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Abstract: The manuscript deals with the fundamental problem of platinum hydrogen oxidation
catalyst poisoning of the hybrid chemical power source based on bromate electroreduction and
hydrogen electro-oxidation reactions. The poisoning is caused by the crossover of bromine-containing
species through the proton exchange membrane separating compartments of the flow cell. Poisoning
results in a drastic decrease in the flow cell performance. This paper describes the results of the direct
measurement of bromine-containing species’ crossover through perfluorosulfonic acid membranes
of popular vendors in a hydrogen−bromate flow cell and proposes corresponding scenarios for the
flow battery charge−discharge operation based on the electrolyte’s control of the pH value. The rate
of the crossover of the bromine-containing species through the membrane is found to be inversely
proportional to the membrane thickness.
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1. Introduction

Today, mankind is making progress toward sustainable development by committing
to the well-known 17 sustainable development goals (SDGs) [1]. Major 2030 agenda items
include the eradication of the climate crisis and universal access to affordable, reliable and
sustainable energy. The evident solution at the edge of ecologic and energy concerns is
the efficient usage of renewable energy sources, with solar and wind being top priority.
Today, due to significant progress in photovoltaic systems and wind turbine technologies,
solar and wind energy generation systems have been established all over the world [2].
Nevertheless, the intermittency of these energy sources has resulted in the demand for
effective energy storage systems (ESS). The intermittency of renewable energy opens spatial
and temporal gaps between the availability of the energy and its consumption by the end-
users; thus, valuable electrical energies are difficult to apply continuously and stably [3].
The employment of large-scale ESS may greatly improve the utilization rate and stability of
renewable energy. This demand remains a stumbling block on the way to our zero-carbon
future, motivating the development of various energy storage methods. Chemical energy
storage is one among the most effective energy systems.

Redox flow batteries (RFB) encompass one of the best combinations of efficiency, cost
and flexibility due to their module construction offering independent scaling of energy
capacity and power. For this reason, RFBs are one of the most tempting technologies for
stationary chemical ESS. However, the absolute values of energy and power densities of
RFB remain relatively low, especially in comparison with other secondary electrochemical
power sources, such as lithium-ion or lead−acid batteries. Recalling that fuel cells (FC)
are the prominent leaders in energy capacity and power density values among chemical
energy sources, this manuscript is a humble attempt to propose the evident evolution of
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the modern RFB systems via its hybridization with FC technology to overcome the main
RFB drawbacks listed above.

We recently proposed [4–6] the hydrogen−bromate flow battery (HBFB), which pro-
vides 1300 W h kg−1 of theoretical energy density, approximately 12 times higher than that
of conventional vanadium redox flow batteries at 113 W h kg−1. The high energy capacity
value of HBFBs is due to the six-electron reduction of the bromate anion and the extremely
high solubility of bromate salts in aqueous solutions (up to 8 M). Moreover, HBFB’s power
density takes advantage of the rapid kinetics of bromine/bromide redox couples involved
in bromate reduction at the positive electrode via autocatalytical redox mediator catalysis
(EC” mechanism) [4,7–9]. The autocatalytic traits of the latter enable rapid bromide anion
accumulation in the vicinity of the electrode, which increases the rate of bromate reduction.

One should note that the toxicity of pure bromine is rather high. However, since the
EC” mechanism uses bromine only as a redox mediator inside the solution media near the
electrodes, this problem can be neglected for the carefully sealed system if the operation is
safe enough and the reagents are properly disposed of. One can also recall that this obstacle
did not prevent the commercialization of H2

−Br2 redox flow batteries.
The absence of the precious metal catalyst at the positive electrode is another advantage

of the HBFB system. A Pt catalyst is needed only at the negative electrode, where hydrogen
oxidation occurs. Nevertheless, it was shown earlier [5] that under certain conditions,
the crossover of bromine-containing species through the cation exchange membrane can
rapidly contaminate the Pt hydrogen oxidation catalyst and abruptly collapse the electric
current values, turning down the whole system. The greater the thickness of the membrane,
the higher the poisoning effect. With the help of the modified Luggin capillary [10], it was
shown in [5] that the degree of the platinum electrocatalyst poisoning was determined
by the balance between the rates of the bromine species’ supply to the anode and their
removal with the liquid water that permeates the membrane. Several optimal scenarios
aimed at minimizing the catalyst’s poisoning effect were proposed [5].

