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Abstract
Groups of voters have more possibilities to influence the voting result than sepa-
rate individuals. However, there is a problem with coordinating their actions. This 
paper considers manipulation by groups of voters who have the same preferences. 
If a voting result is more preferable for voters of a particular group provided that 
all its members use the same strategy (report the same insincere preference), then 
each of these members has an incentive to manipulate. If there is a chance that they 
will become worse off in case only a subset of the whole group manipulates, then 
manipulation is unsafe. For several voting rules we study conditions on the numbers 
of voters and alternatives which allow for an unsafe manipulation or which make 
manipulation always safe.

1  Introduction

One of the problems with collective decision making is that voters may submit 
insincere preferences, aiming to achieve a more preferable result or, in other 
words, manipulate an election. Manipulation, therefore, is one of the most con-
sidered questions in social choice theory. The fundamental result in this direc-
tion is the Gibbard-Satterthwaite theorem, which states that every non-dictatorial 
social choice rule with at least three alternatives in its range, is vulnerable to 
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individual manipulation (Gibbard 1973; Satterthwaite 1975). This result applies 
to the basic manipulation model, where voters manipulate individually and inde-
pendently, having complete information about the preferences of the other voters.

While all being vulnerable to manipulation, rules still differ in their degree of manipu-
lability, see for instance (Nitzan 1985; Kelly 1988; Aleskerov and Kurbanov 1999; Maus 
et al. 2007), and Peters et al. (2012). The present paper studies a somewhat related ques-
tion. Obviously, groups of voters have even more opportunities to influence the result: 
they can unite in coalitions and coordinate their manipulation. In many applications, 
however, this coordination cannot and does not actually take place explicitly. Rather, a 
voter who aims to manipulate, may take into account that other voters with the same 
preference may also manipulate in the same way. In fact, this is what we assume in this 
paper. Given a (sincere) preference within a profile of preferences, we will use the word 
‘group’ to indicate all voters who have this preference. We then say that a(ny) voter in 
this group has an incentive to manipulate if there is a(n insincere) preference such that, 
if all voters in this group report this preference, then the election result is better for them 
according to the true, sincere preference. In that case, a problem may arise if not all vot-
ers in the group participate in the manipulation, because if this happens the result may 
actually be worse than without manipulation. In other words, due to lack of or poor com-
munication within a group of like-minded voters, manipulation may be harmful.

We will call manipulation ‘safe’ if this does not happen: even if not all voters 
in a group participate in the manipulation, the result is not worse than without 
manipulation. Otherwise, manipulation is ‘unsafe’. We now provide an example 
of such an unsafe manipulation for the well-known Borda rule.

Example 1.1  Suppose that there are five alternatives, a, b, c, d, e. A preference pro-
file with seven voters is given in the following table. The first line of the table shows 
the number of voters for each preference order occurring in the profile.

The Borda rule assigns 4 points to the top alternatives, 3 points to the second-ranked 
alternatives, etc., until 0 points to the last ranked alternatives, and these points are then 
added up to obtain the total scores. For the given preference profile, total scores are 
S(a) = 15 , S(b) = 13 , S(c) = 16 , S(d) = 15 , S(e) = 11 . Thus, with sincere preferences, 
alternative c wins. For the group of three voters K = {1, 2, 3} each one having pref-
erence (a, b, c, e, d) (i.e., a is preferred to b, b to c, etc.), there is no way to make a 
win, but they have an incentive to manipulate by reporting preference (b, a, e, c, d). 
If all voters in K report this preference, then the scores will be S(a) = 12 , S(b) = 16 , 
S(c) = 13 , S(d) = 15 , S(e) = 14 , so that b is the winner of the election, and b is pre-
ferred over c by the members of K according to their sincere preference.

3 2 1 1

a d d e

b c c d

c b e a

e e a c

d a b b
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Now suppose that only one voter of K decides to manipulate. In this case, the 
scores are: S(a) = 14 , S(b) = 14 , S(c) = 15 , S(d) = 15 , S(e) = 12 . Alternatives c and 
d have maximal scores. If we assume that d wins against c by tie-breaking, then the 
final outcome is d, but for the members of K outcome d is worse than c. Therefore, 
this group manipulation is unsafe. ⊲

If manipulation is unsafe, then this fact may prevent voters from voting strate-
gically. However, the possibility of an unsafe manipulation depends on the rule, 
the number of voters and the number of alternatives. In this paper we consider 
a collection of well-known rules and investigate for which of these rules group 
manipulation can be unsafe, and which rules are only safely manipulable.

The concept of (un)safe manipulation has already been considered by Slinko 
and White (2014). However, their model differs from the one considered in this 
paper. In their approach, a voter i in a group K has an incentive to manipulate if 
there is some subset of K, including voter i, such that the election result improves 
for i if exactly the voters in this subset report a (the same) insincere preference. 
They call manipulation ‘unsafe’ if the result can get worse if some other subset, 
including i, deviates. The main result in Slinko and White (2014) is an extension 
of the Gibbard-Satterthwaite theorem: for each rule with at least three alterna-
tives in its range, there is a preference profile and a voter who can safely individu-
ally manipulate – that is, this voter is not worse off if also some other voters with 
the same preference manipulate in the same way. We postpone a more elaborate 
comparison between our paper and Slinko and White (2014) until Sect. 7.1.

Following up on the model of Slinko and White (2014), several papers focus on dif-
ferent aspects of safe manipulation. Computational complexity of finding a safe strate-
gic vote under k-approval and Bucklin rules was studied in Hazon and Elkind (2010). 
The same question for Borda rule and some classes of scoring rules was considered 
in Ianovski et al. (2011). The asymptotic probability of a safe manipulation under the 
IAC assumption (all voting profiles are equally likely) for scoring rules is computed 
in Wilson and Reyhani Shokat Abad (2010). In an extension of the aforementioned 
model each manipulator thinks not only about his/her allies, but about all voters hav-
ing an incentive to manipulate (they are called Gibbard-Satterthwaite-manipulators, 
or GS-manipulators). Then, a strategy is considered as ‘safe’ if for any manipulating 
subset of GS-manipulators, using this strategy is not worse than sincere voting. This 
kind of model was considered in Elkind et al. (2015) and Grandi et al. (2019). These 
references are just a few from the strand of literature on voting manipulation games. 
For a more detailed survey we refer the reader to Slinko (2019).

The rest of the paper is organized as follows. Section  2 presents the formal 
model and the rules that we consider: scoring rules, in particular Borda; run-off; 
Copeland; and single transferable vote. Section 3 considers scoring rules in gen-
eral and Borda in particular, Sect. 4 considers the run-off rule, Sect. 5 the Cope-
land rule, and Sect. 6 single transferable vote. Section 7 concludes, in particular 
with a comparison between (Slinko and White 2014) and our approach.
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2 � Definitions and notations

2.1 � The framework

A society of n ≥ 3 voters, N = {1,… , n} , decides which of m alternatives from 
the set X, |X| = m ≥ 3 , to choose.1 Each voter has a preference, i.e., a linear order2 
on X. We denote the set of all preferences by L(X). For a, b ∈ X and P ∈ L(X) we 
write aPb instead of (a, b) ∈ P . Also, we often write P = (a1,… , am) , mean-
ing that a1P…Pam , where X = {a1,… , am} . A preference profile is a vector 
P = (P1,… ,Pn) ∈ L(X)N of individual preferences.

