Smale Regular and Chaotic A-Homeomorphisms and A-Diffeomorphisms

Vladislav S. Medvedev ${ }^{1 *}$ and Evgeny V. Zhuzhoma ${ }^{1 * *}$
${ }^{1}$ National Research University Higher School of Economics, ul. Bolshaya Pecherskaya 25/12, 603005 Nizhny Novgorod, Russia
Received June 10, 2021; revised May 14, 2022; accepted October 08, 2022

Abstract

We introduce Smale A-homeomorphisms that include regular, semichaotic, chaotic, and superchaotic homeomorphisms of a topological n-manifold $M^{n}, n \geqslant 2$. Smale A-homeomorphisms contain axiom A diffeomorphisms (in short, A-diffeomorphisms) provided that M^{n} admits a smooth structure. Regular A-homeomorphisms contain all Morse-Smale diffeomorphisms, while semichaotic and chaotic A-homeomorphisms contain A-diffeomorphisms with trivial and nontrivial basic sets. Superchaotic A-homeomorphisms contain A-diffeomorphisms whose basic sets are nontrivial. The reason to consider Smale A-homeomorphisms instead of A-diffeomorphisms may be attributed to the fact that it is a good weakening of nonuniform hyperbolicity and pseudo-hyperbolicity, a subject which has already seen an immense number of applications. We describe invariant sets that determine completely the dynamics of regular, semichaotic, and chaotic Smale A-homeomorphisms. This allows us to get necessary and sufficient conditions of conjugacy for these Smale A-homeomorphisms (in particular, for all Morse-Smale diffeomorphisms). We apply these necessary and sufficient conditions for structurally stable surface diffeomorphisms with an arbitrary number of expanding attractors. We also use these conditions to obtain a complete classification of Morse-Smale diffeomorphisms on projectivelike manifolds.

MSC2010 numbers: 37D05, 37 B 35
DOI: 10.1134/S1560354723020016
Keywords: conjugacy, topological classification, Smale homeomorphism

Dedicated to the memory of A. M. Stepin

1. INTRODUCTION

Diffeomorphisms satisfying Smale's axiom A (in short, A-diffeomorphisms) were introduced by Smale [46] as a magnificent and natural generalization of structurally stable diffeomorphisms. By definition, a nonwandering set of an A-diffeomorphism has a uniform hyperbolic structure and is the topological closure of periodic orbits. For an A-diffeomorphism, Smale proved that the nonwandering set splits into closed, transitive, and invariant pieces called basic sets. A basic set is trivial if it is an isolated periodic orbit. A good example of an A-diffeomorphism with trivial basic sets is a Morse-Smale diffeomorphism [38, 45]. Such diffeomorphisms exhibit regular dynamics. Due to Bowen [9], A-diffeomorphisms with nontrivial basic sets exhibit chaotic dynamics since any such diffeomorphism has a positive entropy. The most familiar nontrivial basic sets are Plykin's

[^0]attractor [39] and codimension-one expanding attractors introduced by Williams [48, 49]. Such basic sets appeared in various applications, see, for example, [15, 26, 47].

Keeping in mind that there are manifolds that do not admit smooth structures [35], we introduce Smale A-homeomorphisms with nonwandering sets having a hyperbolic type (see a precise definition below). Such homeomorphisms naturally appear in topological dynamical systems. For example, in [11], the existence of topological Morse functions with three critical points on topological (including nonsmoothable) closed manifolds was proved. Starting with these examples, one can construct topological (perhaps only topological) Morse-Smale flows and Morse-Smale homeomorphisms with a nonwandering set consisting of three fixed points of hyperbolic type. A profound theory of topological dynamical systems was developed in $[2,3]$.

Another reason to consider Smale A-homeomorphisms instead of A-diffeomorphisms may be attributed to the fact that it is a good weakening of nonuniform hyperbolicity and pseudohyperbolicity, a subject which has already seen an immense number of applications $[1,47]$.

The challenging problem in the theory of dynamical systems is that of classifying, up to conjugacy, dynamical systems with regular and chaotic dynamics. Recall that homeomorphisms $f_{1}, f_{2}: M^{n} \rightarrow M^{n}$ are called conjugate if there is a homeomorphism $h: M^{n} \rightarrow M^{n}$ such that $h \circ f_{1}=f_{2} \circ h$. To check whether given f_{1} and f_{2} are conjugate, one usually constructs an invariant of conjugacy which is a dynamical characteristic that is preserved under a conjugacy homeomorphism. Normally, such an invariant is constructed within the framework of a special class of dynamical systems. The famous invariant is Poincare's rotation number for the class of transitive circle homeomorphisms [40]. This invariant is effective, i. e., two transitive circle homeomorphisms are conjugate if and only if they have the same Poincaré rotation number (see [37] and [6], Ch. 7, concerning invariants of low dimensional dynamical systems). Anosov [4] and Smale [46] were the first to realize the fundamental role of hyperbolicity for dynamical systems. Numerous topological invariants were constructed for special classes of A-diffeomorphisms including Anosov systems [12, 30, 36], A-flows [34], and Morse-Smale systems, see the books [7, 13] and the surveys [14, 31].

Within the framework of Smale A-homeomorphisms, we introduce regular, semichaotic, chaotic, and superchaotic homeomorphisms. We get necessary and sufficient conditions of conjugacy for regular, semichaotic, and chaotic Smale A-homeomorphisms on a closed topological n-manifold M^{n}, $n \geqslant 2$. Automatically, this gives necessary and sufficient conditions of conjugacy for Morse-Smale diffeomorphisms and a wide class of A-diffeomorphisms with nontrivial basic sets provided that M^{n} admits a smooth structure. We apply our conditions for structurally stable surface diffeomorphisms with an arbitrary number of one-dimensional expanding attractors. We classify Morse-Smale diffeomorphisms (up to iterations) with three periodic points on projective-like manifolds (such manifolds were introduced by the authors in [33]).

Let us give the main definitions and formulate the main results. In [33], the authors introduced the notion of equivalent embedding as follows. Let $M_{1}^{k}, M_{2}^{k} \subset M^{n}$ be topologically embedded k manifolds, $1 \leqslant k \leqslant n-1$. We say they have the equivalent embedding if there are neighborhoods $U\left(\operatorname{clos} M_{1}^{k}\right), U\left(\operatorname{clos} M_{2}^{k}\right)$ of $\operatorname{clos} M_{1}^{k}$, clos M_{2}^{k}, respectively, and a homeomorphism $h: U\left(\operatorname{clos} M_{1}^{k}\right) \rightarrow$ $U\left(\operatorname{clos} M_{2}^{k}\right)$ such that $h\left(M_{1}^{k}\right)=M_{2}^{k}$. Here, clos N means the topological closure of N. This notion allows one to classify Morse-Smale topological flows with nonwandering sets consisting of three equilibria [33]. To be precise, it was proved that two such flows f_{1}^{t}, f_{2}^{t} are topologically equivalent if and only if the stable (or unstable) separatrices of saddles of f_{1}^{t} and f_{2}^{t}, respectively, have the equivalent embedding. Remark that the notion of equivalent embedding goes back to a scheme introduced by Leontovich and Maier [27, 28] to attack the classification problem for flows on a 2 -sphere. Solving the conjugacy problem for homeomorphisms, we have to add conjugacy relations to the equivalent embedding. The modification of (global) conjugacy is a local conjugacy when the conjugacy holds in some neighborhoods of compact invariant sets. We introduce the intermediate notion, the so-called locally equivalent dynamical embedding (in short, dynamical embedding), as follows.

Let $f_{i}: M_{i}^{n} \rightarrow M_{i}^{n}$ be a homeomorphism of a closed topological n-manifold $M_{i}^{n}, n \geqslant 2, i=1,2$, and $N_{1} \subset M_{1}^{n}, N_{2} \subset M_{2}^{n}$ invariant sets of f_{1} and f_{2}, respectively, i.e., $f_{i}\left(N_{i}\right)=N_{i}, i=1,2$. We say
that the sets N_{1} and N_{2} have the same dynamical embedding if there are neighborhoods δ_{1} and δ_{2} of clos N_{1} and clos N_{2}, respectively, and a homeomorphism $h_{0}: \delta_{1} \cup f_{1}\left(\delta_{1}\right) \rightarrow M_{2}^{n}$ on its image such that

$$
\begin{equation*}
h_{0}\left(\delta_{1}\right)=\delta_{2}, \quad h_{0}\left(\operatorname{clos} N_{1}\right)=\operatorname{clos} N_{2},\left.\quad h_{0} \circ f_{1}\right|_{\delta_{1}}=\left.f_{2} \circ h_{0}\right|_{\delta_{1}} . \tag{1.1}
\end{equation*}
$$

Recall that $F: L^{n} \rightarrow L^{n}$ is an A-diffeomorphism of a smooth manifold L^{n} provided that the nonwandering set $N W(F)$ is hyperbolic, and the periodic orbits of F are dense in $N W(F)$ [46]. The hyperbolicity implies that every point $z_{0} \in N W(F)$ has the stable $W^{s}\left(z_{0}\right)$ and unstable $W^{u}\left(z_{0}\right)$ manifolds formed by points $y \in L^{n}$ such that $\varrho_{L}\left(F^{p k} z_{0}, F^{p k} y\right) \rightarrow 0$ as $k \rightarrow+\infty$ and $k \rightarrow-\infty$, respectively, where ϱ_{L} is a metric on $L^{n}[18,19,21,24,41,46]$. Moreover, $W^{s}\left(z_{0}\right)$ and $W^{u}\left(z_{0}\right)$ are homeomorphic (in the interior topology) to Euclidean spaces $\mathbb{R}^{\operatorname{dim} W^{s}\left(z_{0}\right)}$ and $\mathbb{R}^{\operatorname{dim} W^{u}\left(z_{0}\right)}$, respectively. Note that $\operatorname{dim} W^{s}\left(z_{0}\right)+\operatorname{dim} W^{u}\left(z_{0}\right)=n$. The nonwandering set $N W(F)$ is a finite union of pairwise disjoint F-invariant closed sets $\Omega_{1}, \ldots, \Omega_{k}$ such that every restriction $\left.F\right|_{\Omega_{i}}$ is topologically transitive. These Ω_{i} are called basic sets of F. A basic set is nontrivial if it is not a periodic isolated orbit. Set $W^{s(u)}\left(\Omega_{i}\right)=\cup_{x \in \Omega_{i}} W^{s(u)}(x)$. One says that Ω_{i} is a sink (source) basic set provided that $W^{u}\left(\Omega_{i}\right)=\Omega_{i}\left(W^{s}\left(\Omega_{i}\right)=\Omega_{i}\right)$. A basic set Ω_{i} is a saddle basic set if it is neither a sink nor a source basic set.

A homeomorphism $f: M^{n} \rightarrow M^{n}$ is called a Smale A-homeomorphism if there is an Adiffeomorphism $F: L^{n} \rightarrow L^{n}$ such that the nonwandering sets $N W(f), N W(F)$ have the same dynamical embedding. As a consequence, $N W(f)$ is a finite union of pairwise disjoint f-invariant closed sets $\Lambda_{1}, \ldots, \Lambda_{k}$ called basic sets of f such that every restriction $\left.f\right|_{\Lambda_{i}}$ is topologically transitive (see Proposition 3). Each basic set Λ has the stable manifold $W^{s}(\Lambda)$ and the unstable manifold $W^{u}(\Lambda)$. Similarly, one introduces the families of sink basic sets $\omega(f)$, source basic sets $\alpha(f)$, and saddle basic sets $\sigma(f)$.

A Smale A-homeomorphism f is called regular if all basic sets $\omega(f), \sigma(f), \alpha(f)$ are trivial.
A Smale A-homeomorphism f is called semichaotic if exactly one family from the families $\omega(f)$, $\sigma(f), \alpha(f)$ consists of nontrivial basic sets.

