Bifurcation of a disappearance of a non-compact heteroclinic curve

Olga V. Pochinka ${ }^{1}$ • Valeriya I. Shmukler ${ }^{1}$ • Elena A. Talanova ${ }^{1,2}$

Accepted: 23 April 2023
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract

In the present paper, we describe a scenario of a disappearance of a non-compact heteroclinic curve for a three-dimensional diffeomorphism. As a consequence, it is established that 3-diffeomorphisms with a unique heteroclinic curve and fixed points of pairwise different Morse indices exist only on the 3-sphere. The described scenario is directly related to the reconnection processes in the solar corona, the mathematical essence of which, from the point of view of the magnetic charging topology, consists of a disappearance or a birth of non-compact heteroclinic curves.

Keywords Saddle-node bifurcation • Heteroclinic curve • Stable arc • Morse-Smale systems • Hyperbolic dynamics

Mathematics Subject Classification 37D15

1 Statement of results

Consider a class G of orientation-preserving Morse-Smale diffeomorphisms f defined on a closed manifold M^{3}, the non-wandering set of which consists of exactly four

[^0]

Fig. 1 A diffeomorphism $f: S^{3} \rightarrow S^{3}$ from class G

Fig. 2 Phase portrait of a diffeomorphism $f \in G$
points $\omega, \sigma_{1}, \sigma_{2}, \alpha$ with positive types of orientation and with Morse indices (dimensions of unstable manifolds) $0,1,2,3$, respectively. It was established in [7] that if $f \in G$ is the one-time shift of a gradient flow of a Morse function then the admitting f manifold M^{3} is a lens space, moreover, every lens spaces admits a gradient-like flow with exactly four critical points of pairwise different indices. Also, by [2, 10], we know that two-dimensional saddle separatrices of such f always intersect (see Fig. 1), except the case when M^{3} is homeomorphic to $S^{2} \times S^{1}$.

Notice, that in general case, Morse-Smale diffeomorphisms are not embeddable even in a topological flow [6]. In particular, despite the simple structure of the nonwandering set of $f \in G$, the class under consideration contains diffeomorphisms with wildly embedded saddle separatrices [3,14] (see Fig.2), that is an obstruction to the embedding to a flow. Thus, the question of the complete list of ambient manifolds for diffeomorphisms $f \in G$ is open.

In the present paper the following fact will be established.

Theorem 1 Let $f \in G$ and the set $W_{\sigma_{1}}^{s} \cap W_{\sigma_{2}}^{u}$ consists of a unique curve (see Fig. 1, 2). Then M^{3} is diffeomorphic to the 3 -sphere S^{3}.

Proof of the Theorem 1 based on the construction of the following arc of diffeomorphisms.
Theorem 2 Let $f \in G$ and the set $W_{\sigma_{1}}^{s} \cap W_{\sigma_{2}}^{u}$ consists of a unique curve. Then f is connected by a smooth arc $\varphi_{t}: M^{3} \rightarrow M^{3}, t \in[0,1]$ with a "source-sink" diffeomorphism. Moreover, this arc contains a unique bifurcation point which is a saddle-node.

2 Required definitions and facts

Definition 1 (Morse-Smale diffeomorphism) A diffeomorphism $f: M^{n} \rightarrow M^{n}$, given on a smooth closed connected orientable n-dimensional manifold ($n \geq 1$) M^{n} is called a Morse-Smale diffeomorphism if

1. its non-wandering set Ω_{f} consists of a finite number of hyperbolic orbits;
2. manifolds W_{p}^{s}, W_{q}^{u} intersect transversally for any non-wandering points p, q.

Definition 2 (Smooth arc) A smooth arc in the space of diffeomorphisms $\operatorname{Diff}\left(M^{n}\right)$ is a family of diffeomorphisms $\varphi_{t}(x): M^{n} \rightarrow M^{n}, t \in[0 ; 1]$, generated by a smooth $\operatorname{map} \Phi: M^{n} \times[0,1] \rightarrow M^{n}$ with $\varphi_{t}(x)=\Phi(x, t)$.

Definition 3 (Smooth product of arcs) A smooth arc φ_{t} is called a smooth product of the smooth $\operatorname{arcs} \phi_{t}$ and ψ_{t} such that $\phi_{1}=\psi_{0}$, if $\varphi_{t}=\left\{\begin{array}{l}\phi_{\tau(2 t)}, 0 \leq t \leq \frac{1}{2}, \\ \psi_{\tau(2 t-1)}, \frac{1}{2} \leq t \leq 1,\end{array} \quad\right.$ where $\tau:[0,1] \rightarrow[0,1]$ is a smooth monotone map such that $\tau(t)=0$ for $0 \leq t \leq \frac{1}{3}$ and $\tau(t)=1$ for $\frac{2}{3} \leq t \leq 1$. We will write $\varphi_{t}=\phi_{t} * \psi_{t}$.
Proposition 2.1 (Thom's isotopy extension theorem, [12], Theorem 5.8) Let Y be a smooth manifold without boundary, X be a smooth compact submanifold Y and $\left\{f_{t}: X \rightarrow Y, t \in[0,1]\right\}$ be a smooth isotopy such that f_{0} is the inclusion map X into Y. Then there is a smooth isotopy $\left\{g_{t} \in \operatorname{Diff}(Y), t \in[0,1]\right\}$ such that $g_{0}=i d$, $\left.g_{t}\right|_{X}=\left.f_{t}\right|_{X}$ for every $t \in[0,1]$ and the identity outside some compact subset of Y.
Proposition 2.2 (Fragmentation lemma, [1]) Let $U=\left\{U_{i}, i=1, \ldots, q\right\}$ be an open cover of a closed manifold M^{n} and $\varphi: M^{n} \rightarrow M^{n}$ be a diffeomorphism smoothly isotopic to the identity. Then there exist diffeomorphisms $\varphi_{i}: M^{n} \rightarrow M^{n}, i=1, \ldots, q$ smoothly isotopic to the identity and such that:
i) $\operatorname{supp}\left\{\varphi_{i, t}\right\} \subset U_{i}{ }^{1}$ for a smooth arc $\varphi_{i, t}$, connecting the identity map and φ_{i} for every $i \in\{1, \ldots, q\}$;
ii) $\varphi=\varphi_{1} \circ \ldots \circ \varphi_{q}$.

