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A B S T R A C T   

The last years have seen the emergence of the bioeconomy. Assessment of these new technologies is a significant 
challenge. We develop a unique dynamic programming framework to assess the value of the investment in a 
multi-stage supply chain with the production of bio-feedstock and its processing into multiple outputs. The 
system allows for adaptive learning in all supply chain stages, which creates a positive learning effect of co- 
outputs. We apply the framework to macroalgae (seaweed) farming and biorefinery processing into proteins 
and sugars for the Philippines and Ireland as representatives of developing and developed economies with 
emerging supply chains. We run Monte Carlo simulations to analyze the uncertainty of learning and prices. The 
key results indicate that the macroalgae sector that builds on traditional technologies is quite viable. Developing 
a new algae industry that generates proteins and other high-value products requires significant investment and 
depends on the dynamics of learning and prices. Even though the production of high-value chemicals is not yet 
viable, it gains profitability potential from learning of feedstock farming that is currently produced for the lower 
value application. The learning is much more valuable in feedstock production and processing into proteins than 
low-value chemicals currently produced (carrageenan).   

1. Introduction 

The concept of bioeconomy refers to sectors of the economy that are 
using biological resources to produce renewable products (NAS, 2020; 
European Commission, 2018; Pyka et al., 2022). More specifically, the 
bioeconomy utilizes new life sciences knowledge to produce a wide 
range of products from living organisms and the waste they generate 
(Zilberman et al., 2018). As new biotechnologies emerge, a significant 
challenge is developing economic decision-making tools for ex-ante 
assessment that incorporate the complex supply chains and multi-level 
systems of feedstock production, refining technologies, markets, envi-
ronmental externalities, and policies (Ramcilovic-Suominen and Pülzl, 
2018; Wesseler and von Braun, 2017). Much of the literature on the 
economics of technological change in the bioeconomy is an ex-post 
assessment of the rate of return to research or the adoption of new 

technologies (Antle, 2019; Zilberman et al., 2018; Alston et al., 2021). 
However, to address the challenges of introducing innovations, ex-ante 
analysis of their design and implementation is essential (Van Eenen-
naam et al., 2021). 

The research was motivated by conversations with industry stake-
holders. Inspired by the spike in demand for plant-based milk products, 
the industry believes that macroalgae (seaweeds) have potential (van 
den Burg, 2019; GFI, 2021). Plant-based milk has grown from a niche 
product to a business worth USD 20bn a year worldwide (The Econo-
mist, 2021). The accelerated growth of plant-based meat, eggs, and 
dairy signals a growing global demand for more-sustainable alternatives 
to conventional products. The macroalgae-based bioeconomy can play a 
vital role in providing sustainable food (Cai et al., 2021), animal feed 
(Seghetta et al., 2017), pharmaceuticals, fertilizers (Seghetta et al., 
2016) and hydrocolloids (alginates, agar and carrageenan) (Alba and 
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Kontogiorgos, 2019). The comparative advantages of macroalgae are the 
much higher biomass productivity than that of terrestrial plants (Casoni 
et al., 2020), while not competing for land or freshwater (Golberg et al., 
2020), with a potential for carbon sequestration (Krause-Jensen and 
Duarte, 2016). 

There is a long tradition of cultivating seaweeds in East Asia and wild 
harvesting in the West for low-value applications like food and carra-
geenan (Araújo et al., 2021; Cai et al., 2021). New developments in 
biorefineries create an opportunity to shift from low-value commodities 
towards higher-value products in the cosmetics, functional food, nu-
traceutical, and pharmaceutical markets (Golberg et al., 2020). These 
innovations are at the stage of initial commercialization, which includes 
the testing of the product. Accordingly, our analysis focuses on testing 
products prior to commercialization, assessing how profitable they are 
and to what extent the macroalgae-based supply chain should be 
commercialized. 

Zilberman et al. (2022) distinguish between the innovation supply 
chain (ISC) and the production supply chain (PSC). In the ISC the 
innovative ideas developed by research units are transformed into in-
ventions, upscaled, and tested for efficacy and profitability. The last 
stage of ISC involves experimenting with the PSC design. The PSC is built 
on ISC as the innovating firm designs and implements a multistage 
supply chain where feedstocks are supplied to a biorefinery to be pro-
cessed into commodities. The biorefinery approach is a means to in-
crease the environmental sustainability and economic feasibility of 
industrial processes (Araújo et al., 2021). Advanced macroalgae-based 
technologies, which aim to produce higher value products, tend to be 
in the upscaling and early production stages in the cleavage between the 
ISC and PSC. 

The transition from the ISC to the PSC may not be distinct. The 
relationship between the ISC and PSC is symbiotic and synergetic, with a 
lot of feedback. For example, Pure Ocean Algae, a macroalgae-based 
biotechnology company in Ireland, has successfully completed a seed 
funding round which will see it invest more than €3 million to develop 
the existing land-based facilities to sea site production and expand R&D 
and implementation teams (TheFishSite, 2022). SEAKURA cultivates 
seaweed to produce low-value food additives (Seakura, 2022). Oper-
ating on the edge of profitability, it is constantly engaged in R&D for 
adding fine chemicals to its product line. 

