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a b s t r a c t

We study in this paper the existence of periodically modulated in one variable and localized in another
variable solutions to the cubic Swift–Hohenberg equation on the plane R2. In the first part we try to
apply the method by Kirschgässner–Mielke to reduce the problem to the search of finite dimensional
submanifolds with periodic orbits on them in some formal infinite-dimensional dynamical system
generated by the stationary SH equation. It turns out that it cannot be done immediately due to
properties of the spectrum for the linearized system at the localized roll (a one-dimensional pulse).
In the second part we change roles of variables and formulate the problem as funding homoclinic
orbits to an equilibrium of the formal infinite-dimensional system in the space of periodic functions
in variable y. Staying apart the proof of the exact theorem on the existence of related center manifold,
we exploit the Bubnov–Galerkin method to derive the Hamiltonian finite-dimensional ODEs with four
or six degrees of freedom having the saddle type equilibrium whose homoclinic orbits correspond
to approximate solution on needed type. The search for homoclinic orbits is performed by means of
numerical methods.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Nontrivial nonlinear patterns are ubiquitous in various phys-
cal systems. When studying PDEs on extended domains, for
nstance, on the whole plane, localized rolls are simplest non one-
imensional structures observed in many experiments including
luid currents, optical wave-guides, and so forth. Our aim here
s to discuss the existence of periodically modulated localized
olls being, in a sense, the next candidate in complexity, after
ocalized pulses, among observed regular patterns. As a typi-
al pattern-forming model, we have chosen for the study the
eneralized Swift–Hohenberg equation being the variational type
quation when considered on the whole plane R2 under proper
onditions at infinity. Here by the generalized SH equation we
nderstand the equation with the quadratic term that was added
y Haken [1] into the original SH equation [2] for modeling
he threshold character of the appearance of the Eckhaus insta-
ility. This equation is called sometimes as quadratic–cubic SH
quation, other variants of SH equation are also widely inves-
igated, for instance, the cubic–quintic equation [3,4] and also
on-variational equations [5].

∗ Corresponding author.
E-mail addresses: lermanl@mm.unn.ru, llerman@hse.ru (L.M. Lerman).
ttps://doi.org/10.1016/j.physd.2023.133845
167-2789/© 2023 Elsevier B.V. All rights reserved.
It is worth mentioning that PDEs with high powers of space
derivatives are of great interest also for the soliton problem,
because they allow non-one-dimensional stable static soliton so-
lutions with finite energy. For standard equations, quadratic over
gradients, such solitons are unstable against collapse that is the
subject of so-called Hobbart–Derrick theorem [6,7]. Many exam-
ples are known in various models of field theory and condensed
matter physics. Note first the so-called Skyrme model equa-
tion for meson field with stable three-dimensional (3D) topo-
logical solitons treated as hadrons [8,9]. Non-one-dimensional
time-independent solitons appear for some standard non-linear
equations like non-linear Schrödinger equation [10] and Landau–
Lifshits equation [11], generalized by addition of fourth powers of
gradients, whereas without such terms stable solitons are absent.

So, we focus on the Swift–Hohenberg equation with the cubic
nonlinearity

ut = αu + βu2
− u3

− (1 +∆)2u, ∆ =
∂2

∂x2
+
∂2

∂y2
, (1)

that has been derived [2] in physics of convection near its
Maxwell point but was proved to be a typical example for the
pattern formation in different areas: Rayleigh–Bénard convec-
tion [2,12], nonlinear optics [13,14], granular media [15], chem-
ical reactions [16], liquid crystals and solidification, see [17] and
references there. Eq. (1) is of gradient type when studying it on
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ounded domains or on the whole space R2 with proper decay
onditions at infinity and can be written in the form
∂u
∂t

= −
δF
δu

with the functional F given as

F = −

∫
R2

dxdy
(
1
2
[(1 +∆)u]2 −

α

2
u2

−
b
3
u3

+
1
4
u4
)
.

ue to this form of the equation, its stationary (not depending
n t) solutions are of the first importance. So, we come to our
ain object in this paper, i.e. the stationary generalized Swift–
ohenberg equation (SH equation, for brevity) on the plane R2

ith coordinates (x, y)

1 +∆)2u = αu + βu2
− u3. (2)

It is well known that SH equation possesses different
one-dimensional patterns as x ∈ R: periodic, localized, i.e. pulses
and kinks, and many others [3,18–24]. The temporally depen-
dent equation (1) can also possess moving kinks in the form of
traveling wave u(x − ct) [20].

Multidimensional patterns of various structure were also
found [3,5,25]. Among them radial localized solutions [23,24,
26,27], being the simplest two-dimensional patterns, were in-
vestigated in many details including the snaking phenomena
for their bifurcation diagrams [4]. Also, localized patterns with
the hexagonal structure were investigated [3], quasi-patterns
based on interaction of two hexagonal lattices [21], etc. (see, the
overview [28]). Recently other very interesting structure were
discovered in numerical simulations [29].

For the stationary equation on the real line a pulse corre-
sponds to a solution u(x) that decays to the existing homogeneous
state u = 0 as |x| → ∞. The same solution, considered for
the planar equation, when (x, y) ∈ R2, looks like a localized
roll (or a ridge) extended in the variable y, but without any
structure in y. The question about existence of such pulse type
solutions, when x ∈ R, is reduced to a more or less standard
problem of the theory of smooth dynamical systems. Indeed, as
is known (see [19,20,22]) the equation on the spatial domain R
takes the form of the Euler–Lagrange–Poisson type equation [30].
Such equation can be transformed to a Hamiltonian system with
two degrees of freedom after the change of variables u = q1, u′

=

q2,−(u′
+ u′′′) = p1, u + u′′

= p2, here x plays the role of
the temporal variable, then the Hamiltonian is H = p1q2 −

p2q1 + p2/2 + αq21/2 + βq31/3 − q41/4. It is worth remarking that
the Hamiltonian system is, in addition, reversible with respect
to the involution σ : (q1, q2, p1, p2) → (q1,−q2,−p1, p2). This
mplies that a solution of the system is transformed to another
ts solution (or the same solution), if one applies the involution
nd the change x → −x.
This Hamiltonian system has the equilibrium at the origin
= (0, 0, 0, 0) whose type depends on parameters α, β , but

or negative α, that is assumed later on, the equilibrium is a
addle-focus (its eigenvalues are a complex quadruple ±ρ ± iσ ,
σ ̸= 0). In the phase space R4 such equilibrium has two smooth
wo-dimensional invariant manifolds passing through O, stable

s and unstable W u, which contain all orbits of the system
ending O, as x → ∞ (for W s), and x → −∞ (for W u).
he existence of a pulse, a solution u(x) that decays to zero as
x| → ∞, is reformulated as the existence of a homoclinic orbit
f the equilibrium O. Existence of such solutions was proved
irst in [19] via studying a bifurcation that occurs in the system,
hen α passes through zero (this is the so-called Hamiltonian
opf bifurcation [31]). Similar results were obtained in [22] using
eversibility and another normal form derived in [32]. In this
ystem the bifurcation is accompanied by the creation of homo-√