Definition 4 (Saddle-node bifurcation) An arc φ_{t}, connecting two Morse-Smale diffeomorphisms, unfolds generically through a saddle-node bifurcation (see Fig. 3), if

[^1]

Fig. 3 Saddle-node bifurcation

Fig. 4 Local chart in the saddle point σ_{1}
all elements of the arc are Morse-Smale diffeomorphisms with the exception of a diffeomorphism $\varphi_{b}, b \in(0,1)$, which has a unique non-hyperbolic fixed point p such that in some neighbourhood of the point (p, b) the $\operatorname{arc} \varphi_{t}$ is conjugate with

$$
\begin{aligned}
& \tilde{\varphi}_{\tilde{t}}\left(x_{1}, x_{2}, \ldots, x_{1+n_{u}}, x_{2+n_{u}}, \ldots, x_{n}\right) \\
& \quad=\left(x_{1}+\frac{x_{1}^{2}}{2}+\tilde{t}, \pm 2 x_{2}, \ldots, \pm 2 x_{1+n_{u}}, \frac{ \pm x_{2+n_{u}}}{2}, \ldots, \frac{ \pm x_{n}}{2}\right)
\end{aligned}
$$

where $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n},\left|x_{i}\right|<1,|\tilde{t}|<1 / 10$.

3 Disappearance of the heteroclinic curve

In this section, we outline the proof of the Theorem 2 with references to statements that will be proved in the following sections.

Let $f \in G$, that is the set $H_{f}=W_{\sigma_{1}}^{s} \cap W_{\sigma_{2}}^{u}$ consists of a unique curve. Let us prove that the diffeomorphism f is connected by a stable arc $\varphi_{t}: M^{3} \rightarrow M^{3}, t \in[0,1]$ with a "source-sink" diffeomorphism, moreover φ_{t} has a unique bifurcation point and it is saddle-node.

Proof Let $f \in G$, then the set H_{f} consists of one non-compact heteroclinic curve γ_{f}. Due to Lemma 1, without loss of generality, we can assume that the diffeomorphism f in a neighbourhood of the saddle point σ_{1} has a local chart (see Fig.4) $\left(U_{1}, \psi_{1}\right), \psi_{1}$: $U_{1} \rightarrow \mathbb{R}^{3}$ such that $\sigma_{1} \in U_{1}, \psi_{1}\left(\sigma_{1}\right)=O$ and diffeomorphism $\psi_{1} f \psi_{1}^{-1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear diffeomorphism Q, given by the matrix $\left(\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 2\end{array}\right)$.

Fig. 5 Laying of the heteroclinic curve on a coordinate axis
Fig. 6 Laying of the manifold $W_{\sigma_{2}}^{u}$ on a coordinate plane

Due to Lemma 2, diffeomorphism f is connected by an arc without bifurcations (it means that all elements of the arc are pairwise topologically conjugate diffeomorphisms) with the diffeomorphism $f_{1}: M^{3} \rightarrow M^{3}$ with the following properties:

1. diffeomorphism f_{1} coincides with the diffeomorphism f outside U_{1} and in some neighbourhood $V_{1} \subset U_{1}$ of σ_{1};
2. $\psi_{1}\left(\gamma_{f_{1}} \cap V_{1}\right) \subset O x$, where $\gamma_{f_{1}}$ is the heteroclinic curve of diffeomorphism f_{1}.

Making a similar construction in a local chart $\left(U_{2}, \psi_{2}\right), \psi_{2}: U_{2} \rightarrow \mathbb{R}^{3}$ such that $\sigma_{2} \in U_{2}, \psi_{2}\left(\sigma_{2}\right)=O$ and $\psi_{2} f_{1} \psi_{2}^{-1}=Q^{-1}$, we get a diffeomorphism f_{2} : $M^{3} \rightarrow M^{3}$, which is connected by an arc without bifurcations with the diffeomorphism $f_{1}: M^{3} \rightarrow M^{3}$ and has the following properties:

1. diffeomorphism f_{2} coincides with the diffeomorphism f_{1} outside U_{2} and in some neighbourhood $V_{2} \subset U_{2}$ of σ_{2};
2. $\psi_{2}\left(\gamma_{f_{2}} \cap V_{2}\right) \subset O x$, where $\gamma_{f_{2}}$ is the heteroclinic curve of diffeomorphism f_{2} and $V_{2} \subset U_{2}$ neighbourhood of point σ_{2} (see Fig. 5).

Due to Lemma 3, diffeomorphism f_{2} is connected by an arc without bifurcations with the diffeomorphism $f_{3}: M^{3} \rightarrow M^{3}$ with the following properties:

1. diffeomorphism f_{3} coincides with the diffeomorphism f_{2} outside some neighbourhood U_{A} of $A=c l W_{\sigma_{1}}^{u}$ and in some neighbourhood $W_{1} \subset V_{1}$ of σ_{1};
2. $\psi_{1}\left(W_{\sigma_{2}}^{u} \cap W_{1}\right) \subset O x z$ (see Fig. 6).

Making a similar construction in a neighbourhood of σ_{2}, we get an arc without bifurcations connecting the diffeomorphism f_{3} with diffeomorphism $f_{4}: M^{3} \rightarrow M^{3}$ with the following properties:

1. diffeomorphism f_{4} coincides with the diffeomorphism f_{3} outside some neighbourhood U_{R} of $R=c l W_{\sigma_{2}}^{s}$ and in some neighbourhood $W_{2} \subset V_{2}$ of σ_{2};
2. $\psi_{2}\left(W_{\sigma_{1}}^{s} \cap W_{2}\right) \subset O x z$.

Due to Lemma 4, diffeomorphism f_{4} is connected by an arc with one saddle-node bifurcation with a source-sink diffeomorphism on the manifold M^{3}. Which implies that M^{3} is three-dimensional sphere.