The traditional approach is to select investment in innovative 
products and supply chains based on the rate of return (ROR) and NPV 
(Norton and Davis, 1981). Dixit and Pindyck (1994), introduce the Real 
Option (RO) approach for project assessment, emphasizing that timing is 
a crucial element of investment decisions. Thus, the evaluation of pro-
jects needs to determine when to introduce new technology, not only if 
to introduce it. While the RO approach has been widely applied in the 
natural resource evaluation (Deeney et al., 2020), we deal with cases 
where the key question is not when but how to develop and produce a 
product. The entrepreneur controlling the technology is constrained by 
the availability of specialized personnel that can manage production and 
learning. So, they aim towards early implementing testing. A delay of 
introduction of a technology might be costly also because of intellectual 
property rights (IPR) considerations. If, for instance, researchers 
developed a product, they built a team that can carry it forward. But the 
availability of key personnel is limited, and others may catch up and 
gain patents and technological edge. Therefore, even if the technology is 
in the stage of development with only the general features known, the 
innovator might seek immediate implementation, otherwise, the mo-
mentum is gone (Mayer, 2022). This is relevant especially to startups 
and biotechnologies addressing climate changes that do not leave time 
to procrastinate. Innovators must start applying the lab-based technol-
ogy even if it is not yet profitable to learn, improve and evaluate the 
profitability (Bergemann and Hege, 2005). Thus, in the transition from 
innovation to production, it is important to improve the technology 
through learning by doing (LBD) to have a better assessment of the profit 
potential. Once a technology is established, the timing of testing 

technology commercialization should be considered for economic 
analysis. Generating new information for stimulating private sector in-
vestment is the argument for immediate investment by the public sector 
or public sector support. This investment can be evaluated by NPV since 
timing is not an issue, and the RO approach is not applicable. 

There is a new wave of economic literature that emphasizes that the 
multiple stages of bioeconomy supply chains cannot be viewed in 
isolation because they are managed in an integrated manner. The rela-
tionship between feedstock and the biorefinery are symbiotic (Barrett 
et al., 2022). The vast literature emphasizes that in developing a new 
product, the two stages of feedstock production and its further pro-
cessing are linked (Zilberman et al., 2019). The same financier invests in 
both stages. This is the case in biofuels (Antràs and Zilberman, 2022), 
food (Macchiavello et al., 2022), and natural resources (Zilberman et al., 
2022). In the case of seaweeds, which is used as feedstock to producing 
proteins and other outputs in the biorefibnery, entrepreneur needs to 
determent how to allocate resources between the different stages of the 
supply chain. 

The literature contains different elements of the supply chain: mul-
tiple stage supply chain with homogeneous output (Spiegel et al., 2020; 
Chen et al., 2012), static models for contracting decision (Du et al., 
2016), dynamic models with linear cost functions, or single stage models 
with learning (Chen et al., 2017). Investigation of learning is commonly 
done in single output or single stage dynamic models (Deeney et al., 
2020). Our study presents the first model that combines the essential 
elements for initial supply chain profitability and design analysis. We 
develop the dynamic optimal control model with multistage supply 
chain, coproduction, non-linear costs and learning. 

Having two-stage dynamic model with learning in each of the stages, 
and coproduction of diversified products, allows investigating the real- 
world situation that follows the intuition of the industry (Zeichner, 
2020; Argaman, 2020). The key questions of the investor are: in which 
stage of supply chain investment is more important for developing the 
innovation, what is the importance of learning vs prices, and to what 
extent the investment in macroalgae supply chain can be profitable in 
the short-run vs. long run. Our approach can contribute to decision- 
making regarding early-stage investment in innovations on the edge of 
commercialization. 

The model parameters are collected from a variety of sources: the 
literature, interviews with industry stakeholders, as well as data on the 
international trade of seaweed, thickeners, and proteins. The model is 
validated for the case of the Philippines, a developing economy with a 
traditional seaweed harvesting industry with low-value applications. We 
also examine the case for Ireland, a developed economy with an 
emerging macroalgae-based industry. Finally, we perform stochastic 
modeling analysis, including Monte Carlo simulations, to investigate the 
impact of uncertainty in prices and learning on profitability. 

The major results shed the light on the variation in payback period in 
developed and developing countries and the stages of the supply chain 
where the learning is most crucial. First, if for investment in the 
macroalgae-based experimental activity to pay for itself it will be more 
likely to become profitable even for low learning rates in the Philippines 
and within shorter payback period than in Ireland. The production of 
seaweed feedstock is projected to start with supporting the low-value 
commodity (carrageenan). It allows gaining learning on feedstock and 
reaching profitability of coproducing the high value chemical (proteins) 
in the later stage. In Ireland, the probability for profitability requires 
higher learning rates and investment horizon for at least 10 years. 

