
ISSN 0021-3640, JETP Letters. ©The Authors(s), 2023. This article is an open access publication.

Probability of High Intensities of the Light Wave
Propagating in Turbulent Atmosphere

I. V. Kolokolov1), V. V. Lebedev
Landau Institute for Theoretical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia

National Research University Higher School of Economics, 101000 Moscow, Russia

Submitted 13 July 2023
Resubmitted 13 July 2023

Accepted 14 July 2023

We examine statistics of fluctuations of the laser beam intensity at its propagating in turbulent atmosphere.
We are interested in relatively large propagating distances and the remote tail of the probability density
function. The tail is determined by the stretched exponent, we find its index.
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The subject of our work is the theoretical study of
the physical properties of a laser beam propagating in
a turbulent atmosphere or, more generally, an electro-
magnetic wave in a turbulent medium. The main effect
that is being investigated in the framework of this prob-
lem is the diffraction of a laser beam by fluctuations of
the refractive index, which are induced by pressure fluc-
tuations of turbulent pulsations. The fluctuations of the
refractive index are a random field whose properties are
described statistically. Therefore, theoretical predictions
of the behavior of the laser beam concern the average
values (or the corresponding probability density func-
tions), which are obtained by averaging over the statis-
tics of fluctuations.

The problem of laser beam propagation in the atmo-
sphere has a long history. The basic theoretical results
concerning the propagation of a laser beam in a turbu-
lent atmosphere were obtained back in the sixties and
seventies of the last century, they are summarized in a
number of monographs [1–5]. Recently, there has been a
revival of interest in this topic [6–10], connected mainly
with numerical modeling of the propagation of a laser
beam (electromagnetic wave) in a turbulent medium,
which allows obtaining detailed information about the
process.

The known theoretical results describe mainly the
typical behavior of a laser beam in the atmosphere. At
the same time, in the equation for the electromagnetic
field, the random refractive index is a multiplicative
noise, which leads to very non-trivial statistical prop-
erties of the electromagnetic field. It can be expected
that the probability of rare events when one or another

1)e-mail: igor.kolokolov@gmail.com

value (say, the intensity of the electromagnetic field) has
an abnormally large value will be significantly higher
than naive estimates based on the analysis of typical
processes. As an example of such behavior, we can cite
the statistics of quantum particles in a random potential
(see, for example, [11]), which is the multiplicative noise
in the Schrödinger equation for a quantum particle.

We theoretically study the propagation of a
monochromatic electromagnetic wave in an unlimited
turbulent medium. All the characteristic scales of the
problem (the size of the wave packet, the length of its
propagation) are assumed to significantly exceed the
wavelength, so that the description of the wave in terms
of the complex envelope Ψ is applicable. Due to the
large value of the speed of light, we can assume that
the state of the medium does not change during the
propagation of the wave and use a stationary approxi-
mation to describe its envelope, that is, consider Ψ as
a function of the coordinate z in the direction of wave
propagation, and a two-dimensional radius vector r in
the plane transverse to the direction of propagation.
Of course, the state of the turbulent medium varies
with time. In the accepted approximation, the envelope
Ψ(r, z) adiabatically adjusts to the current state of the
medium.

In this paper, we consider the intensity of the elec-
tromagnetic wave to be quite small, so that nonlin-
ear effects (such as self-focusing) are insignificant. Then
the equation for the envelope Ψ(r, z) in suitable units
of measurement has the form of a two-dimensional
Schrödinger equation

i∂zΨ+∇2Ψ+ ξΨ = 0, (1)
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where ∇ is the two-dimensional gradient in the plane
transverse to the direction of propagation, and ξ(r, z)

is the fluctuating component of the refractive index. By
virtue of the Eq. (1), the envelope Ψ is a field that de-
pends on the implementation of ξ. The latter varies over
time, leading to variations in the envelope. Therefore,
Ψ can be considered as a random field whose statisti-
cal properties can be extracted by averaging over long
times.

