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KNOT AS A COMPLETE INVARIANT OF THE DIFFEOMORPHISM
OF SURFACES WITH THREE PERIODIC ORBITS

D. A. Baranov, E. S. Kosolapov, and O. V. Pochinka UDC 517.938.5

Abstract: It is known that Morse–Smale diffeomorphisms with two hyperbolic periodic orbits exist
only on the sphere and they are all topologically conjugate to each other. However, if we allow three
orbits to exist then the range of manifolds admitting them widens considerably. In particular, the
surfaces of arbitrary genus admit such orientation-preserving diffeomorphisms. In this article we find
a complete invariant for the topological conjugacy of Morse–Smale diffeomorphisms with three periodic
orbits. The invariant is completely determined by the homotopy type (a pair of coprime numbers) of
the torus knot which is the space of orbits of an unstable saddle separatrix in the space of orbits of
the sink basin. We use the result to calculate the exact number of the topological conjugacy classes of
diffeomorphisms under consideration on a given surface as well as to relate the genus of the surface to
the homotopy type of the knot.
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1. Introduction and Statements

Consider a closed orientable surface Sp of genus p ≥ 0 which is equipped with some metric d.
Two homeomorphisms f, f ′ : Sp → Sp are topologically conjugate whenever there exists an orientation-
preserving homeomorphism h : Sp → Sp with f ′ = h ◦ f ◦ h−1.

A point x ∈ Sp is wandering for a given homeomorphism f whenever there exists an open neighbor-
hood Ux of x such that fn(Ux) ∩ Ux = ∅ for all n ∈ N. Otherwise, the point is nonwandering. The set
of nonwandering points for f is referred to as the nonwandering set and denoted by Ωf . If Ωf is a finite
set then each r ∈ Ωf is periodic with some period mr ∈ N.

If f is a diffeomorphism then r ∈ Ωf is hyperbolic whenever all eigenvalues of the Jacobi matrix(∂fmr

∂x

)∣∣
r
have absolute values distinct from 1. If the absolute values of all eigenvalues are less or greater

than 1 then the point r is a sink or a source. Sinks and sources are called nodes. If a hyperbolic periodic
point is not a node then it is a saddle point.

Given a hyperbolic periodic point r of a diffeomorphism f , denote by qr the number of the eigenvalues
of the Jacobi matrix

(∂fmr

∂x

)∣∣
r
whose absolute values are greater than 1. The hyperbolic structure of

a periodic point r implies the existence of the stable manifold

W s
r = {x ∈ Sp : lim

k→+∞
d(fk·mr(x), r) = 0}

and the unstable manifold

W u
r = {x ∈ Sp : lim

k→+∞
d(f−k·mr(x), r) = 0}

which are smooth embeddings of R2−qr and Rqr respectively.
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Both stable and unstable manifolds are called invariant manifolds. Each connected component
of W u

r \ r or W s
r \ r is called an unstable or a stable separatrix. A diffeomorphism f : Sp → Sp is

a Morse–Smale diffeomorphism whenever Ωf is finite and hyperbolic, while the invariant manifolds of
periodic points meet transversely. If the invariant manifolds of distinct saddle points are disjoint then
the Morse–Smale diffeomorphism f : Sp → Sp is gradient-like.

The periodic data of the periodic orbit Or of a periodic point r is the tuple (mr, qr, νr), where mr

is the period of r, while qr = dim W u
r , and νr is the orientation type of r; i.e., νr = +1 or νr = −1

according as fmr |Wu
r
preserves or changes orientation. For each orientation-preserving diffeomorphism

the orientation type of all nodes is +1, while the orientation type of saddle points can be either +1 or −1.
Denote by G the set of orientation-preserving Morse–Smale diffeomorphisms f : Sp → Sp whose

nonwandering set consists precisely of three periodic orbits.

Proposition 1.1 [1, Theorems 2.1 and 2.2]. The nonwandering set of each diffeomorphism f ∈ G
consists of a sink orbit Oω, a source orbit Oα, and a saddle orbit Oσ. Furthermore, the saddle orbit has
the negative orientation type, while at least one of the nodal orbits of the diffeomorphism has period 1.

