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ABSTRACT Detection of significant edges maintaining the connectivity in complex networks is essential
in many applications such as attack vulnerability analysis, the spread of epidemic diseases, and information
spreading patterns discovery. There are many existing methods enabling us to evaluate the criticality ranking
of links in networks, which are based on straightforward algorithms and topological features of analyzed
graphs. In this paper, we offer another perspective on the problem and propose a novel approach, to be called
the Evolutionary Approach (EA), that is based on a genetic-like algorithm and turns directly to an integral
criterion of decomposition efficiency instead of network topology. Like all the genetic algorithms, EA is
grounded on the iterative enhancement of randomly generated solutions via reproduction, cross-over, and
mutation processes. The EA-efficiency is illustrated via decomposing three real-world benchmark networks
by using the proposed method, the acknowledged Link Entropy (LE) method, and the most recent Improved
Link Entropy (ILE) method. The comparison of the obtained results demonstrates that the EA-efficiency
exceeds the ILE-efficiency for 5.7%–28.1% depending on the network complexity, with respect to the
LE-efficiency the increase is approximately two-fold. Besides, the temporal aspects of ordering the network
edges according to their significance using solely EA or in its combination with LE and ILE are discussed.

INDEX TERMS Complex networks, critical edges, evolutionary approach, improved link entropy, link
entropy.

I. INTRODUCTION
Modern life depends crucially on the reliable functioning of
many complex networks [1], [2], [3]. For example, transporta-
tion and communication systems [4], [5], [6], [7], power sup-
ply [8], [9], [10] are networks of complex structure, protein-
DNA biological systems [11], [12], [13], social [14], [15],
political [16], and even adolescent romantic networks [17],
[18] have also complex structure. Thereby, the stability of
complex networks has attractedmuch attention during the last
decades.

Nowadays, there have emerged a variety of research direc-
tions in this field. For example, one of them is devoted to the
resilience of networks whose nodes can be destroyed. In this
case, detecting nodes that make the functioning of a network
in question highly vulnerable is of prime importance [3],
[19], [20], [21], [22], [23]. Another one is related to the
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development of networks and their optimization focused on
link prediction and connection planning [24], [25], [26], [27].
Our research belongs to the direction of network science that
is aimed at elucidating the resilience of networks whose links
can be destroyed. In the given case, detecting links whose role
is crucial in maintaining the network connectivity becomes
one of the main issues in this scope [15], [28], [29], [30], [31],
[32], [33].

Within the graph representation of real-world networks,
numerous investigations have been focused on determining
edges (links) whose role is critical in data transmission and
maintaining connectivity. The results have shown that the
proper quantification of the edge significance and the subse-
quent modification of the system topology can substantially
enhance the robustness of the network and make it more reli-
able and efficient against targeted edge attacks [34]. The mat-
ter is that the loss of even a few connections on a network can
cascade, resulting in the total collapse of the system. To eluci-
date this type of collapse, a significant number of researches
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have been devoted to the infrastructure risks related to edge
failures [6], [35], [36]. In some sense, the opposite problem
is the efficient decomposition of a network by cutting the
minimal number of links. In particular, based on the actual
data from South Korea, it has been demonstrated that by
removing the most significant links of social networks, the
spread of a contagious disease can be depressed due to a
significant decrease in the infection network [37].

As far as particular algorithms that describe the effi-
cient decomposition of networks based on determining the
edge significance are concerned, we may note the follow-
ing. Dealing with community structure in social and biolog-
ical networks, Girvan & Newman [12] used the between-
ness centrality of edges. Later, focusing on social networks,
Meo et al. [38] employed the k-path centrality to measure
edge significance. In the case of weighted network, Wang
and Chen [39] proposed a method based on thedegree product
to characterize cascading-failure-induced disasters in nature.
Chen et al. [40] turned to the bridgeness to quantify the edge
significance in maintaining the network connectivity; this
index is determined explicitly by the local information of the
network topology. Finally, there have been developed a fam-
ily of novel methods based on the probability distributions
divergence, namely, link entropy (LE) by Qian et al. [28],
deep link entropy (DLE) by Ozaydin and Ozaydin [31], and
the improved link entropy (ILE) by Lubashevskiy et al. [33]
demonstrated their high efficiency.

