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Abstract: Nanosized bimetallic PtMo, PtFe and trimetallic PtMoSn catalysts deposited on highly
dispersed carbon black Vulcan XC-72 were synthesized from the cluster complex compounds
PtCl(P(C6H5)3)(C3H2N2(CH3)2)Mo(C5H4CH3)(CO)3, Pt(P(C6H5)3)(C3N2H2(CH3)2)Fe(CO)3(COC6H5

C2C6H5), and PtCl(P(C6H5)3)(C3N2H2(CH3)2)C5H4CH3Mo(CO)3SnCl2, respectively. Structural char-
acteristics of these catalysts were studied using X-ray diffraction (XRD), microprobe energy dispersive
spectroscopy (EDX), and transmission electron microscopy (TEM). The synthesized catalysts were
tested in aqueous 0.5 M H2SO4 in a three-electrode electrochemical cells and in single fuel cells.
Electrocatalytic activity of PtMo/C and PtFe/C in the oxygen reduction reaction (ORR) and the
activity of PtMoSn/C in electrochemical oxidation of ethanol were evaluated. It was shown that
specific characteristics of the synthesized catalysts are 1.5–2 times higher than those of a commercial
Pt(20%)/C catalyst. The results of experiments indicate that PtFe/C, PtMo/C, and PtMoSn/C cata-
lysts prepared from the corresponding complex precursors can be regarded as promising candidates
for application in fuel cells due to their high specific activity.

Keywords: fuel cells; cluster compounds; nanosized catalysts; PtMo catalyst; PtFe catalyst; PtMoSn
catalyst; oxygen electroreduction; ethanol electrooxidation

1. Introduction

The proton exchange membrane fuel cell (PEMFC) is an efficient instrument to con-
vert the chemical energy of fuels into electric power [1]. Certain organic substances are
considered to be very promising fuels for electrochemical energy conversion. These sub-
stances can be oxidized electrochemically even at room temperature. Among these fuels,
methanol and ethanol have received particular attention due to the fact that they are less
polluting to the environment and can be efficiently used in electrochemical energy con-
version systems [2,3]. Direct ethanol fuel cells (DEFCs) are an attractive option for power
generation as ethanol offers higher theoretical energy density (8.0 kWh kg−1) compared to
methanol (6.1 kWh kg−1) and is less toxic [4]. In addition, ethanol can be easily produced
by fermentation of biomass [5,6]. However, the slow kinetics of the ethanol electrooxidation
reaction (EOR) on Pt anode catalysts reduces the overall performance of the DEFC sys-
tem and hampers its commercialization [7]. Considerable efforts were applied to develop
alternative anode electrocatalysts that offer higher catalytic activity while lowering the
cost. For example, nanoparticle alloys of Pt with other elements such as Ti, Mo, Ru, Rh,
Pd, Sn, W and Ce were synthesized and tested, and among them, Sn has shown the best
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promoting effect on EOR [8–11]. Nevertheless, it is still an ongoing task to further improve
the performance of the Pt–Sn anode catalysts to enable commercialization of DEFCs.

Development of platinum-based anode catalysts with high catalytic activity in alcohol
oxidation reactions [12] and of alcohol-tolerant cathode catalysts is an urgent task. This
problem partly comes down to catalysts that oxidize CO at an acceptable rate with signifi-
cant reduction in overvoltage. Nanoparticles of platinum alloys with Ru, Mo, Sn, W, and
Rh are often used to increase the catalytic activity of platinum in hydrogen electrooxidation
when CO containing hydrogen fuel is used [13–16].

In the last decades, synthesis of various catalysts, including Pt alloys, via heterometal-
lic cluster compounds is becoming increasingly popular. Some recent review articles are
given in references [17–22]. It should be noted that nanoalloys, in general, find applica-
tion in a variety of technologies, ranging from catalytic converters in automobiles [23] to
optoelectronic [24], magnetic [25], and even biomedical devices [26].