To make this article self-contained, we prove Proposition 1.1 in Section 3. Henceforth, assume for
definiteness that the sink ω is fixed. Its hyperbolicity implies that the diffeomorphism f |W s

ω
is topologically

conjugate using a homeomorphism ψf : W s
ω → R2 to the linear diffeomorphism A : R2 → R2 described as

A(x1, x2) =
(x1
2
,
x2
2

)
;

see [2, Proposition 2.5] for instance. Put T2 = (R2 \ (0, 0))/A and agree to denote the natural projection
by p : R2 \ (0, 0) → T2. Introduce generators on the torus as follows: Refer as a parallel L on T2 to the
image of

S1 = {(x1, x2) ∈ R2 : x21 + x22 = 1},

i.e., L = p(S1) oriented counterclockwise; every parallel has homotopy type 〈1, 0〉. Refer as a meridian M
to the image of the positive semiaxis Ox+1 = {(x1, x2) ∈ R2 : x1 > 0, x2 = 0} of the axis Ox1, i.e.,
M = p(Ox+1 ), oriented in the direction of the decreasing of x1; the meridian has homotopy type 〈0, 1〉;
see Fig. 1.

Fig. 1. The parallel L and meridian M on a torus.

Put p
f
= pψ

f
: Vf → T2 and γ

f
= p

f

(
W u

Oσ

)
. According to [2], γf on T2 is an essential knot of

homotopy type 〈λf , μf 〉, where μf > 0 and gcd(λf , μf ) = 1. The homotopy type of γ
f
depends on the

choice of ψ
f
so that if (λ̃f , μ̃f ) is the homotopy type of γ

f
for some homeomorphism ψ̃

f
distinct from ψ

f

then μ̃f = μf and λ̃f ≡ λf (mod μf ). Therefore, without loss of generality we may choose ψ
f
so that γ

f

has homotopy type
〈λf , μf 〉 : μf > 0, gcd(λf , μf ) = 1, 0 ≤ λf < μf . (∗)
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The main result of this article is a proof of the following theorems:

Theorem 1. The topological conjugacy class of a diffeomorphism f ∈ G is uniquely determined by
the homotopy type 〈λf , μf 〉 of the knot γf

; i.e., two diffeomorphisms f, f ′ ∈ G are topologically conjugate
if and only if λf = λf ′ and μf = μf ′ .

Theorem 2. On a surface Sp of genus p ≥ 0 a diffeomorphism f ∈ G with the knot γf of homotopy
type 〈λf , μf 〉 exists if and only if

μf = 4p or μf = 4p+ 2.

Furthermore, the number Np of the topological conjugacy classes of diffeomorphisms f ∈ G on the
surface Sp can be calculated as

Np = ϕ(4p) + ϕ(4p+ 2),

where ϕ(n) is Euler’s totient function counting the positive integers coprime to n and not exceeding n.

2. Periodic Homeomorphisms of a Surface

A homeomorphism ϕ : Sp → Sp is periodic whenever there exists n ∈ N such that ϕn = id. The least
of these n is the period of ϕ. A point x0 is called a point of smaller period n0 < n of a homeomorphism ϕ
whenever ϕn0(x0) = x0.

Henceforth we consider orientation-preserving periodic homeomorphisms. According to Nielsen’s
results [3], see also [4], for every such homeomorphism ϕ : Sp → Sp the set of points of smaller period is
finite, while the orbit space of the action of ϕ on Sp is a sphere with g handles (a modular surface). In
a neighborhood of a point x0 of smaller period n0 the mapping fn0 is conjugate to the rotation by some
rational angle 2π δ0

λ0
, where λ0 =

n
n0
.

Denote by Xi, for i = 1, . . . , k, the orbits of points of smaller period; and by ni, their periods. Put

λi =
n

ni
.

Denote by δi
λi

the corresponding winding number and define di by the condition diδi ≡ 1 (mod λi).

The tuple (n, p, g, n1, . . . , nk, d1, . . . , dk) of parameters of a periodic homeomorphism ϕ is the complete
characteristic of ϕ.

Proposition 2.1 [3]. Two periodic homeomorphisms are topologically conjugate if and only if they
share complete characteristics up to reindexing.

Proposition 2.2 [3]. The complete characteristic (n, p, g, n1, . . . , nk, d1, . . . , dk) is realized by some
periodic homeomorphism ϕ : Sp → Sp if and only if the following are met:

• 2p+
∑k

i=1 ni − 2 = n(2g + k − 2),

•
∑k

i=1 dini ≡ 0 (mod n),

• if g = 0 then gcd(d1n1, . . . , dknk, n) = 1.