The efficiency of thesemethods has been compared numer-
ically for artificial and real networks [28], [30], [31]. The
decrease rate in the size Rgc of the largest connected com-
ponent (normalized to the total number of nodes Rgc) caused
by removing the most significant edges has been employed as
the corresponding efficiency criterion. Indeed, the better the
method of detecting edge criticality and, consequently, the
more suitable the link ranking, the faster the decrease in Rgc
caused by removing the edges ordered downward according
to their significance [15], [28], [30], [31], [32], [33].

In the present work, we put forward another principle of
quantifying the edge significance. Accepting that the higher
efficiency of the edge significance detection, the stronger
drop in the value of Rgc, we turn to an integral criterion
grounded on the dependence Rgc(ρ), where ρ is the relative
amount of removed edges. In this way, we gain the ability
to treat the network destruction as a problem of optimizing
the process of link removal. A certain genetic-like algorithm
to be called the Evolutionary approach (EA) is proposed
to tackle this optimization problem. To examine the effi-
ciency of the proposed approach, three standard benchmark
real-world networks are decomposed employing the EA, LE,
and ILEmethods. The choice of the LE and ILE algorithms as
competitive methods is caused by that their comparison with
algorithms turning to the other acknowledged indices of the
edge significance (betweenness centrality, degree product,
bridgeness, diffusion importance, topological overlap, and
k-path edge centrality) has demonstrated the superiority of
LE [28] and its descendant, ILE [33].

By the present paper, we want to attract the attention
of the scientific community, dealing with network stability
and security, to the genetic type algorithms as a promising
approach. We expect our work to encourage the development
of alternative methods, enhancing the plurality of perspec-
tives. The prospects of the EA-development, especially in
combination with straightforward algorithms, are outlined in
the Discussion (Sec. V).

II. ALGORITHM EFFICIENCY MEASURE
Algorithms of network decomposition via removing the most
significant edges may be categorized as the local-type algo-
rithms. Indeed, within these algorithms the network edges
with the highest significance are removed step-by-step in
the descending order. At each step the network connectivity
is gradually destroyed, leading to the emergence of mutu-
ally disconnected components whose number also gradually
increases. Moreover, after removing one edge, the signifi-
cance of the remaining edges can be re-evaluated because the
resulting networks has changed.

The efficiency of these algorithms is often evaluated by
plotting the size Rgc of the largest connected component vs
the relative amount of removed edges ρ [28], [30], [31]. Here,
to make it possible to compare the decomposition of networks
different in size, two normalizations are typically used. First,
the size of connected components is normalized to the total
number of nodes. Second, the amount of the removed edges is
normalized to the number of edges m in the original network.
Thereby, at the initial step (ρ = 0) the value Rgc = 1
(the original network is assumed to be a connected graph),
respectively, at the final stage of network decomposition,
when ρ → 1, the value Rgc→ 0.

The popularity of the Rgc(ρ)-criterion is due to its clarity—
the sharper the decrease in the value of Rgc as ρ increases,
the higher the significance of the removed edges. When
for two algorithms A1 and A2 applied to decomposing the
same network, the corresponding dependencies Rgc:1(ρ) and
Rgc:2(ρ) are such that, e.g.,Rgc:1(ρ) < Rgc:2(ρ) for any ρ > 0,
the Rgc(ρ)-criterion enables one to order the two algorithms
unambiguously according to their efficiency, namely, A1 ≻
A2. Otherwise, i.e., when, e.g., there is a value ρb of the rela-
tive number of removed edges such that Rgc:1(ρ) < Rgc:2(ρ)
for ρ < ρb and Rgc:1(ρ) > Rgc:2(ρ) for ρ > ρb, a more
sophisticated criterion is required for comparing decomposi-
tion algorithms in efficiency.