Previously, we synthesized a number of bi- and trimetallic alloy nanoparticle catalysts
using corresponding heterometallic clusters. In a heterometallic cluster, atoms of platinum
and other metal(s) are surrounded by organic groups and are bonded to each other either
directly or via bridge groups in a strict stoichiometric ratio [17–22,27–30]. After deposition
of a cluster precursor on a carbon support, the resulting intermediate material is subjected
to pyrolysis. During thermal decomposition, all organic groups are removed, leaving a
mixed-metal skeleton of a predetermined composition on the carbon support. As a result,
reproducible, stable and highly active catalysts are obtained [29–32].

In the present work, we report further development of this approach for synthesis of
bimetallic platinum-iron and platinum-molybdenum electrocatalysts, and also of a ternary
Pt-Mo-Sn catalyst. Catalytic properties of the synthesized nano alloys are evaluated by
cyclic voltammetry (CV), COad stripping voltammetry, chronoamperometry in a conven-
tional electrochemical cell with aqueous electrolytes and in a membrane electrode assembly
(MEA) of a single hydrogen-air PEMFC.

2. Results and Discussion
2.1. XRD, TEM and X-ray Fluorescence Studies
2.1.1. The PtMo/C Catalyst

According to the X-ray Fluorescence (XRF) spectroscopy measurements, Pt to Mo ratio
in the sample is ~40/60 (at%). Note that due to small effective thickness of the carbon-based
powder layer on the sample holder, the results of the performed Energy-dispersive X-ray
(EDX) analysis are semiquantitative. The X-ray diffraction (XRD) pattern of the sample,
shown in Figure 1, curve (1), reveals broad peaks from disordered sp2 (graphitic) carbon
at 2θ~26◦ with several peaks, which could be assigned to nanocrystalline Pt, Mo, or their
alloys. From the Scherrer formula, the crystallite size of a phase giving rise to the later
reflections is 2.5–3.1 nm. Unfortunately, a very large breadth of the reflections precludes
reliable identification of the alloy phase(s), since too many phases from the Mo–Pt diagram
may fit the experimental pattern.

According to TEM images of PtMo/C, Figure 2a, the catalyst consists of roughly
spherical carbon nanoparticles 20–30 nm in diameter, decorated by smaller particles with
high Z-contrast. High-resolution Transmission Electron Microscopy (TEM) image shows
that these small nanoparticles contain only platinum and molybdenum (C, O and Cu
originate from the carbon support and copper grid) with a Pt/Mo ratio in the range 0.65–
0.77. However, in some particles, Mo is less abundant. The median size of the metal particles
is 2.2 ± 0.5 nm, which is close to the sizes determined by XRD measurements. Despite
clearly observed lattice fringes, electron diffraction also fails in precise determination of the
phase, Figure 2b.
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Figure 1. XRD patterns of the PtMo/C (1), PtFe/C (2) and PtMoSn/C (3) catalysts. Symbols mark
positions of main reflections of principal phases (Pt, PtFe, PtSn) with corresponding numbers of
International Center for Diffraction Data (ICDD) cards. Small shifts of the observed peaks from the
ideal positions are due to solid solution effects.
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Taken together, the results of TEM and XRD studies suggest that the applied synthesis
technique produced Pt-Mo crystalline nanoparticles with rather narrow size distribution
(~2.2 nm), but composition of these nanoparticles, apparently, varies. We cannot exclude the
possibility of the coexistence of several populations of compositionally different particles
of close diameter.

2.1.2. The PtFe/C Catalyst

X-ray diffraction pattern of this catalyst, shown in Figure 1, curve (2), corresponds
to the tetragonal FePt phase. Crystallite size estimated using a Williamson–Hall plot is
6 ± 3 nm. The reason for large dispersion becomes clear from the TEM image, Figure 2c,
which shows the presence of particles with distinctly different sizes: relatively large parti-
cles with a diameter ranging from 6 nm up to 20–30 nm and numerous smaller grains of
2–3 nm size. EDX analysis, Figure 2d, suggests that besides grains of the tetragonal FePt,
some of the nanoparticles represent Fe-based, and, in contrast, Pt-based alloys. According
to data of XRF spectroscopy for this sample, the Pt:Fe atomic ratio is 49:51 (at%), i.e., very
close to the targeted one.