Proposition 2.3 [4, 5]. Given a periodic homeomorphism ϕ with complete characteristic

(n, p, n1, . . . , nk, d1, . . . , dk),

the following hold:

(1) g ≤ p;

(2) k ≤ 2(p+ 1);

(3) n ≤ 4p+ 2.

These inequalities imply immediately that finding all periodic homeomorphisms on a surface with
a fixed number of handles is an algorithmic problem. The following lemma yields some algorithmic
criterion for the realizability of a characteristic by a periodic homeomorphism.
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Lemma 1 (algorithmic criterion). The tuple (n, p, g, n1, . . . , nk, d1, . . . , dk) is the complete charac-
teristic of a periodic mapping ϕ if and only if the following are met, with λi =

n
ni

and λ = lcm(λ1, . . . , λk):

In the case g = 0:

(1)
∑k

i=1
di
λi

∈ {1, . . . , k − 1};

(2) n = λ and p =
λ−

∑k

i=1
λ
λi

2 + 1;

(3) gcd(d1, . . . , dk, n) = 1.

In the case g �= 0:

(1)
∑k

i=1
di
λi

∈ {1, . . . , k − 1};

(2) n = τλ, τ ∈ N, and p =
λ(2g+k−2)−

∑k

i=1
λ
λi

2 τ + 1.

Proof. Condition (1) follows from the first claim of Proposition 2.2. Namely,

d1n1 + · · ·+ dknk ≡ 0 (mod n) ⇔ d1n

λ1
+ · · ·+ dkn

λk
≡ 0 (mod n).

Since 0 < di < λi, we see that 0 < din
λi

< n. This implies that

d1n

λ1
+ · · ·+ dkn

λk
∈ {n, 2n, . . . , (k − 1)n} ⇒ d1

λ1
+ · · ·+ dk

λk
∈ {1, 2, . . . , k − 1}.

Condition 2 follows from the first claim in Proposition 2.2. Indeed, by definition n = λini for i =
1, . . . , k, which implies that n = τλ for some τ ∈ N. Then from the equation on the Euler characteristics
we express the genus p of the original surface:

p =

λ(2g + k − 2)−
k∑

i=1

λ
λi

2
τ + 1.

Thus, the proof of Lemma 1 is complete in the case g �= 0.
Verify that τ = 1 in the case g = 0. Indeed, suppose that this is false and n = τλ, where τ > 1.

Then

gcd(d1n1, . . . , dknk, n) = gcd

(
d1n

λ1
, . . . ,

dkn

λk
, n

)
= gcd

(
τ
λ

λ1
d1, . . . , τ

λ

λk
dk, τλ

)
≥ τ > 1.

This contradicts condition (3) of Proposition 2.2.
Therefore, if g = 0 then n = λ = lcm(λ1, . . . , λk). Since condition (3) of Proposition 2.2 yields

gcd

(
n

λ1
d1, . . . ,

n

λk
dk, n

)
= 1,

we infer that

gcd

(
n

λ1
, . . . ,

n

λk

)
= 1.

This implies that

gcd

(
n

λ1
d1, . . . ,

n

λk
dk

)
= gcd(d1, . . . , dk).

Then

gcd(d1, . . . , dk, n) = gcd

(
n

λ1
d1, . . . ,

n

λk
dk, n

)
= 1,

and the proof of Lemma 1 is complete. �
Next we give some corollaries of the algorithmic criterion.
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Corollary 2.1. There exists no periodic homeomorphism with exactly one point of a smaller period.

Corollary 2.2. Every periodic homeomorphism with two points of a smaller period for g �= 0 has
complete characteristic of the form

(n = τλ, p = τ(2g − 1) + 1, n1 = n2 = λ, d1 + d2 = λ).

In the case g = 0 every periodic homeomorphism is conjugate to a rational-angle rotation of the sphere
about its polar axis.

3. Dynamics of a Class G Diffeomorphism

3.1. A linearizing neighborhood of a saddle point. Consider an orientation-preserving Morse–
Smale diffeomorphism f : Sp → Sp and a saddle periodic point σ of f of period mσ and orientation
type νσ. Denote by aνσ : R2 → R2 the diffeomorphism defined as

aνσ(x, y) =
(
νσ · x

2
, νσ · 2y

)
.

