. 3, pp. 922–928, 2004.

[59] D. Zhang et al., “Novel Quick Start (QS) method for optimization of
TCP,” Wirel. Netw., vol. 22, pp. 211–222, 2016.

[60] N. Cardwell, S. Savage, and T. Anderson, “Modeling TCP latency,” in
Proc. IEEE INFOCOM, vol. 3, 2000, pp. 1742–1751.

[61] D. Zheng, G. Y. Lazarou, and R. Hu, “A stochastic model for short-
lived TCP flows,” in Proc. IEEE ICC, vol. 1, 2003, pp. 76–81.

[62] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the Internet,”
Queue, vol. 9, no. 11, pp. 40–54, Nov. 2011.

[63] M. Pieska and A. Kassler, “TCP performance over 5G mmWave links
— Tradeoff between capacity and latency,” in Proc. IEEE WiMob,
2017, pp. 385–394.

[64] P. J. Mateo, C. Fiandrino, and J. Widmer, “Analysis of TCP Perfor-
mance in 5G mmWave Mobile Networks,” in Proc. IEEE ICC, 2019,
pp. 1–7.

[65] W. Na, D. Lakew, J. Lee, and S. Cho, “Congestion control vs. link
failure: TCP behavior in mmWave connected vehicular networks,”
Future Gener. Comput. Syst., vol. 101, pp. 1213–1222, July 2019.

[66] R. Long, Y. C. Liang, Y. Pei, and E. G. Larsson, “Active Reconfigurable
Intelligent Surface Aided Wireless Communications,” IEEE Trans.
Wirel. Commun., p. 1, 2021.

[67] C. Liaskos et al., “End-to-End Wireless Path Deployment With In-
telligent Surfaces Using Interpretable Neural Networks,” IEEE Trans.
Commun., vol. 68, no. 11, pp. 6792–6806, 2020.

[68] “TS 37.340: NR; Multi-connectivity; Overall description; Stage-2,”
3GPP, Mar. 2021.

[69] C. Pupiales et al., “Multi-Connectivity in Mobile Networks: Challenges
and Benefits,” IEEE Commun. Mag., vol. 59, no. 11, pp. 116–122,
2021.

[70] A. Ford, C. Raiciu, M. Handley, O. Bonaventure, and C. Paasch, “TCP
Extensions for Multipath Operation with Multiple Addresses,” Internet
Engineering Task Force, March 2020.

[71] Y. Liu, Y. Ma, C. Huitema, Q. An, and Z. Li, “Multipath Extension
for QUIC,” Internet Engineering Task Force, Internet-Draft draft-liu-
multipath-quic-04, Sep. 2021, work in Progress.

[72] J. Sahoo et al., “A Survey on Replica Server Placement Algorithms
for Content Delivery Networks,” IEEE Commun. Surv. Tutor., vol. 19,
no. 2, pp. 1002–1026, 2017.

[73] Y. Mao et al., “A Survey on Mobile Edge Computing: The Commu-
nication Perspective,” IEEE Commun. Surv. Tutor., vol. 19, no. 4, pp.
2322–2358, 2017.

[74] P. Mach and Z. Becvar, “Mobile Edge Computing: A Survey on Ar-
chitecture and Computation Offloading,” IEEE Commun. Surv. Tutor.,
vol. 19, no. 3, pp. 1628–1656, 2017.

[75] “TS 23.501: System architecture for the 5G System (5GS),” 3GPP,
Mar. 2021.

[76] I. Gerasin and A. Krasilov, “Improving Performance of Web Services
in 5G New Radio Systems,” in Proc. IEEE BlackSeaCom, 2019, pp.
1–3.

[77] K. Liu and J. Lee, “On Improving TCP Performance over Mobile Data
Networks,” IEEE Trans. Mob. Comput., vol. 15, no. 10, pp. 2522–2536,
2016.

[78] D. A. Hayes, D. Ros, and O. Alay, “On the importance of TCP
splitting proxies for future 5G mmWave communications,” in IEEE
LCN Symposium, 2019, pp. 108–116.