2.1.3. The PtMoSn/C Catalyst

X-ray diffraction pattern of this catalyst, Figure 1, curve (3), corresponds to hexag-
onal lattice of PtSn. At the same time, EDX analysis, Figure 2f, indicates the presence
of significant amounts of Mo. Average composition of the sample (ignoring carbon) is
approximately Mo:Sn:Pt = 37:38:25. XRF analysis of the samples of similar compositions in
the light matrix (carbon) is complicated by a very high extinction length of Sn radiation
and, thus, subject to bias. However, the quoted composition implies the presence of PtSn
with significant admixture of Mo. Diffraction peaks pertinent to Molybdenum phase are
missing in Figure 2f. Mo, apparently, is present as a solid solution in the PtSn phase. TEM
image of the sample, Figure 2e, indicates the presence of small (2–3 nm) and larger metal
alloy grains in the catalyst powder.

As follows from the results of structural studies, Mo concentration in PtMo/C catalyst
and Sn and Mo concentrations in PtMoSn/C catalyst are somewhat higher than that in the
corresponding complex precursors used for the catalyst preparation. The enrichment of
the catalysts by these elements might be caused by Sn and Mo diffusion from the bulk of
the catalyst particle to its surface layer during pyrolysis. A similar phenomenon of surface
layer enrichment with less noble components was observed earlier for alloys dispersed on
carbon black [33,34].

2.2. Electrochemical Studies in a Three Electrode Electrochemical Cell

Figure 3 shows cyclic voltammograms (CVs) recorded with a glassy carbon disk
electrode coated by thin layer of PtFe/C, PtMo/C, PtMoSn/C, or commercial Pt/C catalyst
in argon purged 0.5 M H2SO4. Measurements were performed at room temperature at
a potential scan rate of 0.05 V s−1. These voltammetry curves enable comparison of the
electrochemical surface characteristics of the catalysts. The voltammograms are of a similar
shape for all catalysts, and show rather well-defined hydrogen adsortion/desorption peaks
characteristic for polycrystalline Pt surface. For the PtMo/C catalyst, however, a noticeable
increase in the double layer capacitance is observed (curve 3 in Figure 3) that may be
ascribed to the formation of oxygenated molybdenum species on the surface of PtMo alloys
(in similarity to PtRu catalyst [35]). An additional peak observed at 0.4–0.5 V is most likely
due to the redox reaction Mo(VI)↔Mo(IV) [36,37]. The latter may have its effect on the
stability of the PtMo/C catalyst.

The values of electrochemically active surface area (ECSA) obtained from the hydrogen
adsorption/desorption charge in the 0.05–0.35 V potential range (SH) correspond to 98.5,
111.6, 146, and 139 m2gPt

−1 for Pt/C, PtFe/C, PtMo/C, and PtMoSn/C, respectively. The
highest ECSA for PtMo/C among the prepared samples is in agreement with the smallest
particle size as measured by TEM (2.2 nm). Somewhat lower ECSA of PtMoSn/C in



Catalysts 2022, 12, 255 5 of 13

comparison to that of PtMo/C may imply surface segregation of Sn component in the
ternary nanoparticles, resulting in the partial blockage of the Pt surface sites.
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PtMoSn/C (4) catalysts at a scan rate of 0.05 V s−1 in argon purged 0.5 M H2SO4 at room temperature.

A positive shift of platinum oxides reduction potential at the PtFe/C catalyst (Figure 3,
curve 2), that was observed for a number of Pt alloy catalysts (in particular, the ordered
PtFe alloy [38], cluster complex-derived PtZn/C [30], and PtFe/C [32]), is assumed to
indicate a change in the Pt–O bond strength and may result in a higher catalytic activity of
the obtained PtFe/C catalyst as compared to the commercial Pt/C. Besides, the presence of
the second metal in a platinum alloy also affects the Pt–CO bond and results in a negative
shift of the COad oxidation potential, which was reported for the ordered fct-PtFe/C [39]
and the complex-derived PtZn/C, PtCo/C and PtFe/C catalysts [30,32]. Therefore, carbon
monoxide oxidation at the prepared cluster-derived catalysts was studied and compared to
that at the commercial Pt/C catalyst.