Another goal of this work is to formulate an optimal strategy for the HBFB
charge−discharge operation based on the ability of the electrolyte to control the pH value.
Contrary to the HBFB discharge process where electrolytes at the positive compartment
of the HBFB should be acidic to facilitate bromate electroreduction, the charging process
should be performed in alkaline media for bromide electro-oxidation.

One of the challenges on the way to the broad use of redox flow batteries as ESS is
the transport of active species through the membranes separating the compartments of the
positive and negative electrodes [11–14]. The adverse effects of crossover on the efficiency
of the redox flow battery system consist of three basic detriments to performance:

1. Loss of active materials in chemical reactions;
2. Cross-contamination of electrolytes, which necessitates regular corrections of the

electrolytes’ compositions;
3. Corrosion and contamination of the electrode catalysts by species penetrating from

the opposite compartment.

Crossover of bromine-containing species through Nafion membranes was extensively
studied during the development of H2/Br2 redox flow batteries [14,15]. The decline in
the performance of these batteries was ascribed to the loss of activity of the Pt hydrogen
oxidation catalyst caused by the crossover of bromine or/and bromide/tribromide anions
through Nafion proton exchange membranes [16–27]. Bromide adsorption on polycrys-
talline Pt was studied in [27–29]. Bromide adsorption on Pt from 0.1 mM Br + 0.1 M HClO4
solution starts at 0.08 V and reaches 80% of the saturation level at 0.2 V vs. SHE [28].
According to [29], bromide adsorption on Pt (100) in 0.1 M HC1O4 + 0.1 mM KBr starts
at about −0.01 V vs. SHE. The rate of hydrogen oxidation on Pt at 25 mV overvoltage in
contact with 48% HBr was found to be lower than that in 4 M H2SO4 by a factor of five [24].
The detrimental effect of bromide adsorption on the hydrogen oxidation rate and formation
of surface oxides on Pt was also shown in [25].
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The main goal of the present work is the evaluation of the crossover rate of bromine-
containing species from the cathode compartment to the anode compartment of the HBFB
flow cell. It was proposed that the bromine-containing species are mostly oxybromine
anions [5]. However, the transport of uncharged bromine molecules that diffuse through
the fluorocarbon lattice of perfluorosulfonic acid membranes cannot be excluded. In the
steady state functioning of the flow cell, the supply of the bromine-containing species to
the anode must be balanced by their removal rate. At the high reduction potential of the
hydrogen oxidation electrode, any bromine-containing species, evolving at this electrode by
the membrane crossover, will be reduced to bromide via the Pt hydrogen oxidation catalyst.
In the absence of other cations, except for H+, bromide anions can be removed from the
anode only as HBr. These species present in the effluent from the anode compartment were
trapped in an additional electrochemical cell filled with aqueous electrolytes and detected
by measurements of pH change and by quantitative electrochemical oxidation of bromide.
The crossover rate of bromine species though cation exchange membranes of different
thicknesses and producers is the main subject of the research.

