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Abstract: We put forward a novel model for self-organized criticality in the dynamics of systems
controlled by human actions. The model is based on two premises. First, without human control,
the system in issue undergoes supercritical instability. Second, the subject’s actions are aimed at
preventing the occurrence of critical fluctuations when the risk of control failure becomes essential
rather than keeping the system in the stability region. The latter premise is reasoned as follows:
(i) keeping the system rather far from the instability boundary is not justified from the standpoint
of effort minimization, and (ii) keeping it in the immediate proximity to the instability onset also
requires considerable effort because of the bounded capacity of human cognition. The concept of
dynamical traps is used in the mathematical description of this type of subject’s behavior. Numerical
simulation demonstrates that the proposed model does predict the emergence of fluctuations with the
power-law distribution. In conclusion, we discuss that the self-organized criticality of social systems
is possible due to the basic features of the human mind.

Keywords: instability; cognitive control; scale-free dynamics; dynamical trap

1. Introduction

Originally, the concept of self-organized criticality (SOC) was put forward by Bak
et al. [1] within the famous sandpile model. They treated SOC as a characteristic phe-
nomenon occurring in dynamical systems, where the critical point is an attractor of their
dynamics. Nowadays, the SOC concept is widely used in describing the complex behavior
of various systems different in nature (e.g., see [2–4] for a review). Their hallmark is the
emergence of scale-free (power-law) distributions of spatiotemporal fluctuations near some
state. Typically, SOC is attributed to the collective dynamics of complex systems comprising
many constituent elements, e.g., [5], whose individual behavior may be rather simple.

A certain analogy between SOC and the second-order phase transitions makes it
attractive to turn to the corresponding field theory dealing with meso-level Langevin
equations for describing SOC or, at least, some of its classes ([6] for discussion). Within this
approach, the main impediment is elucidating the mechanism of critical point self-turning.
In particular, to overcome the self-turning problem, Sornette [7] (see also [8]) suggested
that an ordinary critical phenomenon can cause the desired scaling behavior without the
need for fine tuning when the system slowly sweeps back and forth across the critical point.
A similar approach was developed by Bonachela and Muñoz [6], and they proposed to call
the corresponding phenomenon the self-organized quasi-criticality (see also [9]).

The emergence of scale-free spatiotemporal fluctuations characterizes also human
behavior at the individual and social levels, e.g., [10,11]. In particular, balancing a stick on
the fingertip exhibits power-law fluctuations [12–14], and the dynamics of traffic flow jam
also exhibits scale-free properties [15,16]. The synchronized mode of congested highway
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traffic may be conceived of as a continuous multitude of metastable states, e.g., [17], which
argues for its quasi-scale-free structure [18].

In the present paper, we put forward a novel model for human control over unstable
systems that exhibits power-law properties, which is regarded as the manifestation of SOC
behavior. The gist of the model is that, on the one hand, the subject physically cannot
precisely recognize the critical point position corresponding to the instability onset as well
as small deviations of a controlled system from the desired state. On the other hand, the
subject also cannot drive the system precisely to the desired state when the system deviation
becomes essential. As a result, the controlled system continuously sweeps back and forth
across the critical point in an oscillatory fashion remaining inside its small neighborhood.
In this general aspect, our model is similar to the SOC mechanism based on a feedback
loop between the dynamics of the activity and that of the control parameter, e.g., [2]. The
novelty is that the subject’s actions are intentional and goal-oriented, endowing human
control with adaptive behavior. In particular, the subject intensifies their actions when it
is crucial for the system control and relaxes when it is possible. In this way, the subject
minimizes the effort required to govern the system dynamics, which actually endows the
system dynamics with complexity.

Finalizing the Introduction, we want to emphasize that the proposed model deals with
a single person whose behavior exhibits scale-free properties due to the basic features of
human cognition. Thereby, the dynamic complexity of social systems can be due to not
only their multi-element structure but also the inherited complex behavior of its elements.
Naturally, this aspect requires individual investigation.

2. Model

The model to be developed comprises two parts described from the external-observer
perspective and the first-person perspective, separately. The former perspective implies that
all the variables quantifying the state of a system in issue and the results of human actions
are determined precisely, including, maybe, their random variations. The latter perspective
implies that the human response to the system state is governed by how the subject
perceives this state. Put differently, the subject’s behavior is determined by the properties
of the mental images of the observed system and the results of the subject’s action.

For simplicity, below all the system variables, time t and the model parameters are
given in dimensionless form, except for some points related to the model construction.

2.1. External-Observer Perspective

The state of the given system is specified by a variable x ≥ 0 quantifying its deviation
from the desired steady-state position, the unstable equilibrium x = 0. For the oscillatory
instability, the value x may be regarded as the current amplitude of oscillations averaged
over a few oscillations, and, thereby, the inequality x ≥ 0 holds originally. For the aperiodic
instability, the system dynamics in the regions x > 0 and x < 0 can be analyzed separately,
which allows us to confine our consideration to the region x ≥ 0 only.

The system dynamics is assumed to be governed by the equation

dx
dt

= (ηb − η)x + ηbθb . (1)

Here, first, the variable η quantifies the intensity of the subject’s response to the
system deviation x from the equilibrium, and ηb > 0 is the boundary (threshold) of the
instability onset. Second, the parameter θb � 1 is introduced to cut off the artificial effect
of an unlimited decrease in the variable x → 0 for η > ηb. In reality, this cut-off seems
to be caused by some noise intrinsic to the system dynamics on its own. However, the
two approaches—the used regular model and the noise-based model for this cut-off—lead
practically to the same effect in the analyzed phenomenon, so we chose the regular model (1)
for convenience.