[79] M. Drago et al., “QoS Provisioning in 60 GHz Communications by
Physical and Transport Layer Coordination,” in Proc. IEEE MASS,
2019, pp. 308–316.

[80] M. Kim et al., “Exploiting Caching for Millimeter-Wave TCP Net-
works: Gain Analysis and Practical Design,” IEEE Access, vol. 6, pp.
69 769–69 781, 2018.

[81] M. Kim, S. Ko, and S. Kim, “Enhancing TCP end-to-end performance
in millimeter-wave communications,” in Proc. IEEE PIMRC, 2017, pp.
1–5.

[82] M. Polese et al., “milliProxy: A TCP proxy architecture for 5G
mmWave cellular systems,” in Proc. Asilomar Conf. Signals Syst.
Comput., 2017, pp. 951–957.

[83] S. Floyd, “Limited Slow-Start for TCP with Large Congestion Win-
dows,” RFC 3742 (Experimental), Internet Engineering Task Force,
Mar. 2004.

[84] D. Cavendish et al., “CapStart: An Adaptive TCP Slow Start for High
Speed Networks,” in Proc. INTERNET, 2009, pp. 15–20.

[85] S. Ha and I. Rhee, “Taming the Elephants: New TCP Slow Start,”
Comput. Netw., vol. 55, no. 9, pp. 2092–2110, June 2011.

[86] “HyStart++: Modified Slow Start for TCP.” [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-hystartplusplus

[87] M. Schapira and K. Winstein, “Congestion-Control Throwdown,” in
Proc. ACM HotNets, 2017, pp. 122–128.

[88] R. Adams, “Active Queue Management: A Survey,” IEEE Commun.
Surv. Tutor., vol. 15, no. 3, pp. 1425–1476, 2013.

[89] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED: An Algorithm
for Increasing the Robustness of RED’s Active Queue Management,”
AT&T Center for Internet Research at ICSI, Tech. Rep., 2001.

[90] K. Zhou, K. Yeung, and V. Li, “Nonlinear RED: A simple yet efficient
active queue management scheme,” Comput. Netw., vol. 50, no. 18, pp.
3784–3794, 2006.

[91] Y. Gong et al., “Fighting the bufferbloat: On the coexistence of AQM
and low priority congestion control,” in Proc. IEEE INFOCOM, 2013,
pp. 3291–3296.

[92] K. Nichols and V. Jacobson, “Controlling Queue Delay: A Modern
AQM is Just One Piece of the Solution to Bufferbloat.” Queue, vol. 10,
no. 5, pp. 20–34, May 2012.

[93] K. Nichols, V. Jacobson, A. McGregor, and J. Iyengar, “Controlled
Delay Active Queue Management,” Jan. 2018.

[94] J. Palmei et al., “Design and Evaluation of COBALT Queue Disci-
pline,” in Proc. IEEE LANMAN, 2019, pp. 1–6.

[95] W. Feng, K. Shin, D. Kandlur, and D. Saha, “The BLUE active queue
management algorithms,” IEEE/ACM Trans. Netw., vol. 10, no. 4, pp.
513–528, 2002.

[96] T. Hoeiland-Joergensen, P. McKenney, D. Taht, A. Zimmermann,
J. Gettys, and E. Dumazet, “The Flow Queue CoDel Packet Scheduler
and Active Queue Management Algorithm,” RFC 8290 (Experimental),
Internet Engineering Task Force, Jan. 2018.

[97] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit
round-robin,” IEEE/ACM Trans. Netw., vol. 4, no. 3, pp. 375–385,
1996.

[98] M. H. MacGregor and W. Shi, “Deficits for bursty latency-critical
flows: DRR++,” in Proc. IEEE ICON, 2000, pp. 287–293.

[99] P. McKenney, “Stochastic fairness queueing,” in Proc. IEEE INFO-
COM, vol. 2, 1990, pp. 733–740.

[100] F. Checconi, L. Rizzo, and P. Valente, “QFQ: Efficient Packet Schedul-
ing with Tight Guarantees,” IEEE/ACM Trans. Netw., vol. 21, no. 3,
2010.