Second, the results identify the weak points of the system: high un-
certainty of yields in seaweed production and productivity of biorefining 
into proteins. Accordingly, investment in activities with higher LBD 
potential (macraolgae farming and processing into high-value chem-
icals) should be prioritized. Even though the production of high-value 
chemicals is not yet profitable, it gains profitability potential from 
learning of feedstock farming that is currently produced for the lower 
value application. Once the co-production becomes viable, the 
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profitability of the entire supply chain is enhanced. 

2. Macroalgae Bioeconomy in a Nutshell 

Macroalgae have been popular in Asian cuisine for centuries. Their 
high biomass growth rates, and the high content of organic compounds 
such as polyunsaturated fatty acids, led to an increase in consumer de-
mand for algae products and the commercial interest in seaweed pro-
duction during the last several decades (Hochman and Palatnik, 2022). 
Seaweed farms bring benefits beyond the immediate value of their crop. 
Advancements in science and technologies led to the diversifying of 
macroalgae applications in food and beverages (Torres et al., 2019), 
pharma products (Golberg et al., 2020), wastewater treatment (Wang 
et al., 2020), bio-refining (Prabhu et al., 2020; Seghetta et al., 2016), 
dietary supplements (Peñalver et al., 2020), cosmetics (Pereira, 2018), 
animal feed (Morais et al., 2020), and other intermediate factors of 
production (Janarthanan and Senthil Kumar, 2018). 

One leading example is the use of seaweed-based hydrocolloids such 
as carrageenan as natural binders and emulsifiers employed in foods, 
cosmetics, and drugs (Duarte et al., 2020). The annual global growth 
rate of carrageenan was 2% between 2009 and 2015, valued in 2015 at 
more than half a U.S. billion dollars (Ferdouse et al., 2018). The 
Philippines are one of the largest producers of cultivated macroalgae in 
the world (FAO, 2022), while Ireland is the leading EU seaweed pro-
ducer in terms of biomass volumes and in a number of macroalgae 
production companies that reached about 20 units by 2019 (Araújo 
et al., 2021). 

The very few economic studies on macroalgae utilization find that 
the production is currently profitable if cultivated in developing coun-
tries (e.g. Philippines, Tanzania, Indonesia) and if processed for food 
(Cai et al., 2021). Cultivation in developed countries and processing for 
fuels and high-value commodities are not yet economically viable 
(Hochman and Palatnik, 2022). The main reasons are relatively low 
prices of substitutes (such as corn bioethanol), and immature technol-
ogies of industrial, autonomous cultivation, and biorefining (Palatnik 
and Zilberman, 2017). For example, the rate of macroalgae growth and 
the conversion factors – two key parameters in productivity- show a 
wide range and may be subject to even higher variation due to climatic 
changes. Macroalgae growth depends on saturation kinetics by light 
intensity, ambient dissolved inorganic nutrient concentrations, and 
temperature (Buschmann et al., 2004). Cultivation uncertainty is exac-
erbated by stochastic weather and seasonal variability between regions, 
within years, and between years (Lehahn et al., 2016). This variation in 
the product might have a major effect on the cost-effectiveness of the 
technology. Growth and conversion parameters may evolve with 
learning. The variability of technology parameters, as well as prices of 
inputs and outputs, impact profitability over time. 

In addition, the biorefinery process has not fully entered commercial 
production, but laboratory-based conversion technology is about to be 
scaled up to industrial-scale facilities for fermentation-derived products. 
The transition from lab to large-scale macroalgae cultivation is also 
expected to reduce costs as producers learn the environment, and detect 
optimal conditions for maximum yield, as happened previously in corn 
and sugarcane ethanol, where the cost and economic viability have 
improved because of learning in processing as well as feedstock pro-
duction (Khanna and Crago, 2012; Chen and Khanna, 2012). 

The seaweed supply chains consist of upstream aquafarmers, 
midstream processors and wholesalers, and downstream retailers. Our 
framework which is designed to reflect these features may apply to any 
supply chain or production process that includes at least two stages of 
production. Considering the industrial application, we develop a 
mathematical model as a decision support tool for strategic planning. 
This model aims at aiding stakeholders in optimizing the macroalgae- 
based bioeconomy, by integrating the decisions at the cultivation and 
biorefinery stages while considering variability in costs, different shares 
of biorefinery outputs, and maximizing the expected net present value of 

profits of the two-stage production over time. 

3. State of the Art 

This review is structured around two main bodies of multidisci-
plinary literature that are related to our research. The first is the liter-
ature on learning implemented in the bioeconomy. The second is the 
literature on supply chain management. We discuss each of these 
research areas, identify the gaps, and highlight the contribution of this 
article. 