The following premises underlie model (1).
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◦ Without the subject’s actions, the system exhibits overdamped instability governed by
the equation τx ẋ = x, where τx is the time scale of the instability development.

◦ If the subject’s perception were perfect, than the subject’s response to the system
deviation x could be described in terms of the following:
(i) Some additional “force” f (x) = βx acting on the system and directed towards

the equilibrium x = 0;
(ii) The subject’s choice of the coefficient β→ 1+ such that the system dynamics

τx ẋ = x− f (x) = (1− β)x → 0

becomes stable at the equilibrium x = 0, and the required effort being a
growing function of β attains its minimum.

The value of β can be interpreted as the ratio of the time scale τb characterizing the
subject’s reaction intensity that keeps the system at the instability boundary and the
time scale τ of the current reaction intensity, β = τb/τ. As it must, for τ → τ−b ,
the coefficient β → 1+, and the shorter the reaction time τ, the more stable the
system motion.

◦ The bounded capacity of the subject’s perception in monitoring the system dynamics
and the resulting response is taken into account via introducing the “force” f (x) = βx,
where we have the following:
(iii) The functional form of f (x) coincides with that of the perfect response (item i).
(iv) However, the value of the coefficient β, the control variable, cannot be recog-

nized by the subject precisely nor controlled perfectly.
◦ Under normal conditions, i.e., when the subject’s control is not close to failure and

no urgent actions are necessary, the time scale τb characterizing the current subject’s
reaction should be about the reaction time at the instability onset, τ . τb. So the
temporal scale τb is used below as the time unit. In these terms, the equation governing
the system dynamics under the subject’s control (specified in item ii) is reduced to the
dimensionless form (1), and we obtain the relations

ηb =
τb
τx

and η =
τ2

b
τxτ
≡ τb

τ
ηb . (2)

where it follows that, first, the value η ∝ 1/τ may be treated as the measure of the
subject’s reaction intensity. Second, because the subject’s actions in governing an
unstable system cannot be slow in comparison with the instability development, we
may consider the inequalities τb < τx and, thereby, ηb < 1 to hold beforehand.
To elucidate the introduction of the governing Equation (1), we note the following.

There is a wide range of literature on human control over unstable systems turning to
different premises in modeling human actions. In particular, the pendulum balancing
is typically analyzed from the standpoint of the subject’s reaction delay, the threshold
of control activation, and prediction effects; see [19] for a review. Suzuki et al. [20] put
forward a new paradigm assuming human actions to be aimed at keeping unstable systems
near the stable manifold, which seems to be a fundamental feature of human goal-oriented
behavior [21]. Phase transitions in traffic flow and pedestrian motion are often described
using the family of models dealing with the subject’s response to the position and velocity
of surrounding objects (cars and pedestrians) [22].

Comparing these approaches with ours, we want to emphasize that they turn to the
classic paradigm of self-organization—the onset of instability, its development, and the
emergence of spatiotemporal patterns governed by nonlinear effects. In this case, the
complexity of the spatiotemporal patterns is determined by the details of how the subject
responds to the current system state, maybe with some delay ∆t. In the used notations,
these details are hidden in the complex form of the function f = f (x, ẋ, ∆t, . . .). In our
approach, we consider two crucial factors—the subject’s response with the corresponding
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details and the intensity of the subject’s actions—separately. The former factor is described
as simply as possible (item (iii)), and the instability onset is related solely to the latter
factor. Moreover, the intensity of the subject’s actions is not necessarily determined by
the system state at the current instant of time or, at least, with some delay. The system
state may be averaged over some time interval characterizing the temporal extent of the
subject perception or just a few periods of oscillations for recognizing their amplitude.
Kapitza’s pendulum (e.g., [23], Section 27, Prob. 3)—a pendulum whose pivot point is
intensively vibrated—illustrates the problems we deal with. In this case, the subject may
pay only minor attention to the pendulum’s current position; the subject should take care
only of whether the pendulum’s upright position looks stable in changing the intensity
of his actions. Put differently, within our approach, we turn directly to the gist of the
SOC-paradigm as a mechanism of emergent phenomena.

In the given context, we want to note also a model proposed by Patzelt and
Pawelzik [24] for describing human behavior, i.e., in balancing an inverted pendulum.
In their model, first, the pendulum dynamics is governed by an equation similar to
Equation (1). The subject’s reaction (in our notations, the variable η) is described as a
hidden stochastic process governed by the predictive adaptive closed-loop control based
on the Fisher information for internal noise and the subject’s observations. Our approach
differs in that its turns to the first-person perspective for modeling the η-dynamics. In other
words, we suppose that the η-dynamics is governed by the subject’s perception of the
observed system, as it is consciously recognized and reflected in the human mind.

2.2. First-Person Perspective

Within the first-person perspective, the magnitude of the value that η currently takes
as well as the threshold ηb are inaccessible to the human mind because of the perception
uncertainty. Put differently, the subject cannot control the magnitude of η precisely; they are
only able to determine a fuzzy region containing the value η under the current conditions.
The same concerns ηb. Moreover, the η-variations inside this region are also beyond the
subject cognition, which endows time variations in the variable η with stochastic properties.

Before proceeding directly to formulating the equation governing the η-dynamics, let
us consider its individual aspects reflecting the basic features of human perception and
cognition. Namely, they are as follows:
– The scale-free properties of human perception uncertainty underpinning Weber’s law

(Section 2.2.1);
– The dependence of effort in monitoring and controlling the system dynamics on action

strategies (Section 2.2.1);
– The multi-channel functioning of sensory modalities (Section 2.2.2);
– The bounded capacity of human cognition making the precise control over the dynam-

ics of controlled systems impossible (Sections 2.2.3 and 2.2.4).