4 Reduction of a structurally stable diffeomorphism to a linear diffeomorphism in neighborhoods of hyperbolic fixed points

Let p be a hyperbolic fixed point of a diffeomorphism $f: M^{n} \rightarrow M^{n}$. A type of point p is the set of parameters $\left(q_{p}, v_{p}, \mu_{p}\right)$, where $q_{p}=\operatorname{dim} W_{p}^{u}, v_{p}=+1(-1)$, if $\left.f\right|_{W_{p}^{u}}$ preserves (reverses) orientation and $\mu_{p}=+1(-1)$, if $\left.f\right|_{W_{p}^{s}}$ preserves (reverses) orientation. According to [13, Theorem 5.5], the diffeomorphism f in some neighborhood of a point p of type (q_{p}, v_{p}, μ_{p}) is topologically conjugate to a linear diffeomorphism of the space \mathbb{R}^{n}, defined by the matrix

$$
A_{p}=\left(\begin{array}{cccccccc}
v_{p} \cdot 2 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
0 & 2 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
& & \ddots & & & & & \\
0 & 0 & \ldots & 2 & 0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & \mu_{p} \cdot 1 / 2 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & 0 & 1 / 2 & \ldots & 0 \\
& & & & & & \ddots & \\
0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 1 / 2
\end{array}\right),
$$

the number of the rows of A_{p}, containing 2 (including $v_{p} \cdot 2$), equals q_{p}. Denote by $\bar{A}_{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ a linear diffeomorphism defined by A_{p}. Let $\mathbb{R}^{u}=O x_{1} \ldots x_{q_{p}}, \mathbb{R}^{s}=$ $O x_{q_{p}+1} \ldots x_{n}, \bar{A}_{p}^{u}=\bar{A}_{p} \mid \mathbb{R}^{u}$ and $\bar{A}_{p}^{s}=\left.\bar{A}_{p}\right|_{\mathbb{R}^{s}}$. Then in local coordinates $x^{u}=$ $\left(x_{1}, \ldots, x_{q_{p}}\right) \in \mathbb{R}^{u}, x^{s}=\left(x_{q_{p}+1}, \ldots, x_{n}\right) \in \mathbb{R}^{s}$ diffeomorphism \bar{A}_{p} has a form

$$
\bar{A}_{p}\left(x^{u}, x^{s}\right)=\left(\bar{A}_{p}^{u}\left(x^{u}\right), \bar{A}_{p}^{s}\left(x^{s}\right)\right) .
$$

Lemma 1 Let a structurally stable diffeomorphism $\varphi_{0}: M^{n} \rightarrow M^{n}$ has an isolated hyperbolic fixed point p, let $\left(U_{0}, \psi_{0}\right)$ be a local chart of M^{n} such that $p \in U_{0}$, $\psi_{0}(p)=O$ and U_{0} does not contain non-wandering points of the diffeomorphism φ_{0} other than p. Then there exists neighborhoods U_{1}, U_{2} of the point p, $U_{2} \subset U_{1} \subset U_{0}$ and the arc $\varphi_{t}: M^{n} \rightarrow M^{n}, t \in[0,1]$ without bifurcations such that:

1) the diffeomorphism $\varphi_{t}, t \in[0,1]$ coincides with the diffeomorphism φ_{0} outside the set U_{1};
2) p is an isolated hyperbolic point for each φ_{t};
3) $W_{p}^{s}\left(\varphi_{t}\right)=W_{p}^{s}\left(\varphi_{0}\right)$ and $W_{p}^{u}\left(\varphi_{t}\right)=W_{p}^{u}\left(\varphi_{0}\right)$ outside the set U_{1};
4) the diffeomorphism $\psi_{0} \varphi_{1} \psi_{0}^{-1}$ coincides with the diffeomorphism \bar{A}_{p} on the set $\psi_{0}\left(U_{2}\right)$.

Proof For $r>0$ let $B_{r}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: \sum_{i=1}^{n} x_{i}^{2} \leq r^{2}\right\}, B_{r}^{u}=$ $\left\{\left(x_{1}, \ldots, x_{q_{p}}\right) \in \mathbb{R}^{u}: \sum_{i=1}^{q_{p}} x_{i}^{2} \leq r^{2}\right\}$ and $B_{r}^{s}=\left\{\left(x_{q_{p}+1}, \ldots, x_{n}\right) \in \mathbb{R}^{s}:\right.$ $\left.\sum_{i=q_{p}+1}^{n} x_{i}^{2} \leq r^{2}\right\}$.

By virtue of the structural stability of the diffeomorphism φ_{0} any diffeomorphism sufficiently close to φ_{0} in the C^{1}-topology can be joined with φ_{0} by an arc without bifurcations. According to Franks' lemma [4] ${ }^{2}$ we can assume that the diffeomorphism $\bar{\varphi}_{0}=\psi_{0} \varphi_{0} \psi_{0}^{-1}$ in some ball $B_{r_{0}} \subset \psi_{0}\left(U_{0}\right)$ coincides with the linear diffeomorphism $\bar{\Phi}_{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by a matrix Φ_{p} all of whose eigenvalues are pairwise different. Then the diffeomorphism $\bar{\Phi}_{p}$ is smoothly conjugate to the linear diffeomorphism \bar{Q}_{p} given by the normal Jordan form Q_{p} of the matrix Φ_{p} (see, for example, [5, Chapter 3]). That is, there exists an orientation-preserving diffeomorphism $\xi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $\bar{Q}_{p}=\xi \bar{\Phi}_{p} \xi^{-1}$. According to [12, section 6, Lemma 2], ξ is isotopic to the identity, then there is an isotopy ξ_{t} from $\xi_{0}=i d$ to $\xi_{1}=\xi$. According to Proposition 2.1, there is an isotopy $\Xi_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ between the identity map $\Xi_{0}=i d$ and the diffeomorphism Ξ_{t} coincides with ξ_{t} on $B_{r_{2}}$ and is the identity map outside $B_{r_{1}}$ for some $r_{2}<r_{1}<r_{0}$.

Thus, the $\operatorname{arc} \bar{\eta}_{t}=\Xi_{t} \bar{\Phi}_{p} \Xi_{t}^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ connects the diffeomorphism $\bar{\eta}_{0}=\bar{\Phi}_{p}$ with a diffeomorphism $\bar{\eta}_{1}$, coinciding with \bar{Q}_{p} on $B_{r_{2}}$ and with $\bar{\Phi}_{p}$ outside $B_{r_{1}}$. Additionally, $\bar{\eta}_{t}$ is an arc without bifurcations O, an isolated hyperbolic point for each $\bar{\eta}_{t}$ and $W_{O}^{s}\left(\bar{\eta}_{t}\right)=W_{O}^{s}\left(\bar{\Phi}_{p}\right), W_{O}^{u}\left(\bar{\eta}_{t}\right)=W_{O}^{u}\left(\bar{\Phi}_{p}\right)$ outside the set $B_{r_{1}}$.