2. Materials and Methods’
2.1. Flow Cell Design and Materials

Design of a hydrogen−bromate flow cell is shown in Figure 1. The design of it was
discussed in [30]. Membrane electrode assembly (MEA) of a 4 cm2 working area was used
in the experiment. Bromate reduction flow through the electrodes consisted of three layers
of unteflonized 370 µm thick Toray carbon paper TGP-H-120 (Toray, Industries, Tokyo,
Japan). A hydrogen oxidation electrode with platinum loading of 0.8 mg cm−2 was made
by spray coating catalyst ink on a Sigracet 39BC (SGL Carbon, Wiesbaden, Germany) gas
diffusion layer. Catalyst ink contained Pt 40% on XC-72 carbon (HiSPEC-4000, Johnson-
Matthey, London, UK), Nafion 10% dispersion (DuPont, Wilmington, DE, USA) and iso-
propanol−H2O mixture. The gas diffusion electrode was attached to cation exchange
membranes via hot pressing at 130 ◦C, 40 kg cm−2 for 3 min. Nafion (Chemours Company,
Wilmington, DE, USA) N211, N212, N115, N117 and N1110 membranes were 25 µm,
50 µm, 125 µm, 175 µm and 250 µm thicknesses, respectively, GP-IEM (Liaoning Grepalofu
NewEnergy Co., Ltd., Panjin, China) GP-IEM 102, GP-IEM 103 and GP-IEM 105 membranes
were 50 µm, 80 µm and 125 µm thicknesse. A Fumatech (Fuma-tech GmbH, St. Ingbert,
Germany) F-950 membrane of 50 µm thickness was used to separate compartments of the
flow cell. Flow fields and liquid/gas supply channels were formed inside 1.4-mm-thick
grafoil sheets (Unikhimtek, Klimovsk, Russia) by a programmable 20-W fiber laser of 1 µm
wavelength. Then, grafoil sheets were densified by Carver press at 400 kg cm−2 pressure.
Flow fields, MEA and PTFE spacers were clamped by titanium endplates with the use
of four stainless steel bolts. Controlled flow of dry gaseous hydrogen (99.999%) to the
anode compartment was provided by the hydrogen fuel cell test station G-40 (Hydrogenics,
Mississauga, ON, Canada). A 1 M NaBrO3

−1 M H2SO4 mixture was pumped through
the positive electrode compartment at a rate of 1 mL min−1 by syringe pump NE-1010. In
some experiments, 1 M NaBrO3

−1 M H2SO4 was circulated between a 50 mL flask and the
cathode compartment by a BT600-2J (Longerpump, Hebei, China) peristaltic pump.
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Figure 1. The design of a hydrogen−bromate flow cell: 1—titanium end plates with compression 
fittings, 2—sealing gaskets, 3, 4, 6—graphite foil plates with the flow fields, 5—a current collector 
plate made of copper foil, 7—electrode pads, 8, 9, 10,—carbon paper cathode; 10′—Pt catalyzed gas 
diffusion anode, 11—cation exchange membrane. 

2.2. Methods 
2.2.1. Electrochemical Measurements 

Unless otherwise specified, the electrochemical measurements were carried out at 
temperature of 60 °C in a flow cell of the design described above (see Figure 1). The tem-
perature in the flow cell was controlled using a PID temperature controller, an electric 
heater and a fan. Electrochemical parameters of the flow cell were monitored using po-
tentiostats: ELINS P-45 (electrochemical impedance measurements and low current volt-
ammetry) and ELINS P-200 (measurements of high current voltammetry), both produced 
by Electrochemical Instruments, Chernogolovka, Russia. The photograph of the overall 
experimental setup is shown in Figure 2. 

 
Figure 2. The overall experimental setup for the hydrogen−bromate flow battery study. 

Figure 1. The design of a hydrogen−bromate flow cell: 1—titanium end plates with compression
fittings, 2—sealing gaskets, 3, 4, 6—graphite foil plates with the flow fields, 5—a current collector
plate made of copper foil, 7—electrode pads, 8, 9, 10—carbon paper cathode; 10′—Pt catalyzed gas
diffusion anode, 11—cation exchange membrane.