2.2.1. Uncertainty in Subject’s Perception of System States

The system dynamics is controlled by the subject’s actions based on the monitoring of
the system deviation x(t) and the consequent recognition of whether raising or lowering
the current reaction intensity η is necessary or, maybe, it may be kept unchanged if the
necessity of any change is not evident. More generally, the human control over unstable
systems is governed by the subjective estimation of the current situation and the experience
of how the system state has to be corrected. In the case under consideration, the subject’s
evaluation of the current system state is determined by two factors:
– The sensory perception of the quantities x and η, as well as the rates ẋ, η̇ of their

variations in time;
– The mental estimation of the values of x, η, ẋ, and η̇ with respect to the acceptability of

the current system state.



Systems 2023, 11, 271 5 of 18

Both of the two factors are sensitive to attention focused on monitoring the system dy-
namics.

The sensory perception is characterized by its intrinsic uncertainty because of which
the subject cannot differentiate, e.g., two close magnitudes of the system deviation x or
its rate v = ẋ, which is rooted in the neural mechanisms of information processing. In
the sensory perception of a certain stimulus χ (here χ = x, v), this uncertainty is typically
quantified by the just noticeable differences ∆χ obeying Weber’s law ∆x ∝ χ, e.g., [25]. The
mental estimation of system states is also characterized by some uncertainty but of another
nature to be elucidated in several steps.

First, to minimize effort, the subject may adopt a strategy of governing the system
dynamics that substantially differs from the conventional one. Within the conventional
strategy, the subject tries to keep the system in a small neighborhood of the unstable
equilibrium x = 0 together with the reaction intensity η reliably higher than the critical
value ηb. Such actions require monitoring the system dynamics and the subject’s actions
with the ultimate accuracy achieved when all the attention is focused on the sensory
perception of the system motion together with the fine control of the subject’s actions. To
implement this type of behavior, substantial effort is required.

The alternative strategy implies that the subject tries only to prevent the onset of a
critical situation when the risk of failure in the system control becomes high rather than
to stabilize the system in the conventional sense. In the proposed model, we characterize
this critical situation in terms of a certain system deviation xc from the equilibrium x = 0
understood as some fuzzy threshold. It means that when the system deviation x exceeds
the critical value xc and the subject considers the difference x− xc substantial, the subject
intensifies their reaction as strongly as possible without any attempt to fit the reaction inten-
sity to the current deviation x. When x . xc, the subject may only depress a considerable
growth in x without trying to drive the system to the equilibrium x = 0.

It is necessary to emphasize that the critical deviation xc cannot be treated as a con-
ventional model parameter given beforehand. Indeed, the quantity xc exists only in the
subject’s mind, and is a result of the experience acquired previously. So the quantity xc,
as well as its derivatives, such as the difference x − xc, comes into being via the mental
estimation of the observed system state. In this case, the probability of the subject losing
control over the system dynamics should depend on the difference x− xc as a power-law
function. Therefore, the subject may consider the difference x− xc substantial when they
recognize that the value x − xc is about some remarkable part of the critical deviation
xc, e.g., 25%, 50% or 100% of xc. Exactly this type of mental estimation of system states
underlies the emergence of its uncertainty. Naturally, the uncertainty of mental estimation
cannot be lower than the uncertainty of the sensory perception. The well-balanced situation
corresponds to the case when the two uncertainties coincide, which actually determines
the optimal attention to be allocated to the sensory perception. The same concerns the
mental estimation of the increment v = ẋ, where the critical value vc can be regarded as the
ratio of the critical deviation xc and the time scale τb characterizing the subject’s reaction
at the instability onset. In other words, as clarified below, we may accept the estimate
vc ∼ xc/τb ∼ xc written in dimensionless units.

Taking the aforesaid into account, in the further constructions, we accept the following:
• The subject follows the alternative strategy in controlling the system dynamics;
• The mental estimation of system states plays the leading role in the subject’s control,

and the sensory perception is well balanced with the mental estimation.
The two assumptions are well justified if we accept that the subject tries to govern

the system motion by minimizing the required effort. In this context, it is worth noting
that human control near the edge of instability exhibits scale-free dynamics and meets the
minimization of the energetic cost (see [26,27] and references therein).

Second, as put forward by Lubashevsky [28], the mental estimation is based on com-
parative operations with mental images of perceived entities, which makes it necessary to
use the working memory. It is the capacity of working memory—the maximal number Nm
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of different items that the working memory can store—that determines the relative (fuzzy)
threshold κ ∼ 1/Nm in recognizing quantitative changes in a controlled variable χ (χ = x,
ẋ, η, η̇). It means that if variations δχ . κχ, then the subject cannot quantify them and has
no reason to consider the corresponding change in the system state essential to affect the
possibility of the control failure. According to Cowan [29], the capacity of the working
memory can be estimated as Nm = 3–5, so in the further constructions, we set κ ∼ 0.3.

Third, there is another threshold in the quantitative comparison of two variables χ1 and
χ2 > χ1 of a control variable χ. It is the minimal ratio $ = χ1/χ2 admitting a quantitative
estimate, i.e., the range of magnitudes of comparable stimuli [30]. The latter threshold can
be related to the former one as $ ∼ κ2 [28]. In the analyzed case, the subject continuously
compares the current system deviation x and its rate v = ẋ with the corresponding critical
values xc and vc. So, it is reasonable to assume that the value κ2xc (κ2vc) is the lower
boundary of the x-region (v-region), where the subject is able to quantitatively discriminate
the magnitudes of the system motion states.