27/38 [19,33]. As a
linic orbits of the saddle-focus, if |β| > t

2

consequence of the reversibility, two small (of the order
√

−α)
symmetric homoclinic orbits are born from the equilibrium [32].
As was discovered in [34], the intersections of W s and W u along
both homoclinic orbits in the level H = H(O), where they lie, are
ransversal. This implies, in particular, the existence of infinitely
any multi-pulse homoclinic orbits of O, infinitely many saddle
eriodic orbits near the primary homoclinics and a complicated
earby orbit structure [35–38]. Because the homoclinic orbits are
ransverse, unstable manifold of the saddle-focus O intersects the
table manifold of some close saddle periodic orbit γ (in fact,
nfinitely many of them, see [36–38]), forming thereby a hete-
oclinic connection. Due to reversibility, a symmetric connection
s formed by the intersection of the stable manifold of O and the
nstable manifold of γ , therefore a heteroclinic contour is formed,
his is a base of the snaking bifurcation diagrams described in
everal papers [4,39–41].
It is worth to remark that homoclinic orbits to O do not

lways exist in the one-dimensional SH equation [42], but only
or parameters above some parabola-like curve in the parameter
lane (α, β). Therefore, to find such orbits and, as a consequence,
heteroclinic contour rigorously, one should find its source. This

s the codimension two point (α, β) = (0,
√
27/38), where the

Hamiltonian system has a doubly degenerate equilibrium O. As
a partial structure of the phase portrait, investigated in detail
near this equilibrium [19] for the truncated integrable normal
form of sixth order (the least order in this case), the merging
of the unstable manifold of the saddle-focus O and the stable
manifold of a saddle periodic orbit γ lying in the same level of the
Hamiltonian was proved (see Fig. 3(2) in [19]). In fact, in the full
system for parameters (α, β), close to the codimension two point,
this is not merging but they split but the splitting is exponentially
small [39,40] and the existence of such heteroclinic connection is
the source of snaking in this model, as in many other models.
After this contour can be continued in parameters farther from
the initial point using numerical methods.

The primary homoclinic orbits, which appear at the Hamilto-
nian Hopf bifurcation, are continued in parameters (α, β), and if
one considers the temporally dependent equation (1), the related
localized solutions can become temporally stable [42], though
initially, just after their appearance at α ≃ −0, they are tempo-
ally unstable [43]. Of course, finding such non-small homoclinic
olutions requires drawing numerical methods to search them
nd verifying their temporal stability [42]. The form of the curve,
btained by a continuation of such homoclinic orbits, on the
lane (L2-norm versus parameter α) usually has a characteristic
nake-like shape [39,40] (see Fig. 2, Fig. 1).
The goal of this paper is to understand, if other mechanisms

xist, except for a heteroclinic contour structure proposed and
umerically confirmed in [41,44], which will allow one to prove
he existence of periodically modulated rolls numerically and
igorously.

The structure of the paper is as follows. In Section 2 we
iscuss the known structures observed in the stationary Swift–
ohenberg equation and method by Kirschgässner–Mielke to find
eriodically modulated localized solutions. This needs to under-
tand the properties of the spectrum for the system linearized
t the pulse solution. These properties are investigated in Sec-
ion 3. The numerical investigations of the discrete spectrum are
erformed in Section 4. The reduction of the problem to solutions
f the finite-dimensional differential system is done in Section 6.
lso one finds there, using numerical methods, the homoclinic
rbits to the equilibrium at the origin which correspond to peri-
dically modulated rolls in this approximation. The discrepancies
f two- and three-mode approximations are calculated and their
raphs are plotted in Section 7. In the Addendum the details of
he calculation of symmetric homoclinic orbits are discussed.
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Fig. 1. Two different branches: dependence on α of pulse solutions, β = 2.0.

. The search for periodically modulated rolls

The question, we set up here, concerns transforming localized
ulses u(x) into periodically modulated in y rolls u(x, y), u(x, y +

) ≡ u(x, y), when Eq. (2) is considered on the whole plane
2. One may think that the method proposed by Kirschgäss-
er [45] and developed further by Mielke [46] (see also, [47–49])
an be useful here. The method is as follows. Let us formally
ewrite Eq. (2) as a system of two differential equations of the
econd order with the ‘‘time’’ y

∂2u
∂y2

= v − u −
∂2u
∂x2

,
∂2v

∂y2
= αu − v −

∂2v

∂x2
+ βu2

− u3.

Introducing new variables p = ∂u/∂y, q = ∂v/∂y gives the first
order differential system

∂u
∂y

= p,
∂p
∂y

= v−u−
∂2u
∂x2

,
∂v

∂y
= q,

∂q
∂y

= αu−v−
∂2v

∂x2
+βu2

−u3.

In the vector form we have a differential equation of the form
X ′

= LX + N(X), where the ′ denotes d/dy,

∂

∂y

⎛⎜⎝u
p
v

q

⎞⎟⎠ =

⎛⎜⎜⎝
0 1 0 0

−(1 +
∂2

∂x2
) 0 1 0

0 0 0 1
α 0 −(1 +

∂2

∂x2
) 0

⎞⎟⎟⎠
⎛⎜⎝u
p
v

q

⎞⎟⎠

+

⎛⎜⎝ 0
0
0

βu2
− u3.

⎞⎟⎠ . (3)

Assume Eq. (2) has a localized in x solution u0(x), a pulse, at
parameters (α0, β0). As is known from the previous studies [19,
34], this equation has localized pulses for all values (α, β) close
enough to (α0, β0). This assertion relies on the assumption of
a transverse intersection of W s,W u for the related Hamiltonian
system with ‘‘time’’ x that was proved to be valid for small α [34],
but needs in a numerical verification for non-small α like in [23].

Solutions to the system (3) of the form (u0(x, α, β), 0, (u0(x, α,
) + u′′

0(x, α, β)), 0) are the formal ‘‘equilibria’’. The linearization
f the system at such equilibrium leads to the linear system

∂

∂y

⎛⎜⎝u
p
v

q

⎞⎟⎠ =

⎛⎜⎜⎝
0 1 0 0

−(1 +
∂2

∂x2
) 0 1 0

0 0 0 1
α + 2βu0 − 3u2

0 0 −(1 +
∂2

∂x2
) 0

⎞⎟⎟⎠
⎛⎜⎝u
p
v

q

⎞⎟⎠ . (4)

Observe the useful fact for the further usage: the system (3)
can be considered formally as being Hamiltonian, this is reached
 t

3

Fig. 2. Dependence on α of pulse solutions, β = 2.0.

by introducing new variables

u = u, z = uy, v = u +∆u, w = −
∂

∂y
[u +∆u],

with conjugate pairs (u, w), (z, v). In new variables the system
casts

uy = z =
δH
δw
,

zy = v − u − uxx =
δH
δv
,

wy = v + vxx − αu − βu2
+ u3

= −
δH
δu
,

vy = −w = −
δH
δz

(5)

with the Hamiltonian

H =

∫
∞

−∞

dx
[
zw − uv +

1
2
v2 +

α

2
u2

+
β

3
u3

−
β

4
u4

+ (
∂u
∂x

)(
∂v

∂x
)
]
,

where δH/δv, etc., mean the variational derivatives of the func-
tional H in its entering functions.

The property to be a Hamiltonian system says that the spec-
trum of the linearized system is invariant w.r.t. two involutions:
complex conjugation and λ → −λ. In particular, if there is a
positive eigenvalue λ of some multiplicity in the spectrum, there
exists also the negative eigenvalue −λwith the same multiplicity.

The main assumption corroborated by numerical simulations
is

There are values (α0, β0) such that the spectrum of the matrix
inear differential operator in (4) has a pair of simple pure imaginary
igenvalues ±iω, and the rest of spectrum in C does not intersect the
maginary axis.

