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A B S T R A C T

A comprehensive approach is presented to analyze season’s coastal upwelling represented by weekly sea surface
temperature (SST) image grids. The proposed model, core–shell clustering, assumes that the season’s upwelling
can be divided into shorter periods of stability, time ranges, consisting of constant core and variable shell parts.
A one-by-one core–shell clustering algorithm is provided. The algorithm parameters are automatically derived
from the least-squares clustering criterion.

The approach applies to SST gridded data for sixteen successive years (2004–2019) of coastal upwelling in
the western Iberian coast, the northernmost branch of the Canary Current Upwelling System. Our results show
that at each season, there are 3 to 5 time intervals, the ranges, at which the upwelling presents stable core
patterns of relatively cold water surrounded by somewhat larger shell areas of warmer waters. Based on other
experimental computations performed by our team, we conclude that this pattern is not just a purely local
phenomenon but has a more global meaning. Inter-annual time series analysis are consistent among themselves
and with existing expert domain knowledge.
1. Introduction

This paper proposes a novel clustering framework for the spatio-
temporal (ST) analysis of coastal upwelling, aligned with the increased
interest in clustering for Oceanographic applications (e.g., Sambe and
Suga, 2022; Wazarkar and Keshavamurthy, 2018, and references
therein). The study area is the northernmost branch of the Canary
Current Upwelling System, the western Iberian coast, where the up-
welling regime prevails almost continuously, typically from April until
October, driven by the northerly wind characteristic of this time of the
year. The coastline is populated with some conspicuous protrusions that
distort the upwelling front into a contorted line, which represents a
challenge to the performance of any algorithm for automatic detection.
The occurrence of a good percentage of days with clear sky, allowing
good satellite SST records, along with the existence of oceanographic
knowledge and expertise about the western Iberia upwelling, makes
this region rather suitable to investigate and test methods for automatic
upwelling detection and tracking.

This work belongs to the field of spatio-temporal data cluster-
ing (e.g. Shekhar et al., 2015; Atluri et al., 2018; Ansari et al., 2019),
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and follows the type of approach introduced by Chen et al. (2015)
where clusters may move and change their size, shape and location,
but have ‘‘core points’’ that never change cluster memberships for
a given time window. However, unlike that approach which relies
on the DBSCAN methodology (Ester et al., 1996) to capture dense
fragments of the data distribution, we apply a different approach to
explicitly distinguish between core points and boundary points. This is
reflected in the concepts of cluster ‘core’ and cluster ‘shell’ proposed
in Rodin and Mirkin (2017). The Core–Shell clustering approach here
is extended to overcome shortcomings of the popular spatio-temporal
clustering algorithms like ST-DBSCAN (Birant and Kut, 2007) and ST-
OPTICS (Agrawal et al., 2016) demanding several parameter settings
from the user. It is well known that the accuracy and efficiency of those
type of algorithms strongly depend on the appropriate selection of their
parameters, which is of an issue in the absence of self-tuning parameter
selection (Ansari et al., 2019; Shi and Pun-Cheng, 2019). Moreover, our
approach can be easily adapted to cases at which the ‘‘constant core’’ is,
in fact, variable, remaining constant only during relatively short time
ranges. This is exactly the case under consideration.
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Long term spatio-temporal analysis of coastal upwelling is essential
for the study of ocean dynamics, coastal resource managements and
climate models (Baptista et al., 2018; Siemer et al., 2021). The pio-
neering installation of the Advanced Very High-Resolution Radiometer
(AVHRR) sensor on board of the second generation National Oceanic
and Atmospheric Administration (NOAA) satellites, together with the
satellites that followed up, provide a regular and continuous opera-
tional global observations of the sea surface temperature (SST) for
almost 40 years.

Traditionally, the identification of the upwelling front is carried
out subjectively by experienced oceanographers. However, the large
amount of available satellite SST records makes such assignment vir-
tually impossible. In addition, real-time or short-delay monitoring of
the upwelling patterns is a crucial tool for coastal water management
and is not consistent with the intervention of an oceanographer. These
issues motivate the need in developing of unsupervised computational
methods for the identification of upwelling fronts.

Many studies have been conducted in this direction at various
coastal regions of the world. Illustrative approaches include the works
in Huang and Wang (2019), Shi et al. (2021) that explore the semi-
automatic Topographic Position Index (TPI) algorithm, which is com-
monly used to recognize coastal upwelling regions; the obtained up-
welling regions’ characteristics along with wind data are used to study
spatio-temporal variations of coastal upwelling for several years. Simu-
lation models were used in Ramanantsoa et al. (2018) like the Coastal
and Regional Ocean COmmunity (CROCO) to simulate ocean currents
to help understanding how coastal upwelling events start and evolve
through time. Other works (Marcello et al., 2011) explore additional
features from SST data using bathymetric data to retrieve several
upwelling features at a given sea depth to derive a coastal upwelling
index (CUI). Rather than recognizing a coastal upwelling region, Oerder
et al. (2018) focus was on the automatic detection of the upwelling
fronts, by simply checking if the minimum cross-shore SST gradient
was below a specified threshold between the coastal and the offshore
regions. The work developed by Saldías et al. (2021) explores the
tracking of coastal upwelling events through time by measuring co-
herence between several coastal upwelling regions using the Canny
Edge-Detection algorithm, where chlorophyll fluorescence data was
also used for the spatio-temporal variations study. However, most of
these methodologies are either too complex and/or involve too many
ad hoc parameters.