Summarizing Section 2.2.1, we adopt the following ansatz for the uncertainty σχ in the
subject’s perception of the system state variable χ (here χ = x, ẋ)

σχ =
√

κ2χ2 + κ4χ2
c = κχ (3)

where we introduced the quantity

χ =
√

χ2 + κ2χ2
c (4)

to be called the estimative deviation x of the system from the equilibrium (for the variable
χ = x) and the estimative rate v of time variations in the system deviation (for the variable
χ = ẋ).

To construct the governing equation for the subject’s behavior, at first, we need to
discuss the fine mode as well as the critical mode of the control process.

2.2.2. Fine-Control Mode and Two Types of Strategies: Subject’s Perfect Perception Limit

Far from the critical situation, i.e., for x � xc, it is feasible for the subject to drive the
system into a certain neighborhood of the instability boundary η = ηb by changing the
reaction intensity gradually within a time interval about τb; in the used dimensionless units,
it is the time interval of the unit duration.

In monitoring the system motion, the subject focuses on two quantities—the deviation
x and the rate v = ẋ of its time change. Therefore, the subject can select any one or both in
choosing a strategy of stabilizing the system dynamics governed by Equation (1). In this
subsection, let us describe two strategies of different types in stabilizing the system dynam-
ics under the assumption that the subject’s perception and control are perfect. Later, the
equation to be constructed will take into account the bounded capacity of human cognition.

The V-type strategy is based on the subject’s control over time variations in the system
deviation from the equilibrium x = 0. In this case, the gist of the subject’s actions can be
specified as follows. When the system deviates from the desired position, i.e., ẋ > 0, the
subject should intensify their reaction η̇ > 0. In the opposite case ẋ < 0, the subject may
lower the reaction intensity η̇ < 0 to minimize the control effort. When ẋ = 0, no actions
are necessary.

The scale ϑ(x) quantifying the subject’s perception of the rate ẋ is determined by the
experience accumulation and, for this reason, can depend only on the system deviation x
from the desired position. The subject may consider returning the system to the desired
position x = 0 within a time interval of duration about τb, optimally. It immediately gives
us the estimate ϑ(x) ∼ x/τb. So, the ratio ẋ/ϑ(x) ∼ τb ẋ/x = ẋ/x can be treated as the
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strength of the ẋ stimulus, causing the subject to respond to the observed rate ẋ. It leads us
to the following equation dealing with dimensionless time (time measured in units of τb):

1
η

dη

dt
= µ

1
x

dx
dt

, (5)

where the coefficient µ ∼ 1 is the susceptibility of the subject’s response to the ẋ-stimulus.
The left-hand side of Equation (5) takes into account that the dynamical variable η not
only describes the subject’s reaction intensity but also represents the time scale τ ∝ 1/η
characterizing its variations (see Equation (2)). Equation (5) governs the fine control within
the V-type strategy for the subject with strictly perfect perception. It should be emphasized
for the further constructions that the term ẋ = dx/dt in Equation (5) is the result of the
sensory perception, whereas the cofactor µ/x represents the mental evaluation of the
v-scales under the current conditions.

In principle, the subject may evaluate the positive and negative values of ẋ differently.
Indeed, when ẋ > 0, the subject needs to depress the instability development, whereas
when ẋ < 0, the subject’s actions are aimed at minimizing the effort. Below, we will take
this effect into account (Section 2.2.4).

The direct integration of Equation (5) leads us to the relationship

η(t) = ηb

[
x(t)
x∗

]µ

,

where x∗ > 0 is some constant specifying the trajectory of system motion toward the point
η = ηb and x = x∗. The constant x∗ admits an interpretation as the system steady-state
position parameterizing the V-type strategy of the fine-control mode and can take any
arbitrary value much less than the critical deviation xc. Below, the susceptibility coefficient
is set equal to µ = 2 to emphasize that the dependence x(t)/x∗ = (η(t)/ηb)

1/µ should
be concave, i.e., the inequality dx/dη < 0 should hold. Indeed, in the subject cognition,
weaker variations in the directly observed deviation x of the system from the equilibrium
have to be related to stronger variations in the reaction intensity, being a characteristic of
the subject’s internal state.

The X-type strategy is based on the subject’s control over the system deviation x. In
this case, the subject tacitly compares the quantities x and η. When the system deviates
substantially from the equilibrium x = 0, especially when its deviation x becomes com-
parable to the critical value xc, the subject’s reaction has to be quickly intensified. When
the system deviation x is rather small, i.e., x � xc, the subject may consider changing the
current reaction intensity that is not necessary or gradually decrease it.

To describe such subject behavior, we turn to the following equation:

1
η

dη

dt
=

(
g

x
xc
− η

)
, (6)

where the dimensionless parameter g relates the critical system deviation xc and the
corresponding intensity ηc of the subject’s reaction (actually the characteristic time τc of the
subject’s reaction) near the “boundary” of the control loss

g = ηc = ηb
τb
τc

. (7)

We suppose that when the system deviation exceeds the critical value x & xc, the
capacity of the fine-control mode is exhausted, and the subject needs to intensify their
reaction up to its limit value η` in a step-wise manner. As in the case of the V-type control,
the subject’s response to small values of x � xc may be substantially weaker than their
response to the values of x ∼ xc. Below, we also take this effect into account (Section 2.2.4).
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It is worth noting that the critical reaction intensity ηb is not included into the descrip-
tion of the two strategies because, initially, the value ηb is not known to the subject and
they can obtain their estimation only via accumulating the experience of system control. In
addition, we assume that the parameters xc and ηc should be intrinsically interrelated to
each other via a speed–accuracy trade-off. This issue, however, is beyond the scope of the
present paper.

