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Abstract—We introduce Smale A-homeomorphisms that include regular, semichaotic, chaotic,
and superchaotic homeomorphisms of a topological n-manifold Mn, n � 2. Smale A-homeo-
morphisms contain axiom A diffeomorphisms (in short, A-diffeomorphisms) provided that Mn

admits a smooth structure. Regular A-homeomorphisms contain all Morse – Smale diffeomor-
phisms, while semichaotic and chaotic A-homeomorphisms contain A-diffeomorphisms with
trivial and nontrivial basic sets. Superchaotic A-homeomorphisms contain A-diffeomorphisms
whose basic sets are nontrivial. The reason to consider Smale A-homeomorphisms instead of
A-diffeomorphisms may be attributed to the fact that it is a good weakening of nonuniform
hyperbolicity and pseudo-hyperbolicity, a subject which has already seen an immense number
of applications.
We describe invariant sets that determine completely the dynamics of regular, semichaotic,
and chaotic Smale A-homeomorphisms. This allows us to get necessary and sufficient condi-
tions of conjugacy for these Smale A-homeomorphisms (in particular, for all Morse – Smale
diffeomorphisms). We apply these necessary and sufficient conditions for structurally stable
surface diffeomorphisms with an arbitrary number of expanding attractors. We also use these
conditions to obtain a complete classification of Morse – Smale diffeomorphisms on projective-
like manifolds.
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1. INTRODUCTION

Diffeomorphisms satisfying Smale’s axiom A (in short, A-diffeomorphisms) were introduced by
Smale [46] as a magnificent and natural generalization of structurally stable diffeomorphisms. By
definition, a nonwandering set of an A-diffeomorphism has a uniform hyperbolic structure and
is the topological closure of periodic orbits. For an A-diffeomorphism, Smale proved that the
nonwandering set splits into closed, transitive, and invariant pieces called basic sets. A basic set is
trivial if it is an isolated periodic orbit. A good example of an A-diffeomorphism with trivial basic
sets is a Morse – Smale diffeomorphism [38, 45]. Such diffeomorphisms exhibit regular dynamics.
Due to Bowen [9], A-diffeomorphisms with nontrivial basic sets exhibit chaotic dynamics since any
such diffeomorphism has a positive entropy. The most familiar nontrivial basic sets are Plykin’s
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132 MEDVEDEV, ZHUZHOMA

attractor [39] and codimension-one expanding attractors introduced by Williams [48, 49]. Such
basic sets appeared in various applications, see, for example, [15, 26, 47].

Keeping in mind that there are manifolds that do not admit smooth structures [35], we
introduce Smale A-homeomorphisms with nonwandering sets having a hyperbolic type (see a precise
definition below). Such homeomorphisms naturally appear in topological dynamical systems.
For example, in [11], the existence of topological Morse functions with three critical points on
topological (including nonsmoothable) closed manifolds was proved. Starting with these examples,
one can construct topological (perhaps only topological) Morse – Smale flows and Morse – Smale
homeomorphisms with a nonwandering set consisting of three fixed points of hyperbolic type.
A profound theory of topological dynamical systems was developed in [2, 3].

Another reason to consider Smale A-homeomorphisms instead of A-diffeomorphisms may be
attributed to the fact that it is a good weakening of nonuniform hyperbolicity and pseudo-
hyperbolicity, a subject which has already seen an immense number of applications [1, 47].

The challenging problem in the theory of dynamical systems is that of classifying, up to
conjugacy, dynamical systems with regular and chaotic dynamics. Recall that homeomorphisms
f1, f2 : M

n → Mn are called conjugate if there is a homeomorphism h : Mn → Mn such that
h ◦ f1 = f2 ◦ h. To check whether given f1 and f2 are conjugate, one usually constructs an
invariant of conjugacy which is a dynamical characteristic that is preserved under a conjugacy
homeomorphism. Normally, such an invariant is constructed within the framework of a special
class of dynamical systems. The famous invariant is Poincaré’s rotation number for the class
of transitive circle homeomorphisms [40]. This invariant is effective, i. e., two transitive circle
homeomorphisms are conjugate if and only if they have the same Poincaré rotation number (see [37]
and [6], Ch. 7, concerning invariants of low dimensional dynamical systems). Anosov [4] and
Smale [46] were the first to realize the fundamental role of hyperbolicity for dynamical systems.
Numerous topological invariants were constructed for special classes of A-diffeomorphisms including
Anosov systems [12, 30, 36], A-flows [34], and Morse – Smale systems, see the books [7, 13] and the
surveys [14, 31].

Within the framework of Smale A-homeomorphisms, we introduce regular, semichaotic, chaotic,
and superchaotic homeomorphisms. We get necessary and sufficient conditions of conjugacy for
regular, semichaotic, and chaotic Smale A-homeomorphisms on a closed topological n-manifoldMn,
n � 2. Automatically, this gives necessary and sufficient conditions of conjugacy for Morse – Smale
diffeomorphisms and a wide class of A-diffeomorphisms with nontrivial basic sets provided that Mn

admits a smooth structure. We apply our conditions for structurally stable surface diffeomorphisms
with an arbitrary number of one-dimensional expanding attractors. We classify Morse – Smale
diffeomorphisms (up to iterations) with three periodic points on projective-like manifolds (such
manifolds were introduced by the authors in [33]).

Let us give the main definitions and formulate the main results. In [33], the authors introduced

the notion of equivalent embedding as follows. Let Mk
1 , M

k
2 ⊂ Mn be topologically embedded k-

manifolds, 1 � k � n− 1. We say they have the equivalent embedding if there are neighborhoods
U(closMk

1 ), U(closMk
2 ) of closM

k
1 , closM

k
2 , respectively, and a homeomorphism h : U(closMk

1 ) →
U(closMk

2 ) such that h(Mk
1 ) = Mk

2 . Here, closN means the topological closure of N . This notion
allows one to classify Morse – Smale topological flows with nonwandering sets consisting of three
equilibria [33]. To be precise, it was proved that two such flows f t

1, f
t
2 are topologically equivalent

if and only if the stable (or unstable) separatrices of saddles of f t
1 and f t

2, respectively, have the
equivalent embedding. Remark that the notion of equivalent embedding goes back to a scheme
introduced by Leontovich and Maier [27, 28] to attack the classification problem for flows on a
2-sphere. Solving the conjugacy problem for homeomorphisms, we have to add conjugacy relations
to the equivalent embedding. The modification of (global) conjugacy is a local conjugacy when the
conjugacy holds in some neighborhoods of compact invariant sets. We introduce the intermediate
notion, the so-called locally equivalent dynamical embedding (in short, dynamical embedding), as
follows.

