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CAUCHY INVARIANTS AND EXACT SOLUTIONS OF NONLINEAR

EQUATIONS OF HYDRODYNAMICS

A. A. Abrashkin∗† and E. N. Pelinovsky∗†

We review exact solutions for gravity waves in deep water. All of them are obtained within the Lagrangian

framework and are generalizations of Gerstner waves (to the cases of inhomogeneous pressure on the free

surface and taking the rotation of the fluid into account). The Cauchy invariants are found for each type

of waves.
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In the theory of gravity waves in deep water, all exact solutions are obtained in Lagrangian coordinates.

We give their survey. Different types of waves are related to the corresponding integrals of the Euler

equation [1], which are called Cauchy invariants [2]–[6].

This paper is organized as follows. In Sec. 1, we discuss the properties of Cauchy invariants. Next, we

analyze the waves excited by inhomogeneous pressure on the free surface of a fluid (Sec. 2) and the wave

motions taking the rotation of Earth into account (Sec. 3).

1. Cauchy invariants

The equations of dynamics of an ideal incompressible fluid in Lagrangian coordinates have the form [1],

[4], [5], [7]

D(X,Y, Z)

D(a, b, c)
= J0(a, b, c), (1)

(�Rtt + �g)�Rai = −1

ρ
∇aip, i = 1, 2, 3, (2)

where �R = {X(a, b, c, t), Y (a, b, c, t), Z(a, b, c, t)} is the radius vector of a fluid particle, a, b, c are the fluid

particle labels (Lagrangian variables), with a1 = a, a2 = b, a3 = c; t is time; p is the pressure; ρ is a constant

density; �g is the acceleration of gravity; D denotes the Jacobian, J0 is a time-independent function, and

∇ai is the gradient with respect to the variable ai. Equation (1) is the volume conservation equation

and Eqs. (2) are momentum equations.
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We find the cross-derivatives for each of the pairs of Eqs. (2) and subtract one equation from the other.

The right-hand sides cancel each other, and the left-hand sides become time derivatives. As a result of

integration, we obtain three equations [1]

D(Xt, X)

D(b, c)
+

D(Yt, Y )

D(b, c)
+

D(Zt, Z)

D(b, c)
= S1(a, b, c), (3)

D(Xt, X)

D(c, a)
+

D(Yt, Y )

D(c, a)
+

D(Zt, Z)

D(c, a)
= S2(a, b, c), (4)

D(Xt, X)

D(a, b)
+

D(Yt, Y )

D(a, b)
+

D(Zt, Z)

D(a, b)
= S3(a, b, c), (5)

where S1, S2, S3 are arbitrary functions (integrals of motion). Equations (3)–(5) were first formulated by

Cauchy [8], [9]. The time independence of the functions S1, S2, S3 reflects the condition that circulation

is preserved in a closed loop [1], [9]. Stokes called them Cauchy integrals [10], [11]. In [2], it was proposed

to call them Cauchy invariants. This terminology has successfully taken root [3]–[6].

By direct differentiation of Eqs. (3)–(5), we can verify that

∂S1

∂a
+

∂S2

∂b
+

∂S3

∂c
= 0.

This means that the Cauchy invariants cannot be set arbitrarily. We introduce a vector of Cauchy invariants
�S{S1, S2, S3} such that

�S = S1�a0 + S2
�b0 + S3�c0,

where �a0,�b0,�c0 are the unit vectors along the corresponding axes. The divergence of this vector is equal to

zero: div�a �S = 0. System (3)–(5) can be rewritten in a more compact form

�S = rot�a

3∑

i=1

(�Rt
�Rai)�ai0, (6)

where the notation �a = {a1, a2, a3} = {a, b, c} is used and the index at the rot operation means that it is

calculated in Lagrangian variables.