If $Q_{p}=A_{p}$, then the lemma is proved. Otherwise, due to the fact that the eigenvalues of the matrix Q_{p} are pairwise different, it has a quasi-diagonal form with blocks consisting of either eigenvalues or of matrices of the form $\left(\begin{array}{cc}\alpha & \beta \\ -\beta & \alpha\end{array}\right)$, where $0<\alpha^{2}+\beta^{2}<1$ or $\alpha^{2}+\beta^{2}>1$. Then the diffeomorphism \bar{Q}_{p} has the form

$$
\bar{Q}_{p}\left(x^{u}, x^{s}\right)=\left(\bar{Q}_{p}^{u}\left(x^{u}\right), \bar{Q}_{p}^{s}\left(x^{s}\right)\right),
$$

where $\left(\bar{Q}_{p}^{u}\right)^{-1}\left(B_{r}^{u}\right) \subset$ int B_{r}^{u} for every disk B_{r}^{u} and $\bar{Q}_{p}^{s}\left(B_{r}^{s}\right) \subset$ int B_{r}^{s} for every disk B_{r}^{s}. Choose $r_{3}<r_{2}$ in such a way that $B_{r_{3}}^{u} \times\left(\bar{Q}_{p}^{s}\right)^{-1}\left(B_{r_{3}}^{s}\right) \subset$ int $B_{r_{2}}$. Choose $r_{4}^{u}, r_{4}^{s} \in\left(r_{3} / 2, r_{3}\right)$ in such a way that $\left(\bar{Q}_{p}^{u}\right)^{-1}\left(B_{r_{3}}^{u}\right) \subset$ int $B_{r_{4}^{u}}^{u}$ and $\bar{Q}_{p}^{s}\left(B_{r_{3}}^{s}\right) \subset$ int $B_{r_{4}^{s}}$.

[^2]In the proof of the proposition 5.4 of monography [13] arcs $\bar{\tau}_{t}^{u}: \mathbb{R}^{u} \rightarrow \mathbb{R}^{u}, \bar{\tau}_{t}^{s}:$ $\mathbb{R}^{s} \rightarrow \mathbb{R}^{s}$ are constructed composing by linear hyperbolic contractions such that

- $\left(\bar{\tau}_{t}^{u}\right)^{-1}\left(B_{r}^{u}\right) \subset$ int B_{r}^{u} for any disk B_{r}^{u} and $\bar{\tau}_{t}^{s}\left(B_{r}^{s}\right) \subset$ int B_{r}^{s} for any disk B_{r}^{s};
- $\bar{\tau}_{0}^{u}=\bar{Q}_{p}^{u}, \bar{\tau}_{1}^{u}=\bar{A}_{p}^{u}$ and $\bar{\tau}_{0}^{s}=\bar{Q}_{p}^{s}, \bar{\tau}_{1}^{s}=\bar{A}_{p}^{s}$.

Consider isotopies $\left.\bar{\lambda}_{t}^{u}=\bar{Q}_{p}^{u} \overline{(} \tau_{t}^{u}\right)^{-1}, \bar{\lambda}_{t}^{s}=\left(\bar{Q}_{p}^{s}\right)^{-1} \bar{\tau}_{t}^{s}$, which joints the identity maps $\bar{\lambda}_{0}^{u}=\bar{\lambda}_{0}^{s}=i d$ with diffeomorphism $\bar{\lambda}_{1}^{u}=\bar{Q}_{p}^{u}\left(\bar{A}_{p}^{u}\right)^{-1}, \bar{\lambda}_{1}^{s}=\left(\bar{Q}_{p}^{s}\right)^{-1} \bar{A}_{p}^{s}$, respectively. By construction, $\bar{\lambda}_{t}^{u}\left(B_{r_{3}}^{u}\right) \subset \bar{Q}_{p}^{u}\left(B_{r_{4}^{u}}\right)$ and $\bar{\lambda}_{t}^{s}\left(B_{r_{3}}^{s}\right) \subset\left(\bar{Q}_{p}^{s}\right)^{-1}\left(B_{r_{4}^{s}}\right)$ for each $t \in[0,1]$. Thus, by virtue of Proposition 2.1, there exist isotopies $\bar{\Lambda}_{t}^{u}$: $\mathbb{R}^{u} \rightarrow \mathbb{R}^{u}, \bar{\Lambda}_{t}^{s}: \mathbb{R}^{s} \rightarrow \mathbb{R}^{s}$ starting from the identity map $\bar{\Lambda}_{0}^{u}=\bar{\Lambda}_{0}^{s}=i d$, coinciding with $\bar{\lambda}_{t}^{u}, \bar{\lambda}_{t}^{s}$ on $B_{r_{3}}^{u}, B_{r_{3}}^{s}$ and are exactly identity outside $\bar{Q}_{p}^{u}\left(B_{r_{4}^{u}}\right),\left(\bar{Q}_{p}^{s}\right)^{-1}\left(B_{r_{4}^{s}}\right)$, respectively. Let

$$
\bar{\Lambda}_{t}\left(x^{u}, x^{s}\right)=\left(\left(\bar{\Lambda}_{t}^{u}\right)^{-1} \bar{Q}_{p}^{u}\left(x^{u}\right), \bar{Q}_{p}^{s} \bar{\Lambda}_{t}^{s}\left(x^{s}\right)\right)
$$

Let us denote an arc coinciding with $\bar{\eta}_{1}$ outside $B_{r_{2}}$ and with $\bar{\Lambda}_{t}$ on $B_{r_{2}}$ by $\bar{\zeta}_{t}: \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{n}. Choose $r_{5}<r_{4}$, such that $B_{r_{5}} \subset \bar{Q}_{p}^{u}\left(B_{r_{3}}^{u}\right) \times B_{r_{3}}^{s}$. Let $\bar{U}_{2}=B_{r_{5}}, U_{1}=B_{r_{1}}$ and

$$
\bar{\varphi}_{t}=\bar{\eta}_{t} * \bar{\zeta}_{t}
$$

Then $\bar{\varphi}_{t}$ is an arc without bifurcations, which coincide with $\bar{\varphi}_{0}$ outside \bar{U}_{1}, O is an isolated hyperbolic point for each $\bar{\varphi}_{t}, W_{O}^{s}\left(\bar{\varphi}_{t}\right)=W_{O}^{s}\left(\bar{\varphi}_{0}\right), W_{O}^{u}\left(\bar{\varphi}_{t}\right)=W_{O}^{u}\left(\bar{\varphi}_{O}\right)$ outside the set \bar{U}_{1} and the diffeomorphism $\bar{\varphi}_{1}$ coinsedes with the diffeomorphism \bar{A}_{p} on \bar{U}_{2}. So, the $\operatorname{arc} \varphi_{t}: M^{n} \rightarrow M^{n}$ which coincides with $\psi_{0}^{-1} \bar{\varphi}_{1} \psi_{0}$ on U_{0} and with φ_{0} outside U_{0} satisfies all the conditions of the lemma in $U_{1}=\psi_{0}^{-1}\left(\bar{U}_{1}\right)$ and $U_{2}=\psi_{0}^{-1}\left(\bar{U}_{2}\right)$.