It should be noted that the multi-channel structure of sensory modalities forms the
pivot point in the given constructions. In particular, the concept of two channels, sustained
and transient, determining visual perception was put forward in the 1970s. The transient
channel mechanisms respond best to rapid temporal changes in the perceived stimuli,
and the sustained channel mechanisms respond best to steady or slowly varying stimuli.
Nowadays, evidence for the existence of these channels within the information processing
in high-level visual regions of the brain has been found based on fMRI measurements,
e.g., [31].

2.2.3. Critical-Control Mode: Subject’s Perfect Perception

When the system deviation x gets large magnitudes, approximating or even exceeding
the critical value xc, i.e., x & xc, the subject faces the necessity to decrease the system
deviation urgently. In this case, the X-type strategy becomes dominant, and the subject,
paying no attention to the current dynamics of x(t), must raise the reaction intensity up to
its limit value η`. To be specific, without loss of generality, in our further constructions, we
set η`/ηc ∼ 4. To justify this estimate, we may note that the speed–accuracy trade-off is
typically studied within the range 150 ms to 1 s depending on task difficulty [32], which
illustrates the “working time range” of human perception.

In order to generalize the X-type strategy of the fine-control mode to the subject’s
behavior within the critical-control mode, we accept the following equation for the η-
dynamics considering that the subject’s perception is perfect:

1
η

dη

dt
= ηc

[
x
xc
−Φ

(
η

ηc

)]
, (8)

which is the generalization of Equation (6) to the critical-control mode; in constructing
Equation (8), we take into account Exp. (7). Figure 1I illustrates the response function
Φ(η/ηc), allowing for this type of subject’s behavior. The function Φ(u = η/ηc) is con-
structed as the polynomial

Φ(u) = u +
8

∑
i=2

Aiui (9a)

with the following reference points

Φ(u)|u=1.25,4 = 1, Φ(u)|u=3 = ∆ < 1,

dΦ(u)/du|u=1.25,3 = 0, Φ(u)|u=5,6 = 3, 10,
(9b)

for the model parameter 0 < ∆ < 0.8 quantifying the amplitude of hysteresis in the
sequence of activating–deactivating the subject’s reaction with the limit intensity. It should
be noted that hysteresis is a well-known phenomenon in the human perception of external
stimuli, e.g., [33], and may be regarded as an intrinsic property of human cognition [28].
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Figure 1. The characteristic functions describing (I) the subject’s actions in the critical situation and
(II) the uncertainty in estimating the system state. The shown parameters are related to ansatz (9) for
the function Φ(η) and ansatz (11) for the function Ω(χ).

2.2.4. Concept of Dynamical Traps and the Governing Equation of Subject’s Actions

Because of uncertainty in the sensory perception, the subject may halt his active control
over the system motion when the system comes close to the equilibrium x = 0. Indeed,
in this case, they just cannot recognize what specific actions are required and may prefer
to change nothing in the state of their actions until the further system motion clarifies the
needed changes. This type of behavior is often called human intermittent control, which
manifests itself in that such control processes can be conceived of as a sequence of alternate
fragments of passive and active phases in human actions. Nowadays, the intermittency
of human control over external systems as well as inner processes responsible for the
body equilibrium is considered an intrinsic property of human physiology [34]. The same
concerns the mental estimation of the observed system dynamics. The subject may consider
any change in their actions unnecessary if the difference between the current state and
its alternative is ignorable in spite of being quite visible. In the case when the sensory
perception is well balanced with the mental estimation, their similarity in uncertainty
properties becomes pronounced, and we may suppose that the subject’s control based on
mental evaluation is also characterized by the intermittency.

To allow for the accepted intermittency of the subject’s behavior, we turn to the con-
cept of dynamical traps developed by Lubashevsky (see [35] for a detailed description). In
particular, it generalizes the notion of the stationary point in describing dynamical systems
governed by human actions. Namely, a stationary point is replaced by its certain neighbor-
hood, where the corresponding “forces” caused by human actions become equal to zero.
As a result, the dynamics of a system in issue is stagnated inside the dynamical trap region,
and only random forces affect the system motion. A dynamical trap does not necessarily
replace the corresponding stationary point; for a system with a multidimensional phase
space, the dynamical trap can be related only to one of its dimensions and does not affect
the system motion in the others.

In the present paper, we introduce a common model Ω(χ) of dynamical traps affecting
two state variables. One of them is the rate ẋ normalized to the uncertainty σẋ of its
mental estimation (Exp. (3)), namely, χ = ẋ/σẋ, representing the subject’s reaction to the
stimulus related to ẋ. In this case, the dynamical trap effect is introduced via the following
modification of Equation (5):

1
η

dη

dt
= µΩ

(
ẋ

κv

)
ẋ
x

. (10)

where, besides, the term 1/x is replaced by 1/x containing no singularity at x → 0. Inside
the dynamical trap region |χ| . 1, the stimulus, whose intensity is quantified by the variable
χ, is either not recognized by the subject or just ignored within its mental estimation. To
specify the trap function Ω(χ), we use the ansatz

Ω(χ) =
1
2

[
r tanh

(
− χ+1+SΩ

FΩ

)
+ tanh

(
χ−1−SΩ

FΩ

)
+ (1 + r)

]
, (11)
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where the parameters FΩ and SΩ describe the fuzziness of the thresholds χ = ±1 and
their shift along the χ-axis, respectively, the parameter 0 < r ≤ 1 allows for the subject to
respond slower in decreasing its reaction intensity, i.e., when relaxing, in comparison with
increasing intensity required to depress the system instability growth. Taking into account
Figure 1II, we use the values FΩ = SΩ = 0.25 in the numerical simulation; in this case, the
size of the dynamical trap region (the region of “force depression,” Ω(χ) � 1) becomes
actually equal to unity.