Let fi : M
n
i → Mn

i be a homeomorphism of a closed topological n-manifold Mn
i , n � 2, i = 1, 2,

and N1 ⊂ Mn
1 , N2 ⊂ Mn

2 invariant sets of f1 and f2, respectively, i.e., fi(Ni) = Ni, i = 1, 2. We say
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that the sets N1 and N2 have the same dynamical embedding if there are neighborhoods δ1 and δ2
of closN1 and closN2, respectively, and a homeomorphism h0 : δ1 ∪ f1(δ1) → Mn

2 on its image such
that

h0(δ1) = δ2, h0(closN1) = closN2, h0 ◦ f1|δ1 = f2 ◦ h0|δ1 . (1.1)

Recall that F : Ln → Ln is an A-diffeomorphism of a smooth manifold Ln provided that the
nonwandering set NW (F ) is hyperbolic, and the periodic orbits of F are dense in NW (F ) [46].
The hyperbolicity implies that every point z0 ∈ NW (F ) has the stableW s(z0) and unstableW u(z0)

manifolds formed by points y ∈ Ln such that �L(F
pkz0, F

pky) → 0 as k → +∞ and k → −∞,
respectively, where �L is a metric on Ln [18, 19, 21, 24, 41, 46]. Moreover, W s(z0) and W u(z0)

are homeomorphic (in the interior topology) to Euclidean spaces R
dimW s(z0) and R

dimWu(z0),
respectively. Note that dimW s(z0) + dimW u(z0) = n. The nonwandering set NW (F ) is a finite
union of pairwise disjoint F -invariant closed sets Ω1, . . . ,Ωk such that every restriction F |Ωi is
topologically transitive. These Ωi are called basic sets of F . A basic set is nontrivial if it is not a
periodic isolated orbit. Set W s(u)(Ωi) = ∪x∈ΩiW

s(u)(x). One says that Ωi is a sink (source) basic
set provided that W u(Ωi) = Ωi (W

s(Ωi) = Ωi). A basic set Ωi is a saddle basic set if it is neither
a sink nor a source basic set.

A homeomorphism f : Mn → Mn is called a Smale A-homeomorphism if there is an A-
diffeomorphism F : Ln → Ln such that the nonwandering sets NW (f), NW (F ) have the same
dynamical embedding. As a consequence, NW (f) is a finite union of pairwise disjoint f -invariant
closed sets Λ1, . . . ,Λk called basic sets of f such that every restriction f |Λi is topologically transitive
(see Proposition 3). Each basic set Λ has the stable manifold W s(Λ) and the unstable manifold
W u(Λ). Similarly, one introduces the families of sink basic sets ω(f), source basic sets α(f), and
saddle basic sets σ(f).

A Smale A-homeomorphism f is called regular if all basic sets ω(f), σ(f), α(f) are trivial.

A Smale A-homeomorphism f is called semichaotic if exactly one family from the families ω(f),
σ(f), α(f) consists of nontrivial basic sets.

A Smale A-homeomorphism f is called chaotic if exactly two families from the families ω(f),
σ(f), α(f) consists of nontrivial basic sets.

A Smale A-homeomorphism f is called superchaotic if all basic sets ω(f), σ(f), α(f) are
nontrivial.

Denote by SsH(Mn) the set of either regular, or semichaotic, or chaotic Smale A-homeomor-
phisms f : Mn → Mn of a closed topological n-manifold Mn, n � 2. If f is chaotic, we’ll assume
that ω(f) or α(f) consists of trivial basic sets.

In Section 2, we give examples of all types above of Smale A-homeomorphisms. Actually, all
examples are A-diffeomorphisms.

Now let us introduce invariant sets that determine the dynamics of Smale homeomorphisms.
Given any Smale A-homeomorphism f : Mn → Mn, denote by A(f) (resp., R(f)) the union of
ω(f) (resp., α(f)) and unstable (resp., stable) manifolds of saddle basic sets σ(f) :

A(f) = ω(f)
⋃

ν∈σ(f)
W u(ν), R(f) = α(f)

⋃

ν∈σ(f)
W s(ν).

The following statement gives the necessary and sufficient conditions of conjugacy for three types
of the Smale A-homeomorphisms. This statement is a generalization of the main result in [51].

Theorem 1. Let Mn be a closed topological n-manifold Mn, n � 2 and fi : M
n → Mn is either

a regular, or semichaotic, or chaotic Smale A-homeomorphism such that ω(fi) or α(fi) consists of
trivial basic sets (i = 1, 2, respectively). Two homeomorphisms f1 and f2 are conjugate if and only
if one of the following conditions holds:

• the basic sets α(f1) and α(f2) are trivial, while the sets A(f1) and A(f2) have the same
dynamical embedding;
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134 MEDVEDEV, ZHUZHOMA

• the basic sets ω(f1) and ω(f2) are trivial, while the sets R(f1) and R(f2) have the same
dynamical embedding.

Note that the Smale A-homeomorphisms in Theorem 1 could be A-diffeomorphisms provided
that Mn is a smooth manifold.

In Section 5, we apply Theorem 1 to consider the conjugacy for structurally stable surface
diffeomorphisms M2 → M2 with one-dimensional (orientable and nonorientable) attractors Λ1, . . .,
Λk, k � 2, and to classify Morse – Smale diffeomorphisms with three periodic points on projective-
like manifolds. Note that the one-dimensional attractors Λ1, . . ., Λk are expanding (recall that an
attractor Λ is expanding if its topological dimension equals dimW (x) for any point x ∈ Λ [49]).

Fig. 1. (a) One isolated saddle and one expanding attractor on a nonoriented surface; (b) one isolated saddle
and two Plykin attractors.

First, we prove the following statement interesting in itself (remark that a structurally stable
diffeomorphism is an A-diffeomorphism [29]).

Proposition 1. Let f : M2 → M2 be an A-diffeomorphism with the nonwandering set NW (f)
consisting of one-dimensional expanding attractors Λ1, . . ., Λk, and s0 � 0 isolated saddle periodic
points, and an arbitrary number of isolated nodal periodic orbits. Then k � s0 + 1.

The case k = s0 = 1 is given in Fig. 1a, while the case k = 2 and s0 = 1 is represented in Fig. 1b
with two Plykin attractors.

The following statement shows that the dynamical embedding of unstable manifolds of isolated
saddles (trivial basic sets) determines completely global dynamics of structurally stable surface
diffeomorphisms with one-dimensional expanding attractors (nontrivial basic sets).

Theorem 2. Let fi : M
2 → M2, i = 1, 2, be a structurally stable diffeomorphism of a closed 2-

manifold M2 such that the spectral decomposition of fi consists of k � 2 one-dimensional expanding

attractors Λ
(i)
1 , . . ., Λ

(i)
k , and isolated source periodic orbits, and k− 1 isolated saddle periodic points

denoted by σ
(i)
1 , . . ., σ

(i)
k−1. Then f1 and f2 are conjugate if and only if the sets ∪j=k−1

j=1 W u(σ
(1)
j ),

∪j=k−1
j=1 W u(σ

(2)
j ) have the same dynamical embedding.

Denote by SRH(Mn) the class of Smale regular homeomorphisms Mn → Mn. Note that it is
possible that f ∈ SRH(Mn) has the empty set σ(f) of saddle periodic points. In this case the set
α(f) consists of a unique source and the set ω(f) consists of a unique sink, and Mn = Sn is the
n-sphere. Later on, we’ll assume that f ∈ SRH(Mn) has a nonempty set σ(f) of saddle periodic
points.

Clearly, SRH(Mn) contains all Morse – Smale diffeomorphisms provided that Mn admits a
smooth structure. Note that the class SRH(Mn) is an essential extension of the class of Morse –
Smale diffeomorphisms because the diffeomorphisms from SRH(Mn) can contain nonhyperbolic
periodic points, tangencies, and separatrix connections, Fig. 2.

As a consequence of Theorem 1, one gets the following statement (in particular, one gets the
necessary and sufficient conditions of conjugacy for any Morse – Smale diffeomorphisms on smooth
closed manifolds).
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Fig. 2. Examples of regular Smale diffeomorphisms.