2.2. Methods
2.2.1. Electrochemical Measurements

Unless otherwise specified, the electrochemical measurements were carried out at tem-
perature of 60 ◦C in a flow cell of the design described above (see Figure 1). The temperature
in the flow cell was controlled using a PID temperature controller, an electric heater and a
fan. Electrochemical parameters of the flow cell were monitored using potentiostats: ELINS
P-45 (electrochemical impedance measurements and low current voltammetry) and ELINS
P-200 (measurements of high current voltammetry), both produced by Electrochemical
Instruments, Chernogolovka, Russia. The photograph of the overall experimental setup is
shown in Figure 2.
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2.2.2. Detection of Bromine-Containing Species in the Effluent from the Anode Compartment

In our experiments, the stoichiometry of the hydrogen supply to the anode was at least
four. The flow of unreacted hydrogen removed HBr that was produced by the reduction of
bromine-containing species that permeated the membrane. To detect HBr in gases leaving
the negative electrode compartment of the flow cell, they were bubbled through 80 mL of
a 0.125 M K2SO4 aqueous electrolyte located in a compartment of the working electrode
of the standard three-electrode electrochemical cell with the installed glass electrode of
the pH meter. The electrolyte in the working electrode compartment was continuously
stirred using a magnetic stirrer. The mercury sulfate reference electrode and platinum
counter electrode compartments were separated from the working compartment of the cell
by sintered glass diaphragms.

Detection of Bromine-Containing Species by pH Measurements

HBr is a strong acid that in relatively low concentrations in water dissociates com-
pletely, pKa = −8.08 [31]. Its absorption by the aqueous electrolyte changes the electrolyte’s
pH value. The change of pH of the electrolyte over time contained in the working com-
partment of the three-electrode cell was used to determine the amount of HBr that left
the anode compartment of the flow cell with excess hydrogen gas. pH changes over time
were monitored by recording the data from the display of the pH meter. We calibrated the
pH meter just before the measurements by adding aliquots of HBr into the electrolyte of a
working electrode compartment of the three-electrode cell. After calibration the cell was
washed and refilled with a new portion of 0.125 M K2SO4.

Detection of the Bromine-Containing Species by Electrochemical Method

The concentration of HBr in the working electrode compartment of the three-electrode
electrochemical cell was monitored by the electrochemical oxidation of Br− anion at the
Pt working electrode. The electrode was a 1 mm stationary Pt disk, manufactured by
soldering platinum wire into a glass tube. The end of this tube with a soldered Pt wire
was flat polished. Potentiostat PARSTAT 2273 was used to control the three-electrode cell.
Differential pulse voltammetry from the POWERPULSE package of the Potentiostat was
employed to determine Br− concentration. Square potential pulses with a height of 30 mV,
a duration of 0.1 s., a step duration of 0.2 s. and an average rate of change of potential
15 mV s−1 toward positive values of potential were applied. The measurements were
performed periodically. Prior to measurements, calibration was made by adding aliquots
of HBr to the working electrode compartment of the cell.

2.2.3. Main Chemical Transformations

The overall process for the hydrogen−bromate flow battery based on the EC” reaction
mechanism is described by the reaction:

3H2 + BrO3
− → Br− + 3H2O (1)

It consists of the bromate reduction reaction [32]:

BrO3
− + 6H+ → Br + 3H2O − 6e−, E0 = 1.41 V vs. SHE (2)

and the hydrogen oxidation reaction:

3H2 → 6H+ + 6e− (3)

A scheme of this process is shown in Figure 3.
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reaction mechanism.

In an acidic medium, the discharge process of the bromate electroreduction consists of
two steps. The electrochemical step is a heterogeneous reaction that can proceed even on a
low active catalytic surface, such as carbon paper [32]:

3Br2 + 6e− → 6Br−, E0 = 1.087 V vs. SHE. (4)

The chemical step is a homogeneous reaction. It occurs in the bulk solution if the latter
is acidic enough:

BrO3
− + 5Br− + 6H+ → 3Br2 + 3H2O. (5)

During the reduction of bromate to bromide according to reactions (3) and (4), six
protons are transferred from the anode compartment to the cathode compartment through
the membrane, i.e., the same amount that is consumed in the comproportionation reaction.
Therefore, the pH of the catholyte is not changed.