Suppose, the rest of spectrum does not intersect the imaginary
xis in C and, in addition, is separated out of the imaginary axis
n a finite distance. The corresponding problem (3), derived from
he elliptic PDE of the fourth order, is incorrect w.r.t. variable
, but it may become dynamically well defined on some finite-
imensional smooth invariant submanifolds of a center manifold
ype. If, in addition, the restriction of the system to this manifold
ives a smooth Hamiltonian or reversible system, then this mani-
old can contain families of periodic orbits. For the initial equation
his would give solutions periodic in y and localized in x.
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Recall the formulation of the Mielke theorem [46]. A differen-
tial system in a real Banach space X = X1 × X2 is studied

ẋ1 − Ax1 = f1(t, x, λ),
ẋ2 − Bx2 = f2(t, x, λ), x = (x1, x2),

here X1 is finite-dimensional, the spectrum of the operator A
elongs to the imaginary axis and the operator B, acting in the
pace X2, is linear, possibly unbounded closed operator with a
ense domain D(B), its spectrum is separated from the imaginary
xis. If the space X2 is also finite-dimensional, then the existence
f a center manifold for smooth f1, f2 is a standard theorem [50].
n order the theorem can be applied for finding solutions of
lliptic PDEs, the following restrictions are imposed:

1. The space X1 is finite-dimensional, eigenvalues of A are pure
maginary ones;

2. At some γ ∈ [0, 1) the closed operator B with the domain
D(B) ⊂ X2 has a closed fractional degree Bγ : D(Bγ ) → X2.
Denote X2,γ the Banach space D(Bγ ) with the norm ∥x2∥γ :=

∥x2∥ + ∥Bγ x2∥. Assume also neighborhoods of the origin to exist
U ′

1 ⊂ X1, U ′

2 ⊂ X2,γ , a dense subspace V ⊂ X2, and a natural
umber k ≥ 1 such that the inclusions hold

(f1, f2) ∈ Ck
b,u(R × U ′

1 × U ′

2 ×Λ, X1 × V ).

The region Λ of varying parameters is an open set in Rn, contain-
ing the value λ0, for which the equalities hold

fi(t, 0, λ0) = 0,
∂

∂xj
fi(t, 0, λ0) = 0, i, j = 1, 2, t ∈ R.

3. There exists a Green function K , for which

Bγ K (t)∥V→X2 ≤ max{1, |t|−α}be−β|t|

for t ̸= 0 and some α ∈ [0, 1) and b, β > 0,

and for any g ∈ C1
b (R, V ) the equation x′

2 − Bx2 = g has a unique
solution x2 ∈ C1

b (R, X2), defined as

x2(t) =

∫
R
K (s)g(t − s)ds.

These conditions hold, if the operator B defines a holomorphic
semi-group etB, t ≥ 0, then α = γ can be taken.

Under these conditions the following theorem is valid

Teopema 1 (Mielke). Suppose assumptions A1, A2, A3 hold. Then
neighborhoods of the origin U1 ⊂ X1, U2 ⊂ X2,γ , a neighborhood
Λ0 ⊂ Λ of the point λ0 and a function h ∈ Ck

b (R × U1 ×Λ0,U2,γ ),
exist with the following properties:

1. The set Mλ := {(t, x1, h(t, x1, λ))|(t, x1) ∈ R × U1} is a local
integral manifold of the system.

2. Each solution of the system staying in U1 ×U2,γ for all t ∈ R,
belongs to Mλ.

3. For all t ∈ R the equalities hold:

h(t, 0, λ0) = 0,
∂

∂x1
h(t, 0, λ0) = 0.

Observe that one of the essential requirements of the theorem
s that the spectrum of the operator B is separated out from the
maginary axis.

It is worth remarking that this idea was realized in many
ases [51–53], and for a more simple situation for the nonlinear
lliptic equation ∆u − u + u3

= 0 considered on the whole
plane R2 with coordinates (x, y) [54]. That equation has a pair
of symmetric pulse solutions u±(x) = ±

√
2/ cosh(x), they cor-

espond to homoclinic loops of the saddle equilibrium for the
 t

4

related Hamiltonian system with one degree of freedom. This lat-
ter system describes solutions independent on y, in this case the
initial elliptic equation becomes the Duffing type equation being
integrable. For the elliptic equation on the plane, the linearization
on such pulse solution gives a linear second order equation with a
parameter being the wave number of the periodically modulated
roll, i.e. the standard Schrödinger type linear differential equation
with a potential [55]

L = −
d2ϕ
dx2

+ (1 − 3u2
0(x))ϕ = λ2ϕ.

he differential operator L has, as a discrete spectrum, a unique
igenvalue λ2 = −3 with its eigenfunction h(x) = c/ cosh2(x), the
est of the spectrum is continuous and coincides with the semi-
xis [1,∞). Thus, the conditions on the linearized equation hold
nd the eigenvalue presents a boundary of the possible periods
or the modulated roll (see also [56]).

For the case under consideration the situation is more in-
olved, since we need previously to find both the family of
ocalized solutions and after that those values (α0, β0) along
he family for which the related localized solution has in the
pectrum a pair of imaginary eigenvalues. Also, we need to verify
hat the continuous spectrum is separated out from the imaginary
xis.
Thus, in order to apply the Mielke’s theorem, one needs to in-

estigate the location of the spectrum for the linearized operator
t the pulse solution.

. Examination of the spectrum

The linearization of the system (5) at the equilibrium state
u0(x), 0, 0, u0(x)+u′′

0(x)) of the pulse type gives the linear system
ith the ‘‘time’’ y

uy = z =
δH
δw
,

zy = v − u − uxx =
δH
δv
,

wy = v + vxx − (α + 2βu0(x)u − 3u2
0(x))u = −

δH
δu ,

vy = −w = −
δH
δz

(6)

Separation of variables exp[σy](ψ(x), z(x), w(x), χ (x)) leads to
the system for finding four functions (ψ(x), z(x), w(x), χ (x)),
namely, the spectral problem with the spectral parameter σ . Peri-
odic in y solutions to this equation correspond to pure imaginary
σ = ±iω, ω is the wave number in y. This system is transformed
to a system of two second order ordinary differential equations
with respect to the pair of real functions (ψ(x), χ (x))

−ψ ′′
− ψ + χ = σ 2ψ,

−χ ′′
− χ + (α + 2βu0(x) − 3u2

0(x))ψ = σ 2χ,
(7)

ith evident conditions of the localization

lim
|x|→∞

ψ(x) = 0, lim
|x|→∞

χ (x) = 0. (8)

ure imaginary σ gives negative σ 2
= −ω2.

The natural functional set-up for the problem (7)–(8) is the
igenvalue problem for the differential operator L in the left hand
ide of (7) acting in the space of vector-functions (ψ(x), χ (x)) and
nstead of conditions of localization (8) to seek for solutions to the
ystem which belong to the space L2(R) × L2(R). Then it is natu-
ally to start with the space C2

0 (R)×C2
0 (R) of functions (ψ(x), χ (x))

ith compact supports and then extend this differential operator
ill an operator L in L (R) × L (R).
2 2
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The differential operator l acting on a vector-function y(x) =

(ψ(x), χ (x))⊤ is as follows

l(y) = P0y′′
+ P2y, P0 =

(
1 0
0 1

)
, P2 =

(
1 −1

−α − g(x) 1

)
,

g(x) = 2βu0(x) − 3u2
0(x)g(x).

(9)

We use the standard inner product in L2(R) × L2(R)

⟨(ψ, χ ), (ψ1, χ1)⟩ =

∫
∞

−∞

[ψ(x)ψ∗

1 (x) + χ (x)χ∗

1 (x)]dx,

where asterisk means the complex conjugation. Let us calculate
the conjugate operator l∗. Using the inner product and integration
by parts we get

l∗ = P0y′′

1 + P⊤

2 y1, P⊤

2 =

(
1 −α − g(x)

−1 1

)
, y1(x) =

(
ψ1(x)
χ1(x)

)
.