In the present work we turn to an integral criterion based on
the Rgc(ρ)-dependence which considers the contributions of
all the steps in network decomposition equipollent. Namely,
if the Rgc(ρ)-dependence were a continuous function of the
continuous argument ρ ∈ [0, 1], the area Srgc under the curve
Rgc(ρ) could be used to specify the efficiency of network
decomposition. This type of criterion actually focuses the
main attention on the general features of network topology
rather than on particular details of the network structure at its
micro-level. Since the network decomposition is represented
by a sequence of discrete values {ρi} (for i ∈ [0,m]) with the
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same spacing 1/m, i.e., ρi+1−ρi = 1/m for ∀i, we introduce
the desired value Srgc as

Srgc =
1
m

m∑
i=0

Rgc (ρi) , (1)

which is just a discrete approximation of the hypothetical
continuous integral of Rgc(ρ) over the region 0 < ρ < 1.
Employing the value Srgc as a quantitativemeasure, we accept
that the smaller the value Srgc, the more efficient the network
decomposition. Below we will refer to the quantity Srgc also
as to the area under the curve Rgc(ρ).
It is worthy of noting that, first, a similar integral criterion

is used to quantify recovery processes of large-scale disas-
ters within the theory of resilience [41], [42], [43]. Second,
as it must, the given integral criterion leads to the same
conclusion about the superiority of one of two algorithms
A1 and A2 specifying the edge significance in the former case
noted above. However, in the latter case, when two ‘‘curves’’
Rgc:1(ρ) and Rgc:2(ρ) outpace each other at different stages
of the graph decomposition, it also enables one to compare
the related algorithms. Third, this integral criterion has also a
clear meaning in its application to quantifying the efficiency
of the global-type algorithms dealing with the sequences of
edge removing as whole entities, i.e., without turning to the
significance of individual edges. The evolutionary approach
to be constructed below is rooted in genetic algorithms and
exemplifies this type methods of network decomposition. Its
comparison with link-entropy algorithms will be based on the
given integral criterion.

III. METHODS
The present section is devoted to the description of three
methods to be compared. The first one is the Link
Entropy (LE) developed by Qian et al. [28] and demonstrat-
ing high efficiency. The second one is the most recent
method, the Improved Link Entropy (ILE) developed by
Lubashevskiy et al. [33]. The third one is the Evolutionary
Approach (EA) proposed in the given paper. To elucidate their
comparison, let us outline them separately.

A. LINK ENTROPY
The construction of the edge significancewithin LE is divided
into two consecutive stages. First, it is detecting the commu-
nities belonging to a given network and finding the commu-
nity membership of the network nodes, i.e., the probability
that a given node belongs to a given community. Second,
the use of the obtained probability distribution to rank edge
importance via the information entropy combined with the
Jensen-Shannon divergence.

In what follows, any network in issue will be identified
with an undirected, unweighted graph G = (V ,E), where V
is a set of n nodes and E is a set ofm edges. By definition, the
adjacency matrix A of the graph G comprises the elements
aij = 1, if there is an edge between nodes i and j or when
i = j, otherwise, aij = 0.

For detecting the communities forming a given network let
us follow the method proposed by Qian et al. [28]. Namely,
the pairwise community interaction ‘‘hidden’’ in the adja-
cency matrix A is assumed to be ‘‘influenced by an unob-
served expectation network Â, where âij is an observed vari-
able which denotes the probability of existing a connection
between nodes i and j’’ [28]. The probability that node i
belongs to community k is specified by xik , correspondingly,
the expected edge âij is defined as

âij =
K∑
k=1

xikxjk (2)

or in the matrix form

Â = XXT . (3)

Were the matrix A positive-definite, the Cholesky factor-
ization [44], [45] could be used to find X (e.g., employing
the NumPy library, Python), however, in the general case,
the matrix A is nonnegative-definite only. So we turn to
the Nonnegative Matrix Factorization (NMF) [46], [47] for
detecting the communities. Namely, the construction of the
matrix X is reduced to the minimization problem

min
X≥0
||A− XXT

||
2, (4)

which can be solved using the multiplicative update rule for
xik according to the gradient descent method introduced by
Wang et al. [48]

xik ← xik

(
1
2
+

(AX)ik
(2XXTX)ik

)
. (5)

At the final step, each row of the matrixX is normalized such
that the row elements admit interpretation as the probabilistic
clustering partition. In other words, this normalization allows
us to regard each xik as the probability of node i belonging to
community k . The iterative process described by equation (5)
starts from the random positive matrix X, each element of
which is not less than 0. Iteration (5) is repeated typically
thousand times when the outcome, X, becomes stable within
a certain accuracy of the iteration procedure.