Novel technologies are often expensive at the point of their market 
introduction but become cheaper due to the process of technological 
learning (Weiss et al., 2010). Unit costs of innovative technologies have 
been observed to decline rapidly with the accumulation of production 
experience/knowledge, measured by cumulative production (McDonald 
and Schrattenholzer, 2002). Technological learning, or LBD, —or the 
learning effect—is a concept, which permits the evaluation of the 
decrease in unit production costs when cumulative production in-
creases. LBD was explicitly introduced into economic analysis by Arrow 
(1962). The literature identifies several major drivers of technological 
learning: learning-by-doing, learning-by-researching, learning-by-using, 
learning-by-interacting, and economies of scale (Arrow, 1962; Landes, 
1969; Kahouli-Brahmi, 2008; Goodwin et al., 2002; Li and Ni, 2016). All 
these mechanisms reflect the fact that technologies may experience 
declining costs because of their increasing adoption due to the accu-
mulation of knowledge through, among others, these drivers of tech-
nological learning (Kahouli-Brahmi, 2008). 

In the case of biofuels, studies show that LBD measured by cumula-
tive production played a significant role in reducing the unit industrial 
processing costs of corn ethanol over the period 1983–2005 (Chen and 
Khanna, 2012; Hettinga et al., 2009). Due to the wide range of macro-
algae growth rates and biorefinery conversion factors the notion of LBD 
is especially relevant in the context of macroalgae. 

Several functional forms of an experience curve have been used in 
the economic literature to represent the LBD effect. Kahouli-Brahmi 
(2008) provides a comprehensive review of the literature on techno-
logical learning in energy–environment–economy modeling. The most 
common format, which is also usually employed for bioeconomics 
(Deeney et al., 2020) and biofuel technologies (Chen et al., 2012), is the 
original form of learning function (Verdoorn, 1956; Hirsch, 1952) that 
served as the starting point in Arrow (1962): 

C = JXcum− μ (1) 

Where C is the unit cost of production, investment, or capital, J is the 
initial production cost of the first unit, Xcum is the cumulative produc-
tion of a product, and μ is a parametric constant capturing the rate of 
cost reduction. In other words, μ is the elasticity of LBD, which defines 
the effectiveness with which the learning process takes place. The 
learning rate (LR), or 1-progress ratio (PR), defined as 2μ, is the rate at 
which the unit cost of technology is expected to decline with every 
doubling of cumulative production (Rivers and Jaccard, 2006). 

Chen et al. (2017) review empirical studies on LRs in the biofuels 
industry. They show an evaluated cost reduction in the range of 13%– 
35% as the cumulative production of biofuels doubles. Chen et al. 
(2017), like many other studies that incorporate learning effects in the 
cost function, present a single-stage dynamic programming framework 
for investigating time-dependent and adaptive decision-making pro-
cesses to develop advanced fuel technologies. It appears that existing 
literature has seldom addressed the dynamic role of LBD, which affects 
multiple stages of the process and product innovation (Li and Ni, 2016). 

The two-stage supply-chain literature focuses mainly on the 
following major challenges: inventory optimization, location planning, 
and feedstock uncertainty. A significant branch of the two-stage pro-
duction models encompasses inventory optimization models, where the 
decision about the optimal inventory of feedstock size or quality affects 
the second stage of production (Wu and Wang, 2015). Enders et al. 
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(2014) model a single-item inventory system with a high priority lost 
sales, customer class, and a lower priority backordering class. They 
propose a critical level policy and develop a procedure to determine its 
average performance. Isotupa (2015) analyzes a lost-sales inventory 
system with two classes of goods and shows that there is a sub-optimal 
policy under certain conditions. Xu et al. (2017) employ the dynamic 
programming approach to investigate the inventory-rationing problem 
in a two-product tandem make-to-stock production/inventory system. 
The model proposed in our study introduces a more dynamic approach 
where instead of a given amount of feedstock inventory, the production 
of feedstock at the first stage is directly impacted by the production of a 
variety of second-stage outputs. In our model, the non-linear costs are 
affected by learning in terms of accumulated production of feedstock. 

Another stream of research models multi-stage production with the 
uncertainty that reflects the renewable energy volatility in power gen-
eration. Those studies specify in detail the characteristics of renewables 
such as wind (Wang and Guan, 2013), solar (Torani et al., 2016), and 
municipal solid waste (Wu et al., 2015) in the power supply or carbon 
sequestration (Deeney et al., 2020). Here, the second stage output – 
electricity – is a homogeneous good, whereas our analysis provides an 
additional decision parameter that affects the profitability – the output 
bundle might be constructed of two (or more) goods that vary with both 
costs of production and output prices. 

Deeney et al. (2020) present a real option evaluation of production 
with learning. The model represents single stage production and a single 
output (applied to CO2 recycling technology). Importantly, the authors 
separate the learning at the stage of R&D from the early stage of 
commercialization and production. In their framework the learning ends 
at the stage of product development. From Arrow (1962) we know that 
learning is essential especially in the early stage of production. We 
follow the classical (Arrow, 1962) and the recent literature on the supply 
chain (Zilberman et al., 2022) that indicate that in the early stage of 
production the learning continues and is highly important. Therefore, 
our framework complements the approach presented by Deeney et al. 
(2020). 