A social choice correspondence (SCC) is a map C ∶ L(X)N → 2X⧵{�} (where 2X 
denotes the set of all subsets of X). A social choice rule or simply rule is a map 
F ∶ L(X)N → X . Thus, a rule can be identified with a single-valued SCC. In this 
paper we will mainly consider social choice rules derived from social choice cor-
respondences by tie-breaking according to a fixed linear order on X – we will be 
precise about this whenever this is needed.

For a preference profile P , a preference P ∈ L(X) , and a subset K ⊆ N such that 
Pi = P ∈ L(X) for all i ∈ K , we also write (PK ,P−K) instead of P . If, in particular, 
K = {k ∈ N ∶ Pk = P} , then we call K the group of (any) voter i ∈ K at P . Thus, a group 
collects all voters with the same preference, for some preference in a preference profile.

The following definition captures the situation where a(ny) voter in a group pre-
fers the alternative which results if all voters in that group vote insincerely using the 
same preference.

Definition 2.1  Voter i ∈ N has an incentive to manipulate rule F at profile 
P ∈ L(X)N if there is a P̃ ∈ L(X) such that F(P̃K ,P−K) P F(P) , where K is the group 
of i at P (i.e., all voters who have common preference P = Pi at P).

Clearly, this definition implies that if voter i has an incentive to manipulate, then 
all members of i’s group have an incentive to manipulate – using the same prefer-
ence P̃ . Therefore, we also say that group K has an incentive to manipulate.

We introduce some further terminology. A preference profile P ∈ L(X)N is 
manipulable under rule F if there is a voter who has an incentive to manipulate at P . 
A rule F is manipulable if there is a manipulable preference profile under F.

2.2 � Safe and unsafe manipulations

Let F be a rule, and let P ∈ L(X)N be a preference profile. Suppose that voter i 
belonging to group K has an incentive to manipulate F at P by preference P̃ . We 
say that manipulation with P̃ is unsafe for i at P if there exists M ⊊ K such that 
i ∈ M and F(P)Pi F(P̃M ,P−M) . If such an M does not exist, then manipulation with 
P̃ is safe for i at P . In words, a manipulation is safe if it never results in a worse 

1  The cases n < 3 or m < 3 are uninteresting for the purpose of this paper, as can easily be verified in the 
sequel.
2  That is, an irreflexive, asymmetric, transitive and complete binary relation.
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alternative if not all members of the group join in the manipulation. Clearly, if 
K = {i} then every manipulation is safe.

A preference profile P ∈ L(X)N is safely manipulable (given F) if there is a voter 
for whom manipulation is safe with P̃ for some P̃ ∈ L(X) . It is unsafely manipulable if 
there is a voter for whom manipulation with P̃ is unsafe for some P̃ ∈ L(X) . A prefer-
ence profile can be both safely and unsafely manipulable, even by the same voter.

The rule F is safely manipulable if there is a safely manipulable preference pro-
file, and unsafely manipulable (UM) if there is an unsafely manipulable preference 
profile. Again, F can be both safely and unsafely manipulable. Rule F is only safely 
manipulable (OSM) if for every manipulable profile P ∈ L(X)N , P is not unsafely 
manipulable. Hence, F is OSM if it is not UM.

2.3 � Social choice correspondences

In this subsection we introduce the social choice correspondences from which the 
rules to be studied in this paper, will be derived by tie-breaking.

2.3.1 � Scoring correspondences

A scoring vector is a vector s = (s1,… , sm) ∈ ℝ
m such that s1 ≥ ⋯ ≥ sm ≥ 0 and 

s1 > sm . For a preference profile P and an alternative a, let vj(a,P) denote the num-
ber of voters having a at the j-th position (where voter i has a at the j-th position if 
|{b ∈ X ∶ bPia}| = j − 1 ). Then S(a,P) =

∑m

j=1
sjvj(a,P) is the total score of a at P . 

The scoring correspondence F with scoring vector s assigns to each preference pro-
file P the set {a ∈ X ∶ S(a,P) ≥ S(a�,P) for all a� ∈ X} , i.e., the set of alternatives 
with maximal total score. Well-known examples are:

•	 q-approval: s
1
= ⋯ = s

q
= 1 , s

q+1
= ⋯ = s

m
= 0 , where q ∈ {1,… ,m − 1} ; for q = 1 

this is also called plurality, and for q = m − 1 this is also called veto or antiplurality,
•	 Borda: s = (m − 1,m − 2,… , 1, 0).

2.3.2 � Run‑off

For a preference profile P , two alternatives with maximal plurality scores (see 
Sect.  2.3.1) are chosen, if necessary using a tie-breaking rule. Among these 
two, say a and b, we choose the alternative(s) which win in a pairwise con-
test, that is, a is chosen if |{i ∈ N ∶ aPib}| ≥ |{i ∈ N ∶ bPia}| and b is chosen if 
|{i ∈ N ∶ bPia}| ≥ |{i ∈ N ∶ aPib}|.

2.3.3 � Copeland

For a preference profile P , the Copeland score of an alternative a is the number

|
{
b ∈ X ∶ |{i ∈ N ∶ aPib}| >

n

2

}
| − |

{
b ∈ X ∶ |{i ∈ N ∶ bPia}| >

n

2

}
|.
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Hence, the Copeland score of an alternative a is the number of alternatives beaten 
by a minus the number of alternatives that beat a, where x beats y if a strict majority 
of the voters prefers x over y. The Copeland correspondence chooses the alternatives 
with maximal Copeland score.

2.3.4 � Single‑transferable‑vote, STV

For a preference profile P , for each alternative a determine the number of voters who have 
a at top position, i.e., determine its plurality score S(a,P) for scoring vector (1, 0,… , 0) . 
If all nonzero plurality scores are equal, then STV assigns the set of all alternatives that 
occur at top, i.e., that have nonzero plurality score. If not all these nonzero plurality scores 
are equal then: if there is an alternative a with plurality score strictly higher than n/2, then 
STV assigns {a} ; otherwise, leave out those alternatives that have minimal (possibly zero) 
plurality score. This results in a restricted preference profile with fewer alternatives. Now 
repeat this procedure until no more alternatives can be left out: STV assigns the remain-
ing alternatives to P . As an illustration, consider the following two profiles:

a b b c c

b ⋅ ⋅ ⋅ ⋅

⋮ ⋮ ⋮ ⋮ ⋮

and

a b b c c c

b ⋅ ⋅ ⋅ ⋅ ⋅

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

In the left profile, after eliminating alternatives with zero plurality score (if any), 
a is eliminated: this results in a profile where b has plurality score 3, so that STV 
assigns {b} . In the right profile, again after eliminating alternatives with zero plural-
ity score (if any), also a is eliminated, so that STV assigns {b, c}.

3 � (Un)safe manipulability of scoring rules

In this section we investigate the (un)safe manipulability of rules derived from scor-
ing correspondences, so-called scoring rules. Our first main result concerns these 
rules in general, and our second result focuses on Borda (cf. Section 2.3.1).