The obtained probability distribution in the clustering par-
tition allows us to attribute the link entropy (LE) to each
individual edge connecting nodes i and j using the following
equation:

LEij =

(
H (Xi)+ H (Xj)

)
+ 2 · JSD(Xi||Xj)

4
. (6)

Here H (Xi) is the information entropy calculated as

H (Xi) = −
K∑
k=1

xik log(xik ) , (7)

and JSD(Xi||Xj) is the Jensen–Shannon divergence forMij =

(Xi + Xj)/2 specified by the expression

JSD(Xi||Xj) =
D

(
Xi||Mij

)
+ D

(
Xj||Mij

)
2

(8)
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with

D(Xi||Mij) =
K∑
k=1

[
xik log

(
xik
mk

)]
. (9)

The obtained set of LE values enables us to judge about
the significance of edges: the larger the LE value, the more
critical the link from the perspective of network integrity and
connectivity.

B. IMPROVED LINK ENTROPY
The Improved Link Entropy is the second benchmark method
used in the present paper. The process of graph decomposition
by the ILE method is very similar to the LE but has two
significant distinctions: an update on the link entropy values
and an update on the number of communities.

When the LE approach is applied, the entropy of all the
links is assessed only once. However, after any link of the
graph is removed, the resultingmodified graph cannot be con-
sidered to have the same topological features. It leads to the
necessity of entropy recalculation for each of the remaining
links at every step of network deconstruction.

The same logic is applied to the number of communities
assigned to the network while finding the matrix X (see
equations 2–4). At the first step, the number of communities
may be assigned according to reality (the actual number of
communities in the social network) or just assumed for some
other reasons. But after any link is removed and the graph
is modified, the number of communities must be a subject of
re-evaluation. Community detection is an individual direction
in network science [49], [50] and is not the subject of the
present work. In developing the ILE approach [33], three
community detection methods proposed by Louvain [51],
Leiden [52], and Walktrap [53] were compared. The Louvain
as well as Leiden methods demonstrated the best efficiency
in applying to the network decomposition with comparably
similar results. In the present work, the Leiden approach is
selected to be used within the ILE method.

C. EVOLUTIONARY APPROACH
An Evolutionary Approach (EA) proposed in the present
work is an adaptation of the genetic algorithmwhich is widely
known as a powerful tool for optimization and search prob-
lems. The EA operates with a set of synthetic chromosomes
that are strings of numbers representing the order of edges E
according to which the edges are removed from the graph G,
the network under consideration. Put differently, each chro-
mosome C(x1, x2, . . . , xm) consists of a unique combination
of integers {xi} from 1 to m without repetition, where m is
the number of edges in the network. Each individual chromo-
some is a trial solution to the given problem of graph decom-
position and specifies the order of edge removal. Namely, the
edge with index x1 is removed first, then the edge with x2 is
removed, finally, the edge with xm is removed, finishing the
network decomposition. Table 1 illustrates, in particular, the
chromosome structure.

TABLE 1. Illustration of the chromosome structure and the cross-over
process. By way of example, the first two lines show sequences of genes
of two candidate solutions (Parent 1 and Parent 2). According to Parent 1,
the order of link removal is 1, 2, . . . , 8. For Parent 2 this order is 8, 1, . . .,
4. The cross-over procedure for Parents 1 and 2 is illustrated by lines 3-5
and 6-8. In Parent 1 a set of genes (x5–x7 shown in bold) is selected
randomly for the injection into Parent 2. First the genes matching the
selected set is removed from Parent 2 (shown in gray). Then the
remaining genes of Parent 2 are aligned in such a way that the injecting
set from Parent 1 be positioned as in Parent 1. It specifies the gene
structure of Child 1. Child 2 is generated in the same way, by injecting a
selected set of genes from Parent 2 to Parent 1. Child 1 and Child 2 are
passed as candidate solutions to the next generation.