During discharge at the positive electrode, the bromate electrolyte is consumed via
reaction cycles (4) and (5), while at the negative electrode, the hydrogen oxidation reaction
proceeds at the platinum-catalyzed gas diffusion anode, according to reaction (1B).

It is worth mentioning that in a weakly acidic electrolyte, the formation of a weak
hypobromic acid is possible according to the reactions:

BrO3
− + 2Br− → 3BrO (6)

and
Br2 + H2O↔ HOBr + HBr (7)

The standard reduction potential of the hypobromite ion to bromide in an acid medium
is 1.341 V, and in an alkaline medium it is 0.766 V [32,33]. Thus, at an electrolyte pH close
to neutral, the reduction of hypobromite is possible already at a potential of E = 1.1 V, that
is, at a potential close to the potential of bromine’s reduction to bromide.

Recharging the battery requires alkaline media. In alkaline conditions the charge
process of bromide anion electro-oxidation occurs via [32]:

Br− + 6OH− → BrO3
− + 3H2O + 6e−, E0 = 0.584 V vs. SHE. (8)
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3. Results and Discussion
3.1. Crossover through Membranes of Various Types and Thicknesses

The aim of the study was not only to determine the magnitude of the crossover
of bromine-containing species through membranes, but also to select a membrane that
prevents crossover to a greater extent. Nafion (Chemours company, DE, USA) N211,
N212, N115, N117 and N1110 membranes of 25 µm, 50 µm, 125 µm, 175 µm and 250 µm
thicknesses, respectively, GP-IEM (Liaoning Grepalofu NewEnergy Co., Ltd., Panjin, China)
membranes of 50 µm, 80 µm and 125 µm thicknesses and a Fumatech (Fuma-tech GmbH,
St. Ingbert, Germany) membrane of 50 µm thickness were studied at a constant 0.9 V
voltage. The voltage of 0.9 V was chosen because thick membranes (N117 and N1110) at
lower voltages demonstrated almost complete poisoning of the negative electrode, which
was expressed in a sharp current drop almost to zero closely after switching on the constant
voltage [5]. The computer recorded the change in the flow cell current over time throughout
the experiment. The duration of the experiment ranged from 1.5 to 4.5 h, depending on
the thickness of the membrane. The pH values of the 0.125 M K2SO4 electrolyte in a three-
electrode cell were periodically recorded and the bromide anion content in the same cell
was measured by differential pulse voltammetry. To control the quality of the cell assembly,
the spectra of the electrochemical impedance and current−voltage characteristics of the
flow cell were measured before the crossover measurements.

Figure 4 shows the results of bromine-containing species crossover measurements
through Nafion N211, N212 and N117 membranes (diagram A) and through GP-IEM
membranes with a thickness of 50 µm and 125 µm (diagram B).

In general, the results of the bromide anion concentration obtained by differential
pulse voltammetry and pH measurements are in good agreement and fall on one straight
line dependent on the bromide anion concentration over time within a time measurement
from 40–50 min. However, at longer times, the results of differential pulse voltammetry
deviate from those obtained by pH measurements to lower values of HBr concentration.
The nature of this deviation has not been fully elucidated. Possibly, the deviation is due
to the slow oxidation of the bromide anion by traces of atmospheric oxygen in the three-
electrode cell. Nevertheless, oxidation of HBr with oxygen should not greatly affect the pH
value of the electrolyte since the oxidation product will also be an acid.