Figure 4 shows the COad stripping voltammograms recorded at the commercial Pt/C
and the prepared PtFe/C, PtMo/C, and PtMoSn/C in the potential range 0.2–1.0 V. Accord-
ing to Figure 4, COad stripping curves for all of the prepared catalysts are characterized by a
lower CO oxidation onset potential in comparison to Pt/C. The curve of the COad stripping
from the ternary PtMoSn/C catalyst reveals multiple peaks and the lowest onset potential
(curve 4 in Figure 4), which may be related to the redox reactions of Mo and Sn resulting
in formation of oxygenated species on Mo and Sn sites. According to the bifunctional
mechanism, these oxygenated species assist the removal of COad at lower potentials [37].

The catalytic activity of the prepared PtFe/C and PtMo/C catalysts in the reaction
of the oxygen reduction was compared to that of the commercial Pt/C using the thin
layer rotating disk electrode (RDE) technique. Cyclic voltammograms were recorded in
an oxygen saturated 0.5 M H2SO4, at atmospheric pressure and room temperature, in the
potential range 0.3–1.1 V at a scan rate of 0.005 V s−1. Voltammetry curves of oxygen
reduction at these three catalysts recorded at the RDE rotation rate 2500 rpm are shown
in Figure 5 (the oxygen mass-transport limited potential region not shown). As can be
seen from Figure 5, the prepared binary catalysts exhibit a ~15–30 mV positive shift of
both oxygen reduction reaction (ORR) onset and half-wave potential compared to curves
recorded with the Pt/C catalyst, thus indicating an enhanced catalytic activity of the alloy
catalysts in the ORR. Such effect of the second metal presence is supposed to be due to
modification of the electronic band structure of Pt resulting in reduction in the binding
strength of intermediate species on Pt.
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Current density and mass specific activity, both measured at E = 0.9 V (jO2
0.9 V), calcu-

lated from the ORR voltammetry curve for PtFe/C, reach 2.4 mA cm−2 and 108.3 mA mgPt
−1,

respectively. These values are higher than those measured with commercial Pt/C catalyst
1.55 mA cm−2 and 54.3 mA mgPt

−1, respectively. Similar difference is observed in the
values of surface specific current densities (0.097 mA cmecsa

−2 and 0.055 mA cmecsa
−2 for

the PtFe/C and Pt/C, correspondingly), which is another evidence of a higher ORR activity
of the PtFe/C catalyst, prepared from the corresponding complex precursor, in comparison
with a commercial Pt/C.

Although current density and mass specific activity at E = 0.9 V for the PtMo/C
catalyst (1.85 mA cm−2 and 86.3 mA mgPt

−1, respectively) are higher than those of Pt/C, its
surface specific activity is close to that of Pt/C (0.058 mA cmecsa

−2 and 0.055 mA cmecsa
−2,

correspondingly). Therefore, the observed enhancement of PtMo/C activity in ORR is
mostly due to its higher ECSA value resulting from smaller size of this catalyst particles.
After the experiments described above, the catalyst film was removed from the surface
of the working electrode using adhesive tape, and its composition was studied by XRF
spectroscopy. Only Fe and Pt were observed in the PtFe/C sample, and despite sample-
dependent variations of absolute values of intensity, the ratio Fe:Pt was constant within
measurement error and equal to 47:53, which is close to the components ratio determined
in the as-prepared catalyst. Some excess of molybdenum in the surface layer of the PtMo/C
sample, noted for the as-prepared catalyst, was not found in the same catalyst examined
after voltammetry testing in an acidic electrolyte (Pt:Mo = 51:49), i.e., the ratio of metal
components was practically the same as the targeted one. It can be assumed that, as a
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result of the electrochemical treatment of the prepared bimetallic catalysts, the structure of
a core-shell type is formed, where platinum atoms predominate in the shell. Results of XRF
analysis of the catalysts are given in the Table S1 in Supplementary Data file.