A Smale A-homeomorphism f is called chaotic if exactly two families from the families $\omega(f)$, $\sigma(f), \alpha(f)$ consists of nontrivial basic sets.

A Smale A-homeomorphism f is called superchaotic if all basic sets $\omega(f), \sigma(f), \alpha(f)$ are nontrivial.

Denote by $\operatorname{SsH}\left(M^{n}\right)$ the set of either regular, or semichaotic, or chaotic Smale A-homeomorphisms $f: M^{n} \rightarrow M^{n}$ of a closed topological n-manifold $M^{n}, n \geqslant 2$. If f is chaotic, we'll assume that $\omega(f)$ or $\alpha(f)$ consists of trivial basic sets.

In Section 2, we give examples of all types above of Smale A-homeomorphisms. Actually, all examples are A-diffeomorphisms.

Now let us introduce invariant sets that determine the dynamics of Smale homeomorphisms. Given any Smale A-homeomorphism $f: M^{n} \rightarrow M^{n}$, denote by $A(f)$ (resp., $R(f)$) the union of $\omega(f)$ (resp., $\alpha(f)$) and unstable (resp., stable) manifolds of saddle basic sets $\sigma(f)$:

$$
A(f)=\omega(f) \bigcup_{\nu \in \sigma(f)} W^{u}(\nu), \quad R(f)=\alpha(f) \bigcup_{\nu \in \sigma(f)} W^{s}(\nu) .
$$

The following statement gives the necessary and sufficient conditions of conjugacy for three types of the Smale A-homeomorphisms. This statement is a generalization of the main result in [51].
Theorem 1. Let M^{n} be a closed topological n-manifold $M^{n}, n \geqslant 2$ and $f_{i}: M^{n} \rightarrow M^{n}$ is either a regular, or semichaotic, or chaotic Smale A-homeomorphism such that $\omega\left(f_{i}\right)$ or $\alpha\left(f_{i}\right)$ consists of trivial basic sets ($i=1,2$, respectively). Two homeomorphisms f_{1} and f_{2} are conjugate if and only if one of the following conditions holds:

- the basic sets $\alpha\left(f_{1}\right)$ and $\alpha\left(f_{2}\right)$ are trivial, while the sets $A\left(f_{1}\right)$ and $A\left(f_{2}\right)$ have the same dynamical embedding;
- the basic sets $\omega\left(f_{1}\right)$ and $\omega\left(f_{2}\right)$ are trivial, while the sets $R\left(f_{1}\right)$ and $R\left(f_{2}\right)$ have the same dynamical embedding.
Note that the Smale A-homeomorphisms in Theorem 1 could be A-diffeomorphisms provided that M^{n} is a smooth manifold.

In Section 5, we apply Theorem 1 to consider the conjugacy for structurally stable surface diffeomorphisms $M^{2} \rightarrow M^{2}$ with one-dimensional (orientable and nonorientable) attractors Λ_{1}, \ldots, $\Lambda_{k}, k \geqslant 2$, and to classify Morse-Smale diffeomorphisms with three periodic points on projectivelike manifolds. Note that the one-dimensional attractors $\Lambda_{1}, \ldots, \Lambda_{k}$ are expanding (recall that an attractor Λ is expanding if its topological dimension equals $\operatorname{dim} W(x)$ for any point $x \in \Lambda$ [49]).

Fig. 1. (a) One isolated saddle and one expanding attractor on a nonoriented surface; (b) one isolated saddle and two Plykin attractors.

First, we prove the following statement interesting in itself (remark that a structurally stable diffeomorphism is an A-diffeomorphism [29]).
Proposition 1. Let $f: M^{2} \rightarrow M^{2}$ be an A-diffeomorphism with the nonwandering set $N W(f)$ consisting of one-dimensional expanding attractors $\Lambda_{1}, \ldots, \Lambda_{k}$, and $s_{0} \geqslant 0$ isolated saddle periodic points, and an arbitrary number of isolated nodal periodic orbits. Then $k \leqslant s_{0}+1$.

The case $k=s_{0}=1$ is given in Fig. 1a, while the case $k=2$ and $s_{0}=1$ is represented in Fig. 1b with two Plykin attractors.

The following statement shows that the dynamical embedding of unstable manifolds of isolated saddles (trivial basic sets) determines completely global dynamics of structurally stable surface diffeomorphisms with one-dimensional expanding attractors (nontrivial basic sets).
Theorem 2. Let $f_{i}: M^{2} \rightarrow M^{2}, i=1,2$, be a structurally stable diffeomorphism of a closed 2manifold M^{2} such that the spectral decomposition of f_{i} consists of $k \geqslant 2$ one-dimensional expanding attractors $\Lambda_{1}^{(i)}, \ldots, \Lambda_{k}^{(i)}$, and isolated source periodic orbits, and $k-1$ isolated saddle periodic points denoted by $\sigma_{1}^{(i)}, \ldots, \sigma_{k-1}^{(i)}$. Then f_{1} and f_{2} are conjugate if and only if the sets $\cup_{j=1}^{j=k-1} W^{u}\left(\sigma_{j}^{(1)}\right)$, $\cup_{j=1}^{j=k-1} W^{u}\left(\sigma_{j}^{(2)}\right)$ have the same dynamical embedding.

Denote by $\operatorname{SRH}\left(M^{n}\right)$ the class of Smale regular homeomorphisms $M^{n} \rightarrow M^{n}$. Note that it is possible that $f \in \operatorname{SRH}\left(M^{n}\right)$ has the empty set $\sigma(f)$ of saddle periodic points. In this case the set $\alpha(f)$ consists of a unique source and the set $\omega(f)$ consists of a unique sink, and $M^{n}=S^{n}$ is the n-sphere. Later on, we'll assume that $f \in S R H\left(M^{n}\right)$ has a nonempty set $\sigma(f)$ of saddle periodic points.

Clearly, $\operatorname{SRH}\left(M^{n}\right)$ contains all Morse-Smale diffeomorphisms provided that M^{n} admits a smooth structure. Note that the class $S R H\left(M^{n}\right)$ is an essential extension of the class of MorseSmale diffeomorphisms because the diffeomorphisms from $\operatorname{SRH}\left(M^{n}\right)$ can contain nonhyperbolic periodic points, tangencies, and separatrix connections, Fig. 2.

As a consequence of Theorem 1, one gets the following statement (in particular, one gets the necessary and sufficient conditions of conjugacy for any Morse-Smale diffeomorphisms on smooth closed manifolds).

Fig. 2. Examples of regular Smale diffeomorphisms.

Corollary 1. Let M^{n} be a closed topological n-manifold M^{n}, $n \geqslant 2$. Homeomorphisms $f_{1}, f_{2} \in$ $S R H\left(M^{n}\right)$ are conjugate if and only if one of the following conditions holds:

- the sets $A\left(f_{1}\right)$ and $A\left(f_{2}\right)$ have the same dynamical locally equivalent embedding;
- the sets $R\left(f_{1}\right)$ and $R\left(f_{2}\right)$ have the same dynamical locally equivalent embedding.

Denote by $M S\left(M^{n} ; a, b, c\right)$ the set of Morse-Smale diffeomorphisms $f: M^{n} \rightarrow M^{n}$ whose nonwandering set consists of a sinks, b sources, and c saddles. In [32], the authors proved that for $M S\left(M^{n} ; 1,1,1\right)$ the only values of n possible are $n \in\{2,4,8,16\}$. Moreover, the supporting manifolds for $\operatorname{MS}\left(M^{n} ; 1,1,1\right)$ are projective-like provided that $n \in\{2,8,16\}[32,33]$.

First, to illustrate the applicability of Corollary 1 , we consider a very simple class $M S\left(M^{2} ; 1,1,1\right)$. In this case, the supporting manifold M^{2} is the projective plane $M^{2}=\mathbb{P}^{2}$ [32]. Below, we define a type for a unique saddle of $f \in M S\left(\mathbb{P}^{2}, 1,1,1\right)$. Using Corollary 1 we'll show how to get the following complete classification of Morse-Smale diffeomorphisms $\operatorname{MS}\left(\mathbb{P}^{2}, 1,1,1\right)$.
Proposition 2. Two diffeomorphisms $f_{1}, f_{2} \in M S\left(\mathbb{P}^{2}, 1,1,1\right)$ are conjugate if and only if the types of their saddles coincide. There are four types $T_{i}, i=1,2,3,4$ of a saddle. Given any type T_{i}, $i=1,2,3,4$, there is a diffeomorphism $f \in M S\left(\mathbb{P}^{2}, 1,1,1\right)$ with a saddle $\sigma(f)$ of type T_{i}.

Thus, up to conjugacy, there are four classes of Morse-Smale diffeomorphisms $\operatorname{MS}\left(\mathbb{P}^{2}, 1,1,1\right)$.
The most essential application is a complete classification of Morse-Smale diffeomorphisms $M S\left(M^{8} ; 1,1,1\right)$ and $M S\left(M^{16} ; 1,1,1\right)$. The supporting $2 k$-manifolds for diffeomorphisms from the set $M S^{2 k}(1,1,1)$ will be denoted by $M^{2 k}(1,1,1)$.

Remark that the manifolds $M^{2 k}(1,1,1), k=1,2,4,8$, are unique ones which admit Morse-Smale diffeomorphisms with the nonwandering set consisting of three fixed points [32]. Moreover, every set $M^{2 k}(1,1,1), k=1,2,4,8$, contains a smooth manifold supporting a Morse-Smale diffeomorphism from the set $M^{2 k}(1,1,1)[11,14]$.

Recall that S^{k} is a k-sphere. Below, α_{f}, σ_{f}, and ω_{f} mean the source, the saddle, and the sink of $f \in M S^{2 k}(1,1,1)$, respectively.

An embedding $\varphi: S^{k} \rightarrow M^{2 k}(1,1,1)$ is called basic if

- $\varphi\left(S^{k}\right)$ is a locally flat k-sphere;
- $M^{2 k}(1,1,1) \backslash \varphi\left(S^{k}\right)$ is an open $2 k$-ball, $M^{2 k}(1,1,1)=B^{2 k} \sqcup \varphi\left(S^{k}\right)$.

It was proved in [32] that every supporting manifold $M^{2 k}(1,1,1), k=4,8$, admits a basic embedding.

Theorem 3. Let $f: M^{2 k}(1,1,1) \rightarrow M^{2 k}(1,1,1)$ be a diffeomorphism from the set $M S^{2 k}(1,1,1)$, $k=4,8$. Then the following claims hold:

1) for any $f \in M S^{2 k}(1,1,1)$, there are basic embeddings

$$
\varphi_{u}(f): S^{k} \rightarrow M^{2 k}(1,1,1), \quad \varphi_{s}(f): S^{k} \rightarrow M^{2 k}(1,1,1)
$$

such that $\varphi_{u}(f)\left(S^{k}\right)=W_{\sigma_{f}}^{u} \cup\left\{\omega_{f}\right\}$ and $\varphi_{s}(f)\left(S^{k}\right)=W_{\sigma_{f}}^{s} \cup\left\{\alpha_{f}\right\}$;
2) given any basic embedding $\varphi: S^{k} \rightarrow M^{2 k}(1,1,1)$, there is $f \in M S^{2 k}(1,1,1)$ such that one of the following equalities holds:

$$
\varphi\left(S^{k}\right)=W_{\sigma_{f}}^{u} \cup\left\{\omega_{f}\right\} \quad \text { or } \quad \varphi\left(S^{k}\right)=W_{\sigma_{f}}^{s} \cup\left\{\alpha_{f}\right\}
$$

3) two Morse - Smale diffeomorphisms $f_{1}, f_{2} \in M^{2 k}(1,1,1)$ are conjugate if and only if one of the following conditions holds:

- the basic embeddings $\varphi_{u}\left(f_{1}\right)\left(S^{k}\right)=W_{\sigma_{f_{1}}}^{u} \cup\left\{\omega_{f_{1}}\right\}, \varphi_{u}\left(f_{2}\right)\left(S^{k}\right)=W_{\sigma_{f_{2}}}^{u} \cup\left\{\omega_{f_{2}}\right\}$ have the same dynamical embedding;
- the basic embeddings $\varphi_{s}\left(f_{1}\right)\left(S^{k}\right)=W_{\sigma_{f_{1}}}^{s} \cup\left\{\alpha_{f_{1}}\right\}, \varphi_{s}\left(f_{2}\right)\left(S^{k}\right)=W_{\sigma_{f_{2}}}^{s} \cup\left\{\alpha_{f_{2}}\right\}$ have the same dynamical embedding.