Corollary 1. Let Mn be a closed topological n-manifold Mn, n � 2. Homeomorphisms f1, f2 ∈
SRH(Mn) are conjugate if and only if one of the following conditions holds:

• the sets A(f1) and A(f2) have the same dynamical locally equivalent embedding;

• the sets R(f1) and R(f2) have the same dynamical locally equivalent embedding.

Denote by MS(Mn; a, b, c) the set of Morse – Smale diffeomorphisms f : Mn → Mn whose
nonwandering set consists of a sinks, b sources, and c saddles. In [32], the authors proved that
for MS(Mn; 1, 1, 1) the only values of n possible are n ∈ {2, 4, 8, 16}. Moreover, the supporting
manifolds for MS(Mn; 1, 1, 1) are projective-like provided that n ∈ {2, 8, 16} [32, 33].

First, to illustrate the applicability of Corollary 1, we consider a very simple classMS(M2; 1, 1, 1).
In this case, the supporting manifold M2 is the projective plane M2 = P

2 [32]. Below, we define
a type for a unique saddle of f ∈ MS(P2, 1, 1, 1). Using Corollary 1 we’ll show how to get the
following complete classification of Morse – Smale diffeomorphisms MS(P2, 1, 1, 1).

Proposition 2. Two diffeomorphisms f1, f2 ∈ MS(P2, 1, 1, 1) are conjugate if and only if the types
of their saddles coincide. There are four types Ti, i = 1, 2, 3, 4 of a saddle. Given any type Ti,
i = 1, 2, 3, 4, there is a diffeomorphism f ∈ MS(P2, 1, 1, 1) with a saddle σ(f) of type Ti.

Thus, up to conjugacy, there are four classes of Morse – Smale diffeomorphisms MS(P2, 1, 1, 1).

The most essential application is a complete classification of Morse – Smale diffeomorphisms
MS(M8; 1, 1, 1) and MS(M16; 1, 1, 1). The supporting 2k-manifolds for diffeomorphisms from the

set MS2k(1, 1, 1) will be denoted by M2k(1, 1, 1).

Remark that the manifoldsM2k(1, 1, 1), k = 1, 2, 4, 8, are unique ones which admit Morse – Smale
diffeomorphisms with the nonwandering set consisting of three fixed points [32]. Moreover, every set

M2k(1, 1, 1), k = 1, 2, 4, 8, contains a smooth manifold supporting a Morse – Smale diffeomorphism

from the set MS2k(1, 1, 1) [11, 14].

Recall that Sk is a k-sphere. Below, αf , σf , and ωf mean the source, the saddle, and the sink

of f ∈ MS2k(1, 1, 1), respectively.

An embedding ϕ : Sk → M2k(1, 1, 1) is called basic if

• ϕ(Sk) is a locally flat k-sphere;

• M2k(1, 1, 1) \ ϕ(Sk) is an open 2k-ball, M2k(1, 1, 1) = B2k � ϕ(Sk).

It was proved in [32] that every supporting manifold M2k(1, 1, 1), k = 4, 8, admits a basic
embedding.
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Theorem 3. Let f : M2k(1, 1, 1) → M2k(1, 1, 1) be a diffeomorphism from the set MS2k(1, 1, 1),
k = 4, 8. Then the following claims hold:

1) for any f ∈ MS2k(1, 1, 1), there are basic embeddings

ϕu(f) : S
k → M2k(1, 1, 1), ϕs(f) : S

k → M2k(1, 1, 1)

such that ϕu(f)(S
k) = W u

σf
∪ {ωf} and ϕs(f)(S

k) = W s
σf

∪ {αf};
2) given any basic embedding ϕ : Sk → M2k(1, 1, 1), there is f ∈ MS2k(1, 1, 1) such that one of

the following equalities holds:

ϕ(Sk) = W u
σf

∪ {ωf} or ϕ(Sk) = W s
σf

∪ {αf};

3) two Morse – Smale diffeomorphisms f1, f2 ∈ MS2k(1, 1, 1) are conjugate if and only if one of
the following conditions holds:

• the basic embeddings ϕu(f1)(S
k) = W u

σf1
∪ {ωf1}, ϕu(f2)(S

k) = W u
σf2

∪ {ωf2} have the same

dynamical embedding;

• the basic embeddings ϕs(f1)(S
k) = W s

σf1
∪ {αf1}, ϕs(f2)(S

k) = W s
σf2

∪ {αf2} have the same

dynamical embedding.

Thus, every f ∈ MS2k(1, 1, 1) corresponds to the basic embedding ϕ(f) : Sk → M2k(1, 1, 1). Given

any basic embedding ϕ, there is f ∈ MS2k(1, 1, 1) such that ϕ(f) = ϕ. Finally, a dynamical

embedding of basic embedding defines completely a conjugacy class in MS2k(1, 1, 1). We see that
the set of basic embedding (up to isotopy) forms the admissible set of conjugacy invariants for the

Morse – Smale diffeomorphisms MS2k(1, 1, 1), k = 4, 8. As to the class MS4(1, 1, 1), the existence
of a realizable and effective conjugacy invariant is still an open problem.

The structure of the paper is as follows. In Section 3, we give some preliminary results.
In Section 4, we prove Theorem 1. In Section 5, we prove Proposition 1, Theorems 2, 3, and
Proposition 2.

2. EXAMPLES OF A-DIFFEOMORPHISMS

1) Regular A-diffeomorphisms. An obvious example of a regular A-diffeomorphism is a Morse –
Smale diffeomorphism. Note that there are regular A-diffeomorphisms that do not belong to
the set of Morse – Smale diffeomorphisms. For example, they can belong to the boundary of
the set of Morse – Smale diffeomorphisms in the space of diffeomorphisms. There are regular A-
diffeomorphisms which cannot be approximated by Morse – Smale diffeomorphisms [42].

2) Semichaotic A-diffeomorphisms. A good example of a semichaotic diffeomorphism is the so-
called DA-diffeomorphism obtained from Anosov automorphism after Smale surgery [46], see Fig. 3.

Fig. 3. Examples of semichaotic Smale diffeomorphisms.

A classical DA-diffeomorphism f : T2 → T
2 contains a nontrivial attractor ω(f), a trivial repeller

α(f), and an empty set σ(f). A generalized DA-diffeomorphism contains a nonempty set σ(f) [17].
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Taking f−1, one gets other examples. One more example of the semichaotic A-diffeomorphism is a
classical Smale horseshoe gs : S

2 → S
2. It is well known that there is gs with trivial attractor ω(gs)

and repeller α(gs), and nontrivial σ(gs).

Starting with DA-diffeomorphisms, Williams [48] constructed an open domain N ⊂ Diff1(T2)
consisting of structurally unstable diffeomorphisms. It is easy to see that N contains semichaotic
A-diffeomorphisms.

One more example of the semichaotic A-diffeomorphism is shown in Fig. 4 with a DA-attractor
and Plykin attractor on a torus.

Fig. 4. One isolated saddle and two expanding attractors on a torus.

3) Chaotic A-diffeomorphisms. Take the classical DA-diffeomorphism f : T2 → T
2 with the

nonwandering set consisting of a source α and one-dimensional expanding attractor Λa. The
diffeomorphism f−1 defined on a copy T

2 has the nonwandering set consisting of a sink ω and
one-dimensional contracting repeller Λr. Let us delete a small neighborhood Ua (resp., Us) of α
(resp., ω) homeomorphic to a disk. Take an orientation reversing diffeomorphism h : ∂Ua → ∂Ur.

Then the surface M2 =
(
T
2 \ Ua

)
∪h

(
T
2 \ Ur

)
is a pretzel (closed orientable surface of genus 2).