As already mentioned, we need to apply tie-breaking in order to derive rules from 
social choice correspondences. We do this by fixing a linear order on the set of alterna-
tives X and taking the maximal element according to this order from a set assigned by 
the correspondence. In what follows we will be more precise whenever this is needed.

For a scoring vector s, a jump is a non-zero difference between two adjacent scor-
ing values. If s has r jumps, then this means that there are distinct 
k1,… , kr ∈ {1,… ,m − 1} such that sk1 > sk1+1,… , skr > skr+1 , while all other differ-
ences are zero. We use the notation Δj = skj − skj+1 for j = 1,… , r to denote the non-
zero differences between scoring values.

Our first result concerns unsafe and only safe manipulability of scoring rules in general.

Theorem  3.1  Let s be a scoring vector with r jumps, and let F be a scoring rule 
derived from the scoring correspondence associated with scoring vector s by tie-
breaking (Table  1). If r = 1 , then F is only safely manipulable. If r ≥ 2 , then the 
results are as in the following table:
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Proof  (i) In this first part of the proof, we assume that there is an unsafe manipula-
tion and derive conditions implied by this assumption. Let P be a preference profile 
and let a, b, c ∈ X such that for voter i in group K (and, consequently, for all vot-
ers in K) we have aPibPic . Suppose that group K has an incentive to manipulate 
and manipulation is unsafe with F(P) = b , F(P̃K ,P−K) = a , and F(P̃M ,P−M) = c for 
some P̃ ∈ L(X) and M ⊊ K . In words, b is the alternative chosen at P , group K can 
achieve a by manipulating via P̃ , but if only the voters in M deviate, the worse alter-
native c results.

For every alternative x ∈ X , let �x denote the change in score when a voter i ∈ K 
changes from Pi to P̃ , hence 𝜀x|G| = S(x, (P̃G,P−G)) − S(x,P) for every G ⊆ K . 
Since F(P) = b we have

and since F(P̃M ,P−M) = c we have S(c, (P̃M ,P−M)) ≥ S(b, (P̃M ,P−M)) , hence

If �b ≥ �c , then by (1) and (2), S(c,P) = S(b,P) and �b = �c , which by tie-
breaking implies b = F(P̃M ,P−M) , a contradiction. Therefore, 𝜀b < 𝜀c . Similarly, 
𝜀c < 𝜀a . Consequently, 𝜀b < 𝜀c < 𝜀a . The five possible (sign) cases are given in 
the following table:

(1)S(b,P) ≥ S(c,P),

(2)S(c,P) + �c|M| ≥ S(b,P) + �b|M|.

Table 1   The results of Theorem 3.1

2 jumps 3 or more jumps

Δ
1
> Δ

2
Δ

1
≤ Δ

2

k
1
= 2,

k
2
= 4

Otherwise Δ
1
> Δ

3

or Δ
2
> Δ

3

Otherwise

m = 3 ∀n ∶ OSM ∀n ∶ OSM (not applicable)
m = 4 ∃n ∶ UM ∀n ∶ OSM ∃n ∶ UM ∀n ∶ OSM
m = 5 ∃n ∶ UM ∀n ∶ OSM ∃n ∶ UM ∃n ∶ UM
m ≥ 6 ∃n ∶ UM ∃n ∶ UM ∃n ∶ UM

Table 2   Part (i) of the proof of 
Theorem 3.1

Case �
b

�
c

�
a

1 − − 0
2 − −, 0,+ +

3 0 + +

4 − − −
5 + + +
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In the remainder of the proof, based on Table 2, we derive necessary condi-
tions for an unsafe manipulation as in Part (i) to exist. In the last part, we show 
that when these conditions are not fulfilled, there can be an unsafe manipulation.

(ii) Suppose that r = 1 , Δ1 = sk − sk+1 . Then, for all x ∈ X , �x = 0 or �x = −Δ1 
or �x = Δ1 . This and 𝜀b < 𝜀c < 𝜀a imply that in Table 2 the only possible case is 
Case 2. Hence, �a = Δ1 and �b = −Δ1 but this is not possible: indeed, if the score 
of a increases by Δ1 , then a moves from the bottom m − k alternatives in Pi to the 
top k alternatives in P̃ , but aPib , so, b is also among the bottom m − k alternatives 
in Pi and therefore cannot decrease in score when going to P̃ . Thus, in case of 
precisely one jump a scoring rule is only safely manipulable, and the first claim in 
the theorem is proved.

(iii) Suppose that r = 2 , Δ1 = sk1 − sk1+1 , Δ2 = sk2 − sk2+1 . We go through all 
cases in Table  2 and consider all possible combinations of jumps for each �x , 
x ∈ {a, b, c} in each case. Of course, throughout we use that initially b is chosen, 
then c, and at the end a, but we do not always spell out the details.

First, note that Cases 4 and 5 in Table  2 are not possible since these cases 
require at least three jumps to occur.

In Case 1, 𝜀b < 𝜀c < 0 = 𝜀a , there are two possibilities: 

1.1	From Pi to P̃ , b goes down one jump and c goes down one jump: this is only 
possible if Δ1 > Δ2 , and then �b = −Δ1 , �c = −Δ2 , and �a = 0 . This can be sum-
marized as follows: ab|c|◦ → ◦, a|b|c . [Here, | denotes a jump, ab|c|◦ contains 
the relevant information about Pi , and ◦, a|b|c contains the relevant information 
about P̃ . The small circles ◦ indicate other alternatives that are minimally avail-
able.]

1.2	b goes down two jumps and c goes down one jump. Then either 
abc|◦|◦ → ◦, ◦, a|c|b , hence �b = −Δ1 − Δ2 , �c = −Δ1 , and �a = 0 ; or 
ab|c|◦◦ → ◦, a|◦|b, c , hence �b = −Δ1 − Δ2 , �c = −Δ2 , and �a = 0.

In Case 2, 𝜀b < 0 and 𝜀a > 0 . Then �b = −Δ2 and �a = Δ1 , For �c there are two 
possibilities: 

2.1	�c = Δ2 and ◦|ab|c → a|◦, c|b . This is only possible if Δ1 > Δ2.
2.2	�c = 0 , and ◦|abc|◦ → a|◦◦, c|b or ◦|ab|◦, c → a|◦◦|b, c.

Finally, in Case 3, �b = 0 and 𝜀a, 𝜀c > 0 . There are again two possibilities: 

3.1	�a = Δ1 , �c = Δ2 , and ◦|ab|c → a|b, c|◦ or ◦|a|bc → a|c|◦, b . This is only possible 
if Δ1 > Δ2.

3.2	�a = Δ1 + Δ2 , �c = Δ2 , and ◦|◦|abc → a|c|◦◦, b.

Based on these six possibilities, we can now examine the r = 2 cases in Table 1.

•	 If m = 3 , then Pi = a|b|c , and therefore none of the Cases 1.1-−3.2 applies. 
Hence, any manipulation in this case is safe.
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•	 If m = 4 and Δ1 > Δ2 , then Cases 1.1, 2.1, and 3.1 apply, and so there can be 
unsafe manipulations.

•	 If m = 4 and Δ1 ≤ Δ2 , then none of the Cases 1.1-−3.2 applies. Hence, any 
manipulation in this case is safe.