Using the concept of core–shell structure we assume a simplified
model for the upwelling recognition and tracking from the SST grids
as follows: consider a constant ‘core’ which forms quite fast and then
gradually expands along the offshore waters up to some physical limits,
and later shrinks to the core region. Then, we define a clustering
criterion and apply the least-squares to approximate the SST data to
the model, so that key parameters of the core–shell cluster model are
found in an automated way as minimizers of the criterion. This aspect
favorably compares our approach with the one in Chen et al. (2015)
where key parameters like thresholds and the number of clusters to
retrieve from data are to be taken ad hoc.

Since the least-squares clustering criterion is additive, this enables
us to extract clusters one-by-one rather than simultaneously. Such a
sequential extraction strategy has two advantages in the context of the
issue of automating upwelling description: first, it is consistent with the
nature of the upwelling phenomenon under consideration, because at
each time instant, there is only one major upwelling region to occur
at the coast off Portugal (if any); second, it allows to apply the Self-
Tuning Seed Expanding Cluster (STSEC) algorithm (Nascimento et al.,
2015), a version of the pioneer Seeded Region Growing (SRG) approach
in image analysis (Adams and Bischof, 1994), as a prerequisite to the
current core–shell methodology. The STSEC algorithm follows the same
least-squares strategy, so that its application is, in fact, part of the core–
shell method being developed here. Moreover, its application to SST
2

images as temporal data puts the business of finding relatively stable
‘‘time windows’’, here called ‘‘ranges’’, for obtaining the core clusters
onto an automated footing.

Therefore, we propose a three-stage clustering method for the
spatio-temporal analysis of upwelling. First, the STSEC algorithm is
applied to each collection of SST grids, characterizing an upwelling
season, resulting in the segmented upwelling regions. Second, the
Iterative Anomalous Pattern (IAP) algorithm (Mirkin, 2012) unsuper-
visedly finds those ‘ranges’, from the STSEC segmentations, to define
stability periods within the upwelling season. At the third stage, the
STSEC segmentations belonging to each range are given as input to the
core–shell clustering algorithm to further transform the corresponding
upwelling instants into a core–shell cluster and the corresponding
intensities.

The remainder of the paper is organized as follows. We describe the
core–shell clustering model in Section 2. Section 3 describes our meth-
ods for Core–Shell cluster analysis of a season’s sequence of SST grids
derived from SST remote sensing data. In Section 4, we describe the
conducted experimental study and analyze the main results. Section 5
concludes the paper.

2. Core–shell clustering model

Let 𝐴𝑡(𝐼, 𝐽 ) =
(

𝑎𝑡𝑖𝑗
)

be a given preprocessed SST grid, with temper-
ture values 𝑎𝑡𝑖𝑗 at points (𝑖, 𝑗) where 𝑖 (𝑖 = 1, 2,… , 𝐼) is the longitude,

𝑗 (𝑗 = 1, 2,… , 𝐽 ), the latitude, and 𝑡 (𝑡 = 1, 2,… , 𝑇 ), a time moment
within a period 𝑇 .

We are going to build a set of clusters 𝑈 𝑡 over the set of grids
𝐴𝑡 to represent the phenomenon of upwelling and its dynamics. One
may think that it can be easily done by finding individual clusters 𝐶 𝑡

representing the upwelling at each moment 𝑡 = 1, 2,… , 𝑇 . Unfortu-
nately, this is not the case because clusters 𝐶 𝑡 at distinct moments 𝑡 are
different, so that one needs to define the ways of how transitions from
𝑡 to 𝑡 + 1 occur so that the cluster changes are more-or-less smooth. A
common sense thinking suggests an expected pattern of the dynamics of
an upwelling as a smooth process of steadily growing, in the beginning
of the upwelling season, to then steadily declining in the end of the
season. However, as our observations of the SST images show, the real
world dynamics of the coastal upwelling phenomenon do not follow
this pattern. Instead, coastal upwelling rather follows a ‘piece-wise
constant’ pattern: at every year, the upwelling season can be divided
into shorter periods at which the upwelling shape on the consecutive
SST grids can be considered constant. To better model such dynamics
we came up with the concept of core–shell cluster to cover each of the
periods.

A core–shell cluster 𝑈 =
⋃𝑇

𝑡=1 𝑈
𝑡 is the union of a constant set 𝑅 and

a variable set 𝑆𝑡 not overlapping 𝑅, so that 𝑈 𝑡 = 𝑅 ∪𝑆𝑡 (𝑡 = 1, 2,… , 𝑇 )
are the cluster slices. It is assumed that the core set 𝑅 is composed of
tightly related core pixels, whereas pixel temperatures in the shells may
be more or less variable.

Therefore, a core–shell cluster slice 𝑈 𝑡, is represented by two non-
overlapping sets of binary values, 𝑅∪𝑆𝑡, 𝑟𝑖𝑗 ∈ 𝑅, the core, and 𝑠𝑡𝑖𝑗 ∈ 𝑆𝑡,
the shell at moment 𝑡, such that 𝑟𝑖𝑗 × 𝑠𝑡𝑖𝑗 = 0, for 𝑡 = 1, 2,… , 𝑇 .