The diffeomorphism aνσ : R2 → R2 has the unique fixed saddle point at the origin O with the stable
manifold W s

O = Ox1 and unstable manifold W u
O = Ox2. For t ∈ (0, 1] put

N t = {(x1, x2) ∈ R2 : |x1x2| ≤ t}, N = N 1.

Define the pair of transversal foliations F u and F s in the neighborhood N as follows:

F u =
⋃

c2∈Ox2

{(x1, x2) ∈ N : x2 = c2},

F s =
⋃

c1∈Ox1

{(x1, x2) ∈ N : x1 = c1}.

Observe that N is invariant under the diffeomorphism aν that carries the leaves of the foliation F u

or F s into leaves of the same foliation.
Refer to a neighborhood Nσ of a saddle point σ as linearizing whenever there is a homeomorphism

hσ : Nσ → N conjugating the diffeomorphism fmσ |Nσ with the canonical diffeomorphism aνσ |N .
By way of the homeomorphism h−1

σ the foliations F u and F s induce the fmσ -invariant foliations F u
σ

and F s
σ on the linearizing neighborhood of Nσ; see Fig. 2.

Fig. 2. A linearizing neighborhood of a saddle point σ.
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Proposition 3.1 [2, Theorem 2.2]. Each saddle point of an orientation-preserving Morse–Smale
diffeomorphism f : Sp → Sp has a linearizing neighborhood.

Put N u = N \ Ox1 and denote by N̂ u
νσ = N u/aνσ the orbit space of the action of the group

{anνσ , n ∈ Z} on N u. Furthermore, denote the natural projection by p
N̂ u

νσ

: N u → N̂ u
νσ . The fundamental

domain1) of the action of the group
{
anνσ , n ∈ Z

}
on N u in the case νσ = +1 consists of two disjoint

curvilinear trapezoids, each of which has equivalent points on the horizontal boundary segments; while
in the case νσ = −1 we can choose the fundamental domain as one curvilinear trapezoid (with equivalent
points on the horizontal boundary segment).

Fig. 3. The orbit space of N̂ u
νσ
.

Fig. 3 with these trapezoids filled shows how we obtain from them the manifold N̂ u
νσ depending on

the choice of νσ by identifying the boundaries via the diffeomorphism aνσ .

Proposition 3.2 [6, Proposition 5]. The manifold N̂ u
νσ has the following topological type depending

on νσ:

• the space N̂ u
−1 is homeomorphic to a two-dimensional annulus K;

• the space N̂ u
+1 is homeomorphic to a pair K1, K2 of two-dimensional annuli.

A similar statement holds for N s = N \Ox2. Moreover, the mapping

ψ̂σ = p
N̂ s

νσ

p−1

N̂ u
νσ

: ∂N̂ u
νσ → ∂N̂ s

νσ

is well-defined, and ψ̂σ is called a surgery mapping (Fig. 4).

Fig. 4

Put N t
σ = h−1

σ (N t), Nut
σ = N t

σ \W s
σ , N

st
σ = N t

σ \W u
σ , and N̂ut

σ = Nut/f , N̂ st
σ = N st/f , as well as

Nu
σ = Nu1

σ , N s
σ = N s1

σ , N̂u
σ = N̂u1

σ , and N̂ s
σ = N̂ s1

σ .

1)Refer as a fundamental domain for an action of a group G on a topological space X to a closed set DG ⊂ X

such that there exists a set D̃G with the following properties: (1) cl(D̃G) = DG; (2) g(D̃G)∩ D̃G = ∅ for all g ∈ G

distinct from the neutral element of G; and (3)
⋃

g∈G g(D̃G) = X.
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3.2. The type of periodic orbits of a diffeomorphism f ∈ G.

Lemma 2. The nonwandering set of an arbitrary diffeomorphism f ∈ G consists of one sink orbit Oω,
one source orbit Oα, and one saddle orbit Oσ; moreover, the saddle orbit has negative orientation type.

Proof. Since f is a Morse–Smale diffeomorphism, we infer that

Sp =
⋃

r∈Ωf

W u
r =

⋃
r∈Ωf

W s
r ; (∗)

see [7, Theorem 2.3] or [2, Theorem 2.1] for instance. This implies that the diffeomorphism f yields at
least one sink orbit Oω and at least one source orbit Oα. According to [2, Corollary 2.2], the nonwandering
set of a Morse–Smale diffeomorphism lacking saddle points consists of two fixed points. Then the third
orbit of the diffeomorphism f is a saddle orbit Oσ. Let us verify that the saddle point σ has negative
orientation type.