•	 If m = 5 and Δ1 ≤ Δ2 , then from Cases 1.2, 2.2, and 3.2, it follows that unsafe 
manipulation may be possible for the following five jump combinations: 
k1 = 1, k2 = 2 (3.2); k1 = 1, k2 = 3 (2.2); k1 = 1, k2 = 4 (2.2); k1 = 2, k2 = 3 
(1.2); k1 = 3, k2 = 4 (1.2). In the remaining case, k1 = 2, k2 = 4 , no unsafe 
manipulation is possible.

•	 If m = 5 and Δ1 > Δ2 , then all Cases 1.1-−3.2 may apply and therefore all six 
jump combinations are possible, so that unsafe manipulation is possible for any 
of these combinations.

•	 If, finally, m ≥ 6 , then it is sufficient to consider the Cases 1.2, 2.2, and 3.2, to 
conclude that for any jump combination unsafe manipulation is possible.

(iv) We next consider the case r = 3 . Then there must be at least four alternatives.

•	 If m ≥ 5 , then for each combination of three (or more) jumps it is possible to 
manipulate unsafely by using only two jumps as in Cases 1.2 and 2.2 Thus, 
unsafe manipulation may be possible for any jump combination.

•	 Now let m = 4 . We consider the five cases in the Table 2.

–	 Case 1 implies Pi = a|b|c|◦ and P̃ = a|◦|b|c . Since 𝜀b < 𝜀c < 𝜀a , this implies 
Δ2 > Δ3 . In this case, unsafe manipulation may be possible.

–	 Case 2 implies Pi = ◦|a|b|c and P̃ = a|◦|c|b or P̃ = a|c|◦|b . Since 
𝜀b < 𝜀c < 𝜀a , this implies Δ1 > Δ3 or Δ1 > Δ2 + Δ3 . In turn, this implies that 
unsafe manipulation may be possible if Δ1 > Δ3.

–	 Case 3 implies Pi = ◦|a|b|c and P̃ = a|c|b|◦ . Since 𝜀b < 𝜀c < 𝜀a , this implies 
Δ1 > Δ2 + Δ3 . Under this condition, unsafe manipulation may be possible in 
this case.

–	 Case 4 implies Pi = a|b|c|◦ and P̃ = ◦|a|b|c . Since 𝜀b < 𝜀c < 𝜀a , this implies 
Δ2 > Δ3 > Δ1 . In this case therefore, an unsafe manipulation may exist, but 
by Case 1, Δ2 > Δ3 is already sufficient for this.

–	 Case 5 implies Pi = ◦|a|b|c and P̃ = a|b|c◦ . Since 𝜀b < 𝜀c < 𝜀a , this implies 
Δ2 < Δ3 < Δ1 . In this case therefore, an unsafe manipulation may exist, but by 
Case 2, Δ1 > Δ3 is already sufficient for this.

	    Summarizing, an unsafe manipulation may exist if and only if Δ1 > Δ3 or 
Δ2 > Δ3.

(v) The OSM cases in Table 1 have now been proved. We complete the proof of the 
theorem by providing a procedure to construct a preference profile for any kind of 
unsafe manipulation.

Assume that we have a particular number of alternatives m, a given scoring vector s, 
and a group K of voters with preferences P s.t. aPbPc. Take any way of unsafe manipu-
lation, P̃ , corresponding to the given m and s from the previous part of the proof. Then, 
the chosen way of unsafe manipulation defines score differences for alternatives a, b, 
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and c when one voter manipulates (switches from P to P̃ ). These score differences are: 
�a =

∑r

j=1
�jΔj , �b =

∑r

j=1
�jΔj , and �c =

∑r

j=1
�jΔj , where the �j, �j, �j are elements of 

{−1, 0, 1} . We need to prove that there exists a preference profile for some n such that 
members of K have an incentive to manipulate with P̃ and this manipulation is unsafe.

First, without loss of generality we assume tie-breaking according to aPtc , 
bPtc . Let the scores of alternatives be such that S(b,P) = S(c,P) and S(c, (P̃K , 
P−K)) = S(a, (P̃K ,P−K)) . This, together with 𝜀b < 𝜀c < 𝜀a , implies that F(P) = b , 
F(P̃K ,P−K) = a , and F(P̃M ,P−M) = c for some M ⊆ K.

For the difference in scores for alternatives a and c before and after manipulation, 
we have S(a, (P̃K ,P−K)) − S(a,P) = 𝜀a|K| and S(c, (P̃K ,P−K)) − S(c,P) = 𝜀c|K| . 
Since S(c, (P̃K ,P−K)) = S(a, (P̃K ,P−K)) we have S(a,P) + �a|K| = S(c,P) + �c|K| 
and, finally, S(c,P) − S(a,P) = �a|K| − �c|K| . So, S(c,P) − S(a,P) =

∑r

j=1
�jΔj for 

some integers �j.
Summing up, in the required profile P it is needed that: (a) the score differences 

between a, b, and c are fixed, S(b,P) − S(c,P) = 0 , S(c,P) − S(a,P) =
∑r

j=1
�jΔj for 

some integers �j ; (b) other alternatives do not affect the result; (c) there are exactly |K| 
voters with preferences Pi.

We now describe a procedure to generate a profile P with these properties. We 
first fix a preference profile for some set of voters K, where every member of K has 
the same preference P, say, aPbPcPa1Pa2P...Pam−3 . Take any number of voters in K 
and include their preferences, PK , in the profile P that we are constructing. Then we 
have condition (c) satisfied.

For the voters outside K we consider the following basic profile B(a):

Observe that in B(a) the scores of all alternatives are equal, and that P does not 
occur. Suppose that we need to increase the score of alternative a by the amount 
Δl , which is the size of the l-th jump, following position kl . Then we replace col-
umn (preference) kl in B(a) by R̃ , where R̃ is obtained by switching positions kl and 
kl + 1 in column kl . This results in a profile B�(a) where the scores of all alternatives 
except a and am−3 are still equal (and equal to the scores in B(a)), the score of a has 
increased by Δl , and the score of am−3 has decreased by Δl . Note that P̃ ≠ P and, 
thus, P does not occur in B�(a) . So, we include B�(a) in P . If it is needed to increase 
the score of a by the size of another jump, we include B��(a) constructed similarly, 
etc.

Similar constructions can be made for b and c, if we need to increase their 
scores, by starting from the most left columns (am−3, b, a, c, a1,… , am−4) and 
(am−3, c, a, b, a1,… , am−4) respectively. Doing this as many times as needed to sat-
isfy conditions (a) and (b), in the end we obtain the required preference profile. 

am−3 am−4 ⋯ a

a am−3 ⋯ c

c a ⋯ b

b c ⋯ a1
a1 b ⋯ a2
⋮ ⋮ ⋮ ⋮

am−4 am−5 ⋯ am−3
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Moreover, notice that we can choose any number of voters in K. So, if an unsafe 
manipulation exists for some m then it is always possible to find a profile with a 
group of only two voters having an incentive to manipulate unsafely. 	� ◻

Observe that, although Theorem  3.1 identifies all scoring rules where an 
unsafe manipulation exists, it is silent about how many voters are needed to have 
such a manipulation. It is difficult to derive general results about this for (all) 
scoring rules and therefore, in the next theorem, we focus on the arguably most 
famous rules with at least two jumps, namely Borda rules (cf. Sect. 2.3.1). Note 
that, since all jumps at a Borda rule have equal size, the cases with less than 5 
alternatives are covered by Theorem 3.1.