Assume that the shells 𝑆𝑡 are characterized by their intensity values
𝜆𝑡. The intensity of the core should be greater than that for any 𝑡 ∈ 𝑇 ,
that is, the core’s intensity is 𝜆𝑡 + 𝜇𝑡 with 𝜇𝑡 > 0. Then, the model to
represent an upwelling sea surface temperature, 𝑎𝑡𝑖𝑗 , at point (𝑖, 𝑗) and
moment 𝑡 can be stated as:

𝑎𝑡𝑖𝑗 =
(

𝜆𝑡 + 𝜇𝑡) 𝑟𝑖𝑗 + 𝜆𝑡𝑠𝑡𝑖𝑗 + 𝑒𝑡𝑖𝑗 , (1)

in which the residual values 𝑒𝑡𝑖𝑗 are to be minimized according to the
least squares criterion:

𝛥 =
𝑇
∑

𝐼
∑

𝐽
∑

(

𝑎𝑡𝑖𝑗 − (𝜆𝑡 + 𝜇𝑡)𝑟𝑖𝑗 − 𝜆𝑡𝑠𝑡𝑖𝑗
)2

. (2)

𝑡=1 𝑖=1 𝑗=1
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Consider the first order minimality conditions for function 𝛥 at
moment 𝑡:
𝜕𝛥
𝜕𝜆𝑡

= −2
∑

𝑖,𝑗

(

𝑎𝑡𝑖𝑗 − (𝜆𝑡 + 𝜇𝑡)𝑟𝑖𝑗 − 𝜆𝑡𝑠𝑡𝑖𝑗
) [

−𝑠𝑡𝑖𝑗 − 𝑟𝑖𝑗
]

= 0, (3)

𝜕𝛥
𝜕𝜇𝑡 = −2

∑

𝑖,𝑗

(

𝑎𝑡𝑖𝑗 − (𝜆𝑡 + 𝜇𝑡)𝑟𝑖𝑗 − 𝜆𝑡𝑠𝑡𝑖𝑗
)

𝑟𝑖𝑗 = 0. (4)

Eqs. (3) and (4), after taking into account that 𝑠𝑡𝑖𝑗 × 𝑟𝑖𝑗 = 0, lead to:

𝜆𝑡 =

∑

𝑖,𝑗 𝑎
𝑡
𝑖𝑗𝑠

𝑡
𝑖𝑗

∑

𝑖,𝑗 𝑠
𝑡
𝑖𝑗

, (5)

𝜆𝑡 + 𝜇𝑡 =

∑

𝑖,𝑗 𝑎
𝑡
𝑖𝑗𝑟𝑖𝑗

∑

𝑖,𝑗 𝑟𝑖𝑗
. (6)

Substituting the derived intensity values 𝜆𝑡 and 𝜆𝑡+𝜇𝑡 in (5) and (6)
into Eq. (2) leads to:

𝛥 =
𝑇
∑

𝑡=1

𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

(

𝑎𝑡𝑖𝑗
)2

−
∑

𝑡

(

(

𝜆𝑡 + 𝜇𝑡)2 × |𝑅| +
(

𝜆𝑡
)2 × |

|

𝑆𝑡
|

|

)

, (7)

here |𝑅| =
∑

𝑖,𝑗 𝑟𝑖𝑗 is the number of data points in the core and
𝑆𝑡

|

|

=
∑

𝑖,𝑗 𝑠
𝑡
𝑖𝑗 is the number of points in the 𝑡-shell.

Criterion (7) can be written as

= 𝐷 − 𝐺, (8)

ith 𝐷 =
∑

𝑡
∑

𝑖,𝑗

(

𝑎𝑡𝑖𝑗
)2

defining the total data scatter and 𝐺 =
∑

𝑡 ((𝜆𝑡+
𝑡)2 × |𝑅|+

(

𝜆𝑡
)2 × |

|

𝑆𝑡
|

|

) being the core–shell cluster’s contribution to
hat.

Since 𝐷 is constant, to minimize the least squares criterion (7) is
quivalent to maximize criterion 𝐺. An iterative algorithm, the Core–
hell Clustering, to optimize criterion 𝐺, is introduced in Section 3.

. Core–shell cluster analysis of a sequence of SST grids

Our method takes a season’s sequences of SST weekly grids derived
rom the remote sensed data as its input. Then the method proceeds
n four stages: data preprocessing, segmentation of the sequence to
eparate the upwelling regions, obtaining upwelling stability periods
ranges), and core–shell clustering of SST’s within the ranges. Fig. 1
hows the workflow of the procedure of the method. The following
ections give a description of the key parts of the process.

.1. Data preprocessing stage

In order to improve the quality of the SST grids, a preprocess-
ng method has been developed. This allows to avoid the issue of
ver-segmentation faced by SRG type algorithms (Aouni et al., 2021).

The developed preprocessing stage comprises three steps and is
llustrated in the workflow displayed in Fig. 2. The methods applied
t each step, are summarized bellow:

1. Removal of north-south temperature gradient
The goal of this step is to eliminate the north-south temperature
gradient. This gradient emerges because higher latitudes receive
less solar energy than those to the South. To do this, we use
the 𝑔𝑟𝑑𝑡𝑟𝑒𝑛𝑑 module from the Generic Mapping Tools (GMT)
software (Wessel et al., 2019).

2. Moving average filter
After removing the north-south gradient from the SST grids, we
apply the sliding window averaging algorithm at the window size
𝑊 = 5. This creates a new set of smoothed SST grids with noise
removed to better expose the upwelling events.
3

S

3. Enhancement of East-West temperature gradient
To further tackle the aforementioned over-segmentation problem,
we added this step to the current preprocessing pipeline. The
temperature values of each SST grid are normalized using per-
pendicular lines to the coastline, adapting a method from Aouni
et al. (2021).
Since the Portuguese coast has an almost constant longitude, the
rows of each SST grid are used as the lines perpendicular to
the coastline. Then, each point (𝑖, 𝑗) belonging to each line 𝑙 is
assigned with the difference between its temperature and the
average temperature of the points in line 𝑙, if this difference is
negative, or zero if the difference is positive. After this trans-
formation the temperatures of the points near the coast, i.e. the
region of interest, become negative while the temperatures of the
offshore ocean region are about zero. This transformation is effec-
tive in prevention the over-segmentation because the automatic
thresholding criterion of STSEC clustering algorithm (described
later) involves zero as a central value.
This step marks the end of the preprocessing pipeline.