Initially, the set of 500 chromosomes created randomly to
be the source for the EA iterative process not changing the
total number chromosomes. At each step of the iterative pro-
cess the chromosomes are converted into the chromosomes of
the next generation via reproduction, cross-over, mutation
and invasion processes.

1) SELECTION
It is a phase of the iteration when chromosomes are chosen
as candidates from the current generation for the later breed-
ing process. Every candidate is assessed via the objective
function Srgc (Exp. 1) and the list of candidates is rewritten
in ascending order; the smaller the value Srgc, the better the
fitting of the candidate.

2) REPRODUCTION
The best 10% of candidates are copied into the next genera-
tion with no modification of their genes. The reproduction of
the best candidates is implemented in order to avoid potential
degradation of the generation because the cross-over,muta-
tion and invasion give a chance but do not guarantee the
improvement at the next step of evolution.

3) CROSS-OVER
The best 20% of candidates are selected to pass their genes to
the new generation. For this purpose, each selected candidate
is coupled with another randomly chosen chromosome. After
that, from each member of a couple, a portion of its genes
is singled out again from the random position and injected
into the same position of the partnering chromosome. In the
resulting sequence, the repeated elements are removed to
prevent gene duplicates. The proportion of a chromosome for
the cross-over procedure is chosen to be 20% in the frame of
the current numerical experiment. As a result, each couple of
chromosomes gives rise to two new candidates, their children,
which are included into the new generation. Table 1 illustrates
the cross-over process using a simple example.
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4) MUTATION
The best 30% of candidates are singled out for the mutation
process implemented as follows. At the beginning, 10% of
genes are randomly extracted from a chromosome. Then the
obtained subset is shuffled, grouped, and injected back into
the original chromosome at the random position. The result-
ing mutated chromosome is passed to the new generation.

5) INVASION
The collection of reproduction, cross-over, and mutation
processes enables us to find a good solution but gives a risk
of falling into the local optimum. In order to enhance the
chance of avoiding it, each new generation includes 20% of
randomly generated chromosomes, each of which may be
selected during the cross-over process as a parent for the
further generations.

As a result, each new generation is formed according to the
following schema: 10% is formed by the best 10% solutions
from the previous generation; 30% are the result of mutation
of the best 30% chromosomes from the previous generation;
40% of chromosomes are the outcome of the cross-over; and
final 20% are the result of the invasion.
Formally, there may be an almost limitless number of gen-

erations since the invasion procedure guarantees the appear-
ance of a new chromosome that may fit better than the best
candidate of a previous generation. The iteration of gener-
ations is limited only by two factors. First, the Evolutionary
approach stops when the generation number 10000 is formed.
This breakpoint is set artificially as a parameter of simula-
tion, and the maximal number of generations is big enough
to find a good solution. Second, if within 100 generations,
best candidate solutions provide the same value of Srgc, the
Evolutionary approach stops. Such a long repetition of the
best Srgc informs us that we found a local or global optimum,
the improvement of which is unlikely.

IV. DATA AND NUMERICAL EXPERIMENT
To assess the efficiency of the Evolutionary Approach and
to compare it with the methods based on Link Entropy and
Improved Link Entropy, a numerical experiment has been
conducted. Three real-world networks that are different in
their size, the number of communities, and the number of
edges have been selected. These three networks are often used
as benchmarks [28], [31], [33], the basic statistics of these
networks are shown in Table 2.

TABLE 2. Basic statistics of the three networks. Their structural
properties include the number of nodes (N), the number of edges (E),
the average degree (⟨k⟩), the maximal degree (kmax ), the degree
heterogeneity (Hk ), and the clustering coefficient (C).

A. ZACHARY’S KARATE CLUB NETWORK
The Zachary’s Karate Club is a well-known network [54],
which is often used in testing various methods of network

analysis. It consists of 78 edges and 34 nodes, usually con-
sidered to have two communities [55], [56] and represents
a small size network, the circular layout of which is drawn
in Fig. 1 (I).