The distance traveled by the wave is assumed to
be greater than the integral turbulence scale, whereas
the transverse size of the wave packet is assumed to
be smaller than the integral scale. In this case, the re-
fractive index ξ fluctuates rapidly along the direction
of wave propagation. We are interested in the integral
characteristics associated with ξ, therefore, by virtue of
the central limit theorem, the random field ξ can be as-
sumed to have Gaussian probability distribution. It is
determined by the pair correlation function of fluctua-
tions in the refractive index:

〈ξ(r1, z1)ξ(r2, z2)〉 = δ(z1 − z2) [const− rc12] , (2)

where angle brackets mean averaging over implementa-
tions of the state of the medium, r12 = |r1−r2| and c is
a number. The expression (2) is valid for distances r12
lying in the inertial interval of turbulence. The constant
in the ratio (2) is determined by turbulent fluctuations
on the integral scale, and the power correction is deter-
mined by fluctuations on the scales ∼ r12. Fluctuations
of the refractive index ξ in a turbulent medium are de-
termined mainly by pressure fluctuations. For the Kol-
mogorov spectrum, the exponent of c in the expression
(2) is c = 5/3. Further, the exponent c is treated as an
arbitrary number lying in the interval 1 < c < 2.

We focus mainly on the statistical properties of the
intensity I of the laser beam (of the electromagnetic
wave) at some observation point, which we choose as
the origin: I = |Ψ(r = 0, z)|2. The distance z trav-
eled by the beam is assumed to be large, z � 1 in
our units. This means that the effects associated with
random diffraction are strong. As the initial state, we
choose a plane wave, Ψ(r, 0) = 1. A generalization of
our calculation scheme to other cases, say, to the initial
Gaussian beam, will be published elsewhere. We will be
interested in the moments of 〈In〉 for large values of n.
These values determine the probability of events with
an abnormally high intensity value.

The average value 〈In〉 can be expressed as 〈In〉 =
F2n(0, . . . ,0, z), where F2n is the 2n-point correlation
function of the envelop:

F2n(r1, . . . , r2n, z) =

= 〈Ψ(r1, z) . . .Ψ(rn, z)Ψ
�(rn+1, z) . . .Ψ

�(r2n, z)〉. (3)

This correlation function is represented as a convolution
with the Green function G2n:

F2n =

∫
d2x1 . . . d

2x2nG2nΨin(x1) . . .Ψ
�
in(x2n). (4)

Here Ψin(r) = Ψ(r, z = 0) is the initial value of the
envelop, and the Green function

G2n = G2n(r1, . . . , r2n,x1, . . . ,x2n, z), (5)

depends on z and 4n radius-vectors.
The Green function can be represented as a path

integral, which is derived from the Schrödinger Eq. (1).
After averaging over the fluctuations of the refractive
index in accordance with the expression (2), we arrive
at an integral over the variables yj , which are functions
of the coordinate ζ, 0 < ζ < z:

G2n =

∫ 2n∏
j=1

Dyj exp

{∫ z

0

dζ

(
i

4
K +W

)}
, (6)

K =

(
dy1

dζ

)2

+ · · ·+
(
dyn

dζ

)2

−
(
dyn+1

dζ

)2

− · · · −
(
dy2n

dζ

)2

, (7)

W =

n∑
i=1

n∑
j=i+1

ycij +

2n∑
i=n+1

2n∑
j=i+1

ycij −
n∑

i=1

2n∑
j=n+1

ycij . (8)

One takes arguments xj and rj of the Green function as
boundary conditions for the trajectories yj(ζ) at ζ = 0

and ζ = z, see Eq. (5). The “potential” W (8) is the
function of the variables yij = |yi − yj |. The constant
appearing in the expression (2) falls out of considera-
tion, as it should be.

It is possible to find an explicit expression for the
pair Green function G(r1, r2,x1,x2, z):

G =
θ(z)

16π2z2
exp

[
i

2z
(r − x)(R−X) −

−z

∫ 1

0

dχ |χx+ (1− χ)r|c
]
, (9)

which determines the behavior of the pair correlation
function. Here the designations R = (r1 + r2)/2, r =

r1 − r2, X = (x1 +x2)/2, x = x1 − x2 are introduced.
For the initial state in the form of a plane wave,

when Ψin = 1, the pair correlation function has the
simple form [12, 13]:

F (r1, r2, z) =

∫
d2x d2XG = exp(−z|r1 − r2|c). (10)
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Thus, the characteristic distance between the points 1

and 2 at a distance z is rph = z−1/c � 1. This value
makes sense of the phase corruption length due to fluc-
tuations of the refractive index. The characteristic value
of the variable X is estimated as z1/c+1.