The Cauchy invariants are related to the vorticity �ω(ωx, ωy, ωz) as

�ω = J−1
0 (S1

�Ra + S2
�Rb + S3

�Rc). (7)

If we choose the initial coordinates of fluid particles X0, Y0, Z0 as Lagrangian variables, then the following

equalities hold:

S1 = ωx0, S2 = ωy0, S3 = ωz0. (8)

Here, ωx0, ωy0, ωz0 are the initial vorticity components. This result was obtained by Cauchy [1], [10]. In the

general case, the Cauchy invariants are related to vorticity as

S1 = J0(�ω∇a), S2 = J0(�ω∇b), S3 = J0(�ω∇c). (9)

For 2D flows, X and Y depend only on a, b, t, and Z = c. As can be seen from (3), (4), the Cauchy

invariants S1 and S2 are equal to zero. Similarly, the vorticity components ωx and ωy are also zero (see (7)).

The component ωz has the form

ωz =
1

J0

∣∣∣∣
D(Xt, X)

D(a, b)
+

D(Yt, Y )

D(a, b)

∣∣∣∣ =
S3(a, b)

J0(a, b)
. (10)

It is a function of the Lagrangian coordinates and is independent of time, which means that the vorticity

of fluid particles is preserved. The invariant S3 is generally proportional to ωz.
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2. Generalized Gerstner waves

In the theory of water waves, pressure is traditionally required to be constant on a free surface. How-

ever, this condition can be violated in the presence of wind. Its effect can be modeled as the action of

inhomogeneous and nonstationary pressure on the free surface.

We consider fluid motion in the XY plane. We introduce complex coordinates of a fluid particle

trajectory

W = X + iY, W = X − iY, X = X(a, b, t), Y = Y (a, b, t)

and complex Lagrangian coordinates

χ = a+ ib, χ̄ = a− ib.

In this case, system of equations (1), (5) can be written as the condition that two Jacobians are time-

independent [4], [12], [13],
D(W,W )

D(χ, χ̄)
= J0(χ, χ̄),

D(Wt,W )

D(χ, χ̄)
=

i

2
S3. (11)

By direct substitution, we can see that the expression

W = G(χ)eiλt + F (χ̄)eiμt, (12)

where G and F are analytic functions and λ and μ are real numbers, is an exact solution of system (11).

The functions G and F are to a substantial degree arbitrary because their choice is only limited by the

condition that the Jacobian J0 be nonzero in the flow domain.

A particle in flows (12) moves along a radius-|F | circle whose center in turn rotates along a circle with

the radius |G|. If the ratio of frequencies μ and λ is positive, the particle trajectory is an epicycloid, and if

it is negative, the trajectory is a hypocycloid; the number of petals in the curves depends on the frequency

ratio. Such orbits were followed by planets in the Ptolemaic picture of the world, which is why this type of

flows is called Ptolemaic [12], [13]. The Cauchy invariant has the form

S3 = λ|G′|2 − μ|F ′|2. (13)

Gerstner waves belong to the set of Ptolemaic motions and are written as

W = χ+ iAei(kχ̄−ωt), Imχ � 0, (14)

where A is the amplitude, k is the wave number, and ω =
√
gk is the wave frequency [14]. Fluid particles

move in circles. The wave has a trochoidal profile and propagates in the horizontal direction. The prop-

erties of Gerstner waves and their generalizations in hydrodynamics and geophysics are discussed in detail

in [15], [16].

The pressure is constant on the profile of a Gerstner wave. However, this condition can be violated

in the presence of wind. The effect of this violation can be modeled by inhomogeneous and nonstationary

pressure defined on the free surface. The problem thus reduces to studying the influence of boundary

conditions of that type on the wave evolution.

We consider the generalizations of Gerstner waves of this kind. We assume that the flow domain in

the Lagrangian variables occupies the lower half-plane, and the fluid motion is described by the expression

W = G(χ) + F (χ̄)e−ωt. (15)
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This motion belongs to the family of Ptolemaic flows, but G can differ from a linear function and F can

differ from the exponential (see (14)). The function G defines the level with respect to which the particles

on the free surface rotate, and the module of F defines the radius of their circular rotation (the wave

amplitude). The particles are at rest in deep regions, and hence the following condition must be satisfied:

|F | → 0 as b → −∞.