Thus, we see that the operator l is not symmetric.
So, the boundary value problem (7)–(8) with the spectral

parameter κ = σ 2 is not self-adjoined. So, we need to investigate
this spectral problem taking into account that κ can be a complex
number. Because of sufficiently fast (exponential) decay |u0(x)| →

0, as |x| → ∞, the continuous spectrum of the problem is defined
by the limiting operator with constant coefficients [57]. We need
to find negative eigenvalues κ at some (α0, β0), they correspond
to pure imaginary σ . The discrete spectrum of the problem always
contains the point κ = 0, since a pair of functions ψ0(x) =

u′

0(x), χ0(x) = u′

0(x) + u′′′

0 (x) provides a localized solution to the
linearized equation (7) with boundary conditions (8).

One can separate out the spectrum from zero, if the operator
is restricted on the subspace of even functions or, in other words,
consider solutions in the space L2(R+)×L2(R+) with the boundary
conditions ψ ′(0) = χ ′(0) = 0 at the left end. Observe that
eigenvalues just correspond to those solutions of the system (7)
for which both ψ(x), χ (x) belong to L2(R).

Let us apply the theory of linear ordinary differential equations
to study the spectral problem. To distinguish the continuous
spectrum, we remark that the continuous spectra of the operators
L and L0

L =

(
d2

dx2
+ 1 −1

−α − g(x) d2

dx2
+ 1

)

=

(
d2

dx2
+ 1 −1

−α d2

dx2
+ 1

)
+

(
0 0

−g(x) 0

)
= L0 + L1, (10)

coincide, due to the rapid decay of u0(x) [57], where L0 is the
limiting operator as |x| → ∞.

So, we need first to study the spectrum of the operator L0. It
is a matrix differential operator with constant coefficients acting
in the space L2(R) × L2(R). The Fourier transform

f̂ (ξ ) =
1

√
2π

∫
∞

−∞

f (x) exp[−ξx]dx,

applied to both functions ψ(x), χ (x) gives as image the matrix
operator

G =

(
ξ 2 − 1 −1
−α ξ 2 − 1

)
(11)

and det(G−σ 2E) = 0 gives the biquadratic characteristic equation
P(σ ) = [ξ 2 − 1 − σ 2

]
2

− α = 0 with respect to σ . This
equation has solutions σ 2

= ξ 2 − 1 ± i
√

−α. This gives the
elation for the searching a continuous spectrum σ = Λ + iΩ ,
 a

5

σ 2
= Λ2

−Ω2
+ 2iΛΩ , where

Λ = ±

√√
(ξ 2 − 1)2 − α + ξ 2 − 1

2
,

Ω = ±

√√
(ξ 2 − 1)2 − α − ξ 2 + 1

2
. (12)

hus, in the complex plane σ = Λ+ iΩ we have two hyperbolas
ΛΩ =

√
−α/2 as the location of continuous spectrum of L0. In

articular, if we are interested in searching for solutions with σ =

iω, we have to set σ 2
= −ω2 and the spectrum curves show the

bsence of such points for the matrix differential operator L0.
Concerning the spectrum of the operator L the following as-

ertion holds

roposition 1. For any negative α and real κ differential operator
has either a bounded inverse operator or the related κ is an

igenvalue of the multiplicity one or two. The continuous spectrum
f the operator L coincides with the spectral curve ΛΩ =

√
−α/2

of the operator L0.

Proof. Let us introduce new coordinates Y = (q1, q2, p1, p2)⊤
with q1 = ψ , q2 = ψ ′, p1 = −χ ′, p2 = χ . Then the system (7)
asts as

′
= (Aκ + V (x))Y , Aκ =

⎛⎜⎝ 0 1 0 0
−1 0 0 1
−α 0 0 1 − κ

0 0 −1 0

⎞⎟⎠ ,

(x) =

⎛⎜⎝ 0 0 0 0
0 0 0 0

−g(x) 0 0 0
0 0 0 0

⎞⎟⎠ , (13)

ith the exponentially decaying function g(x). The eigenvalues
of the matrix A are quadruple of complex numbers (12) with
nonzero Λ,Ω . This implies that the system Y ′

= (Aκ + V (x))Y
possesses an exponential dichotomy of solutions on both semi-
axes x ∈ R+ and x ∈ R− [58]. The types of the dichotomy
are such that all solutions of the system with initial conditions
Y = Y0 at x0 = 0, which belong to some two-dimensional
subspace U+, exponentially decay to zero as x → ∞, but all
solutions with other initial conditions exponentially increase. For
solutions, as x → −∞, there is a unique two-dimensional
subspace U− such that solutions with initial conditions Y0 ∈ U−

at x0 = 0 exponentially decay to zero as x → −∞ but all other
solutions increase exponentially. These properties of solutions to
the system say that only three opportunities can be realized: (1)
subspaces U+ and U− intersect each other at the origin Y0 = 0
only (they are two transversal 2-planes in Y ). This means the
system to possess an exponential dichotomy of the type (2, 2) on
all R, and therefore for any bounded on R function f (x) there is a
unique bounded solution of the system Y ′

= (Aκ + V (x))Y + f (x).
This solution is represented via the Green function that exists
here for this equation, so L has a bounded inverse operator. These
values of κ belong to the resolvent set and for them the unique
solution to the system with f (x) ≡ 0 is the zeroth solution. In
particular, all κ = −σ 2 are such for g(x) = 0; (2) subspaces U+

nd U− intersect each other along a one-dimensional subspace,
hus there is a one-parametric family of solutions to the system
hich decay exponentially fast as |x| → ∞, any such solution
ives an eigenfunction corresponding to the eigenvalue κ; (3)
ubspaces U+ and U− coincide, then all solutions with initial
onditions on this 2-plane decay exponentially fast as |x| → ∞,
ny such solution gives the eigenfunction corresponding to the
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ouble eigenvalue κ . This eigenfunction belongs to L2(R) due to
exponential decaying as |x| → ∞.

For the operator L0 with constant coefficients for all κ we have
igenvalues of the matrix A being complex quadruple (see (12)).

Thus, the system Y ′
= AκY has no nonzero bounded solutions and

the limiting system (7), as |x| → ∞, has no solutions (ψ(x), χ (x))
hich belong to L2(R) × L2(R). □

So, the problem, we are interested in, consists in searching
hose κ < 0 which correspond to the cases (2) or (3). This is done
sing numerical methods and will be shown in the next Section 4.

. Numerical study of the discrete spectrum

In this section we present details of searching for eigenvalues
or the spectral problem (7)–(8). The idea is presented in the proof
f Proposition 1. We found several branches of pulse solutions,
wo of them are presented in Fig. 1, calculations were performed
or α < 0 and β = 2. These curves have a characteristic snake-
ike shape. We use later on the first family of pulse solutions u0(x)
see Fig. 2).

We fix β = 2 and move along the fixed curve decreasing
, starting at α ≃ −10−3, and calculate at these α the discrete
pectrum of the related linear differential operator, using the
lgorithm described in the previous section. More precisely, we
earch for symmetric solutions to the system (7), i.e. functions
ψ(x), χ (x)), ψ(−x) = ψ(x), χ (−x) = χ (x), ψ ′(0) = 0, χ ′(0) =

, which decay exponentially as |x| → ∞. To this end, we
consider solutions with asymptotics ψ(x) → 0, ψ ′(x) → 0,
χ (x) → 0, χ ′(x) → 0, as x → ∞. Because of exponentially
fast decay of the function g (see Section 3), as |x| → ∞, and the
representation for eigenvalues (12) for the limiting system, which
have a complex conjugate pair with negative real parts, there is
at x = 0 a two-dimensional subspace of initial conditions whose
related solutions of the system (7) decay exponentially to zero.
We need to find such subspace.