The other state variable

χ =

[(
x
xc

)2

+

(
η

ηc

)2 ]1/2

characterizes the subject’s estimation of the current state proximity to the critical situation
when the probability of control failure is high and the subject reaction should be intensified
urgently, which matches the values χ & 1. In this case, the dynamical trap effect is
introduced via the following modification of Equation (8):

1
η

dη

dt
= ηcΩ

{
1
κc

[(
x
xc

)2

+

(
η

ηc

)2 ]1/2}[ x
xc
−Φ

(
η

ηc

)]
, (12)

where the coefficient κc ∼ 1 is a model parameter determined by the particular form of the
trap function Ω(χ).

Figure 2 visualizes the spatial structure of the right-hand-side functions of Equations (10)
(panel I) and (12) (panel II). These functions are depicted via contour plots for κ = 0.25 and
κc = 1. The domains on the corresponding planes that are free from level lines (except for
the zero-level) illustrate the dynamical trap regions.

Figure 2. Illustration of the dynamical trap effects visualized via the contour plots of the right-hand-
side functions of Equations (10) (I) and (12) (II). In plotting the parameters, κ = 0.25 and κc = 1 were
used. The distance between the level lines is 0.01, blue and red tones represent negative and positive
values of the visualized functions.

It should be noted that the concept of the dynamical trap was validated via comparison
of the data collected in experiments on (i) balancing overdamped pendulums [36] and
(ii) car-following dynamics based on a driving simulator, e.g., [37] (Section 7.6), with the
corresponding results of numerical simulation.
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2.2.5. Summary: The Governing Equation of Subject’s Actions (η-Dynamics)

Uniting Equation (10) with Equation (12) and taking into account random factors that
are out of the subject’s control, we write the following equation describing the subject’s
actions within the first-person perspective:

1
η

dη

dt
= −ρr + εrξ(t) + µΩ

{
ẋ

κv

}
ẋ
x

+ ηcΩ
{

1
κc

[(
x
xc

)2

+

(
η

ηc

)2 ]1/2}[ x
xc
−Φ

(
η

ηc

)]
, (13)

where the introduced first two terms on the right-hand side allow for (i) a slow decrease in
the reaction intensity related to effort minimization when the necessity of active behavior
is not clear, and (ii) uncontrollable fluctuations in the subject’s reaction. The parameters
0 < ρr � 1 and εr � 1 are the quantitative measures of the two factors. The white noise
ξ(t) is specified by the conditions

〈ξ(t)〉 = 0 , 〈ξ(t)ξ(t′)〉 = δ(t− t′) .

The governing Equation (13) is actually the stochastic differential equation of the
Stratonovich type, e.g., [38], written here in the form of a Langevin equation to elucidate its
derivation based on the preceding mathematical constructions.

We want to emphasize that the constructed governing Equation (13) is actually a rather
“simple” mathematical description of the subject’s behavior that takes into account the
main features of human cognition affecting this type of human control. Indeed, we have
the following:
– The left-hand term η̇/η, the stimuli for the subject’s active behavior quantified by ẋ/x,

x/xc, and η/ηc actually meet Weber’s law reflecting the scale-free properties of human
perception;

– The last two terms on the right-hand side just represent the two channels of the visual
modality, processing separately sustained and transient information;

– The dynamical trap function Ω(. . .) describes the subject’s intermittent behavior, in
particular, the control stagnation when the subject is not able to recognize how the
current state should be changed;

– The first term on the right-hand side is due to the effort minimization when the
subject’s active behavior is not necessary;

– The introduced noise, the second term, allows for uncontrollable factors that are
outside of the subject’s cognition.
The delay in human response to current external stimuli is actually taken into ac-

count by treating the quantity η—the characteristics of the subject’s internal state—as an
independent phase variable.

3. Results of Numerical Simulation and Discussion

The system of Equations (1) and (13) is analyzed numerically using the order 1.0 strong
stochastic Runge–Kutta algorithm SRS2 for Stratonovich equations that is elaborated by
Rößler [39] and implemented in the Python library sdeint 0.3.0. To accumulate enough
statistics, the integration time is set equal to T = 105, and the discretization step size
is dt = 0.001. In analyzing the accumulated data, the algorithms histogram and welch
(with window size 8192 = 213) of NumPy (version 1.22) and SciPy (version 1.8) are used
for constructing the distributions of the variables x and η and the corresponding power
spectral densities.



Systems 2023, 11, 271 12 of 18

3.1. The Used Model Parameters

We analyze two particular cases that make the contribution of either the fine-control
mode or the critical-control mode most pronounced. Their common features are as follows.
The system deviation x from the unstable equilibrium x = 0 is measured in units of the
critical deviation xc when the subject’s control becomes close to failure, which is reflected in
setting xc = 1. The corresponding value ηc of the subject’s reaction intensity is also set equal
to ηc = 1, which actually implies that the unit of dimensionless time is re-normalized and
now time is measured in units of the reaction time τc when x ∼ xc. Under such conditions,
the subject’s reaction intensity ηb < 1 (or even ηb � 1) at the instability onset becomes a
model parameter, taking different values in the analyzed cases.

As far as the system dynamics governed by Equation (1) is concerned, the cut-off
parameter of the very small value of x is set equal to θb = 0.01. In other words, the subject
is assumed to be able to decrease the system deviation x maximally to xmin . 1% of xc. It,
on the one hand, enables us to avoid artificial effects caused by x → 0; on the other hand,
the effect of such small values of x on the analyzed phenomenon cannot be remarkable.