Figure 5A shows the example of experimental data of the current density evolution
over time obtained with the flow cell with the N212 membrane during the crossover
measurement. One can see the discharge current density is practically constant. A sharp
fluctuation of the current density at the 57th minute of the experiment is caused by the
replacement of the syringe with electrolyte in the syringe pump. Figure 5B shows the
dependence of the current on the potential, obtained by determining the bromide anion
concentration by differential pulse voltammetry in this experiment. This dependence was
measured at the 60th minute of the experiment.

Chaotic fluctuations in the current density (marked as pale grey circles) during the
experiments are probably caused by the periodic removal of HBr from the anode compart-
ment of the flow cell as droplets of aqueous HBr. Direct observations have shown that
small portions of liquid are periodically passed from the anode compartment through the
translucent PFA tube leading to the three-electrode cell. These events were accompanied by
changes in the electrolyte pH in the three-electrode cell and current pulsations in the flow
cell. The thicker the membrane in the flow cell, the less frequent and more noticeable the
release of liquid portions from the anode compartment. This indicates that the removal of
HBr from the negative electrode compartment via the gas phase, in the form of HBr vapor,
practically does not occur. Pure HBr is a gas at room temperature. Periodic accumulation
of liquid in the negative electrode compartment of the flow cell and its release led to tem-
porary blocking of the surface of the hydrogen electrode and fluctuations of the flow cell
current. This also shows the importance of water transport through the membrane for the
removal of HBr from the anode compartment.
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Figure 5. Crossover study through the N212 membrane for the solution of 1 M NaBrO3 in 1 M H2SO4

pumped at a 1 mL min−1 rate at constant temperature of 60 ◦C and voltage of 0.9 V: (A) Current
density vs. time; (B) Potential dependence of current obtained by determining bromide anion by
differential pulse voltammetry at the 60th minute of the experiment. For both graphs, the red line is
the approximated value of chaotic momentary fluctuations (pale gray points).

Figure 6 shows an example of the temperature dependence of the crossover rate
of bromine-containing species through the N211 membrane in Arrhenius coordinates.
The dependence strongly deviates from a straight line, apparently because temperature
influences not only the permeability of the membrane for bromine-containing species,
but also the membrane thickness, and, probably, the chemical composition of bromine-
containing species themselves.
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Figure 6. Temperature dependence of the crossover flow of bromine-containing species through the
N211 membrane in terms of HBr.

The flux of bromine-containing species through a unit (1 cm2) of the surface of various
membranes under various conditions was calculated in terms of HBr amount from the linear
time dependence of the HBr concentration in the three-electrode cell. Figure 7 summarizes
these results in the form of the crossover rate vs the reciprocal of the membrane thickness
through all the membranes under study. Attention is drawn to the scatter of the crossover
values measured on Nafion membranes of various thicknesses. The measurements on the
N211 and N212 membranes were duplicated to obtain good reproducibility of the results.

The empirical Formula (9) relates bromine species’ crossover rate with the
membrane thickness:

K [mole cm−2 min−1] = 50 R [µm−1], (9)

where R is the reciprocal thickness of the membrane (µm−1) and K bromine flux
(mole cm−2 min−1).

3.2. Testing of a Hydrogen−Bromate Flow Battery

To preserve the integrity of the data presentation, we describe here the discharge
tests of a single cell of a hydrogen−bromate battery during crossover measurements. One
should note that these measurements were performed in specially adopted conditions that
ensured a reliable measurement of the crossover rate, but these conditions were certainly
not optimal for realizing the maximum load characteristics of a flow battery. Therefore, the
values of the power density are quite moderate. Figure 8 shows an example of performance
curves of the test flow cell with a N211 membrane. At a current density of 1.1 A cm−2, flow
cell power density reached 1.1 W cm−2. The maximum power density measured in similar
experiments at 30 ◦C was only 0.4 W cm−2. The set of experiments described below was
performed with a circulation of 45 mL 1 M NaBrO3 in 1 M H2SO4 electrolyte through the
cathode compartment at a rate ~10 mL/min.
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After measuring performance curves of the cell, a potentiostatic mode was set with
a voltage of 0.7 V, which approximately corresponds to the maximum specific power
demonstrated in Figure 8, and the change in current density with time was recorded.
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Time variation of current density and power density of the flow cell is shown in
Figure 9. For approximately 35 min, the discharge current density was at the level of
1.65 A cm−2, and the specific power, respectively, was at the level of 1.15 W cm−2.
The gradual consumption of bromate in the system leads to a decrease in the discharge
current density.
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(pale gray points and crosses, correspondingly).