We deal in fact with the non-autonomous reversible linear
system (13). It transforms to itself under the changes Y → G(Y )
and x → −x, where G is the involution of the phase space R4.
Finding the initial subspace for decaying solutions cannot be done
directly, since the system is non-autonomous. We address here to
the numerical methods. To that end, we take L > 0 large enough,
where one can regard g(L) ≃ 0 and choose two independent
vectors Y 0

1 , Y
0
2 in the stable linear subspace of the limiting au-

tonomous system (see details in the Addendum). Using them as
initial vectors, we calculate numerically solutions of the system
(13) till x = 0. We get there two linearly independent vectors
and norm them, since they can be large enough in the norm.
Using the reversibility, we have simultaneously solutions with
initial vectors G(Y 0

1 ),G(Y
0
2 ) at x = −L where G is the reversing

involution of the system (13). We continue them till x = 0 and
therefore we get in the 4-dimensional space R4

0, corresponding
to x = 0, four vectors and calculate the determinant of the
matrix composed of these four vectors. This determinant (at fixed
parameters α, β) depends on the parameter ω and we search
zeros of the determinant, i.e. spectral points.

If the determinant equals zero, two subspaces obtained in R4
0

can intersect each other either along one-dimensional subspace
or they coincide, the first case gives simple eigenvalues and they
are double for the second case. In principle, one can exist several
such values of ω which correspond to different eigenvalues and
each of them can be continued in α. For instance, at α = −10−3

we found eight spectral points (they are colored by red, green,
blue and violet). When continuing in α, these points turned out be
connected by spectral curves in pairs, related curves are colored
with the same colors, the results are plotted in Fig. 3 (their
 T

6

Fig. 3. Spectrum of localized u0 solutions along the first family.

Fig. 4. Branches of modulated rolls in the plane (α, ω2) at the fine scale, β = 2.0.

agnification near the point α = 0, ω2
= 1 is shown on

ig. 4). The most interesting among them is the red curve being
he continuation of the red spectral point at α = −10−3. When
e move along this curve decreasing α, we reach the point A
it corresponds to the point A on the curve Fig. 2), where two
pectral lines coalesce. After that we move along the same curve
n Fig. 2, but in the backward direction.

A characteristic property of the curve in Fig. 2 is that at fold
oints, where two different pulses coalesce, the spectral curves
lso branches in α and the number of spectral points change.
t Fig. 3 we see the existence at a fixed negative α two real
igenvalues κ , negative and positive. The positive eigenvalue
orresponds to the pair of imaginary eigenvalues of the linear
ystem (6).
The curve Fig. 2 shows that at a fixed value α < 0 (and β = 2)

everal pulses can exist, for instance, at α = −0.4 there are four
ulses (in fact, there are more, since on the plot only a part of
he curve has shown). This suggests that at some fold points two
ifferent pulses can coalesce.

. Changing roles

Now we shall try to permute the roles of variables and con-
ider x as the temporal variable and formally the differential
quation be considered in the space of periodic in y functions.
o this end, let us rewrite Eq. (2) as a system of two differential
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quations of the second order with the ‘‘time’’ x

∂2u
∂x2

= v − u −
∂2u
∂y2

,
∂2v

∂x2
= αu − v −

∂2v

∂y2
+ βu2

− u3.

ntroducing new variables p = ∂u/∂x, q = ∂v/∂x gives the first
rder differential system

∂u
∂x

= p,
∂p
∂x

= v−u−
∂2u
∂y2

,
∂v

∂x
= q,

∂q
∂x

= αu−v−
∂2v

∂y2
+βu2

−u3.

n the vector form we have a differential equation of the form
′
= LX + N(X), where ‘‘the prime’’ denotes d/dx,

∂

∂x

⎛⎜⎝u
p
v

q

⎞⎟⎠ =

⎛⎜⎜⎜⎝
0 1 0 0

−(1 +
∂2

∂y2
) 0 1 0

0 0 0 1
α 0 −(1 +

∂2

∂y2
) 0

⎞⎟⎟⎟⎠
⎛⎜⎝u
p
v

q

⎞⎟⎠

+

⎛⎜⎝ 0
0
0

βu2
− u3.

⎞⎟⎠ .
his formal system is considered in the space of periodic in
functions of the period 2π/ω, where ω > 0 becomes an

dditional parameter. To fix the period 2π of the functions, we
cale the variable y, ξ = ωy, then ∂

∂y becomes ω ∂
∂ξ

and the system
asts

∂

∂x

⎛⎜⎝u
p
v

q

⎞⎟⎠ =

⎛⎜⎜⎜⎝
0 1 0 0

−(1 + ω2 ∂2

∂ξ2
) 0 1 0

0 0 0 1
α 0 −(1 + ω2 ∂2

∂ξ2
) 0

⎞⎟⎟⎟⎠
⎛⎜⎝u
p
v

q

⎞⎟⎠

+

⎛⎜⎝ 0
0
0

βu2
− u3.

⎞⎟⎠ . (14)

bserve the system (14) have a four-dimensional invariant plane
f solutions which do not depend on y (or ω = 0). The limit ω = 0

is singular (derivatives in ξ are lost), so this 4-plane is the slow
manifold of the problem, if ω assumes to be small but we shall
not suppose this.

The system on this 4-plane coincides with the system corre-
sponding to the one-dimensional SH equation. So, it does have
homoclinic orbits of the equilibrium O at the origin as α < 0. We
need to construct homoclinic orbits to O not lying in this 4-plane
for ω ̸= 0. The system (14) is O(2)-invariant, since it is invariant
with respect to the shift X(x, ξ + s) → X(x, ξ ), s ∈ [0, 2π ], and
also is invariant w.r.t. the reflection X(x, ξ ) → X(x,−ξ ). The 4-
plane is the fixed set of this action. Thus, the group G = O(2) acts
only on the fast variables being transversal to the 4-plane. Below
we restrict the system on the subspace of even 2π-periodic in ξ
functions.

Let us examine the linearization at the equilibrium X = 0
existing at all parameters. At any α we have the linear system

∂

∂x

⎛⎜⎝u
p
v

q

⎞⎟⎠ =

⎛⎜⎜⎜⎝
0 1 0 0

−(1 + ω2 ∂2

∂ξ2
) 0 1 0

0 0 0 1
α 0 −(1 + ω2 ∂2

∂ξ2
) 0

⎞⎟⎟⎟⎠
⎛⎜⎝u
p
v

q

⎞⎟⎠ .
(15)

ince we work in the space of even 2π-periodic in ξ functions,
ll components of the vector X are Fourier series in cos(nξ ) with
oefficients being functions in x. The related spectral problem for
7

the vector function exp[λx]Z(ξ ), Z(ξ ) =
∑

n≥0 An cos(nξ ) reduces
o the infinite system of two second order linear equations in
ariable ξ with the spectral parameter λ and the parameter ω ≥ 0
2un = −un + n2ω2un + vn, λ

2vn = αun − vn + n2ω2vn.

o, the spectrum is given by roots of the equation (1 + λ2 −
2ω2)2 = α. Thus, for α = 0 we conclude that all eigenvalues
re double, they are pure imaginary for |n| < [1/ω] and reals
or |n| > [1/ω]. Double eigenvalues have 2-dimensional Jordan
oxes of the normal form.
For α negative, the spectrum consists of infinite number of

imple eigenvalues forming complex quadruples√
n2ω2 − 1 ± i

√
−α,. For n = 0 this quadruple corresponds

to the saddle-focus on the invariant 4-plane, other quadruples
correspond to transverse coordinates to this 4-plane.