Theorem 3.2  Let F be a Borda rule. If m = 5 , then an unsafely manipulable profile 
exists if and only if n ≥ 4 . If m ≥ 6 , then an unsafely manipulable profile exists if 
and only if n ≥ 3.

Proof 

(a)	 First let m = 5 , X = {a, b, c, d, e} , and consider the following profiles P′ and P′′ 

for n = 4 and n = 5 , respectively: 

P′
1
P′
2
P′
3
P′
4

a a e e

b b c d

c c d c

d d b a

e e a b

P′′
1
P′′
2
P′′
3
P′′
4
P′′
5

a a e e d

b b c c e

c c b d c

d d a b b

e e d a a

. Suppose 

that tie-breaking is done according to the ordering T = (e, c, a, b, d) . Then 
F(P�) = c . If group K = {1, 2} changes their preferences to P̃ = (b, a, d, c, e) , 
then F(P̃K ,P

�
−K

) = b , which is preferred by the members of K to c. However, 

F(P̃{1},P
�
−{1}

) = e , so that this manipulation is unsafe. As to P′′ , note that also 

F(P��) = c and K = {1, 2} can manipulate again by P̃ = (b, a, d, c, e) . If only voter 
1 manipulates, then again e results, so that also this manipulation is unsafe. Thus, 
if m = 5 and n = 4 or n = 5 , there exists an unsafe manipulation.

(b)	 We next show that no unsafe manipulation exists if m = 5 and n = 3 . In this 
case, a possibly unsafely manipulating group can only consist of 2 members, say 
K = {1, 2} . Suppose, indeed, that for some a, b, c ∈ X , aPibPic for all i ∈ K , and 
that there is a preference P3 for voter 3 and a preference P̃ such that F(P) = b , 
F(P̃{1,2},P3) = a , and F(P̃{1},P{2,3}) = c . Note that, at P , the Borda score of c 
must be strictly larger than the Borda score of a: if not, then the score of c should 
increase more than the score of a after manipulation by just one member of K, 
but then c would still win after manipulation by both members of K, a contradic-
tion. Further, the score of a contributed by P1 and P2 is at least 4 more than the 
the score of c contributed by P1 and P2 , since aPibPic for i = 1, 2 . In turn, these 
facts imply that the score of c contributed by P3 is at least five more than the 
score of a contributed by P3 , which is impossible with five alternatives.
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(c)	 Consider the case m = 6 , X = {a, b, c, d, e, f } , and n = 3 , and the profile P 
with P1 = P2 = (a, b, c, d, e, f ) and P3 = (c, b, f , d, e, a) . Let P̃ = (a, e, d, c, b, f ) . 
Then F(P) = b , F(P̃{1,2},P3) = a , and (assuming that c beats a by tie-breaking) 
F(P̃{1},P{2,3}) = c , so that an unsafe manipulation exists in this case.

(d)	 Finally, the hitherto constructed profiles where an unsafe manipulation exists, 
can be extended with any number of alternatives, simply by adding those 
alternatives at the bottom of the preferences. Also, each of the manipulable 
profiles can be extended by any even number of agents 2� : add � times the pair 
of preferences (a1,… , am) and (am,… , a1) , where X = {a1,… , am} , and note 
that this just adds equal scores for all alternatives. The proof of the theorem is 
now complete.	�  ◻

4 � (Un)safe manipulability of run‑off

For the definition of the run-off correspondence, see Sect. 2.3.2.
We start by observing that at a run-off rule it is impossible to manipulate in favor 

of the most preferable alternative.

Lemma 4.1  Let F be a run-off rule, let P be a preference profile, let i ∈ N and a ∈ X 
such that aPix for all x ∈ X ⧵ {a} and a ≠ F(P) , and let K be the group of i. Then 
there is no P̃ ∈ L(X) such that a = F(P̃K ,P−K).

Proof  If a does not survive the first stage of the run-off procedure at P , then it will 
also not survive the first stage at any (P̃K ,P−K) . If a survives the first stage but not 
the second stage of the run-off procedure at P , then for any P̃ ∈ L(X) , either a does 
not survive the first stage at (P̃K ,P−K) , or it does. In the latter case, since for every 
x ∈ X we have |{j ∈ K ∶ aPjx}| ≥ |{j ∈ K ∶ aP̃jx}| , it follows that a does not sur-
vive the second stage at (P̃K ,P−K) . 	�  ◻

Our results for run-off rules are as follows.

Theorem 4.2  Let F be a run-off rule. 

(a)	 If m = 3 , then F is only safely manipulable.
(b)	 If m = 4 , then F is only safely manipulable if and only if n ≤ 5.
(c)	 If m ≥ 5 , then F is only safely manipulable if and only if n ≤ 4.

Proof  We will prove the theorem for seven specific cases, depending on the numbers 
m and n of alternatives and voters, and then summarize how the theorem follows 
from these cases. 

(1)	 Let m = 3 , X = {a, b, c} , P ∈ L(X)N , and let K be a group with common prefer-
ence aPibPic for every i ∈ K . If K can manipulate unsafely by P̃ , then we must 
have F(P) = b , F(P̃K ,P−K) = a , and F(P̃M ,P−M) = c for some M ⊆ K . Such a 
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manipulation, however, is excluded by Lemma 4.1. This proves Part (a) of the 
theorem.

(2)	 If n = 3 then for an unsafe manipulation a group of at least two members is 
required, but then their common top alternative is chosen by F. So F is only 
safely manipulable. From now on, we assume that m, n ≥ 4 , a, b, c, d ∈ X , and 
the members of group K have a preference P with top alternative a and with bPc, 
cPd.

(3)	 Let n = 4 . Assume, contrary to what we want to prove, that K has an unsafe 
manipulation at P via P̃ . Then by Lemma 4.1 we may assume that F(P) = c , 
F(P̃K ,P−K) = b , and F(P̃M ,P−M) = d for some M ⊆ K . Since |K| = 2 , the plural-
ity score of a at P is 2, and the plurality score of c at P is 1 or 2. In the latter case, 
the plurality score of d at P is 0, but then F(P̃M ,P−M) ≠ d since |M| = 1 , a is the 
top alternative of P, and b is the top alternative of P̃ , and so d does not survive 
the first stage at (P̃M ,P−M) , contradicting that F(P̃M ,P−M) = d . Therefore, we 
have that the plurality score of c at P is 1. If the plurality score of d at P is 0, then 
as before, F(P̃M ,P−M) ≠ d , a contradiction. Thus, the plurality score of d at P 
is 1. Since F(P) = c , a and c survive the first stage at P , which implies that the 
tie-breaking order Pt satisfies cPtd and cPta . Since the top alternative of P̃ is b, 
at (P̃M ,P−M) the alternatives a, b, c, d all have equal plurality score 1, and since 
cPtd and cPta , we have that b and c survive the first round, contradicting again 
that F(P̃M ,P−M) = d . Hence, we have proved that for m ≥ 4 and n = 4 there is 
no unsafe manipulation.