[101] Y. Qian, Z. Lu, and Q. Dou, “QoS scheduling for NoCs: Strict Priority
Queueing versus Weighted Round Robin,” in Proc. IEEE ICCD, 2010,
pp. 52–59.

[102] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: the single-
node case,” IEEE/ACM Trans. Netw., vol. 1, no. 3, pp. 344–357, 1993.

[103] J. C. R. Bennett and H. Zhang, “Hierarchical packet fair queueing
algorithms,” IEEE/ACM Trans. Netw., vol. 5, no. 5, pp. 675–689, 1997.

[104] T. Azzino et al., “X-TCP: a cross layer approach for TCP uplink flows
in mmwave networks,” in Proc. Med-Hoc-Net Workshop, 2017, pp.
1–6.

[105] F. Lu et al., “CQIC: Revisiting Cross-Layer Congestion Control for
Cellular Networks,” in Proc. HotMobile, 2015, pp. 45–50.

[106] Y. Liu et al., “BESS: BDP Estimation Based Slow Start Algorithm for
MPTCP in mmWave-LTE Networks,” in Proc. IEEE VTC, 2018, pp.
1–5.

[107] K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of Explicit
Congestion Notification (ECN) to IP,” RFC 3168 (Proposed Standard),
Internet Engineering Task Force, Sep. 2001, updated by RFCs 4301,
6040.

[108] S. Floyd, M. Allman, A. Jain, and P. Sarolahti, “Quick-Start for TCP
and IP,” RFC 4782 (Experimental), Internet Engineering Task Force,
Jan. 2007.

[109] I. F. Akyildiz et al., “xStream: A New Platform Enabling Communi-
cation Between Applications and the 5G Network,” in Proc. IEEE GC
Wkshps, 2018, pp. 1–6.

[110] H. Iwasawa, K. Tokunaga, and N. Takaya, “Available-Bandwidth
Information Based TCP Congestion Control Algorithm on Multi-RAT
Networks,” in Proc. IEEE GCC, 2017, pp. 1–6.

[111] V. Poirot, M. Ericson, M. Nordberg, and K. Andersson, “Energy
efficient multi-connectivity algorithms for ultra-dense 5G networks,”
Wirel. Netw., vol. 26, pp. 2207–2222, 2020.

[112] M. Suer, C. Thein, H. Tchouankem, and L. Wolf, “Multi-Connectivity
as an Enabler for Reliable Low Latency Communications–An
Overview,” IEEE Commun. Surv. Tutor., vol. 22, no. 1, pp. 156–169,
2020.

[113] C. Raiciu, M. Handley, and D. Wischik, “Coupled Congestion Control
for Multipath Transport Protocols,” RFC 6356 (Experimental), Internet
Engineering Task Force, Oct. 2011.

[114] R. Khalili, N. Gast, M. Popovic, and J. Le Boudec, “MPTCP Is
Not Pareto-Optimal: Performance Issues and a Possible Solution,”
IEEE/ACM Trans. Netw., vol. 21, no. 5, pp. 1651–1665, 2013.

[115] Q. Peng, A. Walid, J. Hwang, and S. H. Low, “Multipath TCP: Anal-
ysis, Design, and Implementation,” IEEE/ACM Trans. Netw., vol. 24,
no. 1, pp. 596–609, 2016.

[116] (2021, Aug.) MultiPath TCP - Linux Kernel implementation. [Online].
Available: https://www.multipath-tcp.org/

[117] M. Polese, R. Jana, and M. Zorzi, “TCP in 5G mmWave networks:
Link level retransmissions and MP-TCP,” in Proc. IEEE INFOCOM
WKSHPS, 2017, pp. 343–348.

[118] M. P. McGarry, R. Shakya, M. I. Ohannessian, and R. Ferzli, “Optimal
Caching Router Placement for Reduction in Retransmission Delay,” in
Proc. ICCCN, 2011, pp. 1–8.

[119] W. Wong, M. Giraldi, M. F. Magalhaes, and J. Kangasharju, “Content
Routers: Fetching Data on Network Path,” in Proc. IEEE ICC, 2011,
pp. 1—6.