5 Straightening of the heteroclinic curve

In this section, the diffeomorphism φ_{0} belongs to the set G and in the saddle point σ_{1} has a local chart $\left(U_{1}, \psi_{1}\right), \psi_{1}: U_{1} \rightarrow \mathbb{R}^{3}$ such that $\sigma_{1} \in U_{1}, \psi_{1}\left(\sigma_{1}\right)=O$ and diffeomorphism $\psi_{1} \varphi_{0} \psi_{1}^{-1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear diffeomorphism Q given by the matrix $\left(\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 2\end{array}\right)$. In the next lemma, we move the heteroclinic curve $\gamma_{\varphi_{0}}$ into a canonical position required for further bifurcation.

Lemma 2 There is a neighborhood $V_{1} \subset U_{1}$ of σ_{1} and an $\operatorname{arc} \varphi_{t}: M^{3} \rightarrow M^{3}, t \in$ $[0,1]$ without bifurcations with the following properties:

1) diffeomorphism $\varphi_{t}, t \in[0,1]$ coincides with the diffeomorphism φ_{0} outside U_{1} and in the neighbourhood V_{1};
2) $\psi_{1}\left(\gamma_{\varphi_{1}} \cap V_{1}\right) \subset O x$, where $\gamma_{\varphi_{1}}$ is the heteroclinic curve of the diffeomorphism φ_{1}.

Proof The construction of the required arc will be done in local coordinates in \mathbb{R}^{3} in two steps, first on the plane $O x y$, then we will continue it along the axis $O z$.

Step 1. Construction on the plane $O x y$. Let $g=\left.Q\right|_{o x y}$. Then $g(x, y)=$ $(x / 2, y / 2)$. Let $\bar{\gamma}=\psi_{1}\left(\gamma_{\varphi_{0}} \cap U_{1}\right)$. For $r>0$ we state $B_{r}=\left\{(x, y) \in \mathbb{R}^{2}:\right.$ $\left.x^{2}+y^{2} \leq r^{2}\right\}$. Let $K_{0}=B_{2} \backslash$ int B_{1}. Let us denote by E_{g} the set of contractions (diffeomorphisms topologically conjugate to the diffeomorphism g) $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, coinciding with g out of B_{1} and in some neighbourhood $B_{r_{\phi}}$ of the initial. For $\phi \in E_{g}$ let

$$
\gamma_{\phi}=\bigcup_{k \in \mathbb{Z}} \phi^{k}\left(\bar{\gamma} \cap K_{0}\right) .
$$

By the construction ϕ-invariant curve γ_{ϕ} coinciding with g-invariant curve $\bar{\gamma}$ outside B_{1}. We construct an arc of contractions $\phi_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, t \in[0,1]$ such that
(1) diffeomorphism $\phi_{t}, t \in[0,1]$ coincides with the diffeomorphism g outside B_{1};
(2) $\left(\gamma_{\phi_{1}} \cap B_{r_{\phi_{1}}}\right) \subset O x$.

To construct the arc ϕ_{t} we introduce the following notation for any diffeomorphism $\phi \in E_{g}$.

We represent the two-dimensional torus \mathbb{T}^{2} as the orbit space of the diffeomorphism g action on $\mathbb{R}^{2} \backslash O$ and denote by $p: \mathbb{R}^{2} \backslash O \rightarrow \mathbb{T}^{2}$ the natural projection. We fix on the torus \mathbb{T}^{2} generators $\hat{a}=p\left(O x_{+}\right)$and $\hat{b}=p\left(\mathbb{S}^{1}\right)$. Let $K_{\phi}=B_{r_{\phi}} \backslash B_{r_{\phi} / 2}$ and $\hat{\gamma}_{\phi}=p\left(\gamma_{\phi} \cap K_{\phi}\right)$. Then the curve $\hat{\gamma}_{\phi}$ is a knot on the torus \mathbb{T}^{2} with the homotopy type $\left\langle 1,-n_{\phi}\right\rangle, n_{\phi} \in \mathbb{Z}$ in the basis \hat{a}, \hat{b} (see, for example, [8]).

The arc ϕ_{t} will be a smooth product of arcs η_{t} and ζ_{t}, where
I) the arc $\eta_{t}, t \in[0,1]$ consists of contractions coinciding with the diffeomorphism g outside B_{1} and joints the diffeomorphism $\eta_{0}=g$ with some diffeomorphism $\eta_{1} \in$ E_{g} such that the knot $\hat{\gamma}_{\eta_{1}}$ has the gomotopy type $\langle 1,0\rangle$ in the basis \hat{a}, \hat{b};
II) the $\operatorname{arc} \zeta_{t} \in E_{g}, t \in[0,1]$ joints the diffeomorphism $\zeta_{0}=\eta_{1}$ with a diffeomorphism ζ_{1} such that $\hat{\gamma}_{\zeta_{1}}=\hat{a}$.
I) If $n_{\phi}=0$, then we set $\eta_{t}=g$ for all $t \in[0,1]$. Otherwise, we define a diffeomorphism $\theta_{t}, t \in[0,1]: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ in the polar coordinates (ρ, ψ) so that $\theta_{t}(O)=O$ and $\theta_{t}\left(\rho e^{i \psi}\right)=\rho e^{i\left(\psi+\psi_{t}(\rho)\right)}$, where $\psi_{t}(\rho)$ is a smooth monotonically decreasing function equal to $2 n_{\phi} \pi t$ for $\rho \leq \frac{1}{2}$ and equal to 0 for $\rho \geq 1$.

Then $\eta_{t}=\theta_{t} g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the required arc.
II) By construction, the diffeomorphism η_{1} belongs to E_{g} and the knot $\hat{\gamma}_{\eta_{1}}$ has the homotopy type $\langle 1,0\rangle$ in the basis \hat{a}, \hat{b}. According to [15], there exists a diffeomorphism smoothly isotopic to the identity $\hat{h}: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ such that $\hat{h}\left(\hat{\gamma}_{\eta_{1}}\right)=\hat{a}$. For $0<r<1 / 2$ let $K_{r}=B_{r} \backslash B_{r / 2}$. Let's choose an open cover $D=\left\{D_{1}, \ldots, D_{q}\right\}$ of the torus \mathbb{T}^{2} such that a connected component \bar{D}_{i} of the set $p^{-1}\left(D_{i}\right)$ is a subset of $K_{r_{i}}$ for some $r_{i}<\frac{r_{i-1}}{2}$ and $r_{1} \leq r_{0} / 2$. According to Proposition 2.2 there exist smoothly isotopic to the identity diffeomorphisms $\hat{w}_{1}, \ldots, \hat{w}_{q}: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ with the following properties:
i) for every $i \in\{1, \ldots, q\}$ there is exists a smooth isotopy $\left\{\hat{w}_{i, t}\right\}$, identical outside D_{i} and connecting the identity map with \hat{w}_{i};
ii) $\hat{h}=\hat{w}_{1} \ldots \hat{w}_{q}$.