(4)	 Let n = 5 and m = 4 . As in Part (3), assume that K has an unsafe manipula-
tion at P via P̃ , with F(P) = c , F(P̃K ,P−K) = b , and F(P̃M ,P−M) = d for some 
M ⊆ K . Clearly, the plurality score of a at P cannot be larger than 2, and there-
fore is equal to 2. In particular, |K| = 2 , say K = {1, 2} . Since F(P) = c and 
F(P̃K ,P−K) = b , the plurality score of c at P is 1 or 2. In the latter case, say that 
P3 and P4 have top alternative c. Since F(P̃{1}, P−{1}) = d and the top alternative 
of P̃ is b, we have that a, b, and d each have plurality score 1 at (P̃{1},P−{1}) , and 
c and d survive the first stage. However, cPjd for j = 2, 3, 4 , so that c finally wins, 
a contradiction. Hence, the plurality score of c at P is 1. Since F(P̃{1},P−{1}) = d , 
the plurality score of d at P is at least 1, and since F(P) = c , it is exactly 1. It 
follows that the plurality score of b at P is also 1. In turn, for the tie-breaking 
order Pt , this implies that cPtd . But then, at (P̃{1},P−{1}) , d does not survive the 
first round, contradicting that F(P̃{1},P−{1}) = d . Hence, we have proved that 
for m = 4 and n = 5 there is no unsafe manipulation.

(5)	 Let n = 5 and m = 5 , X = {a, b, c, d, e} . We show that there is an unsafe manipula-
tion. Let K = {1, 2} , and let P be a preference profile with P1 = P2 = (a, b, c, d, e) , 
and such that c, d, and e each have plurality score of 1 at P , cPja for j = 3, 4, 5 , 
and bP5dP5c . Let the tie-breaking order be Pt = (c, d, e, a, b) . Then F(P) = c . If P̃ 
has top alternative b and dP̃c , then F(P̃{1,2},P−{1,2}) = b , and F(P̃{1},P−{1}) = d . 
So K has an unsafe manipulation.

(6)	 For n ≥ 6 and m = 4 we construct unsafely manipulable profiles based on 
the following preferences: P1 = (a, b, c, d) , P2 = (c, a, b, d) , P3 = (d, b, c, a) , 
P4 = (b, a, d, c) . Let Pn denote a preference profile with n voters. For 
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j = 0, 1, 2,… let P6+3j such that it contains P1 , P2 , and P3 each 2 + j times: 
P6+3j = ((2 + j)P1, (2 + j)P2, (2 + j)P3) . Assume that the tie-breaking order is 
Pt = (b, d, c, a) . Then F(P6+3j) = c . If the voters with preference P1 change to P4 , 
then b wins. If only one voter manipulates, then d wins. Similarly, we consider 
preference profiles P7+3j = ((2 + j)P1, (2 + j)P2, (3 + j)P3) for j = 0, 1, 2,… ; with 
the same tie-breaking rule, the same kind of unsafe manipulation exists. Finally, 
we consider profiles P8+3j = ((2 + j)P1, (2 + j)P2, (4 + j)P3) for j = 0, 1, 2,… , and 
tie-breaking order Pt = (b, c, d, a) : again the same kind of unsafe manipulation 
exists.

(7)	 Finally, we observe that for any unsafely manipulable profile we obtain an 
unsafely manipulable profile for more alternatives by simply adding those addi-
tional alternatives at the bottom of the preferences in the given profile. Table 3 
summarizes how the theorem follows from the seven parts of the proof.

	�  ◻

5 � (Un)safe manipulability of Copeland

Recall (Sect.  2.3.3) that the Copeland correspondence chooses the alternatives with 
maximal Copeland score, where the Copeland score of an alternative a at a preference 
profile P is the number |

{
b ∈ X ∶ |{i ∈ N ∶ aP

i
b}| > n

2

}
| − |

{
b ∈ X ∶ |{i ∈ N ∶ bP

i
a}| > n

2

}
|.

Theorem 5.1  Let F be a Copeland rule. Then F is only safely manipulable if and 
only if m = 3 or n = 3.

Proof  The proof proceeds in five parts. 

(1)	 Suppose n = 3 . Since |K| ≥ 2 is required for an unsafe manipulation, but in 
that case the top alternative of the voters in K is chosen, there exists no unsafe 
manipulation.

(2)	 Suppose m = 3 , X = {a, b, c} , let P be a preference profile, and let the voters 
in a group K have preferences aPbPc. For an unsafe manipulation by K we 
must have F(P) = b , F(P̃K ,P−K) = a , and F(P̃M ,P−M) = c for some M ⊆ K 
and P̃ ∈ L(X) . We show that this is impossible. For alternative x denote by 
S(x), S̃(x) , and S̄(x) the Copeland scores of x at P , (P̃K ,P−K) , and (P̃M ,P−M) , 

Table 3   Proof summary for 
Theorem 4.2

n = 3 n = 4 n = 5 n ≥ 6

m = 3 OSM
Part 1

OSM
Part 1

OSM
Part 1

OSM
Part 1

m = 4 OSM
Part 2

OSM
Part 3

OSM
Part 4

UM
Part 6

m ≥ 5 OSM
Part 2

OSM
Part 3

UM
Parts 5, 7

UM
Parts 6, 7
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respectively. Clearly we have S(a) ≥ S̄(a) ≥ S̃(a) and S(c) ≤ S̄(c) ≤ S̃(c) . Since 
F(P̃K ,P−K) = a and F(P̃M ,P−M) = c we have S̄(c) ≥ S̄(a) and S̃(a) ≥ S̃(c) . Hence 
S̃(a) ≥ S̃(c) ≥ S̄(c) ≥ S̄(a) ≥ S̃(a) , and therefore S̃(a) = S̃(c) = S̄(c) = S̄(a) . This, 
however, is inconsistent with (any order of) tie-breaking. Thus, for m = 3 there 
exists no unsafe manipulation.

(3)	 We exhibit an unsafely manipulable preference profile for m = 4 and n = 4 . 
Consider the profile P given by 

 The Copeland scores of a, b, c, d at P are, respectively, 1, 1, 1,−3 . With tie-
breaking order Pt = (a, b, c, d) we have F(P) = a . If K = {3, 4} changes prefer-
ences to P̃ = (b, d, c, a) , then the scores are −1, 1, 1,−1 , so that F(P̃K ,P−K) = b . 
If M = {3} , then the scores are 0, 1, 2,−3 , so that F(P̃M ,P−M) = c . Hence, P is 
an unsafely manipulable preference profile.

(4)	 We exhibit an unsafely manipulable preference profile for m = 4 and n = 5 . 
Consider the profile P given by 

 In this case, it is easy to verify that, with the same tie-breaking as in Part (3), 
K = {4, 5} can unsafely manipulate by P̃ = (b, d, c, a).

(5)	 Finally, if there are more than five agents then these agents can be added in pairs 
with opposite preferences to the unsafely manipulable profiles in Parts (3) and 
(4), to obtain such profiles with more than five agents. If there are more than 
four alternatives, then the additional alternatives can be added at the bottom of 
the unsafely manipulable profiles for four alternatives. This concludes the proof 
of the theorem.

	�  ◻

6 � (Un)safe manipulability of single‑transferable‑vote

For the definition of the Single-Transferable-Vote (STV) correspondence, see 
Sect. 2.3.4.