A large body of literature assesses the economics of corn and 
sugarcane-based ethanol and biodiesel (Babcock, Bruce, Stephan, and 
David, 2011; Crago, Christine, and Madhu, 2014; Jain, Atul, Madhu, 
Matthew, and Haixiao, 2010). Osmani and Zhang (2013) present the 
two-stage supply chain analysis of bioethanol. Muth et al. (2014) 
investigated the agricultural production of feedstock that varies widely 
across the landscape according to site-specific characteristics such as 
topography and soil biogeochemistry. In both studies, the multi- 
feedstock decision is made at the first stage of linear cost functions. 

Palatnik and Zilberman (2017) report that although the literature on 
economic analysis of macroalgae utilization is rapidly increasing, it 
lacks an established cost function. Most of the studies employ a linear 
approximation for National Renewable Energy Laboratory (NREL) costs 
module for corn-stove biorefinery (Konda et al., 2015; Korzen et al., 
2015; Seghetta et al., 2016). 

The economic analysis of agriculture has a long history of applicating 
mathematical programming approaches to multi-stage supply chains for 
homogeneous final output (Hazell and Norton, 1986; Berg, 1987; 
Spiegel et al., 2020). Some studies included also sensitivity analysis for 
learning (Acs et al., 2009). Several recent studies have addressed the 
questions of agricultural ISC (Du et al., 2016; Lu et al., 2016; Zilberman 
et al., 2017a). These studies focused on the decision of contracting the 
production of feedstock versus self-production under various conditions. 
Lu et al. (2016) investigated the impact of technology adoption on 
supply chain design. Yet the studies investigate static models and lack an 
explicit investigation of learning and its role in investment decisions in a 
multi-stage supply chain with co-production. Zilberman et al. (2022) 
present a stylized dynamic model, without a real-world application. 

To summarize, for an accurate representation of the ISC of the 
macroalgae-bioeconomy, the analytical methodology should incorpo-
rate the key features of the multiple-stage production process: farming of 

the feedstock and biorefining of the feedstock into multiple outputs. 
Another crucial feature is for the cost function to allow for non- 
linearities and the possibility for costs to decline through LBD. The 
important prior works set the stage for ISC analysis by investigating its 
distinct features. The present article contributes to the literature by 
designing the first dynamic optimal control model for a two-stage supply 
chain with co-production, incorporating the variation in yields and 
conversion factors through LBD elasticities in non-linear cost functions. 

4. Materials and Methods 

To analyze the potential of investment in the seaweed-based supply 
chain, the following procedure was applied (Fig. 1. Scientific proced-
ure): we develop a dynamic conceptual framework with two stages of 
the supply chain – feedstock cultivation and processing into multiple 
outputs. Next, parameters of the cost function in the macroalgae-based 
industry are calculated, and the model is validated for the case of the 
Philippines. Finally, the application for two case studies (the Philippines 
and Ireland) is evaluated using Monte-Carlo simulations to quantify 
uncertainties based on random experiments to estimate possible ranges 
and distributions of prices and LBD elasticities. 

This section briefly presents the optimal control model of the supply 
chain, consisting of the feedstock cultivation in the first stage of pro-
duction, which is the input for biorefinery that processes the feedstock 
into outputs a and b in the second stage. At each stage of production and 
for each output, we assume non-linear cost functions with LBD. Denote 
the cumulative production of feedstock by Xcum, then x is the production 
of feedstock (macroalgae or other) at this particular moment so that the 
state equation is: 

x(t) =
dXcum

dt
(2) 

Define a(t) as the share of feedstock used for the production of output 
a (e. g. proteins) at time t (assuming 1 to 1 conversion),and xa as the 
production of proteins at this particular moment. Hence, x(t)a(t) = xa. 
Then, denote for all t, s ∈ T: 

Xa,cum =

∫ t

0
x(s)a(s)ds, (3) 

Where Xa, cum is the cumulative production of proteins by time t. 
Similarly, Xb, cum =

∫
0
t x(s)b(s)ds, where Xb,cum is the cumulative pro-

duction of output b (e. g. sugars - carrageenan), b(t) is the share of 
feedstock at time t used for the production of sugars and xb is the pro-
duction of sugars at this particular moment. In what follows each 
equation applies to time t. We eliminate the time argument for 
readability. 

For simplicity, assume that Xcum = Xa, cum + Xb, cum and x = xa + xb 
meaning no waste or residuals occur in the production process. The 
definition implies that Xcum, Xa, cum, and Xb, cum are state variables and x, 
xa, xb are non-negative control variables. 

Next, we assume non-linear production costs of proteins (Ca), sugars 
(Cb), and feedstock (C) that decline with LBD: 

Ca =
Axϕ

a

Xψ
a,cum

;Cb =
Bxξ

b

Xζ
b,cum

;C = J
xa + xb

(
Xa,cum + Xb,cum

)μ (4) 

Where μ, ζ, ψ > 0 are the elasticities of LBD that define the effec-
tiveness with which the learning process takes place in the processing of 
seaweed into proteins and sugars, and seaweed farming, respectively. 
The parameters ϕ, ξ ≥ 1 indicate the marginal cost growth rate. Thus, 
unlike most previous studies, we allow for the more general form of the 
production costs at the second stage of production. For example, if ϕ, ξ 
= 1, all the production costs follow the standard (linear) form with LBD 
(Arrow, 1962; Chen et al., 2012). Whereas for ϕ, ξ = 2, the cost function 
of the second stage of production is of quadratic form incorporating LBD. 