Because F is an analytic function, it reaches its maximum on the free surface. Hence, it follows that

particles on the surface oscillate with the largest amplitude.

Wave solution (15) corresponds to the pressure distribution

p− p0
ρ

= −glm(G+ Fe−iωt) +
1

2
ω2|F |2 +Re

(
eiωt

∫
ω2G′ �F dχ

)
, (16)

where p0 is a constant pressure on the free surface. In the general case, the pressure varies periodically

with time and is nonuniform along the free surface: Imχ = 0. For Gerstner wave (14), pressure (16) has

the form

p = p0 − ρgb− ρ

2
ω2A2(1− e2kb).

In essence, we have a whole class of exact solutions that describe the complex free surface dynamics for

inhomogeneous and harmonically varying pressure on it. The vorticity of waves (15) is given by

ωZ =
2ω|F ′|2

|G′|2 − |F ′|2 ,

and the Cauchy invariant is

S3 = 2ω|F ′|2. (17)

Different examples of generalized Gerstner waves (15) are studied in a series of papers [17]–[21]. The

details are summarized in Table 1. The Ptolemaic solutions allow a broad class of nonstationary phenomena

to be analyzed on a model level. We discuss the dynamics of a rogue wave on the Gerstner wave background.

Table 1. Examples of generalized Gerstner waves (α and β are constants that are different in each

example)

Wave model G(χ) F (χ) Reference

Oscillating standing
soliton

χ β
(χ+i)n

;β > 0, n � 2 [17]

Oscillating soliton
on the background of a Gerstner wave

χ iAeikχ + β
(χ+i)n

[17]

Breather overturning
on calm water

χ− iβ
(χ−i)2

iβ
(χ+i)2

[18]

Nonstationary
Gerstner waves

χ+ β
χ−iα

iAeikχ [19]

Rogue wave inside
a packet of a Gerstner wave

χ+ i
k
ln
(
1 + P

(
χ
α

))
;

P
(
χ
α

)
= iβ

iα−χ

iA
(
1 + P

(
χ
α

))
eikχ [20]

Rogue wave on the background
of a Gerstner wave

χ− iβ
(χ−iα)2

−iAeikχ + iβ
(χ+iα)2

[21]
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Figure 1 shows the dynamics of a wave surface for expression (15) with functions G and F that

correspond to the last row in Table 1. Numerical computations were carried out in the case A = 0.5m,

k = 0.074m, α = 12m, β = 328m3,ω =
√
gk = 0.85 s−1, and λ = 84.9m. At the initial moment t = 0,

the shape of the free surface (the upper curve) exactly coincides with the Gerstner wave profile. Later on,

a peak starts to grow on the profile, reaching a maximum at the moment t = π/ω, and then decreasing and

disappearing near the end of the period. The largest peak height, h = 2β/α2+A ≈ 5.1m, is eight times the

Gerstner wave amplitude A. This is why the peak formation can be considered the birth of a rogue wave

(see [22] for details of rogue wave formation). The reason is the pressure applied at the surface. The lowest

curve in Fig. 1 shows the deviation of the free surface pressure from atmospheric pressure p0. At each

free surface point, pressure varies with time, but its negative jump in the region of the wave peak is about

100 mm Hg.

Fig. 1. Formation of a rogue wave on the background of a Gerstner wave.

We note that the form of the Cauchy invariant for the considered wave (see Table 1 and (17)) is a com-

plex function of a and b.

3. Exact solutions for waves taking Earth’s rotation into account

We choose the reference frame on rotating Earth as shown in Fig. 2. Its origin is at a latitude Φ, the

X axis is directed eastward, the Y axis is directed northward, and the Z axis is directed vertically upward.