It is worth mentioning that the data on the PtFe/C activity in ORR, obtained in the
present work, are qualitatively and quantitatively in accordance with the results reported
earlier for the PtFe/C catalyst derived from the heterometallic platinum-iron carboxylate
complex precursor [PtFe(OAc)4]2O·4CH2Cl2 and studied in aqueous acid electrolyte both
in a standard electrochemical cell and in a membrane electrode assembly of the single
hydrogen-air fuel cell [32]. The reported data of XRD and XRF studies of this catalyst
before and after the tests indicated the absence of changes in the phase composition and
the ratio of metal components, which is consistent with the data of the present study. Thus,
it can be concluded that the procedure applied for the preparation of supported catalysts,
derived from complex cluster precursors, allows to synthesize active catalysts with pre-
determined compositions and reproducible characteristics, regardless of the precursor
synthesis route used.

Catalytic activity of the prepared ternary catalyst PtMoSn/C in the reaction of ethanol
oxidation was compared to that of the commercial Pt/C by CV measurements in 0.5 M
H2SO4–1 M ethanol electrolyte in the potential range 0.2–1.1 V at a scan rate of 0.005 V s.
Figure 6a shows the cyclic voltammograms of the ethanol oxidation at the PtMoSn/C and
Pt/C catalysts normalized per mass of Pt at the electrodes. As can be seen from Figure 6,
the ternary PtSnMo/C catalyst exhibits lower onset potential and an almost twice as high
oxidation current over the entire potential range of the test.
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PtMoSn/C (2) catalysts recorded in 0.5 M H2SO4 + 1 M ethanol electrolyte at 0.005 V s−1 scan rate;
(b) the corresponding chronoamperometric curves recorded at 0.6 V.

In Figure 6b, the quasi-stationary activities of PtMoSn/C and Pt/C catalysts in EOR
are compared at 0.6 V (jC2H5OH

0.6 V). Both samples demonstrate similar rates of current
decay; however, the ethanol oxidation current at PtMoSn/C catalyst is roughly twice as
high than that at Pt/C catalyst. The chronoamperometry measurements revealed that mass
specific EOR currents at the prepared ternary catalyst are also twice as high than those
at the commercial Pt/C catalyst, and 1.5 times higher than currents reported by Lee and
coworkers for PtSnMo0.6/C synthesized by a polyol reduction method [37]. The mechanism
of the EOR promotion at ternary PtMoSn alloys is still under discussion, the bifunctional
effect of Sn and Mo and hydrogen spillover effect of Mo being considered [40–42].

The results of experiments performed in aqueous 0.5 M H2SO4 are summarized in
Table 1. The results indicate that PtFe/C, PtMo/C, and PtMoSn/C catalysts prepared
from the corresponding complex precursors can be regarded as promising candidates for
application in fuel cells due to their higher specific activity in the reactions of the oxygen
reduction and ethanol oxidation.
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Table 1. Specific characteristics of the prepared PtFe/C, PtMo/C and PtMoSn/C catalysts.