Each SST grid obtained in the end of the preprocessing stage, is
eferred to as an SST instant.

.2. Unsupervised segmentation of SST grids to separate upwelling regions

The identification of the so-called upwelling front, that separates
he cold upwelled waters at the coast from the warmer oceanic wa-
ers offshore, is critical to infer the coastal upwelling pattern. Extrac-
ion of the coastal upwelling regions is performed by the unsuper-
ised spatial clustering algorithm, Self-Tuning Seed Expanding Cluster
STSEC) (Nascimento et al., 2015). The STSEC method extends the
opular Seeded Region Growing within the framework of ‘anomalous
lustering’ (Mirkin, 2012), and has proven to overcome well recognized
imitations of SRG algorithms. First, the clustering criterion takes the
ormat of a product rather than the conventional difference between a
ixel and the mean of the region of interest, with a threshold adaptively
ptimized from that criterion. Second, the method involves a moving
indow which acts as a regularizer of the cluster growing process.

After choosing the coldest pixel of a given SST grid as its initial seed,
he STSEC algorithm sequentially expands the region while the pixels
eing evaluated satisfy a similarity condition, automatically obtained.
henever no more pixels satisfy such condition, a bi-partition grid is

btained representing the upwelling/non-upwelling regions of the grid.
ig. 3 shows an SST image (on the left) and the corresponding STSEC
pwelling region segmentation corresponding to the binary grid on the
ight.

The STSEC algorithm and its extension, S-STSEC, that sequentially
etrieves more than one continuous upwelling region, have demon-
trated promising results when applied to various geographical loca-
ions like the Portuguese and Canary coasts (Nascimento et al., 2015,
020).

.3. Finding time ranges: segments of temporal stability

Given an upwelling season, we want to identify its temporal stability
egments: groups of consecutive SST instants with similar upwelling
haracteristics. To accomplish this, we use the Iterative Anomalous
atterns (IAP) algorithm. The IAP is a simple and effective clustering
lgorithm that sequentially extracts clusters one by one in a manner
imilar to the Principal Component Analysis (PCA) and, simultaneously,
llows to derive the number of clusters to be found. This algorithm
as originally proposed to initialize 𝐾-means, leading to the so-called

ntelligent 𝐾-means (Mirkin, 2012). It also serves as an effective ini-
ialization to Fuzzy 𝐶-Means with the IAP-FCM successfully applied to
ST image segmentation (Nascimento et al., 2012).
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Fig. 1. Workflow of the core–shell clustering Process.
Fig. 2. Preprocessing pipeline of SST grids.
We take the consecutive upwelling regions segmented from the 𝑀
SST instants (𝑀= 23 for each upwelling season, which is 27 reduced by
4 because of the moving average filter with window size 5) to produce
a partition of SST instants into disjoint sets of consecutive instants
of more-or-less similar upwelling regions. To this end, four features
are extracted from those segmented upwelling regions: the total area,
average sea surface temperature, the maximum and the minimum lati-
tudes. Then, a 𝑀 × 4 matrix is produced and given as input to the IAP.
4

The data matrix is centered by subtracting the grand mean from every
feature and then all the values are divided by the corresponding feature
range. When running the IAP algorithm, imposing the cardinality of
the clusters to be greater than two, it unsupervisedly finds at least
three clusters, groups of consecutive SST instants, for each upwelling
season. Each found group is designated as an upwelling time range.
Fig. 4 shows the time series of those (normalized) features obtained
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Fig. 3. SST image of Portugal with coastal upwelling (left); correspondent S-STSEC segmentation (right).
Fig. 4. Upwelling time ranges: consecutive SST instants clustered by IAP algorithm taking the four time series of upwelling extracted features.
from the segmentations of the SST instants (for the upwelling season
2019) with the IAP four-cluster partition marked by vertical dash lines.

3.4. Finding core–shell cluster within a time range

We propose an iterative algorithm, Core–Shell Clustering, to build
a core–shell cluster by optimizing criterion (8). The algorithm receives
as input a sequence of 𝑇 SST instant grids defining a ‘‘range’’. Each
grid is segmented by the STSEC algorithm, resulting in 𝑇 clusters,
𝐶1, 𝐶2,… , 𝐶𝑇 , corresponding to the 𝑇 sequential segmented upwelling
regions. The output is a core–shell cluster, a sequence of 𝑇 cluster slices
𝑅∪𝑆𝑡=1, 𝑅∪𝑆𝑡=2,… , 𝑅∪𝑆𝑡=𝑇 and corresponding intensity values 𝜆𝑡 and
𝜆𝑡 + 𝜇𝑡 (𝑡 = 1, 2,… , 𝑇 ).

The initial core–shell cluster slices are constructed from those 𝑇
clusters 𝐶1, 𝐶2,… , 𝐶𝑇 . Since the core cluster is, by assumption, con-
stant and homogeneous, the initial core is defined taking the intersec-
tion of 𝑇 STSEC clusters, 𝐶 𝑡, 𝑡 = 1, 2,… , 𝑇 . Each shell, 𝑆𝑡 is defined
as the set difference of cluster 𝐶 𝑡 and core 𝑅, covering the upwelling
region that may change at moment 𝑡 along the period 𝑇 . Then, the
initial intensity values 𝜆𝑡 and 𝜆𝑡 + 𝜇𝑡 are calculated by Eqs. (5) and
(6).