Numerical simulation of the graph decomposition using
all the three methods is illustrated in Fig. 1 (II). This Fig-
ure depicts how the size Rgc of the largest connected com-
ponent (normalized to the initial number of nodes) decreases
with the relative number ρ of the removed edges for the
network decomposition governed by the EA, LA, and ILA
algorithms. As seen, for the Zachary’s Karate Club network
the Evolutionary Approach shows significantly better perfor-
mance than the conventional Link Entropy algorithm as well
as is slightly better in comparison with the Improved Link
Entropy algorithm. It is justified by the overall earlier and
stronger drop of the Rgc(ρ)-dependence for the EA.

B. DOLPHINS NETWORK
The Dolphins network [57] is an undirected social network of
frequent associations between 62 dolphins in a community
living off Doubtful Sound, New Zealand. It has often been
used as a benchmark for various studies [28], [31], [33], [58],
[59], consists of 62 nodes, 160 links and is usually considered
to have six communities, which makes it a representative of
a medium size network. The circular layout of the Dolphins’
network is shown in Fig. 2 (I).

Figure 2 (II) depicts the deconstruction of this network.
As seen, the LE method of the edge significance evalua-
tion results in a slight and graduate decrease of the Rgc(ρ)-
dependence, while the ILE method results in almost no
changes in the sizeRgc of the largest connected component for
the first approximately twenty percent of removed edges and
with the following sharp drop, which makes the ILE method
more efficient than the LE. The EA gives rise to the earlier
drop in Rgc than the ILE and is characterized by the smaller
area Srgc under the curve Rgc(ρ). The latter two feature enable
us to judge about the superior performance of the EA.

C. AMERICAN COLLEGE FOOTBALL NETWORK
The American College Football network [12] is the network
of American football games between Division IA colleges
during the regular season in Fall 2000. The football network
can be regarded as a representative of big networks: it consists
of 115 nodes and 613 edges. There is no consensus on the
number of communities in the football network [31], but in
the present paper, for the purpose of numerical simulation,
the network is assumed to be initially divided by nine com-
munities [60]. The circular layout of the American College
Football network is represented by Fig. 3 (I).
The comparison of the network decomposition is shown

in Fig. 3 (II) As in the case of the Dolphin network, the
LE method gives rise to a gradual decrease of the Rgc(ρ)-
dependence, outpacing the ILE and EA during the first stage
of decomposition. The ILE method demonstrates a strong
cumulative effect on the graph decomposition. At first, almost
40% of removed edges do not result in any decrease in the
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FIGURE 1. (I) The circular layout of the Zachary’s Karate Club
network [54] and (II) its decomposition within the Evolutionary Approach
(EA) (blue solid line), the Link Entropy (LE) method (green dash-dotted
line), and the Improved Link Entropy (ILE) method (red dashed). The lines
represent the corresponding fraction of nodes Rgc belonging to the
largest connected component vs the relative amount of removed nodes ρ.

Rgc(ρ)-dependence, but then, after removing a few edges,
the value Rgc drops step-wise from 1 to almost 0.15. The
integral area Srgc under the curve Rgc(ρ) turns out to be much
smaller, confirming that the ILE outperforms the LE method.
The network decomposition governed by the EA exhibits a
behavior similar to the ILE method outcome, but it prepares
the drop of the Rgc earlier and results with even smaller area
Srgc, outperforming the ILE and LE methods.

V. DISCUSSION
The decomposition of the analyzed three benchmark net-
works of small, medium and relatively large size—the
Zachary’s Karate Club network, the Dolphins network, and
the American College Football network—clearly demon-
strated the proposed Evolutionary Approach to be supe-
rior to the conventional methods represented by the Link
Entropy algorithms and the improved Link Entropy algo-
rithm. As demonstrated in [28], the LE is superior to the well
recognized algorithms, namely, the Edge betweenness cen-
trality, Degree product, Bridgeness, Diffusion importance,
Topological overlap in the efficiency of network decomposi-
tion. Naturally, the ILE—the improved version of the LE—is
superior to the LE [33]. For this reason, in comparing the EA
with straightforward algorithms we confine our consideration
to the LE and ILE.