The analysis of the 2n-point Green function (5)
shows that for z � 1 it has sharp maxima on configura-
tions where there are n pairs of close points xj located
at distances of the order of rph separated by much larger
distances [13, 14]. In this case, the first point of the pair
is taken from the set x1, . . . ,xn, and the second is taken
from the set xn+1, . . . ,x2n. The trajectories yj(ζ) in the
path integral (6) starting from close points xj also re-
main close. In this case, the “potential” W (8) can be
approximated by the sum of ycij for the pairs, and the
remaining summands in the sum (8) mutually reduce
each other. Then the Green function is factorized. For
example, for close couples (x1,xn+1), . . . (xn,x2n)

G2n = G(r1, rn+1,x1,xn+1, z)

. . .G(rn, r2n,xn,x2n, z). (11)

Obviously, there is n! of similar contributions, by the
number of splits of xj into pairs.

Thus, the space of integration by the initial coordi-
nates in the expression for the moments of intensity

〈In〉 =
∫

d2x1 . . . d
2x2nG2n(0, . . . ,0,x1 . . .x2n) (12)

for the case of an initial plane wave is divided into n!

areas corresponding to different point splits into pairs.
The contributions of all such regions are the same and
in the main approximation for intensity moments we
get 〈In〉 = n!, which means the exponential prob-
ability density function P (I) = exp(−I). Note that
P (I) = exp(−I) corresponds to the Gaussian statistics
of the Ψ field, natural for a complex field with a random
phase.

It is demonstrated in the works [13–15] that correc-
tions to the approximation (11) related to the discarded
terms in the expression (8) for W are proportional to
the parameter α:

α = z−a, a =
4

c
− c, (13)

it is small at z � 1. For the Kolmogorov spectrum of
turbulence, the exponent a is equal to a = 11/15. Cor-
rections to the value 〈In〉 = n! grow as n increases and
become essential when αn ∼ 1. In this paper, we deter-
mine the value of 〈In〉 at αn � 1 and demonstrate that
they significantly exceed n!. In other words, at I � α−1,
the tail of the probability density function P (I) arises,
significantly exceeding exp(−I).

If αn � 1 then the integration space in the inte-
gral (12) is still divided into n! regions, correspond-
ing to well separated pairs of the trajectories yj(ζ),
the regions give identical contributions to 〈In〉. Let us
take for definiteness the following subsetting into the
pairs: (y1,yn+1), . . . (yn,y2n). Introducing the variables
Yj = (yj + yj+n)/2 and ρj = yj − yj+n, where j runs
through values from 1 to n, we get a functional repre-
sentation for the Green function with arguments in the
selected area in the form:

G =

∫ n∏
j=1

DYj Dρj exp (−S) . (14)

In the path integral (14), some non-zero initial values
are implied Yj(0) = Xj and zero final values (at ζ = z)
are implied for the trajectories Yj and ρj, the values are
dictated by examining 〈In〉.

As it follows from the representation (6), the action
S in Eq. (14) is equal to

S = − i

2

∑
j

∫ z

0

dζ
dYj

dζ

dρj

dζ
+
∑
j

∫ z

0

dζ ρcj

+
∑
j>k

∫ z

0

dζ U(Yj − Yk,ρj ,ρk). (15)

In this expression, the indices j, k run through the values
from 1 to n. The quantity U at ρj , small in comparison
with the characteristic values of Yj −Yk, is determined
by the formula following from the expression (8):

U(R,ρ1,ρ2) ≈ ρ1,αρ2,βVαβ(R), (16)

Vαβ(R) = cRc−2

[
δαβ + (c− 2)

RαRβ

R2

]
. (17)

Here the Greek indices α, β designate the components
of the vectors in a plane transverse to the direction of
wave propagation.