Pt/C PtFe/C PtMo/C PtMoSn/C

Metals ratio in precursor 1:1
0.5:0.5

1:1
0.5:0.5

1:1:1
0.33:0.33:0.33

Metals ratio in catalyst 0.49:0.51 0.4:0.6 0.25:0.37:0.38

SH,
m2gPt

−1 98.5 111.6 146 139

jO2
0.9 V,

mA cmgeom
−2 1.55 2.4 1.85

jO2
0.9 V,

mA cmecsa
−2 0.055 0.097 0.058

jO2
0.9 V, mA mg−1 54.3 108.3 86.3

jC2H5OH
0.6 V, A g−1 88 168

2.3. Tests of Membrane Electrode Assemblies

Figure 7a shows performance of two MEAs containing either Pt/C or PtMo/C in
the anode catalyst layer. The cell, fuel and oxidant humidifiers were kept at the same
temperature of 65 ◦C. Fuel flow rate (H2 or H2 + 40 ppm CO) was 400 mL per min. It
corresponds to hydrogen supply stoichiometry of at least 7. According to the current ISO
international standard, the maximum allowable limit of CO in hydrogen used in PEMFCs
of road vehicles is only 0.2 ppm [43]. We used substantially higher CO concentration
in order to obtain reproducible results in a relatively short experiment (only few hours).
In the experiments with high fuel flow rates and high CO concentration, oxidation of
hydrogen and CO adsorption at the anode catalyst layer do not cause significant change of
fuel composition along its path in the test cell. At least three consecutive i-V curves were
recorded to ensure reproducibility of the measurements. A 1 mV s−1 voltage scan rate was
applied in both directions of the voltage change. The hydrogen oxidation performance
curve of the MEA with the PtMo/C catalyst was close to a curve measured with thePt/C
anode catalyst (curve 1 in Figure 7). Addition of 40 ppm CO to hydrogen fuel resulted
in drastic decline of performance of both MEAs either with Pt/C (curve 2) or PtMo/C
(curve 3) hydrogen oxidation catalysts. However, for particular CO concentrations, an
actual decrease of the cell steady state voltage depends on current density, Pt loading at
the anode, fuel supply rate, and humidification level [44]. In our experiments, due to the
presence of 40 ppm CO in hydrogen, the cell voltage loss at i = 0.2 A cm−2 was ~0.65 V and
~0.4 V for Pt/C and PtMo/C catalysts, respectively.

To study polarization of the anode, experiments in a hydrogen pump mode were
performed. In these experiments, pure hydrogen flow at the rate 50 milliliter per minute
(mlpm) was supplied to the counter electrode of the MEA. Transients of the anode current
density recorded when the anode potential was step changed from open circuit voltage
(Eoc~0 V) to 0.5 V are shown in Figure 7b. The cell, gas, and humidifiers were kept at the
same temperature 65 ◦C. Due to the negligible polarization of proton reduction at Pt/C
catalyst, potential of the counter electrode flushed with pure hydrogen remains virtually
constant. As can be seen from Figure 7b, at a constant potential of the hydrogen oxidation
electrode (E = 0.5 V vs. RHE), current density reaches a steady value in ~10 min. Hydrogen
oxidation rate at the PtMo/C catalyst was found to be higher than that at the Pt/C catalyst
roughly by a factor of 3.
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3. Materials and Methods
3.1. Preparation of Bimetallic PtMo/C, PtFe/C and Ternary PtMoSn/C Catalysts

Bimetallic and trimetallic complex compounds were synthesized in the laboratory
of clusters in the Kurnakov Institute of General and Inorganic Chemistry, RAS. The syn-
thesized complexes were used as precursors in preparation of platinum-molybdenum,
platinum-iron and platinum-molybdenum-tin catalysts supported on Vulcan XC-72 carbon
black. Three catalyst samples, namely PtMo/C, PtMoSn/C and PtFe/C, were prepared
from the synthesized initial precursors PtCl(P(C6H5)3)(C3H2N2(CH3)2)Mo(C5H4CH3)(CO)3
(I), PtCl(P(C6H5)3)(C3N2H2(CH3)2)C5H4CH3Mo(CO)3SnCl2 (II) and Pt(P(C6H5)3)(C3N2H2
(CH3)2)Fe(CO)3(COC6H5C2C6H5) (III), respectively. At the first step of the catalyst prepara-
tion, a highly dispersed Vulcan XC-72 carbon black was ultrasonicated in dichloromethane
for 30 min. A solution of the precursors (I), (II) and (III) in dichloromethane was added to
the suspension dropwise followed by an additional sonication and drying in vacuum at
100 ◦C. The solid residue was heated in a quartz tube at 450 ◦C in hydrogen atmosphere
(1 bar) for 45 min. After cooling to room temperature, hydrogen was replaced by high-
purity argon. The prepared catalysts contained 30 wt % metal and 70 wt % carbon black.
According to results of XRF studies, Pt:Mo and Pt:Fe atomic ratio in the resulting binary
alloys was close to 0.41:0.59 and 0.5:0.5, correspondingly. The atomic ratio Pt:Mo:Sn in the
ternary alloy was close to 0.26:0.37:0.38.