As far as the subject’s reaction dynamics governed by Equation (13) is concerned, first,
the following parameters κ = 0.25, ∆ = 0.75, FΩ = SΩ = 0.25 are used; their choice is in
Section 2.2. We set the parameter r = 0 of the dynamical trap function Ω(. . .) to accentuate
the difference in the subject’s behavior when the reaction should be intensified to depress
the instability growth and when the subject may relax to minimize the effort of keeping
the reaction intensity high. The increment ρr = 0.25 of the intensity drop represents the
intermediate rate of the effort minimization in comparison with the reaction intensification
in the case of instability growth.

Domination of the fine-control mode is found for ηb = 0.1, εr = 0.2, and κc = 1. These
parameters correspond to (i) a relatively wide region of the subject’s reaction intensity
between the instability onset and the control failure and (ii) the uncontrollable noise of
lower intensity, making the residence time in the trap relatively longer.

Domination of the critical-control mode is found for ηb = 0.5, εr = 0.4, and κc = 2.
These parameters correspond to the nearness of the instability onset and control failure and
the uncontrollable noise of higher intensity. These features make the subject’s step-wise
reaction to the increase in the system deviation x ∼ xc more pronounced, partly due to
κc = 2 shifting the onset of the subject step-wise reaction deeper into the trap domain.

Let us discuss the obtained results in the two cases separately.

3.2. The Case of Fine-Control Dominance

Figure 3 represents the found characteristics of the system dynamics in the given
case. In particular, Figure 3I,II illustrates properties of the time patterns x(t) and η(t).
As seen, the dynamics of the instability-induced system fluctuations and the subject’s
reaction intensity looks like some collection of segments combing similar oscillations
and whose amplitudes undergo irregular variations from small values near xc = 1 and
ηb = 0.1 up to values comparable with xc and ηc = 1, respectively. Nevertheless, under the
given conditions, the subject’s step-wise reaction to the system deviation x is not detected,
meaning the subject is able to control the instability development via adapting the reaction
to the currently observed system deviation x and its rate ẋ.

Figure 3III,IV depict the distribution functions Px(x) and Pη(η) of the variables x and η
in log–log scales that are constructed based on the generated time series {x(t)} and {η(t)}.
These distribution functions Px(x) and Pη(η) actually represent the properties of irregular
variations in the amplitudes of oscillation segments (Figure 3I,II) forming the time series
{x(t)} and {η(t)}. In the same way, Figure 3V,VI exhibit the corresponding power-spectral
densities Sx(ν) and Sη(ν), characterizing the temporal properties of the time series {x(t)}
and {η(t)}. Let us remind that the power spectrum of a time series {χ(t)} describes the
distribution of the squared amplitudes |Vν|2 of the corresponding Fourier components
{Vν}—harmonic oscillations Vν exp(i 2πν t) whose union makes up the time series {η(t)}.
In this context, the variable ν may be treated as a dimensionless frequency.
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Figure 3. The characteristic properties of unstable system dynamics when the fine-control mode
dominates. Panels I and II illustrate temporal patterns of the system deviation x(t) from the unstable
equilibrium x = 0 (Panel I) and the subject’s reaction intensity η(t) (Panel II). The horizontal white
line ηb = 0.1 (Panel II) visualizes the moments of instability onset. Panels III and IV exhibit the
distribution functions Px and Pη of the variables x (Panel III) and η (Panel IV) constructed based on
the generated data. The corresponding power-spectral densities (PS-densities or the distributions
of spectral amplitudes) Sx and Sη are shown in Panels V and VI, respectively. To reveal the scale-
free properties of the four distributions, log–log scales are used. Dashed blue lines visualize those
fragments of these distributions that admit interpretation as a power-law dependence. The parameters
used in numerical simulation are noted in Section 3.1.

To precisely reveal the possibility of identifying the scale-free fragments—admitting
interpretation as a power-law dependence—of the four distributions Px, Pη , Sx, and Sη , we
turn to log-log plots. As seen in Figure 3III,IV, the growing fragments of the distribution
function Px(x) and Pη(η) do admit interpretation as power-law dependencies spanning
over about two orders of magnitudes with respect to the values of these distributions and
one order with respect to variations in their arguments. It should be emphasized that the
scale-free fragment of the distribution function Pη(η) belongs to the region η < ηb = 0.1
of the instability onset. It can be explained as a result of the subject being in the relaxed
state characterized by the minimal effort of just waiting until the system deviation x from
the unstable equilibrium x = 0 starts to grow remarkably. This conclusion is also justified
by the power-law increase in the distribution function Px(x) that occurs in the region of
x < xc below the critical value xc = 1.
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Two power-law fragments can be also singled out in the power-spectral densities Sx(ν),
Sη(ν) (Figure 3V,VI). We focus on the fragments adjacent to the density maxima; along
the ν-direction, these fragments span from νl ≈ 0.05 up to νu ≈ 0.5. The corresponding
temporal scales can be estimated as t ∼ 1/ν, which leads to the dimensionless time interval
2 . t . 20 corresponding to time variations in the xη-cross correlations (in the present
paper, we do not present the constructed function of the cross correlations). It is interesting
that in the case of fine-control mode dominance, these fragments are followed by deeper
fragments being also of the power-law type that is characterized by a weaker decrease. We
relate this feature to the effect of white noise on the scale-free dynamics manifesting itself
in the discussed above fragments.

3.3. The Case of Critical-Control Dominance

Figure 4 represents the found characteristics of the system dynamics in the given case.
In particular, Figure 4I,II illustrate the properties of the time patterns x(t) and η(t). As
seen, dynamics of the instability-induced system fluctuations looks like irregular step-wise
variations in the system deviation x. These step-wise x-variations are due to spike-wise
variations in the subject’s response to the system deviations x ∼ xc. For the given model
parameters, such large-scale fluctuations in the variable x arise rather often and the subject
has to depress them via the “urgent” step-wise reaction, whose description is based on
Equation (13) with the N-type shape of the function Φ(η/ηc) (Figure 1I). The amplitudes
of these spike-wise η-variations are also irregular.