Let $w_{i, t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a diffeomorphism that coincides with $\left(\left.p\right|_{K_{r_{i}}}\right)^{-1} \hat{w}_{i, t} p$ on $K_{r_{i}}$ and coincides with the identity map outside $K_{r_{i}}$. Then the required arc is determined
by the formula

$$
\zeta_{t}=w_{1, t} \ldots w_{q, t} \eta_{1}
$$

Step 2. Extension of ϕ_{t} to \mathbb{R}^{3}.
I) Let's extend the arc $\eta_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ to the arc $\bar{\eta}_{t}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ in the following way. We set $C=B_{1} \times[-1,1]$. We define an isotopy $\bar{\theta}_{t}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by the formula

$$
\bar{\theta}_{t}(x, y, z)=\left\{\begin{array}{l}
\left(\theta_{t\left(1-z^{2}\right)}(x, y), z\right),(x, y, z) \in C \\
(x, y, z),(x, y, z) \in \mathbb{R}^{3} \backslash C
\end{array}\right.
$$

Let $\bar{\eta}_{t}=\bar{\theta}_{t} Q: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$.
II) Let's extend the arc $\zeta_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ to the arc $\bar{\zeta}_{t}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by the following way.

We set $C_{i}=D_{i} \times[-1,1]$. We define an isotopy $\bar{w}_{i, t}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by the formula

$$
\bar{w}_{i, t}(x, y, z)=\left\{\begin{array}{l}
\left(w_{i, t\left(1-z^{2}\right)}(x, y), z\right),(x, y, z) \in C_{i} \\
(x, y, z),(x, y, z) \in \mathbb{R}^{3} \backslash C_{i}
\end{array}\right.
$$

Let $\bar{\zeta}_{t}=\bar{w}_{1, t} \ldots \bar{w}_{q, t} \bar{\eta}_{1}$.
Then the required arc $\bar{\varphi}_{t}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ will be a smooth product of the $\operatorname{arcs} \bar{\eta}_{t}$ and $\bar{\zeta}_{t}$.

6 Straightening of two-dimensional saddle manifolds

In this section, a diffeomorphism φ_{0} belongs to the set G and in the neighbourhood of the saddle point σ_{1} has a local chart $\left(V_{1}, \psi_{1}\right), \psi_{1}: V_{1} \rightarrow \mathbb{R}^{3}$ such that $\sigma_{1} \in V_{1}$, $\psi_{1}\left(\sigma_{1}\right)=O$, diffeomorphism $\psi_{1} \varphi_{0} \psi_{1}^{-1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear diffeomorphism Q and $\psi_{1}\left(\gamma_{\varphi_{0}} \cap V_{1}\right) \subset O x$ for heteroclinic curve $\gamma_{\varphi_{0}}$ of the diffeomorphism φ_{0}. In the next lemma we move $W_{\sigma_{2}}^{u}$ into a canonical position required for further bifurcation.

Lemma 3 There is exist a neighborhood $W_{1} \subset V_{1}$ of σ_{1}, a neighbourhood U_{A} of $A=c l W_{\sigma_{1}}^{u}$ and an arc $\varphi_{t}: M^{3} \rightarrow M^{3}, t \in[0,1]$ without bifurcations with the following properties:

1) every diffeomorphism $\varphi_{t}, t \in[0,1]$ coincides with φ_{0} outside U_{A} and in W_{1};
2) $\psi_{1}\left(W_{\sigma_{2}}^{u} \cap W_{1}\right) \subset O x z$ for the diffeomorphism φ_{1}.

Proof By the condition $A=W_{\sigma_{1}}^{u} \cup \omega$. Let $R=W_{\sigma_{2}}^{S} \cup \alpha, V=M^{3} \backslash(A \cup R)$ and $\hat{V}=V / \varphi_{0}$. Let us denote by $p: V \rightarrow \hat{V}$ the natural projection. According to [9], the set A is an attractor and has a closed compact neighbourhood U_{A} such that $f\left(U_{A}\right) \subset$ int U_{A} and $\bigcap_{n \in \mathbb{N}} f^{n}\left(U_{A}\right)=A$. The set $B=U_{A} \backslash$ int $\varphi_{0}\left(U_{A}\right)$ is a fundamental domain of φ_{0} restricted to V. The set R is a repeller, the space V consists of the wandering points and the diffeomorphism φ_{0} acts on V freely and discontinuously so

Fig. 7 The space orbit \hat{V}

that the projection p is a cover and the orbit space \hat{V} is a smooth closed manifold (see, for example, [16]).

Notice, that $\left(W_{\sigma_{2}}^{u} \backslash \sigma_{2}\right) \subset V$ and the diffeomorphism $\left.\varphi_{0}\right|_{W_{\sigma_{2}}^{u}}$ is topologically conjugated to a linear extension. Then the set $T_{2}=p\left(W_{\sigma_{2}}^{u}\right)$ is a smoothly embedded in \hat{V} two-dimensional torus. By an analogy, the set $T_{1}=p\left(W_{\sigma_{1}}^{s}\right)$ is a two-dimensional torus smoothly embedded in \hat{V}. Intersection $W_{\sigma_{2}}^{u} \cap W_{\sigma_{1}}^{s}$ consists of a unique non-compact heteroclinic curve $\gamma_{\varphi_{0}}$, where the diffeomorphism φ_{0} is topologically conjugate to a shift. Therefore, the intersection $T_{1} \cap T_{2}$ consists of a unique closed curve $c=p\left(\gamma_{\varphi_{0}}\right)$.

Let $\mathcal{K}=\{(x, y, z):|x z| \leq 1, x>0, y=0\}$ and $K=p\left(\psi_{1}^{-1}(\mathcal{K})\right)$. By the construction K is a two-dimensional annulus containing the curve c in its interior. Choose a tubular neighbourhood $U_{c} \subset \hat{V}$ of the curve c such that the sets $K_{2}=$ $U_{c} \cap T_{2}, K_{1}=U_{c} \cap T_{1}, K_{0}=U_{c} \cap K$ are two-dimensional annulus (see Fig. 7).