Following [44], one can construct an A-diffeomorphism g : M2 → M2 with the nonwandering set
consisting of Λa ∪ Λr such that g|Λa = f and g|Λr = f−1. Thus, α(g) = Λr and ω(g) = Λa. Clearly,
g is a chaotic A-diffeomorphism. Due to [44], there is a construction such that g has a closed simple
curve consisting of the tangencies of the invariant stable manifolds of Λa and the invariant unstable
manifolds of Λr.

One gets another example starting with a Smale solenoid [46], see Fig. 3. This mapping can
be extended to an Ω-stable diffeomorphism fs : M

3 → M3 with a one-dimensional expanding
attractor, say Ω1, and one-dimensional contracting repeller, say Ω2, where M3 is a 3-sphere or
lens space [8, 25]. This chaotic diffeomorphism is similar to the Robinson-Williams diffeomorphism
g considered above. There is a bifurcation of Ω1 into a zero-dimensional saddle type basic set
and isolated attracting periodic orbits [50]. As a result, one gets a chaotic Smale diffeomorphism
f0 : M

3 → M3 with trivial basic sets ω(f0), and the nontrivial source basic set α(f0) = Ω2, and the
nontrivial zero-dimensional saddle basic set σ(f0). Taking f−1, one gets other examples.

4) Superchaotic A-diffeomorphisms. Let gs : S
2 → S

2 be the classical Smale horseshoe and
f : T2 → T

2 the classical DA-diffeomorphism considered above. Delete small neighborhoods U1,
U2 of the sink ω(gs) and the source α(gs), respectively, each homeomorphic to a disk. There
are reversing orientation diffeomorphisms h1 : ∂U1 → ∂Ua and h2 : ∂U2 → ∂Ur. Then the surface
M2 =

(
T
2 \ Ua

)⋃
h1

(
S2 \ U1 ∪ U2

)⋃
h2

(
T
2 \ Ur

)
is a pretzel. Similarly to Robinson –Williams’s

method developed in [44], one can construct a diffeomorphism g0 : M
2 → M2 with α(g0) = Λr,

ω(g0) = Λa, and σ(g0) homeomorphic to the Smale horseshoe σ(gs). Thus, g0 is a superchaotic
A-diffeomorphism. In a similar way, one can get other examples starting with semichaotic A-
diffeomorphisms.

Let us clarify the structure of the nonwandering set for a Smale A-homeomorphism.
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Proposition 3. Let f : Mn → Mn be a Smale homeomorphism, and F : Ln → Ln an A-diffeo-
morphism such that the nonwandering sets NW (f), NW (F ) have the same dynamical embedding
under a homeomorphism h : NW (f) → NW (F ). Let Ω1, . . ., Ωk be the basic sets of F . Then
NW (f) = Λ1 ∪ · · · ∪ Λk where Λi = h−1(Ωi, i = 1, . . . , k, are pairwise disjoint closed f -invariant
and transitive sets. Moreover,

Mn =

k⋃

i=1

W s(Λi) =

k⋃

i=1

W u(Λi).

Proof. By definition, h
(
NW (f)

)
= NW (F ). Since h is a homeomorphism in some neighborhood of

NW (f), the sets Λi = h−1(Ωi, i = 1, . . . , k, are pairwise disjoint and closed. Due to the conjugacy
relation

F ◦ h|NW (f) = h ◦ f |NW (f)

every Λi is f -invariant and transitive because every Ωi is F -invariant and transitive.
Take a point x ∈ Mn. Since the limit set of the positive semi-orbit ∪i�0f

i(x) belongs to NW (f),
f i(x) → NW (f) as i → ∞. Let δ be a neighborhood of NW (f) with hyperbolic structure. To be
precise, the relation F ◦ h|δ = h ◦ f |δ holds in the neighborhood δ. According to [24] (see also [23]),
h(f i(x)) belongs to W s(y) for some y ∈ Ωj. Since h is a homeomorphism, f i(x) ∈ W s(h−1(y))

for h−1(y) ∈ Λj . Hence, x ∈
⋃k

i=1W
s(Λi) and Mn =

⋃k
i=1 W

s(Λi). Similarly, one can prove Mn =⋃k
i=1W

u(Λi). �

3. PROPERTIES OF SMALE HOMEOMORPHISMS

We begin by recalling several definitions. Further details may be found in [6, 7, 46]. Denote by
Orb(x) the orbit of point x ∈ Mn under a homeomorphism f : Mn → Mn. The ω-limit set ω(x)

of the point x consists of the points y ∈ Mn such that fki(x) → y for some sequence ki → ∞.
Clearly, any points of Orb(x) have the same ω-limit. Replacing f with f−1, one gets an α-limit set.
Obviously, ω(x) ∪ α(x) ⊂ NW (f) for every x ∈ Mn.

Recall that we denote by SsH(Mn) the set of either regular, or semichaotic, or chaotic Smale
A-homeomorphisms f : Mn → Mn of the closed topological n-manifold Mn, n � 2. If f is chaotic,
we’ll assume that ω(f) or α(f) consists of trivial basic sets. Thus, f ∈ SsH(Mn) satisfies the
condition of Theorem 1.

Next, f ∈ SsH(Mn). Given a family C = {c1, . . . , cl} of sets ci ⊂ Mn, denote by C̃ the union
c1 ∪ . . . ∪ cl. It follows immediately from the definitions that

NW (f) = α̃(f) ∪ ω̃(f) ∪ σ̃(f), f ∈ SsH(Mn). (3.1)

Lemma 1. Let f ∈ SsH(Mn) and x ∈ Mn. Then

1) if ω(x) ⊂ σ̃(f), then x ∈ W s(σ∗) for some saddle basic set σ∗ ∈ σ(f).

2) if α(x) ⊂ σ̃(f), then x ∈ W u(σ∗) for some saddle basic set σ∗ ∈ σ(f).

Proof. Suppose that ω(x) ⊂ σ̃(f). Since α̃(f) and ω̃(f) are invariant sets, x /∈ α̃(f) ∪ ω̃(f).
Therefore, there exist a neighborhood U(α) of α(f) and a neighborhood U(ω) of ω(f) such that
the positive semi-orbit Orb+(x) belongs to the compact set N = Mn \ (U(ω) ∪ U(α)). Let V (σ1),
. . ., V (σm) be pairwise disjoint neighborhoods of saddle basic sets σ1, . . . and σm, respectively,
such that ∪m

i=1V (σi) ⊂ N . Since every V (σi) does not intersect ∪j �=iV (σj) and all saddle basic
sets are invariant, one can take the neighborhoods V (σ1), . . ., V (σm) so small that every f(V (σi))
does not intersect ∪j �=iV (σj). Suppose the contrary, i. e., there is no a unique saddle basic set
σ∗ ∈ σ(f) with x ∈ W s(σ∗). Thus, there are at least two different saddle basic sets σ1, σ2 such
that x ∈ W s(σ1) and x ∈ W s(σ2). Hence, ω(x) have to intersect σ1, σ2. It follows that the compact
set N0 = N \ (∪m

i=1V (σi)) contains infinitely many points of the semi-orbit Orb+(x). This implies
ω(x) ∩N0 
= ∅ that contradicts (3.1). The second assertion is proved similarly. �
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A set U is a trapping region for f if f (closU) ⊂ intU . A set A is an attracting set for f if there
exists a trapping set U such that

A =
⋂

k�0

fk(U).