3.2. Material Characterization

Phase composition of the prepared catalyst samples was studied by X-ray diffrac-
tion (XRD) using an Empyrean X-ray diffractometer (Panalytical BV). Ni-filtered Cu-Kα-
radiation was employed; the samples were studied in Bragg–Brentano geometry. Transmis-
sion electron microscopy (TEM) was performed using a JEOL-2100F microscope operated at
200 kV. The powder was sonicated in ethanol, then drops of the suspension were dried on
TEM copper grids. Low-tack adhesive tape (Scotch® 928, 3 M, Amazon, Koblenz, Germany)
was used to fix the 400 mesh TEM grids (01754-F, Ted Pella Inc., Redding, CA, USA), which
are formvar-coated copper grids with a continuous carbon film.

Spot size for the energy-dispersive X-ray spectroscopy (EDX) analysis was approx.
10 nm, thus averaging over several closely situated particles occurred. Drops of powders
suspended in ethanol were put on a zero-background single crystal Si holder and mea-
sured in reflection (Bragg–Brentano) geometry. A similar approach was applied for X-ray
fluorescence (XRF) measurements, but instead of an Si holder, a carbon scotch was used. In
addition, XRF spectra were recorded with the help of an XGT-7200 V analytical microscope
(Horiba) using an Rh tube at accelerating voltages of 30 and 15 keV. The beam size on the
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sample was 1.2 mm. The capillary optics of the device limited the detection to elements
heavier than Na. Calculation of the composition was performed using the fundamental
parameters method.

3.3. Electrochemical Measurements

Model electrochemical experiments were performed in a conventional three-electrode
glass cell filled with 0.5 M H2SO4 (supporting electrolyte). As a counter and referenc elec-
trode, 10 cm2 platinum grid and Hg/Hg2SO4/0.5 M H2SO4 (MSE) were used, respectively.
Potential readings in the text and figures are given vs. a reversible hydrogen electrode
(RHE). The working electrode was a rotating glassy carbon (GC) disk of 3 mm diameter.
Prior to deposition of a catalyst, the GC disk was polished with alumina slurries (0.05 µm,
0.3 µm, and 5 µm suspensions) and washed with a hot alkaline solution and deionized
water. Then, 2 mg of the studied catalyst (synthesized catalysts (1), (2), (3), or commercial
Pt/C) was dispersed in 1 mL of deionized water by sonication for 30 min. An aliquot of the
resulting suspension was pipetted onto the GC disk surface to reach a metal loading of 2 µg
per electrode (~30 µg cm−2). After drying in air at 60 ◦C, an aliquot of a diluted Nafion
solution (5 wt %, Aldrich) was placed on top of the catalyst layer, yielding a Nafion film
of ~0.2 µm thickness. Prior to measurements, the electrolyte in the cell was deaerated by
purging argon for 1 h. When necessary, the electrolyte was saturated with oxygen or carbon
monoxide. Gases of 99.999% purity were used. All experiments were carried out at room
temperature. The electrochemical surface characteristics of the catalysts were examined by
the electrochemical hydrogen adsorption/desorption method. CV curves were measured
in a 0.5 M H2SO4 electrolyte, purged with argon. The electrode potential was scanned
between 0.0 and 1.2 V for 10 cycles at a scan rate of 0.05 V s−1 in order to clean the surface,
and the 10th scan was used. Kinetics of oxygen electroreduction were studied by a thin
layer rotating disk electrode (RDE) technique in the potential range 1.1–0.3 V at a 0.005 V
s−1 scan rate and the electrode rotating rates 600–2500 rpm. The rate of electrocatalytic
oxidation of pre-adsorbed carbon monoxide was studied by COad stripping voltammetry.
After preliminary voltammetry scans in argon-purged 0.5 M H2SO4, the electrolyte was
saturated with CO for 30 min while holding the electrode potential at 0.2 V to form a COad
layer on the catalyst surface. After that, the gas flow was changed to argon to remove the
dissolved CO from the electrolyte. After argon purging for 30 min, the adsorbed COad
was stripped by a single potential scan from 0.2 to 1.0 V at a scan rate of 0.002 Vs−1. The
second potential sweep was employed to control completeness of COad oxidation in the first
scan. The catalytic activity for EOR was evaluated by CV in the potential range 0.2–1.1 V
and chronoamperometry at 0.6 V in argon-purged 0.5 M H2SO4 +1 M ethanol electrolyte.
Electrochemical measurements under model conditions were carried out using an EL-02.06
automated potentiostat controlled by PC.