Put
Vω = W s

Oω
\ Oω.

Denote by

V̂ω = Vω/f

the orbit space of the action of the group F = {fk, k ∈ Z} on Vω; and by

pω : Vω → V̂ω,

the natural projection. By [2, Proposition 2.5, p. 35], V̂ω is diffeomorphic to the two-dimensional torus,
while the natural projection

pω : Vω → V̂ω

is a covering. Put Nu
σ = NOσ \W s

Oσ
. By (∗), we have Nu

σ ⊂ Vω. Put N̂
u
σ = pω(N

u
σ ). By Proposition 3.2,

N̂u
σ consists of one or two annuli when νσ = −1 or νσ = +1 that are not contractible on the torus V̂ω.

The similar claim is valid for N̂ s
σ that is the projection of N s

σ = NOσ \ W s
Oσ

onto V̂α = Vα/f , where

Vα = W u
Oα

\ Oα and pα : Vα → V̂α is the natural projection.
On the other hand, (∗) implies that Vα = Vω \Nu

σ ∪N s
σ. Then

V̂α = V̂ω \ N̂u
σ ∪ N̂ s

σ.

Therefore, in order to obtain V̂α, we must cut out the annuli N̂u
σ from V̂ω and glue the annuli N̂ s

σ to the
boundary of the resulting set via the surgery mapping.

If νσ = −1 then each of the sets N̂u
σ and N̂ s

σ consists of a sole annulus not contractible on V̂ω and V̂α

respectively. Then V̂ω \ N̂u
σ amounts to an annulus. Thus, attaching N̂ s

σ to its boundary, we again obtain
a sole torus and, consequently, this case is possible.

If νσ = +1 then each of the sets N̂u
σ and N̂ s

σ consists of pairs of annuli not contractible on the tori V̂ω

and V̂α respectively. Then V̂ω \ N̂u
σ amounts to two annuli. Thus, attaching to their boundaries the

annuli N̂ s
σ via the surgery mapping, we obtain two tori (each pair of annuli determines a separate torus);

consequently, this case is impossible. �

3.3. Periodic data of a diffeomorphism f ∈ G.

Proposition 3.3 [2, Theorems 3.1 and 3.3]. Every orientation-preserving gradient-like diffeomor-
phism f : Sp → Sp can be expressed as the composition f = ϕ ◦ ξ1, where ξ1 is the translation by

unit time along the trajectories of the gradient flow ξt of some Morse function,2) while ϕ is a periodic
homeomorphism. Furthermore,

2)A C2-smooth function with nondegenerate critical points.
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• the points of smaller period of ϕ are also periodic points of the diffeomorphism f and, moreover,
their periods coincide;

• the period of the separatrix of an arbitrary saddle point of the diffeomorphism f coincides with
the period of the homeomorphism ϕ.

Lemma 3. If f = ϕ ◦ ξ1 ∈ G then the following hold:
(1) ϕ has either two or three orbits of smaller period;
(2) If ϕ has two orbits of smaller period then ϕ has complete characteristic (n = 2, g = 0, p = 0, n1 =

n2 = 1, and d1 = d2 = 1) and is topologically conjugate to the 180-degree rotation of the sphere about
its polar axis;

(3) if the mapping ϕ has exactly three points of smaller period then it has one of the following
complete characteristics:

(i) (n = 4p, g = 0, p > 0, n1 = 2p, n2 = 1, n3 = 1, d1 = 1, d2, d3 = 2p − d2), 0 < d2 < 2p, and
gcd(d2, 2p) = 1;

(ii) (n = 4p, g = 0, p > 0, n1 = 2p, n2 = 1, n3 = 1, d1 = 1, d2, d3 = 6p − d2), 2p < d2 < 4p, and
gcd(d2, 2p) = 1;

(iii) (n = 4p+2, g = 0, p > 0, n1 = 2p+1, n2 = 2, n3 = 1, d1 = 1, d2, d3 = 2p+1− 2d2), 0 < d2 ≤ p,
and gcd(d2, 2p+ 1) = 1;

(iv) (n = 4p+2, g = 0, p > 0, n1 = 2p+1, n2 = 2, n3 = 1, d1 = 1, d2, d3 = 6p+3−2d2), p < d2 ≤ 2p,
and gcd(d2, 2p+ 1) = 1.