Figure 10 shows the change in the discharge current density as a function of the total
electric charge that has passed through the cell by a given time for the flow cell with a N211
membrane. According to this figure, the current density decreased to almost zero when
the overall charge became equal to 24146 C. This value is close to the stoichiometric charge
(26055 C) calculated according to Faraday’s law for the six-electron reduction of 45 mL
of 1 M NaBrO3. Before long-term experiments, quality checks of the cell assembly were
obligatory, therefore a slight discrepancy (7%) in the charge values may be due to some
consumption of the bromate electrolyte capacity during these checks.
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As it was shown earlier [6], an increase in acid concentration leads to a sharper increase
in the bromate reduction rate. The comparison of the dependences of current density on
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time measured with different, relatively low concentrations of H2SO4 in a 1 M NaBrO3
catholyte is shown in Figure 11. According to this figure, there is an initial stage during
which current density increases until it reaches a maximal value. With the decrease in the
concentration of sulfuric acid in a 1 M NaBrO3 catholyte from 0.2 M to 0.1 M and 0.06 M,
this initial stage of current increase lasts longer: from ~10 min at 0.2 M H2SO4 to 30 and
70 min at acid concentrations of 0.1 M and 0.06 M, respectively.
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Figure 11. Time variation of current density of a flow cell with a N211 membrane for different
concentrations of H2SO4 in the 1 M NaBrO3 catholyte: 0.2 M, 0.1 M and 0.06 M.

Obviously, during this period there is an increase in the concentration of bromine
dissolved in the electrolyte due to the acid-catalyzed chemical decomposition of bromate.

Previously, we had obtained high values of the flow battery specific power:
1 W cm−2 for the catholyte containing 1 M H2SO4 and 0.85 W cm−2 with 0.25 M H2SO4 in
the catholyte [6].

4. Conclusions

The crossover rate of bromine-containing species through the perfluorosulfonic acid
membrane separating compartments of HBFB was evaluated by capturing HBr evolving
from the anode in a special trap. The change in HBr concentration in the trap over time
was measured by monitoring the electrolyte pH change and by periodic electro-oxidation
of the bromide anion on the Pt electrode. This method is applicable for measurements of
the bromide/bromine crossover rate in H2/Br2 redox flow batteries, as well.

Considering the relatively large spread of crossover values obtained with different
types of perfluorosulfonic acid membranes, we conclude that the membranes studied
(Nafion, GP-IEM, Fumatech) do not differ significantly in their permeability to bromine-
containing species.

As expected, the crossover rate of bromine-containing species through the perfluoro-
sulfonic acid membranes is inversely proportional to the membrane thickness.

Increase in the flow cell temperature from 30 ◦C to 60 ◦C resulted in crossover in-
crease by a factor of only 1.5. Temperature dependence of the crossover rate deviated from
the Arrhenius type dependence, apparently, because temperature influences not only the
permeability of the membrane for bromine-containing species, but also the membrane thick-
ness, and, probably, the chemical composition of bromine-containing species themselves.
On the other hand, the temperature increase from 30 ◦C to 60 ◦C resulted in a three-fold
increase in the flow cell power density.

It has been shown that the use of a relatively high rate of catholyte pumping and
catholyte circulation between the flow cell and reservoir enables achievement of a high
power density and nearly 100% utilization of the oxidant.
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