Thus, every $f \in M S^{2 k}(1,1,1)$ corresponds to the basic embedding $\varphi(f): S^{k} \rightarrow M^{2 k}(1,1,1)$. Given any basic embedding φ, there is $f \in M S^{2 k}(1,1,1)$ such that $\varphi(f)=\varphi$. Finally, a dynamical embedding of basic embedding defines completely a conjugacy class in $M S^{2 k}(1,1,1)$. We see that the set of basic embedding (up to isotopy) forms the admissible set of conjugacy invariants for the Morse - Smale diffeomorphisms $M^{2 k}(1,1,1), k=4,8$. As to the class $M S^{4}(1,1,1)$, the existence of a realizable and effective conjugacy invariant is still an open problem.

The structure of the paper is as follows. In Section 3, we give some preliminary results. In Section 4, we prove Theorem 1. In Section 5, we prove Proposition 1, Theorems 2, 3, and Proposition 2.

2. EXAMPLES OF A-DIFFEOMORPHISMS

1) Regular A-diffeomorphisms. An obvious example of a regular A-diffeomorphism is a MorseSmale diffeomorphism. Note that there are regular A-diffeomorphisms that do not belong to the set of Morse-Smale diffeomorphisms. For example, they can belong to the boundary of the set of Morse - Smale diffeomorphisms in the space of diffeomorphisms. There are regular Adiffeomorphisms which cannot be approximated by Morse - Smale diffeomorphisms [42].
2) Semichaotic A-diffeomorphisms. A good example of a semichaotic diffeomorphism is the socalled DA-diffeomorphism obtained from Anosov automorphism after Smale surgery [46], see Fig. 3.

Fig. 3. Examples of semichaotic Smale diffeomorphisms.
A classical DA-diffeomorphism $f: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ contains a nontrivial attractor $\omega(f)$, a trivial repeller $\alpha(f)$, and an empty set $\sigma(f)$. A generalized DA-diffeomorphism contains a nonempty set $\sigma(f)$ [17].

Taking f^{-1}, one gets other examples. One more example of the semichaotic A-diffeomorphism is a classical Smale horseshoe $g_{s}: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$. It is well known that there is g_{s} with trivial attractor $\omega\left(g_{s}\right)$ and repeller $\alpha\left(g_{s}\right)$, and nontrivial $\sigma\left(g_{s}\right)$.

Starting with DA-diffeomorphisms, Williams [48] constructed an open domain $\mathcal{N} \subset \operatorname{Diff}^{1}\left(\mathbb{T}^{2}\right)$ consisting of structurally unstable diffeomorphisms. It is easy to see that \mathcal{N} contains semichaotic A-diffeomorphisms.

One more example of the semichaotic A-diffeomorphism is shown in Fig. 4 with a DA-attractor and Plykin attractor on a torus.

Fig. 4. One isolated saddle and two expanding attractors on a torus.
3) Chaotic A-diffeomorphisms. Take the classical DA-diffeomorphism $f: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ with the nonwandering set consisting of a source α and one-dimensional expanding attractor Λ_{a}. The diffeomorphism f^{-1} defined on a copy \mathbb{T}^{2} has the nonwandering set consisting of a sink ω and one-dimensional contracting repeller Λ_{r}. Let us delete a small neighborhood U_{a} (resp., U_{s}) of α (resp., ω) homeomorphic to a disk. Take an orientation reversing diffeomorphism $h: \partial U_{a} \rightarrow \partial U_{r}$. Then the surface $M^{2}=\left(\mathbb{T}^{2} \backslash U_{a}\right) \cup_{h}\left(\mathbb{T}^{2} \backslash U_{r}\right)$ is a pretzel (closed orientable surface of genus 2). Following [44], one can construct an A-diffeomorphism $g: M^{2} \rightarrow M^{2}$ with the nonwandering set consisting of $\Lambda_{a} \cup \Lambda_{r}$ such that $\left.g\right|_{\Lambda_{a}}=f$ and $\left.g\right|_{\Lambda_{r}}=f^{-1}$. Thus, $\alpha(g)=\Lambda_{r}$ and $\omega(g)=\Lambda_{a}$. Clearly, g is a chaotic A-diffeomorphism. Due to [44], there is a construction such that g has a closed simple curve consisting of the tangencies of the invariant stable manifolds of Λ_{a} and the invariant unstable manifolds of Λ_{r}.

One gets another example starting with a Smale solenoid [46], see Fig. 3. This mapping can be extended to an Ω-stable diffeomorphism $f_{s}: M^{3} \rightarrow M^{3}$ with a one-dimensional expanding attractor, say Ω_{1}, and one-dimensional contracting repeller, say Ω_{2}, where M^{3} is a 3 -sphere or lens space $[8,25]$. This chaotic diffeomorphism is similar to the Robinson-Williams diffeomorphism g considered above. There is a bifurcation of Ω_{1} into a zero-dimensional saddle type basic set and isolated attracting periodic orbits [50]. As a result, one gets a chaotic Smale diffeomorphism $f_{0}: M^{3} \rightarrow M^{3}$ with trivial basic sets $\omega\left(f_{0}\right)$, and the nontrivial source basic set $\alpha\left(f_{0}\right)=\Omega_{2}$, and the nontrivial zero-dimensional saddle basic set $\sigma\left(f_{0}\right)$. Taking f^{-1}, one gets other examples.
4) Superchaotic A-diffeomorphisms. Let $g_{s}: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$ be the classical Smale horseshoe and $f: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ the classical DA-diffeomorphism considered above. Delete small neighborhoods U_{1}, U_{2} of the $\operatorname{sink} \omega\left(g_{s}\right)$ and the source $\alpha\left(g_{s}\right)$, respectively, each homeomorphic to a disk. There are reversing orientation diffeomorphisms $h_{1}: \partial U_{1} \rightarrow \partial U_{a}$ and $h_{2}: \partial U_{2} \rightarrow \partial U_{r}$. Then the surface $M^{2}=\left(\mathbb{T}^{2} \backslash U_{a}\right) \bigcup_{h_{1}}\left(S^{2} \backslash U_{1} \cup U_{2}\right) \bigcup_{h_{2}}\left(\mathbb{T}^{2} \backslash U_{r}\right)$ is a pretzel. Similarly to Robinson-Williams's method developed in [44], one can construct a diffeomorphism $g_{0}: M^{2} \rightarrow M^{2}$ with $\alpha\left(g_{0}\right)=\Lambda_{r}$, $\omega\left(g_{0}\right)=\Lambda_{a}$, and $\sigma\left(g_{0}\right)$ homeomorphic to the Smale horseshoe $\sigma\left(g_{s}\right)$. Thus, g_{0} is a superchaotic A-diffeomorphism. In a similar way, one can get other examples starting with semichaotic Adiffeomorphisms.

Let us clarify the structure of the nonwandering set for a Smale A-homeomorphism.

Proposition 3. Let $f: M^{n} \rightarrow M^{n}$ be a Smale homeomorphism, and $F: L^{n} \rightarrow L^{n}$ an A-diffeomorphism such that the nonwandering sets $N W(f), N W(F)$ have the same dynamical embedding under a homeomorphism $h: N W(f) \rightarrow N W(F)$. Let $\Omega_{1}, \ldots, \Omega_{k}$ be the basic sets of F. Then $N W(f)=\Lambda_{1} \cup \cdots \cup \Lambda_{k}$ where $\Lambda_{i}=h^{-1}\left(\Omega_{i}, i=1, \ldots, k\right.$, are pairwise disjoint closed f-invariant and transitive sets. Moreover,

$$
M^{n}=\bigcup_{i=1}^{k} W^{s}\left(\Lambda_{i}\right)=\bigcup_{i=1}^{k} W^{u}\left(\Lambda_{i}\right)
$$

Proof. By definition, $h(N W(f))=N W(F)$. Since h is a homeomorphism in some neighborhood of $N W(f)$, the sets $\Lambda_{i}=h^{-1}\left(\Omega_{i}, i=1, \ldots, k\right.$, are pairwise disjoint and closed. Due to the conjugacy relation

$$
\left.F \circ h\right|_{N W(f)}=\left.h \circ f\right|_{N W(f)}
$$

every Λ_{i} is f-invariant and transitive because every Ω_{i} is F-invariant and transitive.
Take a point $x \in M^{n}$. Since the limit set of the positive semi-orbit $\cup_{i \geqslant 0} f^{i}(x)$ belongs to $N W(f)$, $f^{i}(x) \rightarrow N W(f)$ as $i \rightarrow \infty$. Let δ be a neighborhood of $N W(f)$ with hyperbolic structure. To be precise, the relation $\left.F \circ h\right|_{\delta}=\left.h \circ f\right|_{\delta}$ holds in the neighborhood δ. According to [24] (see also [23]), $h\left(f^{i}(x)\right)$ belongs to $W^{s}(y)$ for some $y \in \Omega_{j}$. Since h is a homeomorphism, $f^{i}(x) \in W^{s}\left(h^{-1}(y)\right)$ for $h^{-1}(y) \in \Lambda_{j}$. Hence, $x \in \bigcup_{i=1}^{k} W^{s}\left(\Lambda_{i}\right)$ and $M^{n}=\bigcup_{i=1}^{k} W^{s}\left(\Lambda_{i}\right)$. Similarly, one can prove $M^{n}=$ $\bigcup_{i=1}^{k} W^{u}\left(\Lambda_{i}\right)$.

3. PROPERTIES OF SMALE HOMEOMORPHISMS

We begin by recalling several definitions. Further details may be found in [6, 7, 46]. Denote by $\operatorname{Orb}(x)$ the orbit of point $x \in M^{n}$ under a homeomorphism $f: M^{n} \rightarrow M^{n}$. The ω-limit set $\omega(x)$ of the point x consists of the points $y \in M^{n}$ such that $f^{k_{i}}(x) \rightarrow y$ for some sequence $k_{i} \rightarrow \infty$. Clearly, any points of $\operatorname{Orb}(x)$ have the same ω-limit. Replacing f with f^{-1}, one gets an α-limit set. Obviously, $\omega(x) \cup \alpha(x) \subset N W(f)$ for every $x \in M^{n}$.

Recall that we denote by $S s H\left(M^{n}\right)$ the set of either regular, or semichaotic, or chaotic Smale A-homeomorphisms $f: M^{n} \rightarrow M^{n}$ of the closed topological n-manifold $M^{n}, n \geqslant 2$. If f is chaotic, we'll assume that $\omega(f)$ or $\alpha(f)$ consists of trivial basic sets. Thus, $f \in S s H\left(M^{n}\right)$ satisfies the condition of Theorem 1.