3.4. Membrane Electrode Assembly (MEA) Fabrication and Testing

Activity of the synthesized PtMo/C catalyst in reaction of hydrogen oxidation in the
presence of CO was compared with the activity of a commercially available catalyst Pt/C
(Pt 20%) E-TEK. For that, a single test cell of 5 cm2 active area with graphite flow fields
from ElectroChem Inc. was used. Arbin fuel cell test station was employed to control the
cell temperature, humidification of gases, and to prepare a H2-CO mixture of a predefined
composition by installed gas flow controllers. The anode of the test cell was supplied
with either pure hydrogen (99.999%) or H2, containing 40 or 80 ppm CO. The latter was
prepared by blending H2 (99.999%) and CO (99.9%) using facilities of the Topchiev Institute
of Petrochemical Synthesis (RAS). The cathode of the test cell was supplied with air. In some
experiments, the air flow at the cathode was replaced by a flow of pure hydrogen. In this
case, electrochemical hydrogen oxidation at Pt/C or PtMo/C catalysts in the presence of CO
was studied in a cell driven mode. Positive potential was applied to the studied electrode,
at which hydrogen oxidation from the H2-CO gas mixture occurred. In the absence of
poisonous CO, overpotential of proton reduction at a counter electrode with a Pt/C catalyst
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that was supplied with pure H2 is negligible [45]. Therefore, cell voltage measured in this
case virtually coincides with a potential of the hydrogen oxidation electrode measured
vs. RHE. Ohmic losses in a thin Nafion® membrane were neglected when evaluating the
electrode potentials.

Membrane electrode assemblies were manufactured by a catalyst coated membrane
(CCM) technique. Catalyst layers were fabricated on the opposite sides of a 25 µm thick
Nafion® XL membrane by spraying respective catalyst inks. Inks containing a catalyst
powder, Nafion (5%), iso-propanol and deionized water were prepared by ultrasonication
at room temperature for 30 min. Nafion/carbon mass ratio in the catalyst layers was
0.8. MEAs were finalized by placing the prepared CCM between two Sigracet 39BC gas
diffusion layers in a test cell. Pt loading at the hydrogen oxidation (anode) and oxygen
reduction (cathode) electrodes was 0.3 and 0.6 mg cm−2, respectively. Two potentiostats—
LINS P-45X (3 Amp) and ELINS P-150 (15 Amp)—were used to control electrochemical
parameters of the cells.

4. Conclusions

Bimetallic and trimetallic cluster complex compounds PtCl(P(C6H5)3)(C3H2N2(CH3)2)
Mo(C5H4CH3)(CO)3, Pt(P(C6H5)3)(C3N2H2(CH3)2)Fe(CO)3(COC6H5C2C6H5), and PtCl
(P(C6H5)3)(C3N2H2(CH3)2)C5H4CH3Mo(CO)3SnCl2 were used as precursors for synthesis
of carbon-supported nanosized platinum alloy catalysts PtMo/C, PtFe/C and PtMoSn/C.
The prepared catalysts were characterized by transmission electron microscopy (TEM),
X-ray fluorescence (XRF) spectroscopy, and X-ray diffraction (XRD) analysis. It was shown
that the composition of these catalysts was close to the targeted one, although some excess
of the less noble component was observed in the surface layer of molybdenum-containing
samples. The catalytic performance of the PtFe/C and PtMo/C in the reaction of the
oxygen reduction was studied in aqueous electrolyte in a conventional three-electrode
electrochemical cell using a thin layer RDE technique, and it was shown that both catalysts
exhibit higher specific activity than a commercial Pt(20%)/C catalyst. Testing in a PEMFC
unit revealed the enhanced tolerance of the PtMo/C anode catalyst to CO admixture in
the reaction of hydrogen oxidation. The ternary PtMoSn/C catalyst exhibited twice higher
specific current densities in the reaction of ethanol oxidation as compared to that of the Pt/C
catalyst. Thus, the catalysts prepared from complex cluster precursors can be promising for
application in PEMFC and DEFC.
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//www.mdpi.com/article/10.3390/catal12030255/s1, Figure S1 and Table S1.
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