[120] “Network Caching White Paper,” Cisco, 2008. [Online].
Available: https://www.cisco.com/c/dam/global/de at/assets/docs/Net
Caching.pdf

[121] S. Safavat, N. Sapavath, and D. Rawat, “Recent advances in mobile
edge computing and content caching,” Digit. Commun. Netw., vol. 6,
no. 2, pp. 189–194, 2020.

[122] S. Li, J. Xu, M. van der Schaar, and W. Li, “Popularity-driven content
caching,” in Proc. IEEE INFOCOM, 2016, pp. 1–9.

[123] J. Kwak, Y. Kim, L. B. Le, and S. Chong, “Hybrid Content Caching
in 5G Wireless Networks: Cloud Versus Edge Caching,” IEEE Trans.
Wirel. Commun., vol. 17, no. 5, pp. 3030–3045, 2018.

[124] F. Spinelli and V. Mancuso, “Toward Enabled Industrial Verticals in 5G:
A Survey on MEC-Based Approaches to Provisioning and Flexibility,”
IEEE Commun. Surv. Tutor., vol. 23, no. 1, pp. 596–630, 2021.

[125] A. Belogaev et al., “Cost-Effective V2X Task Offloading in MEC-
Assisted Intelligent Transportation Systems,” IEEE Access, vol. 8, pp.
169 010–169 023, 2020.

[126] R. Fielding and J. Reschke, “Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing,” RFC 7230 (Proposed Standard), Internet
Engineering Task Force, Jun. 2014.

[127] D. Moltchanov et al., “Analytical TCP Model for Millimeter-Wave
5G NR Systems in Dynamic Human Body Blockage Environment,”
Sensors, vol. 20, no. 14, 2020.

[128] K. Leung and V. Li, “Transmission control protocol (TCP) in wireless
networks: issues, approaches, and challenges,” IEEE Commun. Surv.
Tutor., vol. 8, no. 4, pp. 64–79, 2006.

[129] B. Sardar and D. Saha, “A survey of TCP enhancements for last-hop
wireless networks,” IEEE Commun. Surv. Tutor., vol. 8, no. 3, pp. 20–
34, 2006.

[130] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby, “Perfor-
mance Enhancing Proxies Intended to Mitigate Link-Related Degra-
dations,” RFC 3135 (Informational), Internet Engineering Task Force,
Jun. 2001.

[131] M. Zhang et al., “TCP dynamics over mmwave links,” in Proc. IEEE
SPAWC, 2017, pp. 1–6.

[132] ——, “The Bufferbloat Problem over Intermittent Multi-Gbps
mmWave Links,” Computing Research Repository, 2016.

[133] C. Chaccour et al., “Seven Defining Features of Terahertz (THz)
Wireless Systems: A Fellowship of Communication and Sensing,”
IEEE Commun. Surv. Tutor., vol. 24, no. 2, pp. 967–993, 2022.

[134] R. Wang et al., “TCP startup performance in large bandwidth net-
works,” in Proc. IEEE INFOCOM, vol. 2, 2004, pp. 796–805.

[135] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida, “The NewReno
Modification to TCP’s Fast Recovery Algorithm,” RFC 6582 (Proposed
Standard), Internet Engineering Task Force, Apr. 2012.

[136] S. Floyd, “HighSpeed TCP for Large Congestion Windows,” RFC 3649
(Experimental), Internet Engineering Task Force, Dec. 2003.

[137] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control
(BIC) for fast long-distance networks,” in Proc. IEEE INFOCOM,
vol. 4, 2004, pp. 2514–2524.

[138] T. Kozu, Y. Akiyama, and S. Yamaguchi, “Improving RTT Fairness on
CUBIC TCP,” in Proc. CANDAR, 2013, pp. 162–167.

[139] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP Vegas:
New Techniques for Congestion Detection and Avoidance,” Proc. ACM
SIGCOMM CCR, vol. 24, no. 4, Oct. 1994.

[140] K. N. Srijith, L. Jacob, and A. L. Ananda, “TCP Vegas-A: solving the
fairness and rerouting issues of TCP Vegas,” in Proc. IEEE IPCCC,
2003, pp. 309–316.