Next, $f \in \operatorname{SsH}\left(M^{n}\right)$. Given a family $C=\left\{c_{1}, \ldots, c_{l}\right\}$ of sets $c_{i} \subset M^{n}$, denote by \widetilde{C} the union $c_{1} \cup \ldots \cup c_{l}$. It follows immediately from the definitions that

$$
\begin{equation*}
N W(f)=\widetilde{\alpha(f)} \cup \widetilde{\omega(f)} \cup \widetilde{\sigma(f)}, \quad f \in S s H\left(M^{n}\right) \tag{3.1}
\end{equation*}
$$

Lemma 1. Let $f \in \operatorname{SsH}\left(M^{n}\right)$ and $x \in M^{n}$. Then

1) if $\omega(x) \subset \widetilde{\sigma(f)}$, then $x \in W^{s}\left(\sigma_{*}\right)$ for some saddle basic set $\sigma_{*} \in \sigma(f)$.
2) if $\alpha(x) \subset \widetilde{\sigma(f)}$, then $x \in W^{u}\left(\sigma_{*}\right)$ for some saddle basic set $\sigma_{*} \in \sigma(f)$.

Proof. Suppose that $\omega(x) \subset \widetilde{\sigma(f)}$. Since $\widetilde{\alpha(f)}$ and $\widetilde{\omega(f)}$ are invariant sets, $x \notin \widetilde{\alpha(f)} \cup \widetilde{\omega(f)}$. Therefore, there exist a neighborhood $U(\alpha)$ of $\alpha(f)$ and a neighborhood $U(\omega)$ of $\omega(f)$ such that the positive semi-orbit $\operatorname{Orb}^{+}(x)$ belongs to the compact set $N=M^{n} \backslash(U(\omega) \cup U(\alpha))$. Let $V\left(\sigma_{1}\right)$, $\ldots, V\left(\sigma_{m}\right)$ be pairwise disjoint neighborhoods of saddle basic sets σ_{1}, \ldots and σ_{m}, respectively, such that $\cup_{i=1}^{m} V\left(\sigma_{i}\right) \subset N$. Since every $V\left(\sigma_{i}\right)$ does not intersect $\cup_{j \neq i} V\left(\sigma_{j}\right)$ and all saddle basic sets are invariant, one can take the neighborhoods $V\left(\sigma_{1}\right), \ldots, V\left(\sigma_{m}\right)$ so small that every $f\left(V\left(\sigma_{i}\right)\right)$ does not intersect $\cup_{j \neq i} V\left(\sigma_{j}\right)$. Suppose the contrary, i. e., there is no a unique saddle basic set $\sigma_{*} \in \sigma(f)$ with $x \in W^{s}\left(\sigma_{*}\right)$. Thus, there are at least two different saddle basic sets σ_{1}, σ_{2} such that $x \in W^{s}\left(\sigma_{1}\right)$ and $x \in W^{s}\left(\sigma_{2}\right)$. Hence, $\omega(x)$ have to intersect σ_{1}, σ_{2}. It follows that the compact set $N_{0}=N \backslash\left(\cup_{i=1}^{m} V\left(\sigma_{i}\right)\right)$ contains infinitely many points of the semi-orbit $\operatorname{Orb}^{+}(x)$. This implies $\omega(x) \cap N_{0} \neq \emptyset$ that contradicts (3.1). The second assertion is proved similarly.

A set U is a trapping region for f if $f(\cos U) \subset \operatorname{int} U$. A set A is an attracting set for f if there exists a trapping set U such that

$$
A=\bigcap_{k \geqslant 0} f^{k}(U) .
$$

A set A^{*} is a repelling set for f if there exists a trapping region U for f such that

$$
A^{*}=\bigcap_{k \leqslant 0} f^{k}\left(M^{n} \backslash U\right) .
$$

In other words, A^{*} is an attracting set for f^{-1} with the trapping region $M^{n} \backslash U$ for f^{-1}. When we wish to emphasize the dependence of an attracting set A or a repelling set A^{*} on the trapping region U from which it arises, we denote it by A_{U} or A_{U}^{*}, respectively.

Let A be an attracting set for f. The basin $B(A)$ of A is the union of all open trapping regions U for f such that $A_{U}=A$. One can similarly define the notion of basin for a repelling set.

Let N be an attracting or repelling set and $B(N)$ the basin of N. A closed set $G(N) \subset B(N) \backslash N$ is called a generating set for the domain $B(N) \backslash N$ if

$$
B(N) \backslash N=\cup_{k \in \mathbb{Z}} f^{k}(G(N))
$$

Moreover,

1) every orbit from $B(N) \backslash N$ intersects $G(N) ; 2)$ if an orbit from $B(N) \backslash N$ intersects the interior of $G(N)$, then this orbit intersects $G(N)$ at a unique point; 3) if an orbit from $B(N) \backslash N$ intersects the boundary of $G(N)$, then the intersection of this orbit with $G(N)$ consists of two points; 4) the boundary of $G(N)$ is the union of finitely many compact codimension-one topological submanifolds.
Lemma 2. Let $f \in S s H\left(M^{n}\right)$.
2) Suppose that all basic sets $\alpha(f)$ are trivial. Then $\widetilde{\alpha(f)}$ is a repelling set, while $A(f)$ is an attracting set with

$$
B(\widetilde{\alpha(f)}) \backslash \widetilde{\alpha(f)}=B(A(f)) \backslash A(f) .
$$

Moreover,

- there is a trapping region $T(\alpha)$ for f^{-1} of the set $\widetilde{\alpha(f)}$ consisting of pairwise disjoint open n-balls b_{1}, \ldots, b_{r} such that each b_{i} contains a unique periodic point from $\alpha(f)$;
- the regions $B(\widetilde{\alpha(f)}) \backslash \widetilde{\alpha(f)}, B(A(f)) \backslash A(f)$ have the same generating set $G(\alpha)$ consisting of pairwise disjoint closed n-annuli a_{1}, \ldots, a_{r} such that $a_{i}=\operatorname{clos} f^{p_{i}}\left(b_{i}\right) \backslash b_{i}$ where $p_{i} \in \mathbb{N}$ is a minimal period of a periodic point belonging to $b_{i}, i=1, \ldots, r$:

$$
G(\alpha)=\cup_{i=1}^{r} a_{i}=\cup_{i=1}^{r}\left(\operatorname{clos} f^{p_{i}}\left(b_{i}\right) \backslash b_{i}\right) ;
$$

- $B(A(f)) \backslash A(f)=\cup_{k \in \mathbb{Z}} f^{k}(G(\alpha))$.

2) Suppose that all basic sets $\omega(f)$ are trivial. Then $\widetilde{\omega(f)}$ is an attracting set, while $R(f)$ is a repelling set with

$$
B(\widetilde{\omega(f)}) \backslash \widetilde{\omega(f)}=B(R(f)) \backslash R(f)
$$

Moreover,

- there is a trapping region $T(\omega)$ for f of the set $\widetilde{\omega(f)}$ consisting of pairwise disjoint open n-balls b_{1}, \ldots, b_{l} such that each b_{i} contains a unique periodic point from $\omega(f)$;
- the regions $B(\widetilde{\omega(f)}) \backslash \widetilde{\omega(f)}, B(R(f)) \backslash R(f)$ have the same generating set $G(\omega)$ consisting of pairwise disjoint closed n-annuli a_{1}, \ldots, a_{l} such that $a_{i}=b_{i} \backslash$ int $f^{p_{i}}\left(b_{i}\right)$ where $p_{i} \in \mathbb{N}$ is a minimal period of a periodic point belonging to $b_{i}, i=1, \ldots, l$:

$$
G(\omega)=\cup_{i=1}^{r} a_{i}=\cup_{i=1}^{r}\left(b_{i} \backslash \operatorname{int} f^{p_{i}}\left(b_{i}\right)\right) ;
$$

- $B(R(f)) \backslash R(f)=\cup_{k \in \mathbb{Z}} f^{k}(G(\omega))$.

Proof. It is enough to prove the first statement only. Since all basic sets $\alpha(f)$ are trivial and consist of locally hyperbolic source periodic points, there is a trapping region $T(\alpha)$ for f^{-1} of the set $\widetilde{\alpha(f)}$ consisting of pairwise disjoint open n-balls b_{1}, \ldots, b_{r} such that each b_{i} contains a unique periodic point q_{i} from $\alpha(f)[38,45]$. Thus,

$$
T(\alpha)=\cup_{i=1}^{r} b_{i}, \quad \cap_{k \leqslant 0} f^{k p_{i}}\left(b_{i}\right)=q_{i}, \quad i=1, \ldots, r .
$$

As a consequence, there is the generating set $G(\alpha)=\cup_{i=1}^{r}\left(\operatorname{clos} f^{p_{i}}\left(b_{i}\right) \backslash b_{i}\right)$ consisting of pairwise disjoint closed n-annuli $a_{i}=\operatorname{clos} f^{p_{i}}\left(b_{i}\right) \backslash b_{i}, i=1, \ldots, r$.

Since the balls b_{1}, \ldots, b_{r} are pairwise disjoint and $\operatorname{clos} b_{i} \subset f^{p_{i}}\left(b_{i}\right)$, the balls $f^{p_{1}}\left(b_{1}\right), \ldots, f^{p_{r}}\left(b_{r}\right)$ are pairwise disjoint also. For simplicity of exposition, we'll assume that $\alpha(f)$ consists of fixed points (otherwise, $\alpha(f)$ is divided into periodic orbits each considered like a point). Therefore,

$$
f\left(M^{n} \backslash \cup_{i=1}^{r} b_{i}\right)=M^{n} \backslash \cup_{i=1}^{r} f\left(b_{i}\right) \subset M^{n} \backslash \cup_{i=1}^{r} \operatorname{clos} b_{i} \subset \operatorname{int}\left(M^{n} \backslash \cup_{i=1}^{r} b_{i}\right) .
$$

Hence, $M^{n} \backslash \cup_{i=1}^{r} b_{i}$ is a trapping region for f. Clearly, $A(f) \subset M^{n} \backslash \cup_{i=1}^{r} b_{i}$.
Take a point $x \in M^{n} \backslash \cup_{i=1}^{r} b_{i}$. Obviously, $\omega(x) \notin \widetilde{\alpha(f)}$. It follows from (3.1) that $\omega(x) \in$ $\widetilde{\omega(f)} \cup \widetilde{\sigma(f)}$. By Lemma $1, \omega(x) \in A(f)$. Therefore, $A(f)$ is an attracting set with the trapping region $M^{n} \backslash \cup_{i=1}^{r} b_{i}$ for f :

$$
A(f)=A_{M^{n} \backslash \cup_{i=1}^{r} b_{i}} .
$$

Moreover,

$$
M^{n}=\widetilde{\alpha(f)} \cup B(A(f))
$$

because $\cap_{k \leqslant 0} f^{k}\left(b_{i}\right)=q_{i}, i=1, \ldots, r$.
Let us prove the quality $B(\widetilde{\alpha(f)}) \backslash \widetilde{\alpha(f)}=B(A(f)) \backslash A(f)$. Take $x \in B(\widetilde{\alpha(f)}) \backslash \widetilde{\alpha(f)}$. Since $x \notin \widetilde{\alpha(f)}$ and $M^{n}=\widetilde{\alpha(f)} \cup B(A(f)), x \in B(A(f))$. Since $x \in B(\widetilde{\alpha(f)}), \alpha(x) \subset \alpha(f)$. Hence, $x \notin A(f)$ and $x \in B(A(f)) \backslash A(f)$. Now, set $x \in B(A(f)) \backslash A(f)$. Then $x \notin \alpha(f)$. Since $x \notin A(f)$, $\alpha(x) \subset \widetilde{\sigma(f)} \cup \widetilde{\alpha(f)}$. If one assumes that $\alpha(x) \subset \widetilde{\sigma(f)}$, then according to Lemma $1, x \in W^{u}(\nu)$ for some saddle basic set ν. Thus, $x \in A(f)$ which contradicts $x \notin A(f)$. Therefore, $\alpha(x) \subset \widetilde{\alpha(f)}$. Hence, $x \in B(\widetilde{\alpha(f)})$. As a consequence, $x \in B(\widetilde{\alpha(f)}) \backslash \widetilde{\alpha(f)}$.

The last assertion of the first statement follows from the previous ones. This completes the proof.