As for all the previous rules, group manipulation for STV with m = 3 is always 
safe:

Lemma 6.1  Let F be an STV rule, and let m = 3 . Then F is only safely manipulable.

P1 P2 P3 P4

c c b b

a a a a

b b c c

d d d d

P1 P2 P3 P4 P5

c c a b b

b a d a a

a b c c c

d d b d d
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Proof  Let X = {a, b, c} , let P be a preference profile, and suppose there is an unsafe 
manipulation by group K, who have preference P = (a, b, c) , via P̃ ∈ L(X) . Then we 
have F(P) = b , F(P̃K ,P−K) = a , and F(P̃M ,P−M) = c for some M ⊆ K . Then the top 
alternative of P̃ cannot be a, since this would not change the outcome, nor b, since 
this would either not change the outcome or lead to the elimination of a. Hence, 
the top alternative of P̃ is c. Denote by S(x) the plurality score (i.e., number of top 
positions) of x ∈ X at P , and by S̃(x) the plurality score of x at (P̃K ,P−K)) . Then 
S(a) > S̃(a) , S(c) < S̃(c) , and S(b) = S̃(b).

We claim that S̃(a) ≥ S̃(b) . Suppose not, i.e., S̃(a) < S̃(b) . Then, if S̃(c) ≥ S̃(a) , 
alternative a will be eliminated at (P̃K ,P−K)) , contradicting F(P̃K ,P−K) = a . 
If S̃(c) < S̃(a) , then S(c) < S(a) and S(c) < S(b) , and S̃(c) < S̃(a) < S̃(b) . This 
means that c is eliminated first, both at P and at (P̃K ,P−K)) ; since, however, 
F(P) = F(PK ,P−K) = b , this implies that also F(P̃K ,P−K) = b as P = (a, b, c) and 
P̃ = (c, ⋅, ⋅) . This is a contradiction, and thus the claim is proved.

We next consider S̃(c) . If S̃(a) = S̃(b) , then S̃(c) = S̃(a) = S̃(b) , otherwise 
a ≠ F(P̃K ,P−K) . If S̃(a) > S̃(b) , then S̃(c) ≥ S̃(b) , because otherwise again 
a ≠ F(P̃K ,P−K) by a similar argument as in the second case of the preceding 
paragraph.

Finally, if S̃(c) = S̃(a) = S̃(b) , then for all M ⊆ K , c is eliminated in 
(P̃M ,P−M) , a contradiction. If S̃(c) > S̃(b) , then there is some M′ ⊆ K , such that 
S(c) + |M�| − 1 < S(b) and S(c) + |M�| ≥ S(b) . For all G with |G| < |M′| , c is elimi-
nated; and for all G with |G| ≥ |M′| the winner is a. This is again a contradiction, 
which concludes the proof of the lemma. 	�  ◻

Theorem 6.2  Let F be an STV rule. Then F is only safely manipulable if and only if 
m = 3 or n ≤ 7.

Proof  The proof proceeds in several parts. 

(1)	 By Lemma 6.1, if m = 3 then F is only safely manipulable.
(2)	 For n ≥ 8 and m = 4 , X = {a, b, c, d} , we construct unsafely manipulable pro-

files based on the following preferences: P1 = (a, b, c, d) , P2 = (a, b, d, c) , 
P3 = (b, a, c, d)  ,  P4 = (b, a, d, c)  ,  P5 = (b, c, d, a)  ,  P6 = (c, a, b, d)  , 
P7 = (d, b, c, a) , and P8 = (d, c, a, b) . Let Pn denote a preference profile of n 
voters. 

	 (2.1)	 F o r  j = 0, 1, 2,… c o n s i d e r  a  p r o f i l e  P
8+4j = (2P1

, (1 + j)

P2
, (1 + j)P5

, (2 + j)P6
, (2 + j)P8

) , meaning that preference P1 occurs 
2 times etc. The plurality scores (of the first round) are: S1(a) = 3 + j , 
S1(b) = 1 + j , S1(c) = 2 + j , S1(d) = 2 + j . Since b has minimal score, it is 
deleted. At the second round: S2(a) = 3 + j , S2(c) = 2j + 3 , S2(d) = 2 + j , 
so that d is deleted. At the third round: S3(a) = 3 + j , S3(c) = 3j + 5 , so 
that c wins. Suppose that the group of voters with preferences P1 switch to 
P3 . Then S1(a) = 1 + j , S1(b) = 3 + j , S1(c) = 2 + j , S1(d) = 2 + j , so that a 
is deleted; S2(b) = 2j + 4 , S2(c) = 2 + j , S2(d) = 2 + j , so that c and d are 
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deleted, and thus b wins. If only one voter of the group manipulates, then 
the scores are: S1(a) = 2 + j , S1(b) = 2 + j , S1(c) = 2 + j , S1(d) = 2 + j , 
so, there is a complete tie and d wins provided that the tie-breaking order 
satisfies dPta , dPtb , dPtc.

	 (2.2)	 In a profile P9+4j = (2P1, (1 + j)P2, (1 + j)P5, (2 + j)P6, (3 + j)P8) with 
j = 0, 1, 2,… the same kind of manipulation by the same group leads to 
the same results, for any tie-breaking order.

	 (2.3)	 In a profile P14+4j = (2P1, (2 + j)P2,P4, (1 + j)P5, (4 + j)P6, (4 + j)P8) with 
j = 0, 1, 2,… the result is c. Switching to P3 for the group of voters having 
P1 leads to b. When only one voter manipulates, d wins provided that dPtc.

	 (2.4)	 For a profile P15+4j = (2P1, (2 + j)P2,P4, (1 + jP5, (4 + j)P6, (5 + j)P8) with 
j = 0, 1, 2,… the result is c if cPtd and cPta . Switching to P3 for the group 
of voters having P1 leads to b and manipulation of only one member leads 
to d.

	 (2.5)	 Only two cases are left: n = 10 and n = 11 . Let P10 = (2P1,P2,P5, 3P6, 
3P8) and P11 = (2P1,P2,P4, 4P6, 3P7) . In these profiles, the result is c, but 
if the voters having preferences P1 switch to P4 , then the result changes to 
b, and in case of manipulation of one voter it changes to d.

	    Summing up, for m = 4 and n ≥ 8 there exist unsafely manipulable profiles. 
This result also holds for m > 4 : additional alternatives can be added at the bot-
tom of all preferences and will not change the result.

(3)	 In this part of the proof we show that for m ≥ 4 and n ≤ 7 unsafely manipula-
ble profiles do not exist. Let P be a preference profile. Take four alternatives 
a, b, c, d ∈ X , and let there be a group K with preference aPbPcPd restricted to 
these alternatives, and with a their top alternative. Let M ⊆ K and P̃ ∈ L(X) . We 
use the notation S(x) for the plurality score of x at P , S̃(x) for the plurality score 
of x at (P̃K ,P−K) , and S̄(x) for the plurality score of x at (P̃M ,P−M) . Assume that 
K has a manipulation via P̃ . 

	 (3.1)	 Since |K| ≥ 2 , S(a) ≥ 2 . Let c = F(P) . Then S(c) ≥ 2 . Hence n > 3 . Con-
sider the case n = 4 , S(a) = 2 and S(c) = 2 . Members of K cannot manipu-
late in favor of a (since voting for another alternative will lead to elimina-
tion of a), but they can make b winning by voting for b, which is better 
than c. This manipulation is safe, since S̄(a) = 1 , S̄(b) = 1 , and S̄(c) = 2 
and d cannot win in (P̃M ,P−M).