[141] W. Zhou, W. Xing, Y. Wang, and J. Zhang, “TCP Vegas-V: Improving
the performance of TCP Vegas,” in Proc. ACAI, 2012, pp. 2034–2039.

[142] J. Sing and B. Soh, “TCP New Vegas: Performance Evaluation and
Validation,” in Proc. IEEE ISCC, 2006, pp. 541–546.

[143] Y. Zaki et al., “Adaptive Congestion Control for Unpredictable Cellular
Networks,” Proc. ACM SIGCOMM CCR, vol. 45, no. 4, 2015.

[144] P. Goyal et al., “Elasticity Detection: A Building Block for Delay-
Sensitive Congestion Control,” in Proc. ANRW, 2018, p. 75.

[145] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind, “Low Extra
Delay Background Transport (LEDBAT),” RFC 6817 (Experimental),
Internet Engineering Task Force, Dec. 2012.

[146] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A Compound TCP
Approach for High-Speed and Long Distance Networks,” in Proc. IEEE
INFOCOM, 2006, pp. 1–12.

[147] S. Liu, T. Basar, and R. Srikant, “TCP-Illinois: A loss- and delay-
based congestion control algorithm for high-speed networks,” Perform.
Evaluation, vol. 65, no. 6, pp. 417–440, 2008.

[148] C. P. Fu and S. C. Liew, “TCP Veno: TCP enhancement for trans-
mission over wireless access networks,” IEEE J. Sel. Areas Commun.,
vol. 21, no. 2, pp. 216–228, 2003.

[149] A. Baiocchi, A. P. Castellani, and F. Vacirca, “YeAH-TCP: Yet Another
Highspeed TCP,” in Proc. PFLDnet, 2007.

[150] S. Mascolo et al., “TCP Westwood: Bandwidth Estimation for En-
hanced Transport over Wireless Links,” in Proc. MobiCom, 2001, pp.
287–297.

[151] R. Ferorelli et al., “Live Internet measurements using Westwood+ TCP
congestion control,” in Proc. IEEE GLOBECOM, vol. 3, 2002, pp.
2583–2587.

[152] L. A. Grieco and S. Mascolo, “Performance Evaluation and Compari-
son of Westwood+, New Reno, and Vegas TCP Congestion Control,”
Proc. ACM SIGCOMM CCR, vol. 34, no. 2, pp. 25–38, 2004.

[153] N. Cardwell et al., “BBR: Congestion-Based Congestion Control,”
ACM Queue, vol. 14, pp. 20–53, 2016.

[154] M. Hock, R. Bless, and M. Zitterbart, “Experimental evaluation of BBR
congestion control,” in Proc. IEEE ICNP, 2017, pp. 1–10.

[155] K. Miyazawa, K. Sasaki, N. Oda, and S. Yamaguchi, “Cyclic Perfor-
mance Fluctuation of TCP BBR,” in Proc. IEEE COMPSAC, vol. 1,
2018, pp. 811–812.

[156] P. Farrow, “Performance analysis of heterogeneous TCP congestion
control environments,” in Proc. IFIP/IEEE PEMWN, 2017, pp. 1–6.

[157] E. Atxutegi et al., “On the Use of TCP BBR in Cellular Networks,”
IEEE Commun. Mag., vol. 56, no. 3, pp. 172–179, 2018.

[158] F. Li, J. W. Chung, X. Jiang, and C. Mark, “TCP CUBIC versus BBR
on the Highway,” in Proc. PAM, 2018, pp. 1–12.

[159] N. Cardwell et al., “BBR v2: A model-based congestion control,” in
Present. in ICCRG at IETF 104th meeting, 2019. [Online]. Available:
https://lafibre.info/testdebit/linux/201903 bbr v2 doc ietf104.pdf

[160] X. Nie et al., “Dynamic TCP Initial Windows and Congestion Con-
trol Schemes Through Reinforcement Learning,” IEEE J. Sel. Areas
Commun., vol. 37, no. 6, pp. 1231–1247, 2019.