In the next statement, we keep the notation of Lemma 2.
Lemma 3. Let $f \in S s H\left(M^{n}\right)$.

1) Suppose that all basic sets $\alpha(f)$ are trivial. Then, given any neighborhood $V_{0}(A)$ of $A(f)$, there is $n_{0} \in \mathbb{N}$ such that

$$
\cup_{k \geqslant n_{0}} f^{k}(G(\alpha)) \subset V_{0}(A),
$$

where $G(\alpha)$ is the generating set of the region $B(\widetilde{\alpha(f)}) \backslash \widetilde{\alpha(f)}$.
2) A similar statement holds when all basic sets $\omega(f)$ are trivial.

Proof. It is enough to prove the first statement only. Take a closed trapping neighborhood U of $A(f)$ for f. Since $\cap_{k \in \mathbb{N}} f^{k}(U)=A(f) \subset V_{0}(A)$, there is $k_{0} \in \mathbb{N}$ such that $f^{k_{0}}(U) \subset V_{0}(A)$. Clearly, $f^{k_{0}}(U)$ is a tripping region of $A(f)$ for f. Hence, $f^{k_{0}+k}(U) \subset f^{k_{0}}(U) \subset V_{0}(A)$ for every $k \in \mathbb{N}$.

Let $G(\alpha)$ be a generating set of the region $B(\widetilde{\alpha(f)}) \backslash \widetilde{\alpha(f)}$. By Lemma 2, $G(\alpha)$ is the generating set of the region $B(A(f)) \backslash A(f)$ as well. Since $G(\alpha)$ is a compact set, there is $n_{0} \in \mathbb{N}$ such that $f^{n_{0}}(G(\alpha)) \subset f^{k_{0}}(U)$. It follows that $f^{n_{0}+k}(G(\alpha)) \subset f^{k_{0}+k}(U) \subset f^{k_{0}}(U) \subset V_{0}(A)$ for every $k \in \mathbb{N}$. As a consequence, $\cup_{k \geqslant n_{0}} f^{k}(G(\alpha)) \subset V_{0}(A)$.

4. PROOF OF THEOREM 1

Suppose that homeomorphisms $f_{1}, f_{2} \in S s H\left(M^{n}\right)$ are conjugate. Since a conjugacy mapping $M^{n} \rightarrow M^{n}$ is a homeomorphism, the sets $A\left(f_{1}\right), A\left(f_{2}\right)$, as well as the sets $R\left(f_{1}\right), R\left(f_{2}\right)$ have the same dynamical embedding.

To prove the inverse assertion, let us suppose for definiteness that the basic sets $\alpha\left(f_{1}\right), \alpha\left(f_{2}\right)$ are trivial, while the sets $A\left(f_{1}\right), A\left(f_{2}\right)$ have the same dynamical embedding. Keeping in mind that $A\left(f_{1}\right)$ and $A\left(f_{2}\right)$ are attracting sets, we see that there are neighborhoods δ_{1} and δ_{2} of $A\left(f_{1}\right)$ and $A\left(f_{2}\right)$, respectively, and a homeomorphism $h_{0}: \delta_{1} \rightarrow \delta_{2}$ such that

$$
\begin{equation*}
\left.h_{0} \circ f_{1}\right|_{\delta_{1}}=\left.f_{2} \circ h_{0}\right|_{\delta_{1}}, \quad f_{1}\left(\delta_{1}\right) \subset \delta_{1}, \quad h_{0}\left(A\left(f_{1}\right)\right)=A\left(f_{2}\right) . \tag{4.1}
\end{equation*}
$$

Without loss of generality, one can assume that $\delta_{1} \subset B\left(A\left(f_{1}\right)\right)$. Moreover, taking δ_{1} smaller if one needs, we can assume that clos δ_{1} is a trapping region for f_{1} of the set $A\left(f_{1}\right)$. By (4.1), one gets

$$
f_{2}\left(\operatorname{clos} \delta_{2}\right)=f_{2} \circ h_{0}\left(\operatorname{clos} \delta_{1}\right)=h_{0} \circ f_{1}\left(\operatorname{clos} \delta_{1}\right) \subset h_{0}\left(\delta_{1}\right)=\delta_{2} .
$$

Thus, $\operatorname{clos} \delta_{2}$ is a trapping region for f_{2} of the set $A\left(f_{2}\right)$. As a consequence, we get the following generalization of (4.1):

$$
\begin{equation*}
\left.h_{0} \circ f_{1}^{k}\right|_{\delta_{1}}=\left.f_{2}^{k} \circ h_{0}\right|_{\delta_{1}}, \quad k \in \mathbb{N}, \quad f_{1}\left(\operatorname{clos} \delta_{1}\right) \subset \delta_{1}, \quad h_{0}\left(A\left(f_{1}\right)\right)=A\left(f_{2}\right) . \tag{4.2}
\end{equation*}
$$

By Lemma 2, there is the trapping region $T\left(\alpha_{1}\right)$ for f_{1}^{-1} of the set $\widetilde{\alpha\left(f_{1}\right)}$ consisting of pairwise disjoint open n-balls $b_{1}, \ldots, b_{l_{1}}$ such that each b_{i} contains a unique periodic point q_{i} from $\alpha\left(f_{1}\right)$. In addition, the region $B\left(\widetilde{\left.\alpha\left(f_{1}\right)\right)} \backslash \widetilde{\alpha\left(f_{1}\right)}\right.$ has the generating set $G\left(\alpha_{1}\right)$ consisting of pairwise disjoint closed n-annuli $a_{1}, \ldots, a_{l_{1}}$ such that $a_{i}=\operatorname{clos} f_{1}^{p_{i}}\left(b_{i}\right) \backslash b_{i}$ where $p_{i} \in \mathbb{N}$ is a minimal period of the periodic point q_{i}.

Due to Lemma 3, one can assume without loss of generality that $G\left(\alpha_{1}\right) \stackrel{\text { def }}{=} G_{1} \subset \delta_{1}$. Hence,

$$
A\left(f_{1}\right) \bigcup\left(\cup_{k \geqslant 0} f_{1}^{k}\left(G_{1}\right)\right)=A\left(f_{1}\right) \bigcup N^{+} \subset \delta_{1}, \quad N^{+}=\cup_{k \geqslant 0} f_{1}^{k}\left(G_{1}\right)
$$

According to Lemma 2, G_{1} is a generating set of the region $B\left(A\left(f_{1}\right)\right) \backslash A\left(f_{1}\right)$. Let us show that $h_{0}\left(G_{1}\right) \stackrel{\text { def }}{=} G_{2}$ is a generating set for the region $B\left(A\left(f_{2}\right)\right) \backslash A\left(f_{2}\right)$. Take a point $z_{2} \in G_{2}$. There is a unique point $z_{1} \in G_{1}$ such that $h_{0}\left(z_{1}\right)=z_{2}$. Note that $z_{2} \notin A\left(f_{2}\right)$ since $z_{1} \notin A\left(f_{1}\right)$. Since $G_{1} \subset\left(B\left(A\left(f_{1}\right)\right) \backslash A\left(f_{1}\right)\right), f_{1}^{k}\left(z_{1}\right) \rightarrow A\left(f_{1}\right)$ as $k \rightarrow \infty$. It follows from (4.2) that

$$
f_{2}^{k}\left(z_{2}\right)=f_{2}^{k} \circ h_{0}\left(z_{1}\right)=h_{0} \circ f_{1}^{k}\left(z_{1}\right) \rightarrow h_{0}\left(A\left(f_{1}\right)\right)=A\left(f_{2}\right) \quad \text { as } \quad k \rightarrow \infty .
$$

Hence, $z_{2} \in B\left(A\left(f_{2}\right)\right)$ and $G_{2} \subset B\left(A\left(f_{2}\right)\right) \backslash A\left(f_{2}\right)$.
Take an orbit $\operatorname{Orb}_{f_{2}} \subset B\left(A\left(f_{2}\right)\right) \backslash A\left(f_{2}\right)$. Since this orbit intersects a trapping region of $A\left(f_{2}\right), \operatorname{Orb}_{f_{2}} \cap \delta_{2} \neq \emptyset$. Therefore, there exists a point $x_{2} \in \operatorname{Orb}_{f_{2}} \cap \delta_{2}$. Since $h_{0}\left(A\left(f_{1}\right)\right)=A\left(f_{2}\right)$ and $x_{2} \in B\left(A\left(f_{2}\right)\right) \backslash A\left(f_{2}\right)$, the orbit $\operatorname{Orb}_{f_{1}}$ of the point $x_{1}=h_{0}^{-1}\left(x_{2}\right) \subset \delta_{1}$ under f_{1} belongs to $B\left(A\left(f_{1}\right)\right) \backslash A\left(f_{1}\right)$. Hence, $\operatorname{Orb}_{f_{1}}$ intersects G_{1} at some point $w_{1} \in \delta_{1}$. Since $x_{1}, w_{1} \in \operatorname{Orb}_{f_{1}}$, there
is $k \in \mathbb{N}$ such that either $x_{1}=f_{1}^{k}\left(w_{1}\right)$ or $w_{1}=f_{1}^{k}\left(x_{1}\right)$. Suppose for definiteness that $w_{1}=f_{1}^{k}\left(x_{1}\right)$. Using (4.1), one gets

$$
w_{2}=h_{0}\left(w_{1}\right)=h_{0} \circ f_{1}^{k}\left(x_{1}\right)=h_{0} \circ f_{1}^{k} \circ h_{0}^{-1}\left(x_{2}\right)=f_{2}^{k}\left(x_{2}\right) \in G_{2} \cap \operatorname{Orb}_{f_{2}}
$$

Similarly, one can prove that, if $\operatorname{Orb}_{f_{2}}$ intersects the interior of G_{2}, then $\operatorname{Orb}_{f_{2}}$ intersects G_{2} at a unique point, and if $\operatorname{Orb}_{f_{2}}$ intersects the boundary of G_{2}, then $\operatorname{Orb}_{f_{2}}$ intersects G_{2} at two points. Thus, G_{2} is a generating set for the region $B\left(A\left(f_{2}\right)\right) \backslash A\left(f_{2}\right)$.