To connect each initial core–shell cluster slice with the remaining
upwelling region at instant 𝑡, the set of the grid points forming a
5

spatial 4-neighborhood, 𝐹 𝑡, are merged with them. Thus, set 𝐵 =
{

𝑅 ∪ 𝑆𝑡 ∪ 𝐹 𝑡}𝑇
𝑡=1 defines the initial core–shell cluster.

After, the algorithm iterates as follows. For each point (𝑖, 𝑗) in 𝐵 =
⋃𝑇

𝑡=1 𝐵
𝑡 decide which scenario to take: (A) to make (𝑖, 𝑗) to belong

to the core, or (B) to belong to any of the 𝑇 shells, or, on contrary,
(C) to remove point (𝑖, 𝑗) from any of them, such that the increase
of criterion 𝐺, 𝛿𝑖𝑗 is maximum. This process requires 1 + 2𝑇 tentative
binary decisions. The process iterates until there is no improvement in
criterion 𝐺, that is, until 𝛿𝑖𝑗 ≤ 0. The derivation of values 𝛿𝑖𝑗 (omitted
due to lack of space) is straightforward.

The algorithm in pseudo-code is presented here.

4. Experimental study

4.1. Image data

Sixteen annual collections of SST grids from the Portuguese coast
(latitudes ranging from 36◦N to 44◦N and longitudes ranging from
13◦W to 8◦W) were used in this study covering the years from 2004
to 2019. Each SST grid, with a size of 401 × 251 nodes and with a
spatial resolution of 2 km × 2 km, represents the average of 8 daily
SST grids made with Level 2 data downloaded from the OceanColor
site (https://oceancolor.gsfc.nasa.gov/), and filtered to use only the

https://oceancolor.gsfc.nasa.gov/
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Algorithm 1 Core-Shell Clustering Algorithm

1: Input: Preprocessed 𝑇 SST grids 𝐴𝑡(𝐼, 𝐽 ) = (𝑎𝑡𝑖𝑗 ), 𝑖 = 1, 2, ..., 𝐼 ;
𝑗 = 1, 2, ..., 𝐽 , and 𝑡 = 1, 2, ...., 𝑇 .

2: Output: core-shell cluster
{

𝑅 ∪ 𝑆𝑡}𝑇
𝑡=1, corresponding intensities

𝜆𝑡 + 𝜇𝑡, 𝜆𝑡 (𝑡 = 1, 2,⋯ , 𝑇 ), and the final cluster contribution 𝐺.
3: Initialization: ⊳ Construct the initial core 𝑅 and the

initial shells 𝑆𝑡 from the STSEC clusters obtained from SST instant
grids 𝐴𝑡 at moments 𝑡 = 1, 2, ..., 𝑇 as:

4: Run STSEC algorithm over SST instant grids 𝐴𝑡 (𝑡 = 1, 2, ...., 𝑇 ); let
𝐶1, 𝐶2,⋯ , 𝐶𝑇 be the obtained clusters

5: Calculate 𝑅 = ∩𝑇
𝑡=1𝐶

𝑡 and 𝑆𝑡 = 𝐶 𝑡 − 𝑅 (𝑡 = 1,⋯ , 𝑇 )
6: Let 𝐵 =

{

𝑅 ∪ 𝑆𝑡 ∪ 𝐹 𝑡}𝑇
𝑡=1 with 𝐹 𝑡 the set of the grid points forming

a spatial 4-neighborhood with the region defined by 𝑅 ∪ 𝑆𝑡

7: Calculate intensity values 𝜆𝑡 and 𝜆𝑡 + 𝜇𝑡 by (5), (6)
8: Iteration: ⊳ For each point (𝑖, 𝑗) in 𝐵 decide which of

𝑟𝑖𝑗 , 𝑠𝑡𝑖𝑗 should be 0 or 1, which requires 1 + 2𝑇 binary decisions, to
maximize the increase 𝛿𝑖𝑗 of criterion 𝐺 in (8)

9: repeat
10: for each point (𝑖, 𝑗) ∈ 𝐵 do
11: if 𝑟𝑖𝑗 ← 1 then
12: 𝑠𝑡𝑖𝑗 ← 0 for 𝑡 = 1, 2,⋯ , 𝑇
13: calculate the change in criterion 𝐺, 𝛿𝑖𝑗
14: else
15: 𝑟𝑖𝑗 ← 0
16: for 𝑡 = 1, 2,⋯ , 𝑇 do
17: 𝑠𝑡𝑖𝑗 ← 0 .or. 𝑠𝑡𝑖𝑗 ← 1
18: calculate the (two) change values in criterion 𝐺, 𝛿𝑖𝑗
19: end for
20: end if
21: end for
22: Let 𝛿∗𝑖∗𝑗∗ , be the maximum of those 1 + 2𝑇 𝛿𝑖𝑗 for 𝑖 = 1, 2, ..., 𝐼 ;

𝑗 = 1, 2, ..., 𝐽
23: if 𝛿∗𝑖∗𝑗∗ > 0 then
24: assign the decision for point (𝑖∗𝑗∗) as 𝑟∗𝑖∗𝑗∗
25:
26: for 𝑡 = 1, 2,⋯ , 𝑇 do
27: assign the decision 𝑠𝑡𝑖∗𝑗∗
28: calculate the intensities 𝜆𝑡 and 𝜆𝑡 + 𝜇𝑡 by (5), (6);
29: end for
30: end if
31: until 𝛿∗𝑖∗𝑗∗ < 0

best quality data according to the products quality flags. The upwelling
season along the Portuguese coast is typically stronger from March to
October, thus we considered an upwelling season to be composed only
by SST grids from approximately the 30th of March to the 30th of
October. This gives a total of 27 8-day average SST grids per season
and 432 SST grids for the whole sixteen annual collections (27 × 16).