The parameters A, B, and J are costs of the first unit produced that 
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may be calculated using one given point of the curve, usually the starting 
point (Kahouli-Brahmi, 2008), for example: 

J =
C0

Xcum0
μ (5) 

Now, denote by Pa(t) and Pb(t) the prices of outputs a and b respec-
tively. Let the discount factor be r, then e− rt is the continuous time dis-
counting factor. Then, the investor in ISC maximizes the present 
discounted value of expected lifetime profits: 

max
xa ,xb

π =

∫ ∞

T

(

Pa xa +Pb xb − A
xϕ

a

Xψ
a,cum

− B
xξ

b

Xζ
b,cum

− J
xa + xb

(
Xa,cum + Xb,cum

)μ

)

e− rtdt

(6) 

The framework allows the revenue and cost functions to decline over 
time due to dynamic processes of learning. If potential revenues increase 
over time and costs of cultivation and/or processing decline, production 
will increase. First order conditions are developed and proved in Ap-
pendix A. 

Rearranging F.O.C. allows investigating the factors that impact the 
growth of output: 
(

ẋa

/

xa

)

=
PaXψ

a,cum

ϕA(ϕ − 1)

⎡

⎣

⎛

⎝Ṗa

Pa
− r

⎞

⎠+
ψA(ϕ − 1)xϕ

a

PaXψ+1
a,cum

+ rϕA
xϕ− 1

a

PaXψ
a,cum

+
Jr

(
Xa,cum + Xb,cum

)μ

⎤

⎦

(7) 

Where ẋa is a time derivative of output xa and Ṗa is a time derivative 
of price of a. As the cost function for output b is symmetrical to a, similar 
rules apply. From Eq. (7) we identify the key effects driving the dy-
namics of the supply chain, presented here for output a and symmetric 
for output b:  

1. The price dynamics effect 
(

Ṗa
Pa
− r
)

, is the relative price growth 

comparing to the discounted rate.  

2. The learning effect 
(

ψ
Xψ+1

a,cum
*A(ϕ− 1)xϕ

a
Pa

)

, is the joint contribution of 

learning and cost.  

3. The discount effect r
(

ϕAxϕ− 1
a

PaXψ
a,cum

+ J
(Xa,cum+Xb,cum)

μ

)

, reflects discount cost 

saving for cultivation and processing as a result of learning. 

From the F.O. C. the following propositions are derived (find the 
proof in Appendix B: Propositions and proofs): 

Proposition 1. The expected output of the innovative technology in-
creases, if the learning effect is greater than the price effect when prices 
decline. 

As long as prices of output increase, the production is profitable. But, 
the prices of novel technologies usually follow a downward trajectory: as 
the production expends, the prices decline if demand is not perfectly 
elastic. Therefore, Proposition 1 identifies condition whether production 
remains profitable when prices decline. If the price is decreasing over 
time, the output increases if the learning effect and the discount effect 
are greater than the price effect, i. e. if the sum of the learning and 
discount effects is greater than the decline of discounted price growth 
(Eq. 7). The cost function implies there may be an increase in the volume 
of production and a reduction in price. 

The next propositions describe the comparative statics of the profit 
function. 

Proposition 2. Production of one or both co-outputs may occur in the 
early period even if at least one of them is not profitable, to accumulate 
learning of feedstock that will result in a profitable supply chain in the 
longer term. 

The more profitable output of the second stage of the supply chain 
contributes to the increase in productivity in the first stage of ISC 
(cultivation) that serves as input also to the less profitable output of the 
second stage (processing). The feedstock accumulates faster, resulting in 
cheaper unit costs to the benefit of all co-produced outputs of a bio-
refinery. The economic meaning is that co-production has a positive 
complementarity effect of learning. 

Proposition 3a. The output growth rate is non-decreasing in output 
price growth and increases, if its price growth is higher than the interest 
rate. 

This result is particularly interesting. Time derivatives of outputs, 
which are equal to growth rates for small changes, clarify that the 
growth rate of output is smaller than the growth rate of prices. Yet if the 

Fig. 1. Scientific procedure.  
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price increases over time, the output also grows. The dynamic nature of 
the model clarifies the intuition that if prices grow less than the discount 
rate, the growth rate of output declines, as the investor may choose the 
alternative of a ‘risk-free’ bank return. 

Proposition 3b. If learning is faster than the increase in costs, then 
output grows faster than prices. 

The result implies from time derivatives of output with respect to the 
time derivative of own price. 

In the following sections, the key parameters are evaluated and the 
profitability conditions of the proposed optimal-control supply-chain 
design model are demonstrated. 

To summarize, the conceptual model emphasizes the importance of 
learning effect, interest rate and price dynamics. More elastic demand 
would require slower reduction of outputs. Low interest rates and high 
learning increase profitability and the rate of growth of second stage co- 
outputs. The concept applies to the final stage of ISC where the initial 
pre-commercialization investment in the innovative technology is 
checked for profitability. 