A set A∗ is a repelling set for f if there exists a trapping region U for f such that

A∗ =
⋂

k�0

fk(Mn \ U).

In other words, A∗ is an attracting set for f−1 with the trapping region Mn \ U for f−1. When
we wish to emphasize the dependence of an attracting set A or a repelling set A∗ on the trapping
region U from which it arises, we denote it by AU or A∗

U , respectively.

Let A be an attracting set for f . The basin B(A) of A is the union of all open trapping regions
U for f such that AU = A. One can similarly define the notion of basin for a repelling set.

Let N be an attracting or repelling set and B(N) the basin of N . A closed set G(N) ⊂ B(N) \N
is called a generating set for the domain B(N) \N if

B(N) \N = ∪k∈Zf
k
(
G(N)

)
.

Moreover,

1) every orbit from B(N) \N intersects G(N); 2) if an orbit from B(N) \N intersects the interior
of G(N), then this orbit intersects G(N) at a unique point; 3) if an orbit from B(N) \N intersects
the boundary of G(N), then the intersection of this orbit with G(N) consists of two points; 4) the
boundary of G(N) is the union of finitely many compact codimension-one topological submanifolds.

Lemma 2. Let f ∈ SsH(Mn).

1) Suppose that all basic sets α(f) are trivial. Then α̃(f) is a repelling set, while A(f) is an
attracting set with

B
(
α̃(f)

)
\ α̃(f) = B

(
A(f)

)
\A(f).

Moreover,

• there is a trapping region T (α) for f−1 of the set α̃(f) consisting of pairwise disjoint open
n-balls b1, . . ., br such that each bi contains a unique periodic point from α(f);

• the regions B
(
α̃(f)

)
\ α̃(f), B

(
A(f)

)
\A(f) have the same generating set G(α) consisting of

pairwise disjoint closed n-annuli a1, . . ., ar such that ai = clos fpi(bi) \ bi where pi ∈ N is a
minimal period of a periodic point belonging to bi, i = 1, . . . , r :

G(α) = ∪r
i=1ai = ∪r

i=1

(
clos fpi(bi) \ bi

)
;

• B(A(f)) \A(f) = ∪k∈Zf
k
(
G(α)

)
.

2) Suppose that all basic sets ω(f) are trivial. Then ω̃(f) is an attracting set, while R(f) is a
repelling set with

B
(
ω̃(f)

)
\ ω̃(f) = B

(
R(f)

)
\R(f).

Moreover,

• there is a trapping region T (ω) for f of the set ω̃(f) consisting of pairwise disjoint open
n-balls b1, . . ., bl such that each bi contains a unique periodic point from ω(f);
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• the regions B
(
ω̃(f)

)
\ ω̃(f), B

(
R(f)

)
\R(f) have the same generating set G(ω) consisting

of pairwise disjoint closed n-annuli a1, . . ., al such that ai = bi \ int fpi(bi) where pi ∈ N is
a minimal period of a periodic point belonging to bi, i = 1, . . . , l :

G(ω) = ∪r
i=1ai = ∪r

i=1

(
bi \ int fpi(bi)

)
;

• B
(
R(f)

)
\R(f) = ∪k∈Zf

k
(
G(ω)

)
.

Proof. It is enough to prove the first statement only. Since all basic sets α(f) are trivial and consist

of locally hyperbolic source periodic points, there is a trapping region T (α) for f−1 of the set α̃(f)
consisting of pairwise disjoint open n-balls b1, . . ., br such that each bi contains a unique periodic
point qi from α(f) [38, 45]. Thus,

T (α) = ∪r
i=1bi, ∩k�0f

kpi(bi) = qi, i = 1, . . . , r.

As a consequence, there is the generating set G(α) = ∪r
i=1 (clos f

pi(bi) \ bi) consisting of pairwise
disjoint closed n-annuli ai = clos fpi(bi) \ bi, i = 1, . . . , r.

Since the balls b1, . . ., br are pairwise disjoint and clos bi ⊂ fpi(bi), the balls f
p1(b1), . . ., f

pr(br)
are pairwise disjoint also. For simplicity of exposition, we’ll assume that α(f) consists of fixed
points (otherwise, α(f) is divided into periodic orbits each considered like a point). Therefore,

f (Mn \ ∪r
i=1bi) = Mn \ ∪r

i=1f(bi) ⊂ Mn \ ∪r
i=1clos bi ⊂ int (Mn \ ∪r

i=1bi) .

Hence, Mn \ ∪r
i=1bi is a trapping region for f . Clearly, A(f) ⊂ Mn \ ∪r

i=1bi.

Take a point x ∈ Mn \ ∪r
i=1bi. Obviously, ω(x) /∈ α̃(f). It follows from (3.1) that ω(x) ∈

ω̃(f) ∪ σ̃(f). By Lemma 1, ω(x) ∈ A(f). Therefore, A(f) is an attracting set with the trapping
region Mn \ ∪r

i=1bi for f :

A(f) = AMn\∪r
i=1bi

.

Moreover,

Mn = α̃(f) ∪B
(
A(f)

)

because ∩k�0f
k(bi) = qi, i = 1, . . . , r.

Let us prove the quality B
(
α̃(f)

)
\ α̃(f) = B

(
A(f)

)
\ A(f). Take x ∈ B

(
α̃(f)

)
\ α̃(f). Since

x /∈ α̃(f) and Mn = α̃(f) ∪B
(
A(f)

)
, x ∈ B

(
A(f)

)
. Since x ∈ B

(
α̃(f)

)
, α(x) ⊂ α(f). Hence,

x /∈ A(f) and x ∈ B
(
A(f)

)
\ A(f). Now, set x ∈ B

(
A(f)

)
\ A(f). Then x /∈ α(f). Since x /∈ A(f),

α(x) ⊂ σ̃(f) ∪ α̃(f). If one assumes that α(x) ⊂ σ̃(f), then according to Lemma 1, x ∈ W u(ν)

for some saddle basic set ν. Thus, x ∈ A(f) which contradicts x /∈ A(f). Therefore, α(x) ⊂ α̃(f).

Hence, x ∈ B
(
α̃(f)

)
. As a consequence, x ∈ B

(
α̃(f)

)
\ α̃(f).

The last assertion of the first statement follows from the previous ones. This completes the
proof. �

In the next statement, we keep the notation of Lemma 2.

Lemma 3. Let f ∈ SsH(Mn).

1) Suppose that all basic sets α(f) are trivial. Then, given any neighborhood V0(A) of A(f),
there is n0 ∈ N such that

∪k�n0f
k (G(α)) ⊂ V0(A),

where G(α) is the generating set of the region B
(
α̃(f)

)
\ α̃(f).

2) A similar statement holds when all basic sets ω(f) are trivial.
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Proof. It is enough to prove the first statement only. Take a closed trapping neighborhood U of
A(f) for f . Since ∩k∈Nf

k(U) = A(f) ⊂ V0(A), there is k0 ∈ N such that fk0(U) ⊂ V0(A). Clearly,

fk0(U) is a tripping region of A(f) for f . Hence, fk0+k(U) ⊂ fk0(U) ⊂ V0(A) for every k ∈ N.

Let G(α) be a generating set of the region B
(
α̃(f)

)
\ α̃(f). By Lemma 2, G(α) is the generating

set of the region B
(
A(f)

)
\ A(f) as well. Since G(α) is a compact set, there is n0 ∈ N such that

fn0 (G(α)) ⊂ fk0(U). It follows that fn0+k
(
G(α)

)
⊂ fk0+k(U) ⊂ fk0(U) ⊂ V0(A) for every k ∈ N.