[161] W. Li et al., “SmartCC: A Reinforcement Learning Approach for
Multipath TCP Congestion Control in Heterogeneous Networks,” IEEE
J. Sel. Areas Commun., vol. 37, no. 11, pp. 2621–2633, 2019.

[162] T. Zhang and S. Mao, “Machine Learning for End-to-End Congestion
Control,” IEEE Commun. Mag., vol. 58, no. 6, pp. 52–57, 2020.

[163] A. Srivastava, F. Fund, and S. S. Panwar, “An Experimental Evaluation
of Low Latency Congestion Control for mmWave Links,” in Proc. IEEE
INFOCOM WKSHPS, 2020, pp. 352–357.

[164] L. Diez et al., “Can We Exploit Machine Learning to Predict Conges-
tion over mmWave 5G Channels?” Appl. Sci., vol. 10, no. 18, 2020.

[165] R. Poorzare and A. C. Auge, “FB-TCP: A 5G mmWave Friendly TCP
for Urban Deployments,” IEEE Access, vol. 9, pp. 82 812–82 832, 2021.

[166] L. Diez et al., “Learning congestion over millimeter-wave channels,”
in Proc. IEEE WiMob, 2020, pp. 1–6.

[167] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4, pp. 397–
413, 1993.

[168] M. Pieska, A. J. Kassler, H. Lundqvist, and T. Cai, “Improving TCP
Fairness over Latency Controlled 5G mmWave Communication Links,”
in Proc. WSA, 2018, pp. 1–8.

[169] M. Zhang et al., “Transport layer performance in 5G mmWave cellular,”
in Proc. IEEE INFOCOM WKSHPS, 2016, pp. 730–735.

[170] F. Baker and G. Fairhurst, “IETF Recommendations Regarding Active
Queue Management,” RFC 7567, Jul. 2015.

[171] M. Ihlar, A. Nazari, and R. Skog, “Low latency, high
flexibility - Virtual AQM, Ericson Techology Review.”
[Online]. Available: https://www.ericsson.com/en/reports-and-papers/
ericsson-technology-review/articles/virtual-aqm-for-mobile-networks

[172] J. H. Salim and U. Ahmed, “Performance Evaluation of Explicit Con-
gestion Notification (ECN) in IP Networks,” RFC 2884 (Informational),
Internet Engineering Task Force, Jul. 2000.

[173] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the perfor-
mance of TCP pacing,” in Proc. IEEE INFOCOM, vol. 3, 2000, pp.
1157–1165.

[174] M. Scharf, S. Hauger, and J. Kogel, “Quick-Start TCP: From Theory
to Practice,” Proc. PFLDnet, Mar. 2008.

[175] “TS 23.402: Architecture enhancements for non-3GPP accesses,”
3GPP, Mar. 2016.

[176] G. MacCartney and T. Rappaport, “Millimeter-Wave Base Station
Diversity for 5G Coordinated Multipoint (CoMP) Applications,” IEEE
Trans. Wirel. Commun., vol. 18, no. 7, pp. 3395–3410, 2019.

[177] Ericsson. (2021, June) What, Why and How: the Power of 5G Carrier
Aggregation. [Online]. Available: https://www.ericsson.com/en/blog/
2021/6/what-why-how-5g-carrier-aggregation

[178] A. Aijaz, “Packet Duplication in Dual Connectivity Enabled 5G
Wireless Networks: Overview and Challenges,” IEEE Commun. Stand.
Mag., vol. 3, no. 3, pp. 20–28, 2019.

[179] S. Kang, S. Choi, G. Lee, and S. Bahk, “A Dual-Connection Based
Handover Scheme for Ultra-Dense Millimeter-Wave Cellular Net-
works,” in Proc. IEEE GCC, 2019, pp. 1–6.

[180] F. Hu et al., “Cellular-Connected Wireless Virtual Reality: Require-
ments, Challenges, and Solutions,” IEEE Commun. Mag., vol. 58, no. 5,
pp. 105–111, 2020.

[181] D. Michalopoulos and V. Pauli, “Data Duplication for High Reliability:
A Protocol-Level Simulation Assessment,” in Proc. IEEE ICC, 2019,
pp. 1–7.