The edge removal, according to the queuing obtained
by the EA, has exhibited a faster overall drop of the
Rgc(ρ)-dependence and a smaller area Srgc under the curve
Rgc(ρ), which is summarized in Table 3.

FIGURE 2. (I) The circular layout of the Dolphins network [57] and (II) its
decomposition within the Evolutionary Approach (EA) (blue solid line),
the Link Entropy (LE) method (green dash-dotted line), and the Improved
Link Entropy (ILE) method (red dashed). The lines represent the
corresponding fraction of nodes Rgc belonging to the largest connected
component vs the relative amount of removed nodes ρ.

TABLE 3. The integral area Srgc under the curve Rgc (ρ), see Exp. (1), for
all the three methods applied to decomposing the analyzed benchmark
networks.

The superiority of the EA is quite expectable. The matter
is that the straightforward algorithms and the EA are based
on different paradigms. The straightforward algorithms focus
on detecting topological features of networks and attribute
special properties to individual edges. The Edge between-
ness centrality, Degree product, Bridgeness, Diffusion impor-
tance, and Topological overlap together with the LE exem-
plify these features and properties [28]. Then these properties
are used in constructing the sequence of edges that represents
the network decomposition regarded as the most efficient.
By contrast, the EA ascribes no special property to individual
edges and operates directly with the efficiency evaluation
criterion being of integral structure and attributed to a given
network as a whole entity.

In this sense, the EA should be categorized as a holis-
tic algorithm dealing with properties of a given network
ascribed to its macro-level only, i.e., the network treated as
a whole entity. For an introduction to the concept of holism
and its modern understanding, a reader may be referred
to [61] and [62]. So if the optimal decomposition of a given
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FIGURE 3. (I) The circular layout of the American College Football
network [12] and (II) its decomposition within the Evolutionary Approach
(EA) (blue solid line), the Link Entropy (LE) method (green dash-dotted
line), and the Improved Link Entropy (ILE) method (red dashed). The lines
represent the corresponding fraction of nodes Rgc belonging to the
largest connected component vs the relative amount of removed nodes ρ.

network is its holistic property, only the genetic-type algo-
rithms seem to be able to generate it precisely. In this case, the
straightforward algorithms can only approximate it in some
way. If the optimal decomposition of this network is reducible
in properties to the meso-level or even the micro-level of
a network, then the genetic-type and straightforward algo-
rithms may be of the same efficiency.

The EA-generality has a cost, namely, (i) the heuristic
aspects in the algorithm construction and (ii) the running-
time problem, which is not independent of each other. The
former is reflected in the heuristic choice of the initial set of
chromosomes and their number depending on the network
topology. For example, highly branching networks similar
to the ones analyzed in the present paper and the sexual
networks with the long-circle-like structure [18] may require
different initiation of the EA-implementation.

As far as the running-time is concerned, let us compare
this feature for the considered networks. The running time
of the Link Entropy method varies from a few seconds to a
few minutes on an ordinary PC, depending on the network
size. The corresponding running time of the Improved Link
Entropy method varies from a few minutes to an hour. For a
similar PC, the running time of the Evolutionary Approach
varies from a few hours to a day, depending on the network
size. The time consumption of the Evolutionary Approach
makes it not the first choice in case of emergency when
the network decomposition must be performed as soon as
possible. However, if the running time is not a significant

factor, the Evolutionary Approach results in a better solution
than conventional alternatives.

The combination with the conventional methods can sig-
nificantly reduce the running time of the Evolutionary
Approach. Before initiating the EA, a set of link criticality
rankings can be obtained using other methods. This set can
be encoded in the form of EA’s chromosomes and injected
into the initial generation. It will result in a shortcut in the
evolutionary process from a not acceptable to a good candi-
date for a solution, and the EA will improve this candidate
to a better one. A potential problem with the given shortcut
is that there is a chance of falling to a local minimum and
finding good but not the best network decomposition order.
However, this problem can be overcome via several parallel
EA implementations, each of which uses a unique injected
chromosome obtained by different conventional approaches.
The development of an approach merging the EA and the
straightforward algorithms is a matter of further research.