As a consequence, ∪k�n0f
k
(
G(α)

)
⊂ V0(A). �

4. PROOF OF THEOREM 1

Suppose that homeomorphisms f1, f2 ∈ SsH(Mn) are conjugate. Since a conjugacy mapping
Mn → Mn is a homeomorphism, the sets A(f1), A(f2), as well as the sets R(f1), R(f2) have the
same dynamical embedding.

To prove the inverse assertion, let us suppose for definiteness that the basic sets α(f1), α(f2)
are trivial, while the sets A(f1), A(f2) have the same dynamical embedding. Keeping in mind that
A(f1) and A(f2) are attracting sets, we see that there are neighborhoods δ1 and δ2 of A(f1) and
A(f2), respectively, and a homeomorphism h0 : δ1 → δ2 such that

h0 ◦ f1|δ1 = f2 ◦ h0|δ1 , f1(δ1) ⊂ δ1, h0
(
A(f1)

)
= A(f2). (4.1)

Without loss of generality, one can assume that δ1 ⊂ B(A(f1)). Moreover, taking δ1 smaller if one
needs, we can assume that clos δ1 is a trapping region for f1 of the set A(f1). By (4.1), one gets

f2(clos δ2) = f2 ◦ h0(clos δ1) = h0 ◦ f1(clos δ1) ⊂ h0(δ1) = δ2.

Thus, clos δ2 is a trapping region for f2 of the set A(f2). As a consequence, we get the following
generalization of (4.1):

h0 ◦ fk
1 |δ1 = fk

2 ◦ h0|δ1 , k ∈ N, f1(clos δ1) ⊂ δ1, h0
(
A(f1)

)
= A(f2). (4.2)

By Lemma 2, there is the trapping region T (α1) for f
−1
1 of the set α̃(f1) consisting of pairwise

disjoint open n-balls b1, . . ., bl1 such that each bi contains a unique periodic point qi from α(f1). In

addition, the region B
(
α̃(f1)

)
\ α̃(f1) has the generating set G(α1) consisting of pairwise disjoint

closed n-annuli a1, . . ., al1 such that ai = clos fpi
1 (bi) \ bi where pi ∈ N is a minimal period of the

periodic point qi.

Due to Lemma 3, one can assume without loss of generality that G(α1)
def
= G1 ⊂ δ1. Hence,

A(f1)
⋃(

∪k�0f
k
1 (G1)

)
= A(f1)

⋃
N+ ⊂ δ1, N+ = ∪k�0f

k
1 (G1).

According to Lemma 2, G1 is a generating set of the region B(A(f1)) \A(f1). Let us show that

h0(G1)
def
= G2 is a generating set for the region B

(
A(f2)

)
\A(f2). Take a point z2 ∈ G2. There

is a unique point z1 ∈ G1 such that h0(z1) = z2. Note that z2 /∈ A(f2) since z1 /∈ A(f1). Since

G1 ⊂
(
B
(
A(f1)

)
\A(f1)

)
, fk

1 (z1) → A(f1) as k → ∞. It follows from (4.2) that

fk
2 (z2) = fk

2 ◦ h0(z1) = h0 ◦ fk
1 (z1) → h0

(
A(f1)

)
= A(f2) as k → ∞.

Hence, z2 ∈ B
(
A(f2)

)
and G2 ⊂ B

(
A(f2)

)
\ A(f2).

Take an orbit Orbf2 ⊂ B
(
A(f2)

)
\ A(f2). Since this orbit intersects a trapping region of

A(f2), Orbf2 ∩δ2 
= ∅. Therefore, there exists a point x2 ∈ Orbf2 ∩δ2. Since h0
(
A(f1)

)
= A(f2)

and x2 ∈ B
(
A(f2)

)
\ A(f2), the orbit Orbf1 of the point x1 = h−1

0 (x2) ⊂ δ1 under f1 belongs to

B
(
A(f1)

)
\ A(f1). Hence, Orbf1 intersects G1 at some point w1 ∈ δ1. Since x1, w1 ∈ Orbf1 , there
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is k ∈ N such that either x1 = fk
1 (w1) or w1 = fk

1 (x1). Suppose for definiteness that w1 = fk
1 (x1).

Using (4.1), one gets

w2 = h0(w1) = h0 ◦ fk
1 (x1) = h0 ◦ fk

1 ◦ h−1
0 (x2) = fk

2 (x2) ∈ G2 ∩Orbf2 .

Similarly, one can prove that, if Orbf2 intersects the interior of G2, then Orbf2 intersects G2 at a
unique point, and if Orbf2 intersects the boundary of G2, then Orbf2 intersects G2 at two points.

Thus, G2 is a generating set for the region B
(
A(f2)

)
\ A(f2).

Set

∪k�0f
−k
i (Gi)

def
= O−(Gi), ∪k�0f

k
i (Gi)

def
= O+(Gi), i = 1, 2.

We see that O−(Gi)∪O+(Gi) is invariant under fi, i = 1, 2. Given any point x ∈ O−(G1)∪O+(G1),

there is m ∈ Z such that x ∈ f−m
1 (G1). Let us define the mapping

h : O−(G1) ∪O+(G1) → O−(G2) ∪O+(G2)

as follows:

h(x) = f−m
2 ◦ h0 ◦ fm

1 (x), where x ∈ f−m
1 (G1).

Since G1 and G2 are generating sets, h is correct. It is easy to check that

h ◦ f1|O−(G1)∪O+(G1) = f2 ◦ h|O−(G1)∪O+(G1).

It follows from (4.1) that

h : A(f1) ∪O−(G1) ∪O+(G1) → A(f2) ∪O−(G2) ∪O+(G2)

is the homeomorphic extension of h0 putting h|A(f1) = h0|A(f1). Moreover,

h ◦ fk
1 |A(f1)∪O−(G1)∪O+(G1) = fk

2 ◦ h|A(f1)∪O−(G1)∪O+(G1), k ∈ Z.

By Lemma 2, Gi is a generating set for the region B
(
α̃(fi)

)
\ α̃(fi) = B

(
A(fi)

)
\A(fi) and

B
(
A(fi)

)
\A(fi) = ∪k∈Zf

k
i (Gi), i = 1, 2. Thus, one gets the conjugacy h : Mn \ α̃(f1) → Mn \ α̃(f2)

from f1|
Mn\α̃(f1)

to f2|
Mn\α̃(f2)

:

h ◦ fk
1 |Mn\α̃(f1)

= fk
2 ◦ h|

Mn\α̃(f1)
, k ∈ Z. (4.3)

Recall that the sets α(f1), α(f2) are periodic sources {αj(f1)}l1j=1 and {αj(f2)}l2j=1, respectively.