The resulting distribution functions Px(x) and Pη(η) are depicted in Figure 4II,IV
again in log–log scales. As in the previous case (Section 3.2), both the distribution functions
possess the increasing parts described by the power-law dependence, and these parts
are located in the region where, on the one hand, the x-dynamics becomes unstable,
η < ηb = 0.5, and, on the other hand, the system deviation x � xc = 1 is not considerable
yet. However, in contrast to the previous case, the subject’s step-wise response endows the
distribution function Pη(η) with an additional decreasing fragment of the power-law type
(Figure 4IV). Its location along the η-axis is actually determined by the N-type shape of the
function Φ(η/ηc) (Figure 1I).

As far as the power-spectral densities Sx(ν) and Sη(ν) (Figure 4V,VI) are concerned,
their form is rather similar to the power-spectral densities obtained in the previous case. In
particular, both of these PS-densities individually possess two fragments of the power-law
type. As before, the time scales corresponding to the frequency domain of the power-
law fragments adjacent to the PS-distribution maxima represent the time scales of the
xη-cross-correlations.

The found difference is reduced to the fact that, first, the power-law form of the
fragment adjacent to the maximum of the PS-density Sx(ν) is not pronounced. We explain
this feature by the essential overlapping between two domains in the x-space characterized
by different modes of system control. One of them is the domain x . xc = 1, where the
fine-control mode should dominate over the critical-control mode. The other is the domain
x & xc, where, in turn, the critical-control mode has to become dominant. As a result, the
x-domain of this fragment shrinks to the region 0.02 . x . 0.2 and seems to lose the strict
power-law form (Figure 4V).
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Figure 4. The characteristic properties of unstable system dynamics when the critical-control mode
dominates. Panels I and II illustrate temporal patterns of the system deviation x(t) from the unstable
equilibrium x = 0 (Panel I) and the subject’s reaction intensity η(t) (Panel II). The horizontal white
line ηb = 0.5 (Panel II) visualizes the moments of instability onset. Panels III and IV exhibit the
distribution functions Px and Pη of the variables x (Panel III) and η (Panel IV) constructed based on
the generated data. The corresponding power-spectral densities (PS-densities or the distributions
of spectral amplitudes) Sx and Sη are shown in Panels V and VI, respectively. To reveal the scale-
free properties of the four distributions, log–log scales are used. Dashed blue lines visualize those
fragments of these distributions that admit interpretation as a power-law dependence. The dashed
cyan line in Panel V depicts the power-law dependence only approximating the corresponding
fragment of the PS-density. The parameters used in numerical simulation are noted in Section 3.1.

Second, in the given case, the power-law fragments of the PS-densities following the
discussed ones decrease with the dimensionless frequency ν faster. It corresponds to a
more conventional form of PS-densities, where their deep tails are due to some mechanisms
that inhibit the emergence of power-law dependencies. We consider the subject’s step-wise
reaction caused by the system’s critical deviation to serve as such a breakdown mechanism.

4. Conclusions

The developed model for human control over an unstable system comprises two
constituent components. One of them is the linear model for supercritical instability, where
the control parameter, by which the subject is able to stabilize the system dynamics, is
the intensity of the reaction. The other is the model for the subject’s behavior constructed
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based on the first-person perspective. It takes into account the basic properties of human
cognition, determining the analyzed type of human control. Namely, they are as follows:
– The scale-free properties of human perception of external stimuli underpinning, in

particular, Weber’s law;
– The multi-channel structure of sensory modalities processing the sustained and tran-

sient components of sensory information separately;
– The bounded capacity of human cognition that gives rise to intermittent control and is

responsible for the emergence of a certain region in the extended phase space, where
the subject’s active behavior is stagnated;

– The minimization of effort when the subject’s active behavior is not necessary;
– The delay in human reaction taken into account via the introduction of the extended

phase space consisting of (i) phase variables describing the states of a physical sys-
tem under human control and (ii) phase variables describing the internal states of
the subject.
The latter component of the proposed model is essentially its novel feature. Although

Equation (13) governing the subject’s behavior seems to be complicated, its terms de-
scribe the given properties of human cognition in a rather simple way, catching only their
basic aspects.

We would like to note that the experimental validation of the proposed approach
is a matter of further research. However, its basic premises are grounded on available
experimental data and verified theoretical constructions.

The proposed model is studied numerically. The constructed distributions of the phase
variables and the corresponding power-spectral densities possess a variety of fragments
admitting interpretation as the power-law dependences. It enables us to categorize the
system dynamics governed by the given model as the self-organized criticality.1

As should be emphasized, the developed model deals with a single person and their
adaptive control over an unstable system and predicts its complex dynamics exhibiting
scale-free properties. It enables us to posit that the dynamic complexity of social systems is
not only due to their multi-element structure. Social systems can also inherit some of their
complex properties from the individual behavior of their members.

As a plausible application of the constructed approach, we may note the verification of
a hypothesis about the emergence of the synchronized mode in highway traffic flow—the
mode determining the number of fundamental properties of traffic flow and remaining
challenging problems in traffic flow physics. The hypothesis states that the synchronized
mode emerges via the described SOC scenario rather than the classic scenario of self-
organization: the onset of instability, its development, and the resulting spatiotemporal
patterns stabilized by nonlinear effects in system dynamics.
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Note
1 It should be noted that there are various numerical criteria different in their principles as well as particular details that enable one

to categorize observed phenomena as the self-organized criticality. For their review and sophisticated discussion, a reader may
be referred to Ref. [40].
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