Set

$$
\cup_{k \geqslant 0} f_{i}^{-k}\left(G_{i}\right) \stackrel{\text { def }}{=} O^{-}\left(G_{i}\right), \quad \cup_{k \geqslant 0} f_{i}^{k}\left(G_{i}\right) \stackrel{\text { def }}{=} O^{+}\left(G_{i}\right), \quad i=1,2 .
$$

We see that $O^{-}\left(G_{i}\right) \cup O^{+}\left(G_{i}\right)$ is invariant under $f_{i}, i=1,2$. Given any point $x \in O^{-}\left(G_{1}\right) \cup O^{+}\left(G_{1}\right)$, there is $m \in \mathbb{Z}$ such that $x \in f_{1}^{-m}\left(G_{1}\right)$. Let us define the mapping

$$
h: O^{-}\left(G_{1}\right) \cup O^{+}\left(G_{1}\right) \rightarrow O^{-}\left(G_{2}\right) \cup O^{+}\left(G_{2}\right)
$$

as follows:

$$
h(x)=f_{2}^{-m} \circ h_{0} \circ f_{1}^{m}(x), \quad \text { where } \quad x \in f_{1}^{-m}\left(G_{1}\right) .
$$

Since G_{1} and G_{2} are generating sets, h is correct. It is easy to check that

$$
\left.h \circ f_{1}\right|_{O^{-}\left(G_{1}\right) \cup O^{+}\left(G_{1}\right)}=\left.f_{2} \circ h\right|_{O^{-}\left(G_{1}\right) \cup O^{+}\left(G_{1}\right)} .
$$

It follows from (4.1) that

$$
h: A\left(f_{1}\right) \cup O^{-}\left(G_{1}\right) \cup O^{+}\left(G_{1}\right) \rightarrow A\left(f_{2}\right) \cup O^{-}\left(G_{2}\right) \cup O^{+}\left(G_{2}\right)
$$

is the homeomorphic extension of h_{0} putting $\left.h\right|_{A\left(f_{1}\right)}=\left.h_{0}\right|_{A\left(f_{1}\right)}$. Moreover,

$$
\left.h \circ f_{1}^{k}\right|_{A\left(f_{1}\right) \cup O^{-}\left(G_{1}\right) \cup O^{+}\left(G_{1}\right)}=\left.f_{2}^{k} \circ h\right|_{A\left(f_{1}\right) \cup O^{-}\left(G_{1}\right) \cup O+\left(G_{1}\right)}, \quad k \in \mathbb{Z}
$$

By Lemma 2, G_{i} is a generating set for the region $B\left(\widetilde{\alpha\left(f_{i}\right)}\right) \backslash \widetilde{\alpha\left(f_{i}\right)}=B\left(A\left(f_{i}\right)\right) \backslash A\left(f_{i}\right)$ and $B\left(A\left(f_{i}\right)\right) \backslash A\left(f_{i}\right)=\cup_{k \in \mathbb{Z}} f_{i}^{k}\left(G_{i}\right), i=1,2$. Thus, one gets the conjugacy $h: M^{n} \backslash \widetilde{\alpha\left(f_{1}\right)} \rightarrow M^{n} \backslash \widetilde{\alpha\left(f_{2}\right)}$ from $\left.f_{1}\right|_{M^{n} \backslash \widetilde{\alpha\left(f_{1}\right)}}$ to $\left.f_{2}\right|_{M^{n} \backslash \widetilde{\alpha\left(f_{2}\right)}}$:

$$
\begin{equation*}
\left.h \circ f_{1}^{k}\right|_{M^{n} \backslash \widetilde{\alpha\left(f_{1}\right)}}=\left.f_{2}^{k} \circ h\right|_{M^{n} \backslash \widetilde{\alpha\left(f_{1}\right)}}, \quad k \in \mathbb{Z} . \tag{4.3}
\end{equation*}
$$

Recall that the sets $\alpha\left(f_{1}\right), \alpha\left(f_{2}\right)$ are periodic sources $\left\{\alpha_{j}\left(f_{1}\right)\right\}_{j=1}^{l_{1}}$ and $\left\{\alpha_{j}\left(f_{2}\right)\right\}_{j=1}^{l_{2}}$, respectively. By Lemma 2, the generating set G_{i} consists of pairwise disjoint n-annuli $a_{j}\left(f_{i}\right), i=1,2$. Take an annulus $a_{r}\left(f_{1}\right)=a_{r} \subset G_{1}$ surrounding a source periodic point $\alpha_{r}\left(f_{1}\right)$ of minimal period p_{r}, $1 \leqslant r \leqslant l_{1}$. Then the set $\bigcup_{k \geqslant 0} f_{1}^{-k p_{r}}\left(a_{r}\right) \cup\left\{\alpha_{r}\left(f_{1}\right)\right\}=D_{r}^{n}$ is a closed n-ball. Since

$$
M^{n} \backslash B\left(A\left(f_{2}\right)\right)=M^{n} \backslash\left(A\left(f_{2}\right) \cup_{k \in \mathbb{Z}} f_{2}^{k}\left(G_{2}\right)\right)
$$

consists of the source periodic points $\alpha\left(f_{2}\right)$, the annulus

$$
\bigcup_{k \geqslant 0} f_{2}^{-k p_{r}} \circ h\left(a_{r}\right)=\bigcup_{k \geqslant 0} h \circ f_{1}^{-k p_{r}}\left(a_{r}\right)=D_{r}^{*}
$$

surrounds a unique source periodic point $\alpha_{j(r)}\left(f_{2}\right)$ of the same minimal period p_{r}. Moreover, $D_{r}^{*} \cup\left\{\alpha_{j(r)}\left(f_{2}\right)\right\}$ is a closed n-ball. Together with the existence of the homeomorphism $h: A\left(f_{1}\right) \cup$ $O^{-}\left(G_{1}\right) \cup O^{+}\left(G_{1}\right) \rightarrow A\left(f_{2}\right) \cup O^{-}\left(G_{2}\right) \cup O^{+}\left(G_{2}\right)$, it implies the one-to-one correspondence $r \rightarrow j(r)$ inducing the one-to-one correspondence $j_{0}:\left(\alpha_{r}\left(f_{1}\right)\right) \rightarrow\left(\alpha_{j(r)}\left(f_{2}\right)\right)$. Thus, $l_{1}=l_{2}$. Since $\left(\alpha_{r}\left(f_{1}\right)\right)$ and $\left(\alpha_{j(r)}\left(f_{2}\right)\right)$ have the same period, one gets

$$
\begin{equation*}
j_{0}\left(f_{1}^{k}\left(\alpha_{r}\left(f_{1}\right)\right)\right)=f_{2}^{k}\left(j_{0}\left(\alpha_{r}\left(f_{1}\right)\right)\right)=f_{2}^{k}\left(\alpha_{j(r)}\left(f_{2}\right)\right), \quad 0 \leqslant k \leqslant p_{r} \tag{4.4}
\end{equation*}
$$

Put by definition, $h\left(\alpha_{r}\left(f_{1}\right)\right)=\alpha_{j(r)}\left(f_{2}\right)$. For sufficiently large $m \in \mathbb{N}$, both $f_{1}^{-m p_{r}}\left(D_{r}^{n}\right)$ and $f_{2}^{-m p_{r}}\left(D_{r}^{*}\right)$ can be embedded in arbitrary small neighborhoods of $\left.\alpha_{r}\left(f_{1}\right)\right)$ and $\left(\alpha_{j(r)}\left(f_{2}\right)\right)$, respectively, because $\widetilde{\alpha\left(f_{1}\right)}$ and $\widetilde{\alpha\left(f_{2}\right)}$ are repelling sets. Keeping in mind (4.4), it follows that $h: M^{n} \rightarrow M^{n}$ is a conjugacy from f_{1} to f_{2}. This completes the proof.

5. SOME APPLICATIONS

Following Smale [45, 46], we write $\sigma_{1} \succ \sigma_{2}$ provided that $W^{u}\left(\sigma_{1}\right) \cap W^{s}\left(\sigma_{2}\right) \neq \emptyset$ where σ_{1} and σ_{2} are saddle periodic points. Next, we assume a surface M^{2} to be closed and connected. Recall that a node is either a sink or a source.
Proof (of Proposition 1). is by induction on s_{0}. First, we consider the case $s_{0}=0$. We have to prove that $k=1$. Suppose the contrary, namely, that $k \geqslant 2$. According to [13, 39] (see also [16, 17]), there are disjoint open sets $U_{i}, i=1, \ldots, k$, such that each U_{i} is an attracting domain of Λ_{i} with no trivial basic sets. Moreover, the boundary ∂U_{i} consists of finitely many simple closed curves. Therefore, $M^{2} \backslash \cup_{i=1}^{k} U_{i}$ is the disjoint union $\cup_{j \geqslant 1} K_{j}=G$ of compact connected sets K_{j} where $f^{-1}(G) \subset G$. Any iteration of f has at least k one-dimensional expanding attractors. Thus, without loss of generality, we can assume that $f^{-1}\left(K_{j}\right) \subset K_{j}$ for every K_{j}. In addition, we can assume that any periodic isolated point is fixed and the restriction of f on every invariant manifold of saddle isolated point preserves orientation.

Since $k \geqslant 2$ and M^{2} is connected, there is a component of G, say K_{1}, and different sets U_{l}, U_{r} such that $\partial K_{1} \cap \partial U_{l} \neq \emptyset$ and $\partial K_{1} \cap \partial U_{r} \neq \emptyset$ where $U_{l} \cap U_{r}=\emptyset$. Any component of the boundary ∂K_{1} is a circle. We see that there are at least two components of ∂K_{1}. Let us glue a disk to each boundary component of ∂K_{1} to get a closed surface \widetilde{K}_{1}. Since $f^{-1}\left(K_{1}\right) \subset K_{1}$, one can extend $\left.f\right|_{K_{1}}$ to an A-diffeomorphism $\widetilde{f}: \widetilde{K}_{1} \rightarrow \widetilde{K}_{1}$ with a unique sink in each disk we glued. Note that, by construction, the nonwandering set $N W(\widetilde{f})$ of \widetilde{f} consists of isolated nodal fixed points, and $N W(\widetilde{f})$ contains at least two sinks. According to [45], the surface \widetilde{K}_{1} is the disjoint union of the stable manifolds of sinks and finitely many isolated sources (remark that the stable manifold of a source coincides with this source). This contradicts the connectedness of \widetilde{K}_{1} because every stable manifold of a sink is homeomorphic to an open ball, and isolated sources do not separate the stable manifolds of two sinks. This contradiction proves that $k=1$ provided that $s_{0}=0$.

Suppose the statement holds for $0, \ldots, s$ saddles. We have to prove this statement for $s_{0}=s+1$ saddles. Recall that, according to [45], the isolated saddles are endowed with the Smale partial order \succ. Since now the set of isolated saddles is not empty, there is a minimal saddle, say σ. Then the topological closure of $W^{s}(\sigma)$ is either a segment I with the endpoints being two sources or a circle S consisting of one source and $W^{s}(\sigma)$. In any of these cases, both I and S are repelling sets. Let us consider these cases.

The segment I has a neighborhood $U(I)=U$ homeomorphic to a disk such that $\operatorname{clos} U \subset f(U)$. Note that σ is inside of U. One can change f inside of U by replacing clos $W^{s}(\sigma)$ with a unique source. One gets a diffeomorphism with k expanding attractors and s saddles. By the inductive assumption, $k \leqslant s+1 \leqslant s_{0}<s_{0}+1$.

Similarly, the circle S has a neighborhood $U(S)$ homeomorphic to an annulus such that $\operatorname{clos} U(S) \subset f(U(S))$. Note that σ belongs to $U(S)$. The manifold $M_{1}^{2}=M^{2} \backslash U(S)$ has two boundary components M_{1} and M_{2}, each homeomorphic to a circle. One can attach two disks D_{1}^{2} and D_{2}^{2} along their boundaries to M_{1} and M_{2}, respectively, to get a closed surface \tilde{M}^{2}. This surface either is connected or consists of two connected surfaces. Since S is a repelling set, one can extend f on \tilde{M}^{2} to get a diffeomorphism $\tilde{f}: \tilde{M}^{2} \rightarrow \tilde{M}^{2}$ with k expanding attractors and s saddles. If \tilde{M}^{2} is connected, then the inductive assumption implies $k \leqslant s+1 \leqslant s_{0}$. Let us consider the case where \tilde{M}^{2} consists of two connected closed surfaces $\tilde{M}_{1}^{2}, \tilde{M}_{2}^{2}$. Suppose that \tilde{M}_{i}^{2} contains k_{i} expanding attractors and s_{i} isolated saddles, $i=1,2$. Obviously, $k=k_{1}+k_{2}$ and $s_{1}+s_{2}=s$. By the inductive assumption, $k_{i} \leqslant s_{i}+1, i=1,2$. Hence, $k \leqslant\left(s_{1}+1\right)+\left(s_{2}+1\right)=s_{1}+s_{2}+2=s+2=s_{0}+1$. This concludes the proof.