By Lemma 2, the generating set Gi consists of pairwise disjoint n-annuli aj(fi), i = 1, 2. Take
an annulus ar(f1) = ar ⊂ G1 surrounding a source periodic point αr(f1) of minimal period pr,

1 � r � l1. Then the set
⋃

k�0 f
−kpr
1 (ar) ∪ {αr(f1)} = Dn

r is a closed n-ball. Since

Mn \B
(
A(f2)

)
= Mn \

(
A(f2) ∪k∈Z fk

2 (G2)
)

consists of the source periodic points α(f2), the annulus
⋃

k�0

f−kpr
2 ◦ h(ar) =

⋃

k�0

h ◦ f−kpr
1 (ar) = D∗

r

surrounds a unique source periodic point αj(r)(f2) of the same minimal period pr. Moreover,

D∗
r ∪ {αj(r)(f2)} is a closed n-ball. Together with the existence of the homeomorphism h : A(f1) ∪

O−(G1)∪O+(G1) → A(f2)∪O−(G2)∪O+(G2), it implies the one-to-one correspondence r → j(r)
inducing the one-to-one correspondence j0 :

(
αr(f1)

)
→

(
αj(r)(f2)

)
. Thus, l1 = l2. Since

(
αr(f1)

)

and
(
αj(r)(f2)

)
have the same period, one gets

j0

(
fk
1

(
αr(f1)

))
= fk

2

(
j0
(
αr(f1)

))
= fk

2

(
αj(r)(f2)

)
, 0 � k � pr. (4.4)
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Put by definition, h
(
αr(f1)

)
= αj(r)(f2). For sufficiently large m ∈ N, both f−mpr

1 (Dn
r ) and

f−mpr
2 (D∗

r ) can be embedded in arbitrary small neighborhoods of αr(f1)) and
(
αj(r)(f2)

)
, re-

spectively, because α̃(f1) and α̃(f2) are repelling sets. Keeping in mind (4.4), it follows that
h : Mn → Mn is a conjugacy from f1 to f2. This completes the proof. �

5. SOME APPLICATIONS

Following Smale [45, 46], we write σ1 � σ2 provided that W u(σ1) ∩W s(σ2) 
= ∅ where σ1 and
σ2 are saddle periodic points. Next, we assume a surface M2 to be closed and connected. Recall
that a node is either a sink or a source.

Proof (of Proposition 1). is by induction on s0. First, we consider the case s0 = 0. We have to prove
that k = 1. Suppose the contrary, namely, that k � 2. According to [13, 39] (see also [16, 17]), there
are disjoint open sets Ui, i = 1, . . . , k, such that each Ui is an attracting domain of Λi with no trivial
basic sets. Moreover, the boundary ∂Ui consists of finitely many simple closed curves. Therefore,
M2 \ ∪k

i=1Ui is the disjoint union ∪j�1Kj = G of compact connected sets Kj where f−1(G) ⊂ G.
Any iteration of f has at least k one-dimensional expanding attractors. Thus, without loss of
generality, we can assume that f−1(Kj) ⊂ Kj for every Kj . In addition, we can assume that any
periodic isolated point is fixed and the restriction of f on every invariant manifold of saddle isolated
point preserves orientation.

Since k � 2 and M2 is connected, there is a component of G, say K1, and different sets Ul, Ur

such that ∂K1 ∩ ∂Ul 
= ∅ and ∂K1 ∩ ∂Ur 
= ∅ where Ul ∩ Ur = ∅. Any component of the boundary
∂K1 is a circle. We see that there are at least two components of ∂K1. Let us glue a disk to

each boundary component of ∂K1 to get a closed surface K̃1. Since f
−1(K1) ⊂ K1, one can extend

f |K1 to an A-diffeomorphism f̃ : K̃1 → K̃1 with a unique sink in each disk we glued. Note that,

by construction, the nonwandering set NW (f̃) of f̃ consists of isolated nodal fixed points, and

NW (f̃) contains at least two sinks. According to [45], the surface K̃1 is the disjoint union of the
stable manifolds of sinks and finitely many isolated sources (remark that the stable manifold of a

source coincides with this source). This contradicts the connectedness of K̃1 because every stable
manifold of a sink is homeomorphic to an open ball, and isolated sources do not separate the stable
manifolds of two sinks. This contradiction proves that k = 1 provided that s0 = 0.

Suppose the statement holds for 0, . . . , s saddles. We have to prove this statement for s0 = s+ 1
saddles. Recall that, according to [45], the isolated saddles are endowed with the Smale partial
order �. Since now the set of isolated saddles is not empty, there is a minimal saddle, say σ. Then
the topological closure of W s(σ) is either a segment I with the endpoints being two sources or a
circle S consisting of one source and W s(σ). In any of these cases, both I and S are repelling sets.
Let us consider these cases.

The segment I has a neighborhood U(I) = U homeomorphic to a disk such that closU ⊂ f(U).
Note that σ is inside of U . One can change f inside of U by replacing closW s(σ) with a unique
source. One gets a diffeomorphism with k expanding attractors and s saddles. By the inductive
assumption, k � s+ 1 � s0 < s0 + 1.

Similarly, the circle S has a neighborhood U(S) homeomorphic to an annulus such that
closU(S) ⊂ f

(
U(S)

)
. Note that σ belongs to U(S). The manifold M2

1 = M2 \ U(S) has two

boundary components M1 and M2, each homeomorphic to a circle. One can attach two disks D2
1

and D2
2 along their boundaries to M1 and M2, respectively, to get a closed surface M̃2. This surface

either is connected or consists of two connected surfaces. Since S is a repelling set, one can extend

f on M̃2 to get a diffeomorphism f̃ : M̃2 → M̃2 with k expanding attractors and s saddles. If M̃2

is connected, then the inductive assumption implies k � s+ 1 � s0. Let us consider the case where

M̃2 consists of two connected closed surfaces M̃2
1 , M̃

2
2 . Suppose that M̃2

i contains ki expanding
attractors and si isolated saddles, i = 1, 2. Obviously, k = k1 + k2 and s1 + s2 = s. By the inductive
assumption, ki � si +1, i = 1, 2. Hence, k � (s1 +1) + (s2 +1) = s1 + s2 +2 = s+2 = s0 +1. This
concludes the proof. �
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Proof (of Theorem 2). Let us consider a structurally stable diffeomorphism f : M2 → M2 with the
nonwandering set consisting of k � 2 one-dimensional expanding attractors Λ1, . . ., Λk, and isolated
source periodic orbits, and k − 1 saddle periodic points σ1, . . ., σk−1. Each Λi has a neighborhood

Ui that is an attracting region of Λi. Then M2 \ (∪k−1
i=1Ui) is the disjoint union G = ∪j�1Kj of

compact connected sets where f−1(G) ⊂ G. Note that any positive iteration of f has at least k
one-dimensional expanding attractors. Obviously, any iteration of f has the same number k − 1 of
saddle periodic points. Due to Proposition 1, any positive iteration of f has no more than k one-
dimensional expanding attractors. Hence, any positive iteration of f has exactly the same number
k of expanding attractors. This implies that every attractor Λi is C-dense [5, 43]. As a consequence,
each unstable manifold W u(·) ⊂ Λi is dense in Λi [5, 13].

Take a connected component K of the set G. The boundary ∂K is the disjoint union of circles
c1, . . .. By construction, these circles belong to the boundaries of the attracting regions U1, . . .,
Uk. Therefore, one can glue a disk dj to each circle cj extending f to dj with a sink inside of dj .
If K is without isolated saddles, then K ∪j d− J is a 2-sphere with a unique source and a unique
sink [14]. Therefore, if K is without isolated saddles, then K is a disk with a unique source. We
will call such a set K a disk with no saddles. Now, take a neighborhood U of some Λi. Suppose
that all components of the boundary ∂U are attached to components of G that are disks with no
saddles. Then the union of U and these disks give a closed surface with exactly one expanding
attractor Λi. This contradicts either the connectedness of M2 or the inequality k � 2. Thus, given
any neighborhood Ui of Λi, the boundary ∂Ui has a common part with the boundary ∂Kj of some
component K ⊂ G which contains at least one isolated saddle.