To avoid dealing with slow–fast problems, when ω is small,
e assume ω to belong to the interval (1/2, 1), then only modes
ith n = 0 and n = 1 give pure imaginary eigenvalues at
= 0. Higher modes with n ≥ 2 give double real eigenvalues

or the equilibrium X = 0. Thus, we expect to have a local center
anifold C corresponding to these double imaginary (if α = 0) or
losest to them quadruples of eigenvalues (if α < 0 and small).
he dimension of C in the space of even in ξ vector functions
s eight for this set of ω. This sub-manifold contains 4-plane (its
iece near X = 0, if more precisely). So, if we shall prove the
xistence of this center manifold C , using the method due to
irchgässner and Mielke [45,46,59] and more global construction
or α not small [48,49], and if this sub-manifold be sufficiently
mooth to apply results of the bifurcation theory, then we shall
e able to prove the existence of homoclinic orbits arising from
omoclinic orbit on the 4-plane. We hope to present further
etails somewhere.
Now suppose the center manifold C to exist and satisfies

ll necessary requirements of smoothness. For sufficiently small
egative α the problem for the eight-dimensional system on C
ear the equilibrium O becomes local: at α = 0 the system has
wo pairs of pure imaginary double eigenvalues ±iρ1, ±iρ2 and
or negative α small enough the system possesses two quadruples
f complex eigenvalues. This bifurcation problem is of codimen-
ion two but we have just two parameters α and ω. So, the
ifurcation problem reminds the Hamiltonian Hopf Bifurcation
HHB), but in a more involved set-up, since the degenerate system
as two pairs of pure imaginary eigenvalues instead of one for the
rdinary HHB. The problem can simplify, if we assume, as for our
ase, the system has an invariant 4-plane corresponding to the
irst double pair. We regard the problem of investigating this two-
arametric bifurcation to be very interesting and hope to return
o its study later. Now we try to model the problem of finding
eriodically modulated rolls reducing it to the finite-dimensional
roblem via Bubnov–Galerkin approximations.

. Bubnov–Galerkin method

In this section we exploit the Bubnov–Galerkin method. Here
e keep in mind that solutions we seek are periodic in y with
ome unknown period, so one can expand the solution in the
ourier series in periodic variable y. In fact, since the equation
s nonlinear, we scarcely can use this method for proving the
roper solutions. Nevertheless, if we shall find needed solutions
o the approximating system, this gives a numerical evidence that
hey do exist. The approximating system, that will be derived, can
lso have other solutions which may corroborate the existence of
olutions of other types for the SH equation, for instance, doubly
eriodic in x and y, and so forth.
To derive the approximating system of differential equations

nd perform numerical simulations, we shall search for even in y
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olutions and stay only three modes in the Fourier expansion

= u0(x)/2 + u1(x) cosωy + u2(x) cos 2ωy + · · · ,

here ω is unknown so far wave number. Then for the func-
ions ui(x), i = 0, 1, 2, we get the following system of ordinary
ifferential equations of the fourth order

(∆0 + 1)2u0 = αu0 + β(
1
2
u2
0 + u2

1 + u2
2)

−(
1
4
u3
0 +

3
2
u0u2

1 +
3
2
u0u2

2 +
3
2
u2
1u2),

(∆1 + 1)2u1 = αu1 + βu1(u0 + u2)
−

3
4u1(u2

0 + u2
1 + 2u0u2 + 2u2

2),

(∆2 + 1)2u2 = αu2 + β(u0u2 +
1
2
u2
1)

−
3
4
(u0u2

1 + u2
0u2 + 2u2

1u2 + u3
2),

here ∆k =
d2

dx2
− k2ω2, k = 0, 1, 2.

(16)

he one-mode and two-mode approximations are obtained from
his system, if we set u1 = u2 = 0 or u2 = 0, respectively. We
ntend to compare the conclusions concerning the existence of
eriodically modulated in y and localized in x solutions in these
ystems.
It is more convenient for the study to reduce these equations

o the form of a system of the Euler–Lagrange equations, and
urther to a Hamiltonian system, where solutions we search for
orrespond to homoclinic orbits of the equilibrium state at the
rigin. We re-scale first the equation for u0 : u0 →

√
2u0,

fter that we come to the system of Euler–Lagrange differential
quations that is transformed the system (16) to the Hamiltonian
orm with the Hamiltonian
H = p1q2 − p2q1 + [p3q4 − (1 − ω2)p4q3]

+ [p5q6 − (1 − 4ω2)p6q5]+
1
2 (p

2
2 + p24 + p26) +

α
2 (q

2
1 + q23 + q25)

+
β

√
2
[
1
3q

3
1 + q1(q23 + q25) +

1
√
2
q23q5]−

1
16

[2q41 + 3q43 + 3q45 + 12q21(q
2
3 + q25) + 12

√
2q1q23q5 + 12q23q

2
5]

nd the standard symplectic 2-form dq ∧ dp=
∑

i dqi ∧ dpi, q =

(q1, . . . , q6)⊤, p = (p1, . . . , p6)⊤, H = H(q, p). Thus, we come to
the Hamiltonian system q′

= Hp, p′
= −Hq, depending on three

parameters α, β, ω

q′

1 = q2,
q′

2 = p2 − q1,
q′

3 = q4,
q′

4 = p4 − (1 − ω2)q3,
q′

5 = q6,
q′

6 = p6 − (1 − 4ω2)q5,
p′

1 = p2 − αq1 −
β

√
2
(q21 + q23 + q25) +

1
2q

3
1

+
3
2q1(q

2
3 + q25) +

3
√
2

4 q23q5,
p′

2 = −p1,
p′

3 = (1 − ω2)p4 − αq3 − βq3(
√
2q1 + q5)

+
3
2q3(q

2
1 +

1
2q

2
3 + q25 +

√
2q1q5),

p′

4 = −p3,
p′

5 = (1 − 4ω2)p6 − αq5 − β(
√
2q1q5 +

1
2q

2
3)

+
3
4 (

√
2q1q23 + 2q21q5 + 2q23q5 + q35),

p′

6 = −p5.

(17)

The system (17) has an invariant symplectic four-dimensional
plane q3 = q4 = q5 = q6 = p3 = p4 = p5 = p6 = 0. The
restriction of the system (17) on this 4-plane gives the Hamilto-
nian system that corresponds to the Swift–Hohenberg equation
on the spatial domain R and for α < 0 localized pulses match
to homoclinic orbits of the saddle-focus O. But for the system
 H

8

(17) we are interested in homoclinic orbits to the equilibrium O
not lying in this 4-dimensional subspace, because only they are
related with modulated in y localized rolls. For such solution, if
it exists, at least one of the coordinate function qj(x), pj(x), j ≥ 3,
as not vanish identically.
The system (17) is, in addition, reversible w.r.t. the linear

nvolution L(q, p) = (Seq, Sop), Seq = (q1,−q2, q3,−q4, q5,−q6),
op = (−p1, p2,−p3, p4,−p5, p6). The fixed point set Fix(L) of the
nvolution L is the 6-dimensional plane q2 = q4 = q6 =p1 =

3 = p5 = 0. The equilibrium O (L(O) = O) at the origin of the
amiltonian system (17) is symmetric, i.e. O ∈ Fix(L).
In order to have homoclinic orbits of O, the equilibrium should

ave eigenvalues with positive and negative real parts. The lin-
arization matrix at the equilibrium O consists of three indepen-
ent (4×4)-blocks and its characteristic polynomial is the product
f three biquadratic polynomials

(λ2 + 1)2 − α][(λ2 + 1 − ω2)2 − α][(λ2 + 1 − 4ω2)2 − α].

o, if α = 0 and ω ∈ (1/2, 1) the equilibrium has two double pure
maginary eigenvalues ±i, ±i

√
1 − ω2 and a pair of real double

eigenvalues ±
√
4ω2 − 1, all of them are non semi-simple ones,

i.e. with 2 × 2 Jordan boxes. Hence, for this set of parameters
the local center manifold C exists and is eight-dimensional. For
negative α roots of the characteristic polynomial are four complex
quadruples

±

√
√
1 − α − 1

2
± i

√
√
1 − α + 1

2
,

±

√√
(ω2 − 1)2 − α + ω2 − 1

2
± i

√√
(ω2 − 1)2 − α + 1 − ω2

2
,

±

√√
(4ω2 − 1)2 − α + 4ω2 − 1

2

±i

√√
(4ω2 − 1)2 − α + 1 − 4ω2

2
.