As we will see below, the values of Yj in the inte-
gral (14) are parametrically large by n. This allows us
to calculate the integral over Yj in the expression (14)
in the saddle-point approximation. The integral over ρj

cannot be calculated in the approximation.
We first investigate the saddle-point value of

Yj , which is determined by the extremum condition
δG/δYj = 0. Substituting here the expression (14), we
find the equation

i

2

d2ρ̄j

dζ2
+
∑
k �=j

∂Vαβ

∂Yj
(Yj − Yk)ρ̄jαρ̄kβ = 0. (18)

Here ρ̄j is the average value of ρj , it is non-zero be-
cause of non-zero initial values Xj of the trajectories

JETP Letters, 2023



4 I. V. Kolokolov, V. V. Lebedev

Yj . When deriving the Eq. (18), we replaced the average
of the product of ρjαρkβ with the product of averages.
The reason for this is that the fluctuations of ρj are de-
termined mainly by the second term in the action (15),
which is diagonal by j. Therefore, the contribution of
fluctuations to the mean ρjαρkβ , where j 	= k, turns out
to be negligible.

In field theory, the average value of the fluctuating
field is found from the condition of the extremum of
the so-called quantum effective action (see, for exam-
ple, [16]). In the problem under study, this condition is
equivalent to the relation δG/δρ̄j = 0, which determines
the average ρ̄j . Utilizing the expression (14), we find the
equation

i

2

d2Yjα

dζ2
+
∑
k �=j

Vαβ(Yj − Yk)ρ̄kβ = 0. (19)

At deriving the equation we have neglected the contri-
bution of the second term in the action (15). The rea-
son is that the fluctuations of ρj (which are determined
mainly by this term) turn out to be much larger than ρ̄j ,
which is why the dependence of the second term on ρ̄j is
weak. Further, we will justify this neglect. Note that the
extremum condition for the initial value of ρ̄j(0) leads
to the condition dYj/dζ(0) = 0, due to the structure of
the action (15).

The Equations (18), (19) show that the saddle-point
value of the expression (14) is written as

lnGsp =
i

2

∑
j

∫ z

0

dζ
dYj

dζ

dρ̄j

dζ

−
∑
j>k

∫ z

0

dζ ρ̄1,αρ̄2,βVαβ(Yj − Yk)

=
∑
j>k

∫ z

0

dζ Vαβ(Yj − Yk)ρ̄j,αρ̄k,β . (20)

The last equality in (20) is obtained after integration in
parts, taking into account the Eq. (19) and the bound-
ary conditions. The value (20) is negative because Yj

are real quantities, whereas the averages ρ̄j are purely
imaginary quantities, and the function Vαβ(Yj − Yk) is
positive for the values of the exponent c considered here:
1 < c < 2.

The system of Eqs. (18), (19) enables one to eval-
uate the saddle-point quantity (20). Assuming that all
values of Yj together with their boundary values have
the same order of Yj ∼ X , as well as the average ρ̄j ∼ iρ̄,
we arrive at the estimates

ρ̄ ∼ (nz2)−1X3−c, lnGsp ∼ − 1

z3
X4−c. (21)

Note the absence of dependence on n in the estimation
for lnGsp.

Now we turn to accounting for the fluctuation con-
tribution to G2n. Fluctuations of ρj can be estimated as
z−1/c, the value is much larger than the average ρ̄ (21).
Therefore after shifting ρj by its mean value and shift-
ing Yj by its saddle-point value, the effects associated
with the “interaction potential” (16) can be neglected
(estimation of the accuracy see below). As a result, we
arrive at a factorized approximation of the type (11).
Thus, the expression for the Green function is factor-
ized G2n = GspGfl, where Gsp is determined by the ex-
pression (20) and the fluctuation factor is given by the
product of the pair Green functions

Gfl =

n∏
j=1

1

16π2z2
exp

[
− z

c+ 1
|xj − xj+n|c

]
. (22)

The expression standing here for the pair Green func-
tions is derived from the general formula (9) after sub-
stituting r = R = 0 and taking into account that the
initial values of the shifted variables Yj −Xj are zero.