By the construction the annulus K_{2} and K_{0} intersect K_{1} transversally along the curve c. Then there exists a diffeomorphism $\psi: \hat{V} \rightarrow \hat{V}$ isotopic to the identity such that $\psi\left(T_{1}\right)=T_{1}$ and $\psi\left(K_{2}\right)=K_{0}$.

Choose an open cover $\left\{Q_{1}, \ldots, Q_{k}\right\}$ of the space \hat{V} such that a connected component \bar{Q}_{i} of the set $p^{-1}\left(Q_{i}\right)$ is a subset of a fundamental domain $B_{i}=U_{A}^{i} \backslash i n t \varphi_{0}\left(U_{A}^{i}\right)$ of the diffeomorphism φ_{0} restricted to V, wherein $U_{A}^{i+1} \subset \operatorname{int} \varphi_{0}\left(U_{A}^{i}\right)$ for $i=$ $0, \ldots, k, U_{A}^{0}=U_{A}$. According to Proposition 2.2, there exist smoothly isotopic to the identity diffeomorphisms $\hat{w}_{1}, \ldots, \hat{w}_{k}: \hat{V} \rightarrow \hat{V}$ with the following properties:
i) for each $i \in\{1, \ldots, k\}$ there exist a smooth isotopy $\left\{\hat{w}_{i, t}\right\}$, identical outside B_{i} and joining the identity map with \hat{w}_{i};
ii) $\psi=\hat{w}_{1} \ldots \hat{w}_{k}$.

Let $w_{i, t}: V \rightarrow V$ be a diffeomorphism, which is the same as $\left(\left.p\right|_{Q_{i}}\right)^{-1} \hat{w}_{i, t} p$ on \bar{Q}_{i} and coincides with the identity map outside \bar{Q}_{i}. Then the $\operatorname{arc} \varphi_{t}$ is defined by the formula $\varphi_{t}=w_{1, t} \ldots w_{k, t} \varphi_{0}$.

Fig. 8 Confluence of saddle points

7 Confluence of saddle points

In this section a diffeomorphism φ_{0} belongs to the set G and has the following properties: in σ_{1} there exist a local chart $\left(W_{1}, \psi_{1}\right), \psi_{1}: W_{1} \rightarrow \mathbb{R}^{3}$ such that $\sigma_{1} \in W_{1}$, $\psi_{1}\left(\sigma_{1}\right)=O$, diffeomorphism $\psi_{1} \varphi_{0} \psi_{1}^{-1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is well-defined and equal to the linear map Q on a neighborhood of the origin, moreover $\psi_{1}\left(W_{\sigma_{2}}^{u} \cap W_{1}\right) \subset O x z$. Similarly there is a local chart $\left(W_{2}, \psi_{2}\right), \psi_{2}: W_{2} \rightarrow \mathbb{R}^{3}$ such that $\sigma_{2} \in W_{2}, \psi_{2}\left(\sigma_{2}\right)=O$, diffeomorphism $\psi_{2} \varphi_{0} \psi_{2}^{-1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is well-defined and equal to the linear map Q^{-1} on a neighborhood of the origin, moreover $\psi_{2}\left(W_{\sigma_{1}}^{s} \cap W_{2}\right) \subset O x z$.

In the next lemma we confluence saddle points σ_{1}, σ_{2} along the heteroclinic curve $\gamma_{\varphi_{0}}$.
Lemma 4 There exists a neighborhood $U \subset M^{3} \backslash(\alpha \cup \omega)$ of heteroclinic curve $\gamma_{\varphi_{0}}$ and arc $\varphi_{t}: M^{3} \rightarrow M^{3}, t \in[0,1]$ with a saddle-node bifurcation such that the diffeomorphism $\varphi_{t}, t \in[0,1]$ coincides with the diffeomorphism φ_{0} out of the set U and diffeomorphism φ_{1} is a source-sink diffeomorphism.
Proof Let $\tilde{U}=\left\{(x, y, z) \in \mathbb{R}^{3}:|x|<1,|y|<1,|z|<1\right\}$. We define an embedding $\tilde{\varphi}: \tilde{U} \rightarrow \mathbb{R}^{3}$ by the formula

$$
\tilde{\varphi}(x, y, z)=\left(x+\frac{x^{2}}{2}-\frac{1}{10}, \frac{y}{2}, 2 z\right)
$$

By the construction, $\tilde{\varphi}$ has saddle points $P_{1}\left(-x_{0}, 0,0\right)$ and $P_{2}\left(x_{0}, 0,0\right), x_{0} \in(0,1 / 2)$. Let $\Delta^{s}=W_{P_{1}}^{s} \cap \tilde{U}, \Delta^{u}=W_{P_{2}}^{u} \cap \tilde{U}, I^{u}=W_{P_{1}}^{u} \cap \tilde{U}, I^{s}=W_{P_{2}}^{s} \cap \tilde{U}$ (see Fig. 8). The properties of φ_{0} allow to find a neighborhood U of the heteroclinic curve and an embedding $\beta: U \rightarrow \tilde{U}$ inducing a diffeomorphism

$$
\tilde{\varphi}_{0}=\left.\beta \varphi_{0} \beta^{-1}\right|_{\tilde{U}}
$$

for which the points P_{1}, P_{2} are hyperbolic fixed saddle points with the local invariant manifolds belonging to $\Delta^{s}, I^{u} ; \Delta^{u}, I^{s}$. Let us choose sets $\Pi_{1} \subset \beta(U)$ of the form
$\Pi_{1}=\left\{(x, y, z) \in \mathbb{R}^{3}:|x| \leq a,|y| \leq b,|z| \leq b\right\}, a \in\left(x_{0}, \frac{1}{2}\right), b \in\left(0, \frac{1}{2}\right)$ and such that $\tilde{\varphi}\left(\Pi_{1}\right) \subset\left(\tilde{\varphi}_{0}(\beta(U)) \cap \beta(U)\right)$.