Proof. By Lemma 2 the nonwandering set of the diffeomorphism f ∈ G consists of the three
periodic orbits: the sink orbit Oω, the source orbit Oα, and the saddle orbit Oσ. Denote their periods
by mω, mα, and mσ.

Since f = ϕ ◦ ξ1 and the flow ξt is generated by a Morse function, the Morse equalities (see [4] for
instance) yield

mω +mα −mσ = 2− 2p. (∗∗)
Denote the period of the homeomorphism ϕ by n. According to Lemma 2, the saddle orbit of f has
negative orientation type. By Proposition 3.3, the period of the saddle separatrix equals n, which implies
that mσ = n

2 .
Let us establish all claims of the lemma.

(1): If the periodic mapping ϕ had more than three points of a smaller period then by Proposition 3.3
the mapping f would have more than three periodic points, which contradicts the condition on the classG.
Since the period of the saddle point equals n

2 < n, the mapping ϕ must have at least one point of a smaller
period. By Corollary 2.1, there cannot be exactly one point of a smaller period.

(2): According to the Morse equality (∗∗) in the case of two points of a smaller period of ϕ we have
−n

2 + n
λ2

+ n = 2− 2p. Insert this equality into the first equality of Lemma 1:

n

2
+

n

λ2
+

n

2
− n

λ2
− n = n · 2g.

Hence, n − n = n · 2g. Therefore, g = 0. Corollary 2.2 implies that the periodic homeomorphism ϕ is
a rational-angle rotation of the sphere. It is clear that in our case this angle equals 180 degrees. Indeed,
the period of the saddle point equals 1, but on the other hand, its period equals n

2 , and so the period
of ϕ equals 2.

(3): Suppose that the periodic homeomorphism ϕ corresponding to the diffeomorphism f has the
complete characteristic (n, p, g, ni, di, for 1 ≤ i ≤ 3). The second claim of Proposition 2.3 yields p > 0.
By hypothesis and the property above, we find that n1 =

n
2 . The Morse equality (∗∗) shows that

−n

2
+ n2 + n3 = −n

2
+

n

λ2
+

n

λ3
= 2− 2p.

From the first equality of Lemma 1 we obtain n = n · (2g + 1) ⇒ g = 0.
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Put n2 = n
λ2

and n3 = n
λ3
. Since g = 0, by Lemma 1 we infer that n = lcm(2, λ2, λ3). According

to the second condition of Lemma 1, we see that 1
2 + d2

λ2
+ d3

λ3
= z, where z in either 1 or 2. Collecting

all terms except the last one in the right-hand side, we obtain some fraction with denominator λ3. Since
the fractions on the two sides are equal and di is coprime to λi, the equality is possible if and only if λ3

divides 2λ2. Similarly we can show that λ2 divides 2λ3. Consequently,

2λ2 = t1λ3, 2λ3 = t2λ2 ⇒ 4λ2 = t1t2λ2 ⇒ t1t2 = 4.

Hence, up to reindexing we obtain just two cases: either (a) λ2 = λ3 or (b) λ2 = 2λ3.
In case (b) we have n = lcm(2, λ3, 2λ3) = 2λ3 ⇒ n2 = 2, n3 = 1. Inserting the available values

of n, d1, n1, n2, and n3 into the second equality of Lemma 1, we obtain the complete characteristic
(n = 4k + 2, g = 0, p = k, n1 = 2k + 1, n2 = 2, n3 = 1, d1 = 1, d2, d3), where k ∈ N with gcd(d2, 2k + 1) =
gcd(d3, 4k + 2) = 1, and 2d2 + d3 = 2k + 1 or 2d2 + d3 = 3(2k + 1). It is clear that in the first case
2d2 = 2k + 1− d3 ≤ 2k, whence d2 ≤ k, while in the second case 2d2 = 6k + 3− d3 > 6k + 3− (4k + 2),
whence d2 > k. The equality gcd(d2, 2k + 1) = 1 implies that gcd(2d2, 2k + 1) = 1. Indeed, if the
numbers d2 and 2k + 1 are coprime then gcd(2d2, 4k + 2) = 2, and so gcd(2d2, 2k + 1) = 1 as required.
Since either d3 = 2k+1−2d2 or d3 = 3(2k+1)−2d2, it follows that gcd(d3, 2k+1) = gcd(2d2, 2k+1) = 1.
Considering that d3 is odd, we obtain gcd(d3, 4k + 2) = 1.