Proof (of Theorem 2). Let us consider a structurally stable diffeomorphism $f: M^{2} \rightarrow M^{2}$ with the nonwandering set consisting of $k \geqslant 2$ one-dimensional expanding attractors $\Lambda_{1}, \ldots, \Lambda_{k}$, and isolated source periodic orbits, and $k-1$ saddle periodic points $\sigma_{1}, \ldots, \sigma_{k-1}$. Each Λ_{i} has a neighborhood U_{i} that is an attracting region of Λ_{i}. Then $M^{2} \backslash\left(\cup_{i=1}^{k-1} U_{i}\right)$ is the disjoint union $G=\cup_{j \geqslant 1} K_{j}$ of compact connected sets where $f^{-1}(G) \subset G$. Note that any positive iteration of f has at least k one-dimensional expanding attractors. Obviously, any iteration of f has the same number $k-1$ of saddle periodic points. Due to Proposition 1, any positive iteration of f has no more than k onedimensional expanding attractors. Hence, any positive iteration of f has exactly the same number k of expanding attractors. This implies that every attractor Λ_{i} is C-dense [5, 43]. As a consequence, each unstable manifold $W^{u}(\cdot) \subset \Lambda_{i}$ is dense in $\Lambda_{i}[5,13]$.

Take a connected component K of the set G. The boundary ∂K is the disjoint union of circles c_{1}, \ldots. By construction, these circles belong to the boundaries of the attracting regions U_{1}, \ldots, U_{k}. Therefore, one can glue a disk d_{j} to each circle c_{j} extending f to d_{j} with a sink inside of d_{j}. If K is without isolated saddles, then $K \cup_{j} d-J$ is a 2 -sphere with a unique source and a unique sink [14]. Therefore, if K is without isolated saddles, then K is a disk with a unique source. We will call such a set K a disk with no saddles. Now, take a neighborhood U of some Λ_{i}. Suppose that all components of the boundary ∂U are attached to components of G that are disks with no saddles. Then the union of U and these disks give a closed surface with exactly one expanding attractor Λ_{i}. This contradicts either the connectedness of M^{2} or the inequality $k \geqslant 2$. Thus, given any neighborhood U_{i} of Λ_{i}, the boundary ∂U_{i} has a common part with the boundary ∂K_{j} of some component $K \subset G$ which contains at least one isolated saddle.

Let K be a component of G containing a saddle σ and U a neighborhood of some Λ_{i} such that $\partial K \cap \partial U \neq \emptyset$. Let us show that $W^{u}(\sigma) \cap W^{s}\left(\Lambda_{i}\right) \neq \emptyset$. Suppose the contrary. We know that $W^{u}(\sigma) \backslash\{\sigma\}$ belongs to stable manifolds of isolated periodic points lying in K. Then there is a saddle $\sigma_{1} \in K$ such that $\sigma_{1} \prec \sigma$, and the topological closure of $W^{s}\left(\sigma_{1}\right)$ is either a segment I with the endpoints being two sources or a circle S consisting of one source and $W^{s}\left(\sigma_{1}\right)$. In any case, both I and S are repelling sets. Therefore, f can be changed inside of K so that a diffeomorphism obtained has $k-2$ isolated saddles and k one-dimensional expanding attractors. This contradicts Proposition 1. Thus, $W^{u}(\sigma) \cap W^{s}\left(\Lambda_{i}\right) \neq \emptyset$.

Since f is a structurally stable diffeomorphism, all intersections $W^{u}(\sigma) \cap W^{s}(x), x \in \Lambda_{i}$, are transversal. It follows from $W^{u}(\sigma) \cap W^{s}\left(\Lambda_{i}\right) \neq \emptyset$ that there is $x \in \Lambda_{i}$ such that $W^{u}(\sigma)$ intersects transversally the stable manifold $W^{s}(x)$. Recall that the attractor Λ_{i} is C-dense. Since any unstable manifold $W^{u}(\cdot) \subset \Lambda_{i}$ is dense in Λ_{i}, the topological closure of $W^{u}(\sigma)$ contains Λ_{i}, clos $W^{u}(\sigma) \supset \Lambda_{i}$.

Clearly, if f_{1} and f_{2} are conjugate, then $\cup_{j=1}^{j=k-1} W^{u}\left(\sigma_{j}^{(1)}\right), \cup_{j=1}^{j=k-1} W^{u}\left(\sigma_{j}^{(2)}\right)$ have the same dynamical embedding. Suppose that the sets $\cup_{j=1}^{j=k-1} W^{u}\left(\sigma_{j}^{(1)}\right)$ and $\cup_{j=1}^{j=k-1} W^{u}\left(\sigma_{j}^{(2)}\right)$ have the same dynamical embedding. It follows from above that

$$
\operatorname{clos}\left(\cup_{j=1}^{j=k-1} W^{u}\left(\sigma_{j}^{(i)}\right)\right) \supset \cup_{j=1}^{j=k} \Lambda_{j}^{(i)}, \quad i=1,2 .
$$

Since $A\left(f_{i}\right)=\cup_{j=1}^{j=k-1} W^{u}\left(\sigma_{j}^{(i)}\right) \cup\left(\cup_{j=1}^{j=k} \Lambda_{j}^{(i)}\right)$, we see that

$$
\operatorname{clos} A\left(f_{1}\right)=\operatorname{clos}\left(\cup_{j=1}^{j=k-1} W^{u}\left(\sigma_{j}^{(1)}\right)\right), \quad \operatorname{clos} A\left(f_{2}\right)=\operatorname{clos}\left(\cup_{j=1}^{j=k-1} W^{u}\left(\sigma_{j}^{(2)}\right)\right)
$$

Therefore, the sets $A\left(f_{1}\right)$ and $A\left(f_{2}\right)$ have the same dynamical embedding. As a consequence of Theorem 1, we have that f_{1} and f_{2} are conjugate. This completes the proof.

Consider $f \in M S\left(\mathbb{P}^{2}, 1,1,1\right)$ with a unique saddle $\sigma(f)$. By definition, f is conjugate in some neighborhood of $\sigma(f)$ to a linear diffeomorphism with a saddle hyperbolic fixed point [41]. It easy to check that up to conjugacy there are exactly four such mappings :

$$
T_{1}=\left\{\begin{array}{l}
\bar{x}=\frac{1}{2} x \\
\bar{y}=2 y,
\end{array} \quad T_{2}=\left\{\begin{array}{l}
\bar{x}=-\frac{1}{2} x \\
\bar{y}=2 y,
\end{array} \quad T_{3}=\left\{\begin{array}{l}
\bar{x}=\frac{1}{2} x \\
\bar{y}=-2 y,
\end{array} \quad T_{4}=\left\{\begin{array}{l}
\bar{x}=-\frac{1}{2} x \\
\bar{y}=-2 y .
\end{array}\right.\right.\right.\right.
$$

We'll say that the saddle $\sigma(f)$ is of type $T_{1}, T_{2}, T_{3}, T_{4}$, respectively, see Fig. 5.

Fig. 5. Phase portrait for $f \in M S\left(\mathbb{P}^{2}, 1,1,1\right)$: the diametrically opposite points are identified.

Proof (of Proposition 2). Take $f \in M S\left(\mathbb{P}^{2}, 1,1,1\right)$ with a unique saddle $\sigma(f)=\sigma$. The attracting set $A(f)$ is a closed curve consisting of an unstable manifold $W^{u}(\sigma)$ of a unique saddle σ and a sink ω. A neighborhood U of $A(f)$ is homeomorphic to a Möbius band. Since U contains only two fixed points, the saddle σ and the sink ω, the dynamics of $\left.f\right|_{U}$ depends completely on the local dynamics of f at σ which is defined by one of the types $T_{i}, i=1,2,3,4$. Due to Corollary 1 , diffeomorphisms $f_{1}, f_{2} \in M S\left(\mathbb{P}^{2}, 1,1,1\right)$ are conjugate if and only if the types of their saddles coincide.

Choose any type $T_{i} \in\left\{T_{1}, T_{2}, T_{3}, T_{4}\right\}$. Let B be a Möbius band with the middle closed curve c_{0}. There is a mapping $f_{0}: B \rightarrow B$ with the attracting set c_{0} such that the nonwandering set of f_{0} consists of a hyperbolic sink $\omega \in c_{0}$ and a hyperbolic saddle $\sigma \in c_{0}$ with $W^{u}(\sigma)=c_{0} \backslash\{\omega\}$. Note that the set $\mathbb{P}^{2} \backslash B$ is a 2 -disk D^{2}. Since c_{0} is an attracting set, one can extend f_{0} to f with a hyperbolic source in D^{2}. This gives $f \in M S\left(\mathbb{P}^{2}, 1,1,1\right)$, as desired.

Proof (of Theorem 3). 1) Since f has a unique saddle, both $W_{\sigma_{f}}^{u} \cup\left\{\omega_{f}\right\}$ and $W_{\sigma_{f}}^{s} \cup\left\{\alpha_{f}\right\}$ are topologically embedded spheres denoted by $S^{k_{1}}$ and $S^{k_{2}}$, respectively. According to [32], $k_{1}=k_{2}=k$, and the complements $M^{2 k}(1,1,1) \backslash\left(W_{\sigma_{f}}^{u} \cup\left\{\omega_{f}\right\}\right), M^{2 k}(1,1,1) \backslash\left(W_{\sigma_{f}}^{s} \cup\left\{\alpha_{f}\right\}\right)$ are homeomorphic to an open $2 k$-ball (see also, [33]). Thus, we have the embedding

$$
\varphi_{u}(f): S^{k} \rightarrow W_{\sigma_{f}}^{u} \cup\left\{\omega_{f}\right\} \subset M^{2 k}(1,1,1), \quad \varphi_{s}(f): S^{k} \rightarrow W_{\sigma_{f}}^{s} \cup\left\{\alpha_{f}\right\} \subset M^{2 k}(1,1,1)
$$

Since the codimension of S^{k} equals $k \geqslant 4, \varphi_{u}(f)\left(S^{k}\right)$ and $\varphi_{s}(f)\left(S^{k}\right)$ are locally flat spheres [10]. Hence, $\varphi_{u}(f)$ and $\varphi_{s}(f)$ are basic embeddings.
2) According to the theorem of approximation by Haefliger [20], we can assume without loss of generality that $\varphi\left(S^{k}\right)$ is a smoothly embedded k-sphere. Hence, there is a tubular neighborhood $T^{2 k}$ of $\varphi\left(S^{k}\right)$ that is the total space of a locally trivial fiber bundle $p: T^{2 k} \rightarrow \varphi\left(S^{k}\right)$ with the base $S_{0}^{k}=\varphi\left(S^{k}\right)$ and a fiber k-disk $D^{k}[22]$. Let $\vartheta_{n s}: S_{0} \rightarrow S_{0}$ be a Morse-Smale diffeomorphism with a unique sink ω_{0} and a unique source N, the so-called "north-south" diffeomorphism. The fiber $p^{-1}(N)$ is an open k-disk. Let $\psi_{N}: p^{-1}(N) \rightarrow p^{-1}(N)$ be the mapping with a unique hyperbolic sink at N such that $\operatorname{clos} \psi_{N}\left(p^{-1}(N)\right) \subset \psi_{N}\left(p^{-1}(N)\right)$ and $\cap_{j \geqslant 0} \psi_{N}^{j}\left(p^{-1}(N)\right)=\{N\}$. Since p is a locally trivial fiber bundle, one can extend ψ_{N} and $\vartheta_{n s}$ to get the mapping $f_{0}: T^{2 k} \rightarrow T^{2 k}$ such that a) N is a hyperbolic saddle with k-dimensional local stable and unstable manifolds, and ω_{0} is a hyperbolic sink; b) given any point $a \in T^{2 k} \backslash p^{-1}(N), f_{0}^{l}(a)$ tends to ω_{0} as $l \rightarrow \infty$; moreover, $S_{0}=\cap_{l \geqslant 0} f_{0}^{l}\left(T^{2 k}\right)$.