Each SST grid is represented as a 𝐼 × 𝐽 matrix 𝐴(𝑎𝑖𝑗 ), where
𝑖 = 1, 2,… , 𝐼 is the longitude, 𝑗 = 1, 2,… , 𝐽 is the latitude, and 𝑎𝑖𝑗
represents the temperature Celsius value at node (𝑖, 𝑗) (◦C). Exceptions
occur whenever an error is associated with the data collection due to
meteorological events or values collected from a non-sea surface. In
those cases the grid nodes are assigned a not-a-number (NaN) value.
Fig. 5 shows an example of a SST grid. The continuous white region on
the right side of each SST image corresponds to land surface, whereas
white pixels in the ocean area correspond to missing values due to cloud
cover.

4.2. SST grid data preprocessing

We illustrate the data preprocessing stages (described in Section 3.1)
using data from the 2007 collection of SST grids, in Fig. 2.
6

Fig. 5. Example of SST image of coastal upwelling in Portugal.

Fig. 6 shows a sample of five consecutive weekly noisy SST grids
input of the preprocessing. Notice how the remote sensing derived data
are imprecise because of intricate interactions controlling the process,
as well as because of cloud cover. This is visualized by white pixels
corresponding to NaN values. Each SST grid shows a strong north-south
temperature gradient due to the latitudinal extent of these images: the
further away the waters are from the Equator line, the colder they tend
to be. As shown experimentally, the gradient negatively influences the
quality of the SST segmentation leading to under-/over-segmentations.
The role of the first preprocessing step is to remove that.

Fig. 7 shows results of removing the north-south temperature gra-
dient from the SST grids in Fig. 6. Each SST grid has no variation of
temperature over the latitudes, thus decreasing the temperature ranges
with an average SST value of approximately 0 ◦C.

The transformed SST grids still contain noise and the upwelling
patterns have low definition. Thus, at the second stage, a moving
average filter applies. The window size 𝑤 was experimentally set to
𝑤 = 5 after an extensive experimental study with the sixteen collections
of SST grids.

The left image in Fig. 8 has resulted from applying the moving av-
erage filter to SST grids in Fig. 7. This looks like a strong enhancement
of the upwelling event pattern, along with the absence of noise.

Unfortunately, when running the S-STSEC algorithm with SST grids
after the second preprocessing stage, we encountered over-segme-
ntation in several cases, mainly in the north region. Therefore, we apply
the third preprocessing stage by increasing the East-West temperature
gradient at the SST grids to better separate the upwelling area from
non-upwelling regions.

The image on the right of Fig. 8 shows the result of the third
preprocessing stage to the SST grid of the image on the left of Fig. 8.
Notice that the temperature values of the upwelling regions become
negative while the temperatures of the offshore ocean are/tend to 0 ◦C.
We refer to SST images after all the preprocessing stages as to SST
instants.

The preprocessing pipeline was applied to each of the sixteen annual
SST collections. Since the moving average filter has window size 5, each
collection of 27 original SSTs is shrunk to 23 preprocessed SST instants.
This totals to 368 SST instants for the sixteen years.

4.3. Upwelling regions retrieved from the SST instants

The S-STSEC algorithm was applied to each SST instant grid. To
illustrate the impact of the preprocessing transformation in the ob-
tained segmentation results, Fig. 9 shows the averaged SST grid on the
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Fig. 6. Preprocessing input data: consecutive weekly SST grids from the year 2007.
Fig. 7. Preprocessing output stage one: consecutive weekly SST grids after removal of the North-South temperature gradient from them.
Fig. 8. Preprocessing second stage’s output: SST grids after the moving average filter
(left image); result of applying the East-West temperature gradient enhancement (right
image).

left image, the result of S-STSEC segmentation without preprocessing
at the middle image, and the result of S-STSEC segmentation after
preprocessing (right image), with the segmented upwelling regions
visualized in green.

The results of applying the S-STSEC to the sixteen collections of
SST instant grids were evaluated by a team of expert oceanographers.
Each S-STSEC SST instant’s segmentation has received a grade in a 5-
grade scale from 1 (bad) to 5 (excellent). The evaluations are rather
concordant; their median is 4.5, and mode is between 4 and 5.

4.4. Main features of S-STSEC segmentations

We extracted four features to characterize the S-STSEC segmenta-
tions. Two main features were selected based on domain knowledge:
the area of the upwelling regions, and the mean temperature of those
regions against the mean temperature of the offshore waters. The
offshore region was defined as a meridional strip with 0.4◦ of longitude
width from 36◦N to 44◦N, parallel to the coastline and 320 km distant
from shore. In this way, we guarantee that this region will not be
affected by waters upwelled along the coast.
7

The upwelling areas time series for the years 2004 to 2019 are
shown in Figs. 10. The upwelling areas tend to have the lowest value
at the start of each upwelling season and reach a maximum value in
the second half of such season. This pattern is present in every year
with exception of 2013 collection where the lowest area was registered
at SST instant 13. Looking at the time series as a whole, the lowest
registered upwelling area occurred at the second SST instant of 2011
with an area of 9224 km2 while the highest area value occurred at SST
instant 18 of 2018 with a value of 55524 km2. For the whole sixteen
years the upwelling areas increased with an average of 320.81 km2

per year. Such measurement was obtained by simple linear regression
applied to the whole dataset.