5. Application to Macroalgae 

Several organizations try to decide whether they build an experi-
mental farm and learn about profitability in production (Zeichner, 
2020). For example, Norway is encouraging research institutions, in-
dustries, and public authorities to develop a bioeconomy based on the 
production and processing of cultivated seaweeds (Stévant et al., 2017). 
The targeted production potential has not been reached yet since only 
part of the companies that received a permit for seaweed cultivation, 
and processing since 2014 are currently in operation and most have still 
reduced production capacity (Broch et al., 2019). AKUA is a Meat-alt 
company based in the US making plant-based foods from seaweeds. It 
has successfully completed a recent fund-raising round to create a 
platform of clean-label (Republic, 2022). Those are few of the many 
examples to the macroalgae industry in the stage to decide on the 
commercialization of the new technologies. 

We apply the theoretical framework to farm-level decisions 
regarding investment in innovative technologies in the cultivation and 
biorefining of seaweeds. Following Ingle et al. (2017), we consider in-
vestments into Red macroalgae (Kappaphycus alvarezii) production (first 
stage of ISC) and processing into two outputs: industrial proteins and 
unique polysaccharides - carrageenan (second stage). The macroalgae- 
based industry is characterized by traditional methods of cultivation 
and drying in Asia, and by the developing novel technologies of culti-
vation and processing in developed countries (Hochman and Palatnik, 
2022). Accordingly, we apply the model to two case studies: the 
Philippines, as the representative of the world leader with traditional 
macroalgae economy in East Asia with low-value applications (Cai et al., 
2021), and Ireland, as the representative of the developed economy that 
promotes advances in macroalgae-based bioeconomy (Araújo et al., 
2021). 

The actual data on model parameters is collected to provide insights 
into the true profitability of macroalgae utilization to proteins and 
carrageenan. A major effort to collect consistent data on the seaweed 
industry and derivatives by countries over time was performed. The 
most detailed and consistent dataset was identified in UN COMTRADE. 
Monthly trade value (in USD) and net weight (kg) for seaweeds, thick-
eners derived from vegetable products (including Carrageenan) and 
textured protein substances allowed for calculating the average monthly 
prices of the traded commodities. 

Even though the trade volumes of seaweed in the reported period are 
of a similar scale, the two countries chosen for case studies represent 
very different industries for macroalgae-based commodities. The vol-
ume of trade in carrageenan is much larger, and the prices are on 
average lower in the Philippines than in Ireland. The volume and the 
prices of protein substances exported from Ireland are by merit of order 

higher than those of the Philippines. This can be partly explained by the 
fact that the quality of proteins exported from the Philippines is on 
average lower than that of Ireland (FAO, 2019). 

To base the estimation of the profitability of the macroalgae industry 
on cost parameters that reflect its specifications, we reviewed the LBD 
estimations available in the literature. 

Table 1 reports for each model-parameter: its description, average 
value and range, setup values for Monte Carlo analysis for the 
Philippines and Ireland, and the source. 

6. Results 

To illustrate the outcomes of the dynamic optimal control model, we 
first validate the consistency for the case of the Philippines. Next, the 
stochastic modeling analysis including Monte Carlo simulations of 
profitability for the two case studies is performed. 

6.1. Model Verification 

For validation, we apply the modeling framework to the mean values 
of all the parameters of the case of the Philippines (Table 1): Pa = 5000 
$/ton; Pb = 5500$/ton; A = 4200$/ton; B = 4500$/ton; J = 1600$/ton; 
ψ = 0.19; ζ = 0.35; μ = 0.42. The result is positive production of the 
feedstock and both outputs with NPV of about USD 220 M in 2016 values 
(Fig. 2). The accumulated production doubles 3 times within the period 
of 10 years, implying much room for learning. 

Moreover, the marginal profits (marginal revenue minus marginal 
costs) for both goods are negative at the beginning but become positive 
after some point. The profitability of producing output b (carrageenan) is 
higher, and it grows relatively faster in the beginning due to the higher 
LBD and initial price. However, over time, the accumulation of feedstock 
production (and therefore knowledge and experience) reduces the costs 
of the first stage for output a (protein) as well. This result reinforces the 
positive complementarity effect of learning expressed in Proposition 2. 

In addition, the higher price growth for output a ultimately leads to 
higher profitability of protein over carrageenan. This result supports the 
intuition that even though the production of high-value chemicals in 
East Asia is not well-established and the industry is still centered around 
traditional technologies, the knowledge gained in cultivation of feed-
stock and the processing of complementary low-value outputs can 
facilitate the profitable production of high-value chemicals that ulti-
mately increase the profitability of the entire supply chain. 