It was proved in [32] that the boundary $\partial T^{2 k}$ of $T^{2 k}$ is a $(2 k-1)$-sphere, say $S^{2 k-1}$. Moreover, $S^{2 k-1}$ bounds the ball $B^{2 k}=M^{2 k}(1,1,1) \backslash T^{2 k}$. Take a point $a_{0} \in B^{2 k}$. Since $B^{2 k}$ is a ball, one can extend f_{0} to $B^{2 k}$ to get a mapping $f: M^{2 k}(1,1,1) \rightarrow M^{2 k}(1,1,1)$ with a unique hyperbolic source at a_{0}. It follows from (a) and (b) that we get the desired Morse-Smale diffeomorphism $f \in M S^{2 k}(1,1,1)$ with the $\operatorname{sink} \omega_{0}=\omega_{f}$, the saddle $N=\sigma_{f}$, and the source $a_{0}=\alpha_{f}$.
3) The last statement immediately follows from Corollary 1.

ACKNOWLEDGMENTS

We thank the unknown reviewers for very useful remarks which improved the text.

FUNDING

This work was supported by the Laboratory of Dynamical Systems and Applications of the National Research University Higher School of Economics of the Ministry of Science and Higher Education of the RF, grant ag. no. 075-15-2019-1931.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

1. Afraimovich, V. S. and Hsu, S.-B., Lectures on Chaotic Dynamical Systems, AMS/IP Stud. Adv. Math., vol. 28, Providence, R.I.: AMS, 2003.
2. Akin, E., The General Topology of Dynamical Systems, Grad. Stud. Math., vol. 1, Providence, R.I.: AMS, 1993.
3. Akin, E., Hurley, M., and Kennedy, J. A., Dynamics of Topologically Generic Homeomorphisms, Mem. Amer. Math. Soc., 2003, vol. 164, no. 783, 138 pp.
4. Anosov, D. V., Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature, Proc. Steklov Inst. Math., 1967, vol. 90, pp. 1-235; see also: Tr. Mat. Inst. Steklova, 1967, vol. 90, pp. 3-210.
5. Anosov, D. V., On a Class of Invariant Sets of Smooth Dynamical Systems, in Proc. of the 5th Internat. Conf. on Nonlinear Oscillations: Vol. 2, Kiev: Math. Inst. Ukrainian Acad. Sci., 1970, pp. 39-45 (Russian).
6. Anosov, D. V. and Zhuzhoma, E. V., Nonlocal Asymptotic Behavior of Curves and Leaves of Laminations on Universal Coverings, Proc. Steklov Inst. Math., 2005, no. 2(249), pp.1-219; see also: Tr. Mat. Inst. Steklova, 2005, vol. 249, pp. 3-239.
7. Aranson, S. Kh., Belitsky, G. R., and Zhuzhoma, E. V., Introduction to the Qualitative Theory of Dynamical Systems on Surfaces, Transl. Math. Monogr., vol. 153, Providence, R.I.: AMS, 1996.
8. Jiang, B., Ni, Y., and Wang, Sh., 3-Manifolds That Admit Knotted Solenoids As Attractors, Trans. Amer. Math. Soc., 2004, vol. 356, no. 11, pp. 4371-4382.
9. Bowen, R., Topological Entropy and Axiom A, in Global Analysis: Proc. Sympos. Pure Math. (Berkeley, Calif., 1968): Vol. 14, Providence, R.I.: AMS, 1970, pp. 23-41.
10. Daverman, R. J. and Venema, G. A., Embeddings in Manifolds, Grad. Stud. Math., vol. 106, Providence, R.I.: AMS, 2009.
11. Eells, J., Jr. and Kuiper, N. H., Manifolds Which Are Like Projective Planes, Inst. Hautes Études Sci. Publ. Math., 1962, No.14, pp.5-46.
12. Franks, J., Anosov Diffeomorphisms, in Global Analysis: Proc. Sympos. Pure Math. (Berkeley, Calif., 1968): Vol. 14, Providence, R.I.: AMS, 1970, pp. 61-93.
13. Grines, V., Medvedev, T., and Pochinka, O., Dynamical Systems on 2- and 3-Manifolds, Dev. Math., vol. 46, New York: Springer, 2016.
14. Grines, V.Z., Gurevich, E. Ya., Zhuzhoma, E. V., and Pochinka, O. V., Classification of Morse-Smale Systems and the Topological Structure of Underlying Manifolds, Russian Math. Surveys, 2019, vol. 74, no. 1, pp. 37-110; see also: Uspekhi Mat. Nauk, 2019, vol. 74, no. 1(445), pp. 41-116.
15. Grines, V., Medvedev, T., Pochinka, O., and Zhuzhoma, E., On Heteroclinic Separators of Magnetic Fields in Electrically Conducting Fluids, Phys. D, 2015, vol. 294, pp. 1-5.
16. Grines, V. Z. and Zhuzhoma, E. V., The Topological Classification of Orientable Attractors on an nDimensional Torus, Russian Math. Surveys, 1979, vol. 34, no.4, pp. 163-164; see also: Uspekhi Mat. Nauk, 1979, vol. 34, no. 4, pp. 185-186.
17. Grines, V. and Zhuzhoma, E., On Structurally Stable Diffeomorphisms with Codimension One Expanding Attractors, Trans. Amer. Math. Soc., 2005, vol. 357, no. 2, pp. 617-667.
18. Grobman, D. M., Homeomorphism of Systems of Differential Equations, Dokl. Akad. Nauk SSSR, 1959, vol. 128, no. 5, pp. 880-881 (Russian).
19. Grobman, D. M., Topological Classification of Neighborhoods of a Singularity in n-Space, Mat. $S b$. (N.S.), 1962, vol. 56(98), pp. 77-94 (Russian).
20. Haefliger, A., Plongements différentiable de variétés dans variétés, Comment. Math. Helv., 1961/1962, vol. 36, pp. 47-82.
21. Hartman, Ph., On the Local Linearization of Differential Equations, Proc. Amer. Math. Soc., 1963, vol. 14, no. 4, pp. 568-573.
22. Hirsch, M. W., Differential Topology, Grad. Texts in Math., vol. 33, New York: Springer, 1976.
23. Hirsch, M. W. and Pugh, C. C., Stable Manifolds and Hyperbolic Sets, in Global Analysis: Proc. Sympos. Pure Math. (Berkeley, Calif., 1968): Vol. 14, Providence, R.I.: AMS, 1970, pp. 133-163.
24. Hirsch, M. W., Pugh, C. C., and Shub, M., Invariant Manifolds, Lecture Notes in Math., vol. 583, New York: Springer, 1977.
25. Ma, J. and Yu, B., The Realization of Smale Solenoid Type Attractors in 3-Manifolds, Topology Appl., 2007, vol. 154, no. 17, pp. 3021-3031.
26. Kuznetsov, S.P., Example of a Physical System with a Hyperbolic Attractor of the Smale-Williams Type, Phys. Rev. Lett., 2005, vol. 95, no. 14, 144101, 4 pp.
27. Leontovich, E. A. and Mayer, A. G., On Trajectories Determining Qualitative Structure of Sphere Partition into Trajectories, Dokl. Akad. Nauk SSSR, 1937, vol. 14, no. 5, pp. 251-257 (Russian).
28. Leontovich, E. A. and Maier, A. G., On a Scheme Determining the Topological Structure of a Decomposition into Trajectories, Dokl. Akad. Nauk SSSR, 1955, vol. 103, no. 4, pp. 557-560 (Russian).
29. Mañé, R., A Proof of the C^{1} Stability Conjecture, Publ. Math. Inst. Hautes Études Sci., 1987, vol. 66, pp. 161-210.
30. Manning, A., There Are No New Anosov Diffeomorphisms on Tori, Amer. J. Math., 1974, vol. 96, no. 3, pp. 422-429.
31. Zhuzhoma, E. V. and Medvedev, V. S., Global Dynamics of Morse-Smale Systems, Proc. Steklov Inst. Math., 2008, vol. 261, no. 1, pp. 112-135; see also: Tr. Mat. Inst. Steklova, 2008, vol. 261, pp. 115-139.
32. Medvedev, V. S. and Zhuzhoma, E. V., Morse - Smale Systems with Few Non-Wandering Points, Topology Appl., 2013, vol. 160, no. 3, pp. 498-507.
33. Zhuzhoma, E. V. and Medvedev, V.S., Continuous Morse-Smale Flows with Three Equilibrium Positions, Sb. Math., 2016, vol. 207, no. 5, pp. 702-723; see also: Mat. Sb., 2016, vol. 207, no. 5, pp. 69-92.
34. Medvedev, V.S. and Zhuzhoma, E. V., Two-Dimensional Attractors of A-Flows and Fibered Links on Three-Manifolds, Nonlinearity, 2022, vol. 35, no. 5, pp. 2192-2205.
35. Milnor, J., On Manifolds Homeomorphic to the 7-Sphere, Ann. of Math. (2), 1956, vol. 64, no. 2, pp. 399405.
36. Newhouse, S., On Codimension One Anosov Diffeomorphisms, Amer. J. Math., 1970, vol. 92, no. 3, pp. 761-770.
37. Nikolaev, I. and Zhuzhoma, E., Flows on 2-Dimensional Manifolds: An Overview, Lect. Notes in Math., vol. 1705, Berlin: Springer, 1999.
38. Palis, J., On Morse-Smale Dynamical Systems, Topology, 1968, vol. 8, no. 4, pp. 385-404.
39. Plykin, R. V., On the Geometry of Hyperbolic Attractors of Smooth Cascades, Russian Math. Surveys, 1984, vol. 39, no. 6, pp. 85-131; see also: Uspekhi Mat. Nauk, 1984, vol. 39, no. 6(240), pp. 75-113.
40. Poincaré, H., Sur les courbes définies par les équations différentielles: 4, J. Math. Pures Appl., 1886, vol. 2, pp. 151-218.
41. Pugh, C. C., On a Theorem of P. Hartman, Amer. J. Math., 1969, vol. 91, no. 2, pp. 363-367.
42. Pugh, C. C., Walker, R. B., and Wilson, F. W., Jr., On Morse - Smale Approximations: A Counterexample, J. Differential Equations, 1977, vol. 23, no. 1, pp. 173-182.
43. Robinson, C., Dynamical Systems: Stability, Symbolic Dynamics, Chaos, 2nd ed., Stud. Adv. Math., vol. 28, Boca Raton, Fla.: CRC, 1998.
44. Robinson, C. and Williams, R., Finite Stability Is Not Generic, in Proc. of Symp. on Dynamical Systems (Brazil, 1971), M. M. Peixoto (Ed.), New York: Acad. Press, 1973, pp. 451-462.
45. Smale, S., Morse Inequalities for a Dynamical System, Bull. Amer. Math. Soc., 1960, vol. 66, pp. 43-49.
46. Smale, S., Differentiable Dynamical Systems, Bull. Amer. Math. Soc., 1967, vol. 73, no. 6, pp. 747-817.
47. Strogatz, S., Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, 2nd ed., Boca Raton, Fla.: CRC, 2015.
48. Williams, R.F., The "DA" Maps of Smale and Structural Stability, in Global Analysis: Proc. Sympos. Pure Math. (Berkeley, Calif., 1968): Vol. 14, Providence, R.I.: AMS, 1970, pp. 329-334.
49. Williams, R. F., Expanding Attractors, Inst. Hautes Études Sci. Publ. Math., 1974, No. 43, pp. 169-203.
50. Zhuzhoma, E. V. and Isaenkova, N. V., On Zero-Dimensional Solenoidal Basic Sets, Sb. Math., 2011, vol. 202, no. 3-4, pp. 351-372; see also: Mat. Sb., 2011, vol. 202, no. 3-4, pp. 47-68.
51. Zhuzhoma, E. V. and Medvedev, V.S., Necessary and Sufficient Conditions for the Conjugacy of Smale Regular Homeomorphisms, Sb. Math., 2021, vol. 212, no. 1, pp. 57-69; see also: Mat. Sb., 2021, vol. 212, no. 1, pp. 63-77.

[^0]: *E-mail: medvedev-1942@mail.ru
 ${ }^{* *}$ E-mail: zhuzhoma@mail.ru