Let us define an embedding $\xi_{0}: \Pi_{1} \rightarrow \beta(U)$ by the formula $\xi_{0}=\left.\tilde{\varphi}_{0}^{-1} \tilde{\varphi}\right|_{\Pi_{1}}$. Then there is a family of embeddings $\xi_{t}: \Pi_{1} \rightarrow \beta(U)$ such that $\xi_{1}=i d, \xi_{t}\left(\Delta^{s}\right) \subset$ $\Delta^{s}, \xi_{t}\left(I^{u}\right) \subset I^{u}, \xi_{t}\left(\Delta^{u}\right) \subset \Delta^{u}, \xi_{t}\left(I^{s}\right) \subset I^{s}$ (see, for example, [11]). The the family of the embeddings $\zeta_{t}=\tilde{\varphi}_{0} \xi_{1-t}: \Pi_{1} \rightarrow \beta(U)$ joints $\tilde{\varphi}_{0}$ with $\tilde{\varphi}$. Define a family of embeddings $\eta_{t}: \Pi_{1} \rightarrow \beta(U)$ by the formula

$$
\eta_{t}(x, y, z)=\left(x+\frac{x^{2}}{2}+\frac{1}{10}(2 t-1), \frac{y}{2}, 2 z\right) .
$$

Then the isotopy η_{t} connects $\eta_{0}=\tilde{\varphi}$ with an embedding η_{1} whose non-wandering set is empty. Let $\theta_{t}=\zeta_{t} * \eta_{t}$. Then the family $\tilde{\psi}_{t}=\tilde{\varphi}_{0}^{-1} \theta_{t}: \Pi_{1} \rightarrow \beta(U)$ connects the identity map with the embedding $\tilde{\varphi}_{0}^{-1} \eta_{1}$. Due to Proposition 2.1, there exist an isotopy $\tilde{\Psi}_{t}: \beta(U) \rightarrow \beta(U)$, coinciding with $\tilde{\psi}_{t}$ on Π_{1}, identical on $\partial \beta(U)$ and such that $\tilde{\Psi}_{0}=i d$. Let $\Psi_{t}: M^{3} \rightarrow M^{3}$ be an isotopy which coincide with $\beta^{-1} \tilde{\Psi}_{t} \beta$ on U and coincides with the identical map outside U. Then $\varphi_{t}=\varphi_{0} \Psi_{t}$ is the requirement isotopy.

Data availability Data sharing is not applicable to this article as no new data were created or analysed in this study.

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

1. Banyaga, A.: On the structure of the group of equivariant diffeomorphism. Topology 16, 279-283 (1997)
2. Bonatti, C., Grines, V., Medvedev, V., Pecou, E.: Three-manifolds admitting Morse-Smale diffeomorphisms without heteroclinic curves. Topol. Appl. 117(3), 335-344 (2002)
3. Bonatti, C., Grines, V., Pochinka, O.: Topological classification of Morse-Smale diffeomorphisms on 3-manifolds. Duke Math. J. 168(13), 2507-2558 (2019)
4. Franks, J.: Necessary conditions for the stability of diffeomorphisms. Trans. A. M. S. 158, 301-308 (1971)
5. Gelfand I.M.: Lectures on Linear Algebra. M. Nauka (1971)
6. Grines, V., Gurevich, E., Medvedev, V., Pochinka, O.: On the inclusion of Morse-Smale diffeomorphisms on a 3-manifold in a topological flow. Math. Sb. 203(12), 81-104 (2012)
7. Grines, V.Z., Zhuzhoma, E.V., Medvedev, V.S.: On Morse-Smale diffeomorphisms with four periodic points on closed orientable manifolds. Math. Notes 74(3), 352-366 (2003)
8. Grines, V., Medvedev, T., Pochinka, O.: Dynamical Systems on 2- and 3-Manifolds. Springer, Switzerland (2016)
9. Grines, V., Medvedev, V., Pochinka, O., Zhuzhoma, E.: Global attractor and repeller of Morse-Smale diffeomorphisms. In: Proceedings of the Steklov Institute of Mathematics, vol. 271, no. 1, pp. 103-124 (2010)
10. Grines, V., Zhuzhoma, E.V., Pochinka, O., Medvedev, T.V.: On heteroclinic separators of magnetic fields in electrically conducting fluids. Physica D Nonlinear Phenomena 294, 1-5 (2015)
11. Hirsch, M.W.: Differential Topology, vol. 33. Springer, New York (2012)
12. Milnor, J.: Lectures on the h-Cobordism Theorem. Princeton University Press, Princeton (1965)
13. Palis, J., de Melo, W.: Geometric Theory of Dynamical Systems. Mir. (1998)
14. Pochinka, O., Talanova, E.A., Shubin, D.: Knot as a complete invariant of a Morse-Smale 3diffeomorphism with four fixed points. Cornell University. Series arXiv "math". 2022. Submitted to Mat. Sbornik
15. Rolfsen, D.: Knots and Links. Mathematics Lecture Series, vol. 7 (1990)
16. Thurston, W.P.: Three dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Amer. Math. Soc. (N.S.) 6(3), 357-381 (1982)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

[^0]: This work was supported by the Russian Science Foundation (project 22-11-00027), except section 4, which was suppported by the Laboratory of Dynamical Systems and Applications (project 075-15-2022-1101).
 \boxtimes Olga V. Pochinka
 olga-pochinka@yandex.ru
 Valeriya I. Shmukler
 shmukler9797@mail.ru
 Elena A. Talanova
 eltalanova@rambler.ru
 1 National Research University Higher School of Economics, 25/12 Bolshaya Pecherskaya Street, Niznhy Novgorod, Russia
 2 Nizhny Novgorod State University, 23 Gagarin Avenue, Niznhy Novgorod, Russia

[^1]: ${ }^{1}$ A support $\operatorname{supp}\left\{f_{t}\right\}$ of an isotopy $\left\{f_{t}\right\}$ is the closure of the set $\left\{x \in X: f_{t}(x) \neq f_{0}(x)\right.$ for some $t \in$ $[0,1]\}$.

[^2]: ${ }^{2}$ In Franks' lemma, in a neighborhood U_{p} of the fixed point p of the diffeomorphism $f: M^{n} \rightarrow M^{n}$ we consider the local chart $\left(U_{p}, \psi_{p}\right)$ where $\psi_{p}^{-1}=\exp : T_{x} M^{n} \rightarrow U_{p}$ - exponential map. Then in these local coordinates the diffeomorphism f has the form $\hat{f}=\exp ^{-1} \circ f \circ \exp : \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. The Franks lemma is that in any neighborhood of a diffeomorphism f there exists a diffeomorphism g having a fixed point p and a linear local representation $\hat{g}=\exp ^{-1} \circ g \circ \exp$ if it is close enough to $D f_{p}$. Thus, in any neighborhood of the diffeomorphism f there exists a diffeomorphism g, having a fixed point p and a linear local representation given by a matrix all of whose eigenvalues are pairwise different.