In case (a) we should consider two subcases: (a1) λ3 is even; (a2) λ3 is odd.
In case (a1) we have n = lcm(2, λ3) = λ3. Hence, n2 = n3 = 1. Inserting the available values of n, d1,

n1, n2, and n3 into the second equality of Lemma 1, we obtain the complete characteristic (n = 4k, g = 0,
p = k, n1 = 2k, n2 = 1, n3 = 1, d1 = 1, d2, d3), where k ∈ N with gcd(d2, 4k) = gcd(d3, 4k) = 1 and
d2 + d3 = 2k or d2 + d3 = 6k. It is clear that in the first case d2 < 2k, while in the second 2k < d2 < 4k.
It is also clear that gcd(d2, 4k) = 1 is equivalent to gcd(d2, 2k) = 1. Indeed, if d2 and 4k are coprime then
d2 and 2k are coprime too. However, if d2 and 2k are coprime then this implies that d2 is necessarily
odd, and so d2 is coprime to 2 · 2k = 4k. Since d3 = {2, 6}k − d2, it follows that d3 has the same residue
modulo 2k as d2. Hence, the condition gcd(d2, 2k) = gcd(d3, 2k) = 1 simplifies to gcd(d2, 2k) = 1.

In case (a2) we have n = lcm(2, λ3) = 2λ3. Hence, n2 = n3 = 2. The Morse equality yields
−2λ
2 + 2λ

λ + 2λ
λ = 2− 2p. Therefore, λ = 2p+2, which is a contradiction because λ was assumed odd. �

Fig. 5 and 6 depict the results of numerical calculations of the number of periodic homeomorphisms,
i.e., the number of periodic homeomorphisms for the given genus of the surface.

Fig. 5. Homomorphisms of types (1) and (2). Fig. 6. Homomorphisms of types (3) and (4).
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4. Classification of Class G Diffeomorphisms

In this section we prove Theorem 1. Namely, we verify that two diffeomorphisms f, f ′ ∈ G are
topologically conjugate if and only if λf = λf ′ and μf = μf ′ .

Necessity: If two diffeomorphisms f and f ′ are topologically conjugate then there exists a homeo-
morphism h with f ′ = h ◦ f ◦h−1. Since the conjugating homeomorphism carries the invariant manifolds
of periodic points into their analogs preserving stability and period, we infer that h(W s

ω) = W s
ω′ and

h(W u
Oσ

) = W u
Oσ

. Put

ĥ = pf ◦ h ◦ p−1
f : T2 → T2.

Then ĥ(γf ) = γf ′ . Since h carries the disk d = ψ−1
f (D2) to the disk h(d) so that ψf ′(h(d)) contains the

origin, the knot ĥ(L) has the homotopy type 〈1, 0〉; see [8] for instance. Then the induced isomorphism ĥ∗

is determined by the matrix ĥ∗ =

(
1 0
c 1

)
. Thus,

ĥ∗(〈λf , μf 〉) = (λf , μf )

(
1 0
c 1

)
= 〈λf + cμf , μf 〉.

On the other hand,

ĥ∗(〈λf , μf 〉) = 〈λf ′ , μf ′〉.
Hence, we find that μf = μf ′ and λf + cμf = λf ′ and, consequently, λf ′ = λf + cμf ′ . Condition (∗)
implies that λf ′ < μf ′ , but this is possible only for c = 0. Thus, λf = λf ′ and μf = μf ′ .

Sufficiency: Suppose that λf = λf ′ and μf = μf ′ . Construct a homeomorphism h conjugating f
and f ′ step-by-step.

Step 1. Construction of a homeomorphism hω : W s
ω → W s

ω′. According to [8], there exists

a homeomorphism ĥ : T2 → T2 isotopic to the identity mapping with ĥ(γf ) = γf ′ . In this case the

induced isomorphism ĥ∗ is the identity mapping and, consequently (see [9] for instance), it lifts to

a homeomorphism hω : W s
ω\ω → W s

ω′ \ω′, (i.e., pf ′ ◦hω = ĥ◦pf ) which conjugates f with f ′ (i.e., f ′◦hω =
hω ◦ f) and satisfies hω(W

u
Oσ

) = W u
Oσ′ . Extend hω to W s

ω by putting hω(ω) = ω′.