Fig. 11 shows the time series of the average temperatures in the
S-STSEC upwelling regions against the offshore waters average temper-
atures. The maximum average upwelling temperatures were obtained,
in majority, at SST instant 15 of each year. The maximum average
offshore temperatures were obtained, mostly, at instant 17 of each
year. Overall, in each upwelling season the upwelling regions reached
their maximum temperature, on average, two instants earlier than
the offshore waters. A maximum average upwelling temperature of
20.26 ◦C was observed at the 22nd instant of 2014, and a minimum
average upwelling temperature of 13.8 ◦C was observed at the 1st
SST instant of 2004. Concerning the offshore average temperatures, the
maximum offshore temperature of 21.78 ◦C occurred at the 16th SST
instant of 2014 while the minimum offshore temperature of 14.0 ◦C
occurred at the 1st instant of 2018. We conclude that, except for the
year 2013, the coldest upwelling and offshore waters occurred at the
first SST instant of each upwelling season.

Two other features were empirically selected to characterize mor-
phological differences between the upwelling segmented SST instants.
These features are the maximum and minimum latitudes of the detected
upwelling regions.

4.5. Modeling upwelling ranges

Given an upwelling season, we want to cluster consecutive SST
instants with similar upwelling characteristics, as reflected by the four
extracted features. Each group is referred to as a range.
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Fig. 9. Averaged SST grid (left image); the S-STSEC result without preprocessing, thus leading to over-segmentation (middle image); the S-STSEC segmentation after preprocessing
(right image).
Fig. 10. Time series with the Areas (km2) of S-STSEC segmented upwelling regions for the sixteen years.
Fig. 11. Time series with the average temperatures (◦C) of segmented upwelling regions against the offshore average temperatures for the sixteen years.
4.5.1. Unsupervised time series segmentation by anomalous clustering
For each annual collection of SST instants, a series of 23 SSTs

resulting from the preprocessing stage, we take four time series defined
by the four features, normalized by range, as input to the IAP algorithm.
The IAP stop condition is specified at the clusters’ cardinality higher
or equal to three. The obtained groups of consecutive SST instants are
listed at the columns of Table 1 as 𝑎 − 𝑏 where 𝑎 is the starting SST
instant and 𝑏 is the final SST instant. They define upwelling ranges for
each year. Each group of consecutive SST grids defining a time range
is the input to the core–shell clustering algorithm.

4.5.2. Illustration of core–shell clustering stages
Fig. 12 illustrates an example of the core–shell clustering algorithm

applied to the second time range of SST instants in 2007 (instants 9
to 13) displayed at first row of the figure. At the initialization stage
8

(line 4 of Algorithm 1), the S-STSEC algorithm is applied to each of
these instant SST grids to produce the binary grid with its upwelling
region visualized in green (second row of Fig. 12). The initial core–shell
cluster slices are build from the clusters defining the upwelling regions
(lines 5–7 of Algorithm 1). Finally, the core–shell cluster results (lines
9–31 of Algorithm 1) are visualized with core–shell cluster slices high-
lighted using orange-green colors (third row of Fig. 12). An additional
result, shown at the bottom row of the figure, is the automatic front
delineation of the core and shell structures in the original SST grids.

4.6. Validation of core–shell clustering results

Extensive analysis of SST images shows that the upwelling regions
are not that easy to distinguish on a SST grid. They: have transition
zones with fuzzy thermal boundaries; correspond to quite irregular
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Table 1
Time series segmentations produced by the IAP algorithm. Each group of SST instants represents a time range; we label it as 𝑎− 𝑏, with 𝑎 and
𝑏 its boundary SST instants.
Upwelling time range 2004 2005 2006 2007 2008 2009 2010 2011

1 1–7 1–5 1–7 1–8 1–5 1–7 1–6 1–5
2 8–10 6–10 8–12 9–13 6–9 8–12 7–14 6–8
3 11–23 11–23 13–23 14–23 10–19 13–23 15–23 9–12
4 20–23 13–23

Upwelling time range 2012 2013 2014 2015 2016 2017 2018 2019
1 1–7 1–8 1–9 1–3 1–7 1–5 1–6 1–4
2 8–11 9–13 10–12 4–11 8–10 6–10 7–9 5–7
3 12–23 14–17 13–23 12–23 11–13 11–23 10–14 8–13
4 18–23 14–23 15–19 14–23
5 20–23
Fig. 12. Core–shell clustering algorithm example. Input: five SST instants corresponding to the 2nd time range of 2007 (first row); Initialization: S-STSEC segmentations results
(second row); Final Iteration: core–shell cluster slices (third row); Additional result: original SST grids with core and shell fronts delineated (last row).
histograms; express strong morphological variation, etc. Due to the
absence of a valid analytical model for the upwelling structures, one is
confronted with a ‘semantic gap’ between the implicit Oceanographers
knowledge and a systematic working definition of a ‘gold standard’ for
upwelling images.