	 (3.2)	 Consider the case n = 5 . The first-round scores are S(a) = 2 , S(c) = 2 , and 
there is some x ∈ X , x ≠ a , x ≠ c , s.t. S(x) = 1 . Manipulation in favor of 
a is also impossible, so members of K vote for b. Again, d cannot be the 
winner at (P̃M ,P−M) , even if x = d , since S̄(a) = S̄(b) = S̄(d) = 1 and all 
these alternatives are eliminated in the first round.

	 (3.3)	 Consider the case n = 6 . Again we have S(a) = 2 , S(c) = 2 , and members 
of K manipulating by voting for b. If S(d) = 1 , then again d will be elimi-
nated at (P̃M ,P−M) . So, S(d) = 2 . Let c be the STV winner at P . Since 
S(a) = S(c) = S(d) = 2 it follows that cPtd (where Pt is the tie-breaking 
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order). So, S̄(a) = 1 , S̄(b) = 1 , S̄(c) = 2, and S̄(d) = 2. Therefore in round 
1 at (P̃M ,P−M) alternatives a and b are eliminated. But as aPbPcPd,  the 
score of c in round 2 at (P̃M ,P−M) is at least 3. By cPtd, it follows that d 
cannot be the STV winner at (P̃M ,P−M).

	 (3.4)	 Finally, consider the case n = 7 . Since c is the STV winner at P , S(a) ≠ 3 
and S(d) ≠ 3. Otherwise c would be eliminated in the first round at P . 
If S(c) = 3 , then S̃(a) = 0 , S̃(b) = S̃(d) = 2 and S̃(c) = 3 . So, b is elimi-
nated at (P̃K ,P−K) in the first round. Therefore, S(a) = S(c) = S(d) = 2 
and S(b) = 1 . Also, |M| = 1 . Hence, S̄(a) = 1 and S̄(b) = S̄(c) = S̄(d) = 2. 
therefore, in round 1 at (P̃M ,P−M) alternative a is eliminated. Since all 
agents in K have preference aPbPcPd it follows that in round two (after 
eliminating a) the score of b has increased by one to 3 whereas the scores 
of c and d are unchanged. Therefore, in round 2 at (P̃M ,P−M) alternatives 
c and d are eliminated. This contradicts that d is the STV winner in profile 
(P̃M ,P−M).

	    Thus, if m ≥ 4 and n ≤ 7 , then there are no unsafe manipulations. This con-
cludes the proof of the theorem.	�  ◻

7 � Concluding remarks

7.1 � Relation with Slinko and White (2014)

In this subsection we compare our work with Slinko and White (2014) – henceforth 
SW.

For a rule F and a preference profile P , according to SW a voter i with group K 
has an incentive to manipulate if there is a preference P̃ ∈ L(X) and a set G ⊆ K 
with i ∈ G such that F(P̃G,P−G)PiF(P) . Observe that SW do not require that all 
voters in K deviate to P̃ . Clearly, if i has an incentive to manipulate in our sense 
(Definition 2.1), then i has an incentive to manipulate according to SW (simply take 
G = K ), but the converse is not necessarily true.

Next, SW call such a manipulation by P̃ unsafe if there exists M ⊆ K with 
i ∈ M such that all members of M have an incentive to manipulate by P̃ , but 
F(P)PiF(P̃M ,P−M) ; and safe if for all U ⊆ K with i ∈ U , we have F(P̃U ,P−U)PiF(P) 
or F(P̃U ,P−U) = F(P) . Hence, if i has an incentive to manipulate by P̃ in our sense, 
so that, by the preceding paragraph, i also has an incentive to manipulate by P̃ 
according to SW, then if this manipulation is (un)safe in our sense (see Sect. 2.2), it 
is also (un)safe according to SW.

The definitions of (un)safely manipulable preference profiles and rules in SW are 
similar to ours (Sect. 2.2), so that we obtain the following corollary.
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Corollary 7.1  If a rule is safely (unsafely) manipulable for some m and n, then is is 
also safely (unsafely) manipulable according to SW.

Thus, results about the (un)safety of manipulation in our sense are applicable 
to the model of SW. Unfortunately, we cannot directly adapt results in our paper 
about cases where we have only safe manipulations, to the model of SW in the same 
way. Indeed, in preference profiles where there is no manipulation in our sense there 
could still be voters having an incentive to manipulate according to SW, and this 
manipulation could be unsafe.

The main result in SW, their Theorem 3.2, says that for every onto and non-dic-
tatorial rule F with range at least three there is a preference profile P , a voter i, and 
a preference P̃ , such that i has an incentive to manipulate and this manipulation is 
safe.

In the SW model, if voter i has an incentive to manipulate safely by P̃ in P , 
this does not necessarily imply that the same voter has an incentive to manip-
ulate in our model, since this safe manipulation according to SW still allows for 
F(P̃K ,P−K) = F(P) . Thus, if a rule is safely manipulable according to SW, it does 
not follow directly from the definitions that the same holds in our model and for this 
reason Theorem 3.2 of SW does not carry over directly to our model. However, we 
can prove that if a rule F is manipulable in our model, then a safe manipulation also 
exists.

Theorem  7.2  If a rule is manipulable, then it is also safely manipulable in our 
model.

Proof  Let P be a manipulable profile, hence there are P̃ ∈ L(X) and i ∈ N such that 
F(P̃K ,P−K)PiF(P) . If this manipulation is safe, then we are done. If this manipula-
tion is unsafe, then there is an M ⊂ K with i ∈ M such that F(P)PiF(P̃M ,P−M) and, 
consequently, F(P̃K ,P−K)PiF(P̃M ,P−M) . Consider the profile P� = (PK⧵M , P̃M ,P−K) . 
Now K� = K ⧵M is a group and members of K′ have an incentive to manipulate 
with P̃ . Again, if this manipulation is safe, we are done. Otherwise, by the same 
reasoning there is M′ ⊂ K′ that F(��)PiF(P̃M� ,�

�
−M� ) ; and so on. This way we either 

find a safe manipulation or end up with a group of size one, and the single member 
of this group has a trivially safe manipulation.

7.2 � Further remarks

We have considered the safety of group manipulation for several rules, and estab-
lished conditions for the existence of safe and unsafe manipulations. Theorem 7.2 
says that if a rule is manipulable (by a group), then it is safely manipulable. The 
situation is different for unsafe manipulation. For instance, scoring rules with one 
jump in a scoring vector turn out to be only safely manipulable, which means that 
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they do not allow for unsafe manipulations at all. The other rules that we considered, 
are manipulable in an unsafe way. A more detailed analysis, however, shows that 
even for unsafely manipulable rules the existence of an unsafe manipulation depends 
on the number of voters and alternatives. For the rules under consideration in this 
paper, we have established exact bounds for these values. Moreover, even if we 
know that for the given values of m and n a social choice rule allows for an unsafe 
manipulation, this does not mean that any group manipulation is unsafe and, thus, 
risky. It only means that in some preference profile unsafe manipulation is possible. 
We do not have a general picture of how often unsafe manipulations occur.
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