Step 2. Modification of the homeomorphism hω in a neighborhood of W s
Oσ

. By Lemma 2,
the saddle orbit Oσ has negative orientation type νσ = −1, which implies that the period of the saddle
separatrix equals the number of all separatrices, and is therefore even. On the other hand, the knot γf is
the orbit space of saddle separatrices, and so the period of saddle separatrix equals μf , while the period

of the saddle point is mσ =
μf

2 . Furthermore, if x belongs to the unstable separatrix �1σ of an saddle σ

then the point fmσ(x) belongs to another unstable separatrix �2σ of the same saddle σ. Similar claims
hold for the saddle σ′. Since μf = μf ′ , f ′ ◦ hω = hω ◦ f , and hω(W

u
Oσ

) = W u
Oσ′ , it follows that

hω(W
u
σ \ σ) = W u

σ′ \ σ′,

enabling us to extend the homeomorphism hω uniquely to the saddle orbit Oσ.
Take a linearizing neighborhood Nσ of the saddle σ. Choose t1 ∈ (0, 1] so that hω(N

ut1
σ ) ⊂ Nu

σ′ .
Since mσ = mσ′ and νσ = νσ′ , we can verify directly that

h̃ω = μσ′hωμ
−1
σ

∣∣
N ut1

: N ut1
1 → N u

is a topological embedding commuting with the diffeomorphism a−1; i.e., a−1h̃ω = h̃ωa−1. Given κ ∈
{−1,+1}, define the topological embedding ψ̃σ : R2 → R2 as

ψ̃σ(x1, x2) = (h̃ω(x1), κ · x2).
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Choose t2 ∈ (0, 1) so that ψ̃σ(N ut2) ⊂ h̃ω(N ut1). Since

h̃−1
ω ψ̃σ|Ox1\O : Ox1 \O → Ox1 \O

is the identity, assume without loss of generality that κ is chosen so that the topological embedding

θσ = h̃−1
ω ψ̃σ|N ut2 : N ut2 → N u is orientation-preserving.

Put

θ̂σ = p
N̂ u

−1

θσ(p
N̂ u

−1

|
N

ut2
−1

)−1 : N̂ ut2
−1 → N̂ u

−1,

Kσ = N̂ u
−1 \ int N̂ ut2

−1 , Qσ = N̂ u
−1 \ int θ̂σ(N̂ ut2

−1 ).

By construction, each connected component of the sets Kσ and Qσ is an annulus. According to [8], there

is a homeomorphism Θ̂σ : N̂ u
−1 → N̂ u

−1 coinciding with θ̂σ on N̂ ut2
−1 and identical on ∂N̂ u

−1. Denote by

Θ̃σ : N u → N u a lift of the homeomorphism Θ̂σ, which is the identity mapping on ∂N . Define the
homeomorphism Θσ : Nσ → hω(Nσ) as

Θσ(x) =

{
hω(μ

−1
σ (Θ̃σ(μσ(x)))) for x ∈ Nu

σ ,

μ−1
σ′ (ψ̃σ(μσ(x))) for x ∈ W s

σ .

Define the homeomorphism Θ : NOσ → hω(NOσ) as

Θ(x) = f ′k(Θσ(f
−k(x))),

where k ∈ Z is chosen so that f−k(x) ∈ Nσ.

Step 3. Define the homeomorphism h : Sp \ Oα → Sp \ Oα′ as

h(x) =

{
hω(x) for x ∈ Sp \ (NOσ ∪ Oα),

Θ(x) for x ∈ NOσ

and extend h by continuity to Oα, assigning to α ∈ Oα the point α′ ∈ Oα′ so that h(W u
α \ (α)) = W u

α′ \α′.
Then h is the required homeomorphism. �

5. Connection between the Genus of the Supporting
Surface and the Homotopy Type of the Knot γf

In this section we prove Theorem 2.

Proof. The diffeomorphism f has homotopy type (λf , μf ). Then by Proposition 3.3 the period n
of f equals μf . Using Lemma 3, we see that either n = 4p or n = 4p+2, i.e., either μf = 4p or μf = 4p+2.
This implies that

p =
μf

4
if μf = 0 (mod 4), p =

μf − 2

4
if μf = 2 (mod 4).

Since the number of gradient-like diffeomorphisms on the surface equals the number of periodic homeo-
morphisms [2, Theorem 3.2], invoking Lemma 3 again, we conclude that we can calculate their number Np

as

Np = ϕ(4p) + ϕ(4p+ 2),

where ϕ(n) is Euler’s totient function. �
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