Thus, we are left with a qualitative assessment by an independent
9

team of Oceanographers, which already proved rather successful at our
previous publications related to S-STSEC algorithm (Nascimento et al.,
2015). The obtained average validity score for S-STSEC upwellings at
the current image collection was 4.5 (out of 5). Based on this, we took
the S-STSEC upwelling results as ground-truth to assess the quality of
the core–shell clustering segmentations with a more objective quality

measures.
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Fig. 13. Time series with the Areas (km2) of ‘cores’/‘shells’ of core–shell clusters, and the areas of upwelling regions by S-STSEC (year 2007).
We used the Kulczynski similarity index (Kulczynski, 1927; Zakani
et al., 2016) to evaluate the quality of core–shell segmentations. This in-
dex, under the name ‘‘Maryland bridge coefficient’’, was proven to over-
come drawbacks of the popular Jaccard coefficient in underestimating
the similarity between two balanced sets with an equally balanced
overlap or, contrastingly, between highly imbalanced sets (Mirkin and
Koonin, 2003). We calculated the Kulczynski similarity between each
core–shell segmentation and the corresponding S-STSEC ground-truth
upwelling segmentation. The results show a real good matching, with
an average Kulczynski similarity score of 0.978 ± 0.12 for the 368
images under study.

4.7. Analysis of core–shell clusters time series

To analyze upwelling using the obtained core–shell clusters, we
defined the following features:

• the areas of the cores;
• the areas of the shells;
• the average temperature of the cores;
• the average temperatures of the shells (these are nothing else than

the core and shell intensities, as defined by Eqs. (5) and (6));
• the average temperature of upwelling cores against average tem-

perature of offshore ocean waters.

Fig. 13 illustrates, for the SST collection of 2007, the areas of up-
welling cores (orange line), the areas of the corresponding shells (green
line), as well as the areas of the whole upwelling regions obtained by
S-STSEC algorithm (blue line). One can observe that the cores are con-
stant along each time range (three ranges in 2007, as shown in Table 1),
whereas the corresponding shells capture the evolving spatial pattern
which is strongly concordant with the areas of the whole upwelling
regions. This shows how the core represents the constant structure of
the upwelling while the shells represent the evolving pattern associated
with the spatial variability. Analyses of the corresponding time series
for the other fifteen years were similar.

Two time series with the areas of cores and the areas of shells for
the sixteen SST data collections are in Fig. 14. Since, by definition,
the cores are constant, their areas are constant within each range.
When comparing the shell areas to the S-STSEC segmentations for the
same SST instants, it is possible to observe that the shells correctly
capture the variability of the upwelling regions under analysis. Also,
the shells generally correspond to larger regions when compared to the
corresponding cores.

Fig. 15 shows the time series of core and shell average temperatures.
The shell average temperatures are generally higher than the core
average temperatures. Typically, this is not observed at the start of an
upwelling season because the upwelling event is of a lower intensity
at the time. An exception occurs in the year 2012 in which the cores
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have higher temperatures than the corresponding shells at the end of
the upwelling season for that year. The highest average temperature of
cores was recorded at the 21st SST instant of 2014 with a temperature
of 19.88 ◦C while the maximum average temperature of the shells was
observed at the 22nd instant of the same year with a temperature of
20.19 ◦C, 0.3 ◦C higher and one instant later than the highest average
temperature of the core region. The lowest average core temperature
was observed at the 1st SST instant of 2018 with a temperature of
13.98 ◦C while the lowest average temperature of the shells regions
over the sixteen years was recorded at the 1st instant of 2004 with
value 13.51 ◦C.

The time series of the average temperature of upwelling cores
against the average temperature of the offshore waters at each SST
instant of each year are displayed in Fig. 16. The results are aligned to
the ones derived from S-STSEC segmentation leading to a concordant
analysis. The upwelling core temperatures are considerably lower than
the average temperature offshore. The temperature contrast increase
towards the instants that correspond to the peak of the upwelling
season. This result is expected given the nature of the coastal upwelling
process.

The results achieved by the core–shell clustering are consistent with
the oceanographic characteristics of the studied region. However, the
oceanographic interpretation of these results is beyond the scope of the
paper.

5. Conclusion

This paper proposes a description of the structure of a complex
natural phenomenon, coastal upwelling, occurring in various locations
within the world’s ocean and being important for economy of countries
nearby. Our case study concerns SST derived images of upwelling along
the Portuguese coast. The results demonstrate that the approach is
adequate to the case study. Based on other data available, we think
our model may be adequate for other parts of the ocean as well.
According to our computations, any specific upwelling pattern moves
several times from one stable structure to another one during a year.
These structures are captured here under the name of core–shell cluster,
covering consecutive upwelling regions, within ‘ranges’ derived by the
algorithm.

There can be 3 to 5 ranges during a season. Each core–shell clus-
ter consists of two parts: a constant core and variable shell. Such a
structure is not inconsistent with the oceanographic concept of wave
soliton (Apel, 2003; Ibragimov and Lin, 2017). It requires, however,
some further thinking into the nature of soliton shift, dissipation, and
re-emergence.

We developed an automated machinery for discovery of core–shell
cluster structures, which involves several stages: (a) obtaining and
preprocessing yearly SST grid data; (b) finding time ranges and the
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Fig. 14. Time series with the Areas (km2) of ‘cores’/‘shells’ of core–shell clusters for the sixteen years.
Fig. 15. Time series with the average temperatures (◦C) of ‘cores’/‘shells’ of core–shell clusters for the sixteen years.
Fig. 16. Time series of cores average temperatures (◦ C) against the average temperatures of offshore waters for the sixteen years.
number of them; (c) determining core–shell structure within the ranges.
According to our experimental results, we may safely claim that our
method leads to automatically obtaining a full description of coastal
upwelling as core–shell clusters. To the best of our knowledge, such a
method is developed for the first time in the international literature.

Further work should include the application of our method to other
upwelling regions such as Canary. More advanced extension would in-
volve combining our approach with mathematical modeling of solitons
as a theoretical construct.
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