[182] L. Weedage, C. Stegehuis, and S. Bayhan, “Impact of Multi-
connectivity on Channel Capacity and Outage Probability in Wireless
Networks,” IEEE Trans. Veh. Technol., pp. 1–14, 2023.

[183] T. Mumtaz, S. Muhammad, M. Aslam, and N. Mohammad, “Dual
Connectivity-Based Mobility Management and Data Split Mechanism
in 4G/5G Cellular Networks,” IEEE Access, vol. 8, pp. 86 495–86 509,
2020.

[184] M. Susloparov, A. Krasilov, and E. Khorov, “Providing High Capacity
for AR/VR traffic in 5G Systems with Multi-Connectivity,” in Proc.
IEEE BlackSeaCom, 2022, pp. 385–390.

[185] M. Drago et al., “Reliable Video Streaming over mmWave with Multi
Connectivity and Network Coding,” in Proc. ICNC, 2018, pp. 508–512.

[186] E. Dias et al. (2022, 05) Millimeter-Wave in Milliseconds: Sliding
Window Network Coding Outperforms Rateless Codes. [Online].
Available: https://arxiv.org/abs/2205.00793

[187] M. S. Karim, A. Douik, P. Sadeghi, and S. Sorour, “On Using Dual
Interfaces With Network Coding for Delivery Delay Reduction,” IEEE
Trans. Wirel. Commun., vol. 16, no. 6, pp. 3981–3995, 2017.

[188] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP Exten-
sions for Multipath Operation with Multiple Addresses,” RFC 6824
(Experimental), Internet Engineering Task Force, Jan. 2013.

[189] C. Paasch and O. Bonaventure, “Multipath TCP,” Communications of
the ACM, vol. 57, no. 4, pp. 51–57, Apr. 2014.

[190] Y. Liu et al. Multipath Extension for QUIC. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-quic-multipath/

[191] S. Ferlin, T. Dreibholz, and O. Alay, “Multi-path transport over
heterogeneous wireless networks: Does it really pay off?” in Proc.
IEEE GCC, 2014, pp. 4807–4813.

[192] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, “Experimental
Evaluation of Multipath TCP Schedulers,” in Proc. ACM SIGCOMM
CSWS. Association for Computing Machinery, 2014, pp. 27–32.

[193] F. Yang, Q. Wang, and P. D. Amer, “Out-of-Order Transmission for
In-Order Arrival Scheduling for Multipath TCP,” in Proc. AINA, 2014,
pp. 749–752.

[194] S. Ferlin, O. Alay, O. Mehani, and R. Boreli, “BLEST: Blocking
estimation-based MPTCP scheduler for heterogeneous networks,” in
Proc. IFIP Networking and Workshops, 2016, pp. 431–439.

[195] Y. Lim, E. M. Nahum, D. Towsley, and R. J. Gibbens, “ECF: An
MPTCP Path Scheduler to Manage Heterogeneous Paths,” SIGMET-
RICS Performance Evaluation Rev., vol. 45, no. 1, pp. 33–34, 2017.

[196] P. Hurtig et al., “Low-Latency Scheduling in MPTCP,” IEEE/ACM
Trans. Netw., vol. 27, no. 1, pp. 302–315, 2019.

[197] N. Kuhn et al., “DAPS: Intelligent delay-aware packet scheduling for
multipath transport,” in Proc. IEEE ICC, 2014, pp. 1222–1227.

[198] J. Wang, J. Liao, and T. Li, “OSIA: Out-of-Order Scheduling for In-
Order Arriving in Concurrent Multi-Path Transfer,” Journal of Network
and Computer Applications, vol. 35, no. 2, pp. 633–643, Mar. 2012.

[199] H. Zhang et al., “ReLeS: A Neural Adaptive Multipath Scheduler based
on Deep Reinforcement Learning,” in Proc. IEEE INFOCOM, 2019,
pp. 1648–1656.

[200] H. Wu et al., “Peekaboo: Learning-Based Multipath Scheduling for
Dynamic Heterogeneous Environments,” IEEE J. Sel. Areas Commun.,
vol. 38, no. 10, pp. 2295–2310, 2020.