The Evolutionary Approach possesses the general value
for studies devoted to edge criticality detection, enabling
the creation of a database of ‘‘optimal’’ solutions for the
benchmark networks. It, maybe, will take time to analyze
all the benchmark networks and to collect all the results, but
the result can hardly be overvalued. Indeed, first, typically
newly developed methods are compared with the existing
ones via simultaneous decomposition of the same networks.
The algorithm complexity and the running time also are often
used in evaluating new methods. The database of ‘‘optimal’’
solutions to the benchmark networks shall make it possible
to introduce a new metric quantifying the distance between
a proposed solution and the ‘‘optimal’’ solution found by the
EA. Second, the obtained ‘‘optimal’’ solutions can stimulate
the development of essentially new methods for studying
network resilience. Optimal sequences of edge removals may
be analyzed from the perspective of detecting such topo-
logical features of networks that per se underpin or even
specify an efficient link removal. It may result in discovering
new efficient, straightforward algorithms for edge criticality
detection or a mixture of existing methods switching from
one to another depending on the topology of the initial and
remained graphs.

The proposed Evolutionary Approach can be adapted to
other problems of network science. First, a similar principle
can be used for detecting critical and influential nodes using
such metrics as the final affected scale, which reflects the
final spreading capacity of initial nodes and the average short-
est path length between nodes in the initial infection set [3].
Second, the EA optimization criterion—the minimization of
Srgc—can be replaced by something else. By way of example,
the minimization problem can be formulated as to find a
sequence of edge removal maintaining the connectivity of
the network as long as possible, which can proceed in a
hidden way for an external observer. Then, after preparation,
removing a few edges should give rise to the deepest fall
of Rgc, which illustrates military sabotage of the network.
Another example is the minimization of Srgc within the first
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10–50–100 edges removed without the requirement of com-
pleting network decomposition.

VI. CONCLUSION
Identifying critical links in complex networks is an inter-
esting and challenging issue in network science. Various
straightforward algorithms have been proposed to cope with
it. In this paper, we have offered to look at the prob-
lem from another perspective and presented an evolution-
ary approach for detecting significant edges. It is based on
an optimization technique applied to the efficiency assess-
ment of graph decomposition that turns to a certain inte-
gral criterion. The numerical results of decomposing three
real-world standard benchmark networks have shown that
the developed Evolutionary Approach (EA) outperforms the
efficient Link Entropy method as well as the most recent
Improved Link Entropy method (ILE), exhibiting the high-
est efficiency among the straightforward algorithms. For the
analyzed benchmark networks, it has been demonstrated that
the EA-efficiency in the link criticality detection exceeds
for 5.7–28.1% the ILE-efficiency depending on the network
complexity. The significant limitation of the proposed EA
is the running time, which makes it not the first option if
the edge criticality should be assessed within a short period.
We have discussed how the running time could be reduced
by combining the EA with any other conventional, straight-
forward algorithms.

There are still many challenging issues reflecting various
aspects of significant edge detection and whose solution can
be enhanced by the developed EA. In particular, employing
the EA to generate the optimal decomposition sequences for
the main benchmark networks, the obtained results could
be used to assess the relative efficiency of existing methods
or to construct new straightforward algorithms. The further
improvement of EA may be related to (i) optimization of the
number of generations and chromosomes in them depending
on the topological features of analyzed networks and (ii)
inclusion into consideration also the identification of influ-
ential nodes.

The proposed EA is global in nature, i.e., it operates with
networks in issue as whole entities, and in its framework,
no properties are attributed to individual edges. By con-
trast, straightforward algorithms directly deal with individual
edges and their properties. The demonstrated superiority of
the EA allows us to pose the question ofwhether the optimiza-
tion of network decomposition is a problem belonging to the
global level of network topology. If so, the related problem
concerns a straightforward algorithm giving the best approx-
imation of the strictly optimal decomposition sequence.
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