In this reference frame, the vector of Earth’s rotation �Ω lies in the plane YZ. In the rotating reference

frame, each particle is affected by the Coriolis and centrifugal forces in addition to the gravity force, and

the equation of motion takes the form [23]

�Rtt + 2�Ω× �Rt = −1

ρ
∇p+∇Φ− �Ω× (�Ω× �R), (18)

where Φ = −gZ is the geopotential. The centrifugal force has a gradient character, and Eq. (18) can be

rewritten as
�Rtt + 2�Ω× �Rt = −∇H,

H =
p

ρ
− Φ + Φc, Φc = −1

2
(�Ω× �R)2,

(19)

where Φc is the potential of centrifugal forces.
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Fig. 2. Coordinate system on Earth’s surface.

Taking a dot product of Eq. (19) and �Rai , we obtain momentum equations in the Lagrangian coordi-

nates:
�Rtt

�Rai + 2(�Ω, �Rt, �Rai) = −Hai , i = 1, 2, 3, {ai} = {a, b, c}. (20)

Together with continuity equation (1), three equations (20) make a system of equations of an ideal incom-

pressible fluid in a rotating reference frame. The second term in the left-hand side is the scalar triple

product.

We study two types of wave motion such that

1. the projections of Earth’s angular velocity can be considered constant in the entire flow domain: the

Coriolis parameters f = 2ΩZ = 2Ω sinΦ and f̃ = 2ΩY − 2Ω cosΦ are assumed to be constant (the f -

plane approximation);

2. near-equatorial flows are in the band of low latitudes ΦY/R, where R is Earth’s radius and the Coriolis

parameters are f = βY , β = 2Ω/R, and f̃ = 2Ω (the β-plane approximation).

The representation of the vector �Ω is different in each case, but a general result can be formulated for

these cases [24], [25]. We eliminate the gradient term from Eqs. (20) by taking cross derivatives and, after

intermediate computations, obtain the equations

�Rtai
�Raj − �Rtaj

�Rai + 2(�Ω, �Rai , �Raj ) = Sk(a, b, c), i, j = 1, 2, 3, i �= j �= k, (21)

where pairs ai, aj are selected from the triple of coordinates a, b, c by cyclic permutations. Equation (21)

is equivalent to the conservation condition for three invariants S1, S2, S3. If �Ω = 0, this equation coincides

with system (3)–(5).

3.1. Gerstner waves in a rotating fluid. In the f -plane approximation, Pollard found the exact

solution [26] ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X = a− Am

k
emc sin[k(a− Ut)],

Y = b+ f
Am

k2U
emc cos[k(a− Ut)],

Z = c+Aemc cos[k(a− Ut)],

(22)
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where A and m are positive constants, and k and U are the respective wave number and phase velocity of

the wave. Inserting (22) into continuity equation (1), we obtain

J0 = 1−m2A2e2mc.

We assume that c = c0 defines a free surface. The flow domain is given by the condition c ≤ c0 < 0. To pre-

serve the one-to-one character of map (22) (J0 �= 0), the inequality A ≤ 1/[memc] must hold. It ensures

that there are no self-crossings in the wave profile (in a Gerstner wave, the role of the parameter m is played

by the wave number).

Inserting (22) into expressions (21), we compute the values of generalized Cauchy invariants

S1 = 0, S2 = m(k2 −m2)UA2e2mc + f̃(1−m2A2e2mc), S3 = f.

Equation (21) also defines the parameter m as

m2 =
k4U2

k2U2 − f2
. (23)

Thus, a single free parameter A, which defines the wave amplitude, remains in solution (22).

Wave oscillations of fluid particles decay exponentially with depth, ensuring the bottom impermeability

condition (c → −∞). To find the pressure, we insert expressions (22) into Eqs. (20) and neglect the

centrifugal force. The expression for the pressure takes the form

p− p0 = ρ
mgA2

2
[e2mc − e2mc0]− ρg(c− c0). (24)

Just as for a Gerstner wave, the pressure depends only on the vertical Lagrangian coordinate. In deriving

expression (24), we find the wave dispersion relation by requiring that the pressure be time-independent at

the free surface:

U2(k2U2 − f2) = (g − f̃U)2.

If rotation is absent (the Coriolis parameters are zero), the last expression coincides with that for Gerstner

waves. The wave travels from west to east, and its crests are parallel to the Y axis.