Let K be a component of G containing a saddle σ and U a neighborhood of some Λi such
that ∂K ∩ ∂U 
= ∅. Let us show that W u(σ) ∩W s(Λi) 
= ∅. Suppose the contrary. We know that
W u(σ) \ {σ} belongs to stable manifolds of isolated periodic points lying in K. Then there is a
saddle σ1 ∈ K such that σ1 ≺ σ, and the topological closure of W s(σ1) is either a segment I with
the endpoints being two sources or a circle S consisting of one source and W s(σ1). In any case,
both I and S are repelling sets. Therefore, f can be changed inside of K so that a diffeomorphism
obtained has k − 2 isolated saddles and k one-dimensional expanding attractors. This contradicts
Proposition 1. Thus, W u(σ) ∩W s(Λi) 
= ∅.

Since f is a structurally stable diffeomorphism, all intersections W u(σ) ∩W s(x), x ∈ Λi, are
transversal. It follows from W u(σ) ∩W s(Λi) 
= ∅ that there is x ∈ Λi such that W u(σ) intersects
transversally the stable manifold W s(x). Recall that the attractor Λi is C-dense. Since any unstable
manifold W u(·) ⊂ Λi is dense in Λi, the topological closure of W

u(σ) contains Λi, closW
u(σ) ⊃ Λi.

Clearly, if f1 and f2 are conjugate, then ∪j=k−1
j=1 W u(σ

(1)
j ), ∪j=k−1

j=1 W u(σ
(2)
j ) have the same

dynamical embedding. Suppose that the sets ∪j=k−1
j=1 W u(σ

(1)
j ) and ∪j=k−1

j=1 W u(σ
(2)
j ) have the same

dynamical embedding. It follows from above that

clos
(
∪j=k−1
j=1 W u

(
σ
(i)
j

))
⊃ ∪j=k

j=1Λ
(i)
j , i = 1, 2.

Since A(fi) = ∪j=k−1
j=1 W u

(
σ
(i)
j

)⋃(
∪j=k
j=1Λ

(i)
j

)
, we see that

closA(f1) = clos
(
∪j=k−1
j=1 W u

(
σ
(1)
j

))
, closA(f2) = clos

(
∪j=k−1
j=1 W u

(
σ
(2)
j

))
.

Therefore, the sets A(f1) and A(f2) have the same dynamical embedding. As a consequence of
Theorem 1, we have that f1 and f2 are conjugate. This completes the proof. �

Consider f ∈ MS(P2, 1, 1, 1) with a unique saddle σ(f). By definition, f is conjugate in some
neighborhood of σ(f) to a linear diffeomorphism with a saddle hyperbolic fixed point [41]. It easy
to check that up to conjugacy there are exactly four such mappings :

T1 =

⎧
⎨

⎩
x̄ =

1

2
x

ȳ = 2y,
T2 =

⎧
⎨

⎩
x̄ = −1

2
x

ȳ = 2y,
T3 =

⎧
⎨

⎩
x̄ =

1

2
x

ȳ = −2y,
T4 =

⎧
⎨

⎩
x̄ = −1

2
x

ȳ = −2y.

We’ll say that the saddle σ(f) is of type T1, T2, T3, T4, respectively, see Fig. 5.
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Fig. 5. Phase portrait for f ∈ MS(P2, 1, 1, 1): the diametrically opposite points are identified.

Proof (of Proposition 2). Take f ∈ MS(P2, 1, 1, 1) with a unique saddle σ(f) = σ. The attracting
set A(f) is a closed curve consisting of an unstable manifold W u(σ) of a unique saddle σ and
a sink ω. A neighborhood U of A(f) is homeomorphic to a Möbius band. Since U contains only
two fixed points, the saddle σ and the sink ω, the dynamics of f |U depends completely on the
local dynamics of f at σ which is defined by one of the types Ti, i = 1, 2, 3, 4. Due to Corollary 1,
diffeomorphisms f1, f2 ∈ MS(P2, 1, 1, 1) are conjugate if and only if the types of their saddles
coincide.

Choose any type Ti ∈ {T1, T2, T3, T4}. Let B be a Möbius band with the middle closed curve c0.
There is a mapping f0 : B → B with the attracting set c0 such that the nonwandering set of f0
consists of a hyperbolic sink ω ∈ c0 and a hyperbolic saddle σ ∈ c0 with W u(σ) = c0 \ {ω}. Note
that the set P

2 \B is a 2-disk D2. Since c0 is an attracting set, one can extend f0 to f with a
hyperbolic source in D2. This gives f ∈ MS(P2, 1, 1, 1), as desired. �

Proof (of Theorem 3). 1) Since f has a unique saddle, both W u
σf

∪ {ωf} and W s
σf

∪ {αf} are topo-

logically embedded spheres denoted by Sk1 and Sk2 , respectively. According to [32], k1 = k2 = k,

and the complements M2k(1, 1, 1) \
(
W u

σf
∪ {ωf}

)
, M2k(1, 1, 1) \

(
W s

σf
∪ {αf}

)
are homeomorphic

to an open 2k-ball (see also, [33]). Thus, we have the embedding

ϕu(f) : S
k → W u

σf
∪ {ωf} ⊂ M2k(1, 1, 1), ϕs(f) : S

k → W s
σf

∪ {αf} ⊂ M2k(1, 1, 1).

Since the codimension of Sk equals k � 4, ϕu(f)(S
k) and ϕs(f)(S

k) are locally flat spheres [10].
Hence, ϕu(f) and ϕs(f) are basic embeddings.

2) According to the theorem of approximation by Haefliger [20], we can assume without loss of

generality that ϕ(Sk) is a smoothly embedded k-sphere. Hence, there is a tubular neighborhood

T 2k of ϕ(Sk) that is the total space of a locally trivial fiber bundle p : T 2k → ϕ(Sk) with the base

Sk
0 = ϕ(Sk) and a fiber k-disk Dk [22]. Let ϑns : S0 → S0 be a Morse – Smale diffeomorphism with

a unique sink ω0 and a unique source N , the so-called “north-south” diffeomorphism. The fiber
p−1(N) is an open k-disk. Let ψN : p−1(N) → p−1(N) be the mapping with a unique hyperbolic

sink at N such that closψN (p−1(N)) ⊂ ψN (p−1(N)) and ∩j�0ψ
j
N

(
p−1(N)

)
= {N}. Since p is a

locally trivial fiber bundle, one can extend ψN and ϑns to get the mapping f0 : T
2k → T 2k such

that a) N is a hyperbolic saddle with k-dimensional local stable and unstable manifolds, and ω0

is a hyperbolic sink; b) given any point a ∈ T 2k \ p−1(N), f l
0(a) tends to ω0 as l → ∞; moreover,

S0 = ∩l�0f
l
0(T

2k).

It was proved in [32] that the boundary ∂T 2k of T 2k is a (2k − 1)-sphere, say S2k−1. Moreover,

S2k−1 bounds the ball B2k = M2k(1, 1, 1) \ T 2k. Take a point a0 ∈ B2k. Since B2k is a ball, one

can extend f0 to B2k to get a mapping f : M2k(1, 1, 1) → M2k(1, 1, 1) with a unique hyperbolic
source at a0. It follows from (a) and (b) that we get the desired Morse – Smale diffeomorphism

f ∈ MS2k(1, 1, 1) with the sink ω0 = ωf , the saddle N = σf , and the source a0 = αf .

3) The last statement immediately follows from Corollary 1. �
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