Thus, in this approximation the situation is similar as for the
full system (4). For negative α the squares of distances of these
quadruples from the imaginary axis in the complex plane C of
eigenvalues are ordered as follows

1
2
[
√
1 − α − 1] <

1
2
[

√
(ω2 − 1)2 − α + ω2

− 1]

<
1
2
[

√
(4ω2 − 1)2 − α + 4ω2

− 1].

So, the leading stable direction (and unstable one, as well) of the
equilibrium at the origin is two-dimensional and coincides with
the invariant plane corresponding to the pair of eigenvalues with
negative real parts of the first quadruple. We expect that homo-
clinic orbits of this equilibrium will approach to the equilibrium
along this direction (a generic case).

We search for symmetric homoclinic orbits Γ to O, their
symmetricity means the invariance L(Γ ) = Γ or, equivalently,

∩ Fix(L) consists of the unique point. This implies that we
eed to find the point of intersection of W u(O) with the fixed
-plane Fix(L). If for some values of parameters (α0, β0, ω0) the
ntersection of these two six-dimensional submanifolds in R12 is
onempty and transverse at the intersection point, the symmetric
omoclinic orbit will preserve for all close values of parameters.
hus, transversal homoclinic orbits have the unique continuations
n parameters and no their branching can occur.

Let us recall some useful facts of the theory of homoclinic so-
utions in Hamiltonian systems. Suppose a smooth (autonomous)
amiltonian system with n degrees of freedom be given and
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mooth function H be its Hamiltonian. Suppose p be an equilib-
ium of a saddle type, this means no eigenvalues on the imaginary
xis to exist for the linearization matrix at p. For a Hamiltonian
ystem the spectrum of the linearization matrix at the equilib-
ium p is invariant w.r.t. the symmetry λ → −λ in C, hence
stable W s(p) and unstable W u(p) manifolds of p are smooth
submanifolds of the same dimension, they both belong to the
level set H = H(p) due to invariance of H . This level set is a
smooth submanifold (of the dimension 2n − 1) near every its
point, except for critical points where dH = 0, i.e. equilibria
of the vector field XH . Near a critical point the level H = H(p)
looks like a cone. Thus, the intersection of stable W s(p) and
nstable W u(p) manifolds in H = H(p), if it exists, is generically
ransversal. A transversal homoclinic orbit to p is preserved under
arying parameters entering smoothly into H , but a homoclinic
rbit can be destroyed, if at some specific value of the parameter
his homoclinic orbit becomes non-transversal or this homoclinic
rbit gets stuck at some periodic orbit lying in the same level of
.
The system (17) does have homoclinic orbits on the invariant

-plane [19,22] and these orbits are transversal (within this 4-
lane) for majority values of the parameter α. This transversality
ollows from [34] for small negative α, but it is a numerically
heckable fact for not small α. So, the branching of such ho-
oclinic orbit for the full system (17) can occur, if either the

ransversality loses within this 4-plane or the tranversality within
he invariant 4-plane preserves, but the tangency arises due to
ransverse variables. In the former case the branching occurs
ear the fold points on the snake-like curve (see Figs. 2 and 1).
n the latter case the homoclinic orbit on the 4-plane persists,
ut the branching gives one more homoclinic orbit in the trans-
erse directions to the 4-plane, an example of such branching is
emonstrated in Section 6.1.
Take ω as the governing parameter in our case. So, in order

t fixed values of α0, β0 a homoclinic orbit to p, not lying wholly
n 4-plane, would arise at some parameter ω, this orbit should
ecome at this ω non-transversal in the direction transverse to 4-
lane. To find such special (spectral) values of ω, we linearize the
ystem (17) with fixed α0, β0 at a symmetric homoclinic solution
ying in the invariant 4-plane and seek those ω at which the
ntersection of stable and unstable manifolds within the level

= H(O) = 0 be non-transversal.
The linearization of (17) at the homoclinic solution in the in-

ariant 4-plane, corresponding to the pulse u0(x), looks as follows

ξ ′

1 = ξ2,

ξ ′

2 = η2 − ξ1,

ξ ′

3 = x4,
ξ ′

4 = η4 − (1 − ω2)ξ3,
ξ ′

5 = ξ6,

ξ ′

6 = η6 − (1 − 4ω2)ξ5,
η′

1 = η2 − (α + β
√
2u0 −

3
2u

2
0)ξ1,

η′

2 = −η1,

η′

3 = (1 − ω2)η4 − (α + β
√
2u0 −

3
2u

2
0)ξ3,

η′

4 = −η3,

η′

5 = (1 − 4ω2)η6 − (α + β
√
2u0 −

3
2u

2
0)ξ5,

η′

6 = −η5.

(18)

ere we keep into account that for such homoclinic orbit one has
1(x) =

√
2u0(x), q2(x) =

√
2u′

0(x), p1(x) = −
√
2(u′

0(x) + u′′′

0 (x)),
2(x) =

√
2(u0(x) + u′′

0(x)), and qi = pi = 0 for i ≥ 3). We
ee that the linearized system breaks into three independent
ubsystems of the fourth order, first of which corresponds to the
inearization on the localized solution for the system derived for
he SH equation on R. These three subsystems can be transformed
o the three independent linear second order differential systems
9

Fig. 5. Dependence of the pulse solution on α.

w.r.t. three pairs of functions (ξ1, η2), (ξ3, η4), (ξ5, η6)

ξ ′′

1 + ξ1 = η2, η
′′

2 + η2 = (α + β
√
2u0 −

3
2u

2
0)ξ1,

ξ ′′

3 + (1 − ω2)ξ3 = η4,

η′′

4 + (1 − ω2)η4 = (α + β
√
2u0 −

3
2u

2
0)ξ3,

ξ ′′

5 + (1 − 4ω2)ξ5 = η6,

η′′

6 + (1 − 4ω2)η6 = (α + β
√
2u0 −

3
2u

2
0)ξ5,

here each subsystem coincides with the system (7) for σ 2
=

, σ 2
= (iω)2 and σ 2

= (2iω)2, respectively. Observe the
ollowing property of this obtained system: if we find a nontrivial
olution ξ3(x), η4(x), decaying to zero as |x| → ∞ to the second
air of equations at some ω2

∗
, then the set of functions ξ5(x) =

ξ3(x), η6(x) = η4(x) gives a solution of the third pair of equations
with ω = ω∗/2. In particular, if we fix somehow ω varying within
the interval (1/2, 1), then the branching at the wave number ω/2
is impossible.

We know from our simulations and results of [19,34] that
in the invariant 4-plane the Hamiltonian system for variables
(q1, q2, p1, p2) (not depending on ω) has transversal homoclinic
orbits to the saddle-focus O for small enough α < 0 and β >
√
27/38. Transversality of such homoclinic orbit implies an ex-

ponential dichotomy of the first linear subsystem in (18) on the
whole R. Second and third subsystems do have at some (spectral)
points ω bounded solutions being intersections at x = 0 of the
subspace of solutions decaying at x = −∞ with the subspace of
solutions decaying at x = +∞ (see Proposition 1). These inter-
sections just say on tangency of stable and unstable manifolds of
the point O.