Returning to the expression (12) for the moments of
intensity, we find

〈In〉
n!

=

∫
d2x1 . . . d

2x2nGspGfl. (23)

The factor Gsp depends solely on the coordinates of the
centers of the pairs Xj = (xj+xj+n)/2, therefore, after
integration over differences xj − xj+n we find

〈In〉
n!

∼ z−2(1+1/c)

∫
d2X1 . . . d

2Xn Gsp. (24)

For a large n, the value of the integral (24) is estimated
as:

ln
〈In〉
n!

∼ 2n lnX − 2n

(
1 +

1

c

)
ln z − C

z3
X4−c, (25)

where C is a constant of the order of one. Here X is the
characteristic value of variables Xj introduced above.

Optimizing the expression (25) by X , we find:

X4−c ∼ nz3. (26)

The substitution of Eq. (26) into Eq. (25) gives the de-
sired asymptotics of the high intensity moments:

ln
〈In〉
n!

∼ 2

4− c
n lnn− 2(4− c2)

(4− c)c
n ln z. (27)

The corresponding asymptotics of the probability den-
sity function P (I) has the form
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lnP ∼ − 1

α
(αI)β , β =

4− c

6− c
. (28)

For the Kolmogorov spectrum β = 7/13. Since β < 1,
we conclude that there is a higher probability of large
values of I in comparison with the exponential proba-
bility density exp(−I). Formula (28) is in accordance
with the results of recent numerical simulations [17].
Note that the expression (28) means a significant non-
Gaussianity of the statistics of the wave field Ψ, formed
by the chaotic scattering on the turbulent fluctuations.

The asymptotic law (27) turns to 〈In〉 = n! at
αn ∼ 1, or at z ∼ nc/(4−c2), as it should be. A sim-
ilar statement is true for the probability density func-
tion, which is matched with the exponent exp(−I) at
I ∼ 1/α. Eq. (26) enables one to find the characteristic
size of the region at the front of the initial wave defining
In at n � 1/α:

X ∼ (αn)1/(4−c)z1/c+1. (29)

At αn � 1 the quantity (29) is much larger than the
estimate z1/c+1 for X obtained in the Gaussian regime.
Physically, this means that to create high intensity val-
ues, it is required to collect energy from a large area of
the original wave. The expression (29) implies an esti-
mate for the average values ρ̄ (21)

ρ̄ ∼ 1

nz2
X3−c ∼ rph(nα)

−1/(4−c). (30)

These averages are small in comparison with the char-
acteristic amplitude of fluctuations: ρ̄ � rph, which jus-
tifies the approximation (22). Note, however, that the
saddle-point action (20) is determined precisely by these
averages, and in action (20) this smallness is compen-
sated by a large number of terms.

The found asymptotic law (27) is bounded from
above by n. This limitation is determined by the mean
square of the fluctuation component of the interaction
of pairs between themselves that we have discarded. The
assessment is fair for him

z2n2r4phX
2(c−2) ∼ n

(
nc/4α

)4/(4−c)

.

The smallness of this value in comparison with the
main value of the fluctuation action, estimated as ∼ n,
leads to the condition of applicability of our approach
n � α−4/c. The inverse limit case requires a special
analysis.

We have theoretically established that when a laser
beam propagates in a turbulent medium at distances
where diffraction on random fluctuations of the refrac-
tive index plays a significant role, the probability of

abnormally large intensity fluctuations is significantly
higher than estimates made on the basis of Gaussian
statistics of the electromagnetic wave envelope Ψ. This
is due to the multiplicativity of the refractive index
in the equation for the envelop and it is a universal
property of such stochastic systems. We have found the
form of the probability distribution function of abnor-
mally large intensity values. Our conclusions are made
for the simplest case of the initial plane wave, although
the analysis scheme itself is applicable to other initial
forms of the laser beam. The results of their research
will be published elsewhere. The case of extremely high
intensity values requires a separate analysis. A separate
analysis also requires to take into account the nonlinear-
ity (for example, the effect of self-focusing), which may
be significant for the large intensities of the electromag-
netic wave we are considering.
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