It follows from relations (22), (23) that

(X − a)2 + (Y − b)2 + (Z − c)2 =
m2A2

k2
e2mc,

Y − f
m

k2U
Z − b + f

m

k2U
c = 0.

On the one hand, particles move over the surface of the sphere, and on the other, remain in the plane that

makes an angle γ = arctan(fm/k2U) with the Z axis. Therefore, their trajectories are circles lying in this

plane. The center of each such circle is located at a point (a, b, c), which does not coincide with the initial

particle position, and the rotation radius is mAe2mc/k. By setting c = c0 in (22), we obtain a parametric

representation of the surface wave profile: for every fixed parameter b, this is a smooth trochoid in the

plane tilted at the angle γ to the Z axis At the equator, f = 0, m = k, and the Pollard solution transforms

into the Gerstner solution (the role of b is now played by the coordinate c). At the equator, the particles

oscillate in the plane XZ; for f �= 0, the plane of their oscillations is inclined in each hemisphere toward

the respective pole. However, as Pollard himself concluded [26], the magnitude of this angle is extremely

small.
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3.2. Trapped waves in a near-equatorial domain. Close to the equator, in the β-plane approxi-

mation, Eqs. (21) can be rewritten as [25]

D(Xt, X)

D(b, c)
+

D(Yt, Y )

D(b, c)
+

D(Zt, Z)

D(b, c)
+ 2Ω

D(Z,X)

D(b, c)
+ βY

D(X,Y )

D(b, c)
= S1(a, b, c),

D(Xt, X)

D(c, a)
+

D(Yt, Y )

D(c, a)
+

D(Zt, Z)

D(c, a)
+ 2Ω

D(Z,X)

D(c, a)
+ βY

D(X,Y )

D(c, a)
= S2(a, b, c),

D(Xt, X)

D(a, b)
+

D(Yt, Y )

D(a, b)
+

D(Zt, Z)

D(a, b)
+ 2Ω

D(Z,X)

D(a, b)
+ βY

D(X,Y )

D(a, b)
= S3(a, b, c),

(25)

Constantin [27] found an exact solution of this system in the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X = a− 1

k
ek[c−h(b)] sin[k(a− Ut)],

Y = b,

Z = c+
1

k
ek[c−h(b)] cos[k(a− Ut)].

(26)

where h(b) = βb2/(2(kU + 2Ω)), and the phase velocity is

U =

√
Ω2 + kg − Ω

k
.

Relations (26) describe equatorial surface waves propagating eastwards at a speed U . These are periodic

spatial waves whose amplitude decreases exponentially in the meridional direction. Hence, they are called

trapped. For h = 0, expressions (26) become the Gerstner solution. An additional exponentially decaying

factor in the amplitude is a signature of this solution.

The expressions for the generalized Cauchy invariants of waves (26) are as follows [23]:

S1 = 0, S2 = 2Ω− 2(kU +Ω)e2ξ,

S3 = βb

[
1− 2(kU +Ω)

kU + 2Ω
e2ξ

]
, ξ = k[c− h(b)].

(27)

The zonal component of the vector �S{S1, S2, S3} is equal to zero. The vorticity �ω for waves (26) is deter-

mined by the equalities

�ω = S−1
0 {−bkU2g−1βeξ sin θ,−2kUe2ξ, bkU2g−1β(eξ cos θ − e2ξ)},

J−1
0 = 1− e2ξ, θ = k(a− Ut).

(28)

All three of its components are nonzero, while the zonal and vertical components depend on time. The

comparison of formulas (27) and (28) shows a visual difference between the vorticity vector and the vector

of Lagrangian invariants.

4. Conclusions

Cauchy invariants are an important concept in the Lagrangian approach. They were discovered at the

beginning of the 19th century, but subsequently were thoroughly forgotten. This paper is an attempt to

draw renewed attention to them. We discussed the form and properties of the Cauchy invariants using

exact solutions for gravity waves in deep water as an example.
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9. A.-L. Cauchy, “Théorie de la propagation des ondes à la surface d’un fluide pesant d’une profondeur indéfinie –
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