When we have found a spectral point ω∗ for the linear system,
we change other parameters of the system (17), in our case
that was α (we kept β = 2 in our simulations) and construct
numerically close homoclinic orbit branching from that on the
4-plane. We do it for the 2-mode and 3-mode subsystems, the
comparison of found homoclinics can be seen in Figs. 5 and
6. Our numerical findings of homoclinic solutions to O for the
approximating system (17) allow us to present the pictures of
expected periodically modulated rolls for the initial equation (2)
(see Fig. 7)

In the next Section we present the numerical simulations for
finding homoclinic orbits and their comparison when taking into
account two- and three-mode approximations. In fact, we search
for the branching of needed symmetric homoclinic orbits from
symmetric homoclinic orbits on the invariant 4-plane.
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Fig. 6. Comparison of curves of homoclinic solutions in α for two- and
hree-mode systems.

.1. Illustration for the 2 DOF Hamiltonian

The idea formulated above can be illustrated on the case of the
east dimension, namely, a Hamiltonian system in two degrees of
reedom in R4 with symplectic coordinates (x1, x2, y1, y2) that has
a saddle equilibrium at the origin. Assume the system possesses
an invariant symplectic 2-plane with the restriction on the plane
being a system with a homoclinic orbit to a saddle equilibrium.
Denote H(x1, x2, y1, y2) the Hamiltonian that takes the form

H(x1, x2, y1, y2) = h(x1, y1) +
1
2
(x22h20 + 2x2y2h11 + y22h02),

here functions hij depend on all four variables. We assume
he point O = (0, 0, 0, 0) be an equilibrium of a saddle type
(its eigenvalues are (λ1, λ2,−λ1,−λ2), λi ̸= 0) and the system
has invariant symplectic plane x2 = y2 = 0, the restriction of
the Hamiltonian on this plane is h(x1, y1). Let x01(t), y

0
1(t) be a

homoclinic orbit Γ to O, i.e. |x01(t)| → 0, |y01(t)| → 0 as |t| → ∞.
The linearization of the system at Γ is

ξ̇2 = h0
11ξ2 + h0

02η2,

η̇2 = −h0
20ξ2 − h0

11η2,
(19)

where functions h0
ij are calculated along the homoclinic orbit:

h0
ij(x

0
1(t), 0, y

0
1(t), 0). Because O is a saddle, we have the inequality

at the limit |t| → ∞: h0
20h

0
02 − (h0

11)
2 < 0. Thus the linear

non-autonomous asymptotically autonomous system (19) has in
the extended phase space R2

× R on the section cross-section
R2

0 = R2
× {0} two one-dimensional subspaces l+, l−, of which

the first consists of those initial vectors, whose related solutions
decay to zero at t → ∞, but for the second this does at t → −∞.
These two subspaces can be either transversal or coincide, in the
first case the homoclinic orbit Γ is transversal in R4 (stable and
unstable two-dimensional manifolds of O intersect each other
transversely in the level H = H(O)), in the second case Γ is
tangent homoclinic orbit. It is worth remarking that the tangency
guarantees the tangency of stable and unstable manifolds in the
linear approximation. To understand the nearby structure of the
flow, one needs to know what type of tangency is: quadratic,
cubic or higher degenerate, etc. (see details in [60–63]).

7. Discrepancies

In this section we present the discrepancies for two- and

three-mode approximations to estimate the adequateness of the

10
Bubnov–Galerkin method. We found that they are of the order
10−2 and 10−3, see, Fig. 8.

Recall that the discrepancy of some approximating solution
Ua(x, y) for Eq. (2) is the function

err(x, y) = (1 +∆)2Ua − αUa + βu2
a − U3

a .

We keep into account that function Ua is the sum u0(x)/2 +

u1(x) cosωy + u2(x) cos 2ωy and functions ui(x) satisfy
Eqs. (16). Denote erri, i = 1, 2, the function err , when we hold
in Ua two (u2 = 0) and three modes, respectively. Then we get

err3(x, y) = β[u1u2 cos 3ωy +
1
2u

2
2 cos 4ωy]

−[ 14u1(u2
1 + 3u2

2 + 6u0u2) cos 3ωy+
3
4u2(u0u2 + u2

1) cos 4ωy +
3
4u1u2

2 cos 5ωy +
1
4u

3
2 cos 6ωy],

err2(x, y) =
1
2βu

2
1 cos 2ωy −

1
4u1(3u0u1 cos 2ωy + u2

1 cos 3ωy),

e plot the related functions in Fig. 8. We see the rather good
pproximations: the order of err2 is 10−2 and for err3 is 10−3.

. Conclusion

We investigate solutions to the stationary Swift–Hohenberg
quation on the plane being periodic in some direction and local-
zed in other transverse direction. Here these directions are along
ariables y and x. An ideal intention we would like to reach is
ome mathematical tool that gives the rigorous basement for the
xistence of such solutions, similar to what was done in [48,49,
6,64]. Unfortunately, we were not succeeded in this direction so
ar, but rather presented some numerical corroborations for them.
ur work with the approximate system (17) and calculations of
omoclinic orbits show that this system plausibly reflects the
ehavior on the center manifold (if it exists) of the formal system
3). So, the branching of homoclinic solutions from those on
he invariant 4-plane that corresponds to the one-dimensional
H equation can be considered as one more mechanism of a
ormation periodically modulated rolls, in addition to the found
n papers [4,22,41,44].

. Addendum: Asymptotics of solution as x → −∞

Taking into account that u0(x) → 0 as x → −∞ we get the
ifferential system for ψ, χ

ψ ′′
+ (1 − ω2)ψ − χ = 0,

−α0ψ + χ ′′
+ (1 − ω2)χ = 0.

(20)

he characteristic equation

λ2 + 1 − ω2)2 − α0 = 0

has roots

λ2 = ω2
− 1 ± ı

√
−α0.

ecall that pulses exist only if α0 < 0. So, we need to find two
oots with Re(λ) > 0. Such roots are two complex conjugate
umbers

± = Λ± ıΩ =

√√
(ω2 − 1)2 − α0 + ω2 − 1

2

± ı

√√
(ω2 − 1)2 − α0 − ω2 + 1

2
Therefore, the complex solution of the system (20) has the form

ψ(x) = eΛx(cosΩx + ı sinΩx), χ (x) = (λ2
+

+ 1 − ω2)ψ(x).

ere we take into account that λ2
+

= ω2
− 1 + ı

√
−α0, and

therefore
ψ(x) = eΛx(cosΩx + ı sinΩx),

√
Λx
χ (x) = ı −α0e (cosΩx + ı sinΩx).
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Fig. 8. Discrepancies for 2-mode (left) and 3-mode (right) approximations.
o solve the Cauchy problem we need to calculate derivatives

ψ ′(x) = eΛx(Λ cosΩx −Ω sinΩx + ı(Λ sinΩx +Ω cosΩx)),
χ ′(x) = ı

√
−α0eΛx(Λ cosΩx −Ω sinΩx

+ı(Λ sinΩx +Ω cosΩx)).

Thus, two linear independent solutions decaying at infinity
x = −L, L ≫ 1, can be singled out by conditions⎛⎜⎝ ψ

ψ ′

χ

χ ′

⎞⎟⎠
(−∞)

1

=

⎛⎜⎝ cosΩL
Λ cosΩL −Ω sinΩL

−
√

−α0 sinΩL
−

√
−α0(Λ sinΩL +Ω cosΩL)

⎞⎟⎠ (21)

nd⎛⎜⎝ ψ

ψ ′

χ

χ ′

⎞⎟⎠
(−∞)

2

=

⎛⎜⎝ sinΩL
Λ sinΩL +Ω cosΩL

√
−α0 cosΩL

√
−α0(Λ cosΩL −Ω sinΩL)

⎞⎟⎠ . (22)

ere a multiplier exp(ΛL) has been cut being inessential for our
urposes.
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