Increasing first unit cost of the first stage to J = 4000 $/ton reduces 
the optimal production plan to zero at the average learning rates. 
However, if we change the learning rates to the upper bound, we observe 
the positive production plans and profitable production from the very 
beginning. Hence, there is a substitution between the learning effect and 
first-unit costs. Note that the Valderrama (2013) report of observed costs 
of K. alvarezii cultivation in developing countries indicates that most of 
the investment and capital costs (i.e. first unit costs- J) of seaweed are 
within the range of USD 600–1600 per ton. The USD 4000 per ton 
simulated here is the far-end outlier. Therefore, supporting Proposition 
2 the results show that LBD reverses non-profitable production, even for 
the relatively high costs of cultivation that usually characterize aqua-
farms in developed countries. 

Following the above verification of the developed dynamic optimal 
control model, we continue investigating the impact of uncertainty in 
prices and yields on profitability of ISC using Monte Carlo simulations. 

6.2. Monte Carlo Simulations 

We continue the analysis with Monte-Carlo simulations (Boyle, 
1977) to obtain possible distributions for the economic return of 
macroalgae-based ISC for two representative case studies: the 
Philippines and Ireland. Our investigation focuses on prices and learning 
elasticities due to the high variation of observed prices of outputs and 
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the uncertainty in yields in all stages of the supply chain. 
For the following Monte Carlo simulations of profitability, the 

common setup includes the growth rates of marginal costs of outputs a 
(protein) and b (carrageenan) that are held constant over all the sce-
narios and equal to ϕ = 1.05 and ξ = 1.1 respectively. The price growth 
rates are kept constant to the estimated average level inferred from the 
7% price growth rate for output a, and 4% for output b. The discount rate 
is fixed to r = 4%. Other parameters are specific for the Philippines and 
Ireland as presented in Table 1. 

Before each simulation, we determine the 7-dimensional vector of 
parameters (for prices, prices growth rates, and LBD elasticities), which 
completely parametrize the intertemporal optimization problem. LBD 
elasticities are assumed to be normally (independently) distributed be-
tween the estimated lower and upper bounds. 

The price related parameters are randomly drawn from the database 
for Ireland and for the Philippines. We consider the joint distribution of 
the prices and price growth rates for both outputs. This assumption is 
necessary to account for potential correlations between prices and 
changes in the prices of outputs. 

We consider time horizons of 3 and 10 years to identify the payback 
time widely used in agricultural investment planning (Brandes et al., 
1980). This is the time needed to recover a given investment outlay, 
including compound interest through future revenues (Zweifel et al., 
2017). For each time period, 1000 Monte Carlo simulations are con-
ducted by drawing a random vector of parameters (given the distribu-
tions above) and solving the intertemporal profit maximization 
problem. 

The general observation from the simulations refers to the 

Table 1 
Model parameters, value, range and source.  

Parameter Description Mean 
value 

Monte Carlo Setup Notes 

Philippines Ireland 

A First unit cost of output a (protein) USD 
2016 per ton 

4200 6000 5500 Self-calculated based on the price 

B First unit cost of output b (carrageenan) 
USD 2010 per ton 

4500 6500 5000 (Brown, 2015) 
Range 4000–6500 

J First unit cost of feedstock (seaweed) 
USD 2010 per ton 

1600 2200 3600 (Buck and Buchholz, 2004; Valderrama, 2013) 
Range 600–7000 

ϕ Marginal cost growth of a 5% 5% 5% Assumed based on experts’ evaluation 
Range 0–20% 

ξ Marginal cost growth of b 5% 5% 5% Assumed based on experts’ evaluation 
Range 0–45% 

Pa Price of output a (protein) USD per ton 10,000 3031 4200 Prices calculated from value and quantity of the corresponding exporters 
Source: UN COMTRADE; commodity 210610 protein; concentrates and 

textured protein substances 
Range 1000–11,000 4000–26,000 

Ṗa Annual growth of Price output a 
(protein) 

4% 4% 4% Price growth rates own calculations based on: UN COMTRADE; commodity 
210610 protein; concentrates and textured protein substances Range − 43% to 92% 

Pb Price of output b (carrageenan) USD per 
ton 

11,000 5852 3123 Prices calculated from value and quantity of the corresponding exporters 
Source: UN COMTRADE; commodity HS130239 (mucilages and thickeners). Range 5000-48,000 3000-61,000 

Ṗb Annual growth of Price output b 
(carrageenan) 

4% 4% 4% Price growth rates own calculations based on: UN COMTRADE; commodity 
HS130239 (mucilages and thickeners). Range − 11% to 53% 

ψ Elasticity of LBD in processing of 
seaweed to proteins 

0.19 0.25 (0.23) 0.39 (0.4) (Weiss et al., 2010) 
Range 0.10–0.36 

ζ Elasticity of LBD in processing of 
seaweed to sugars - Carrageenan 

0.35 0.29 (0.14) 0.41 (0.21) (Chen et al., 2017) 
Range 0.29–0.41 

μ Elasticity of LBD in seaweed farming 
–Kappaphycus 

0.42 0.45 (0.27) 0.38 (0.4) (Weiss et al., 2010) 
Range 0.15–0.69 

r Annual discount rate 4% 4% 4% Interest rate for mid-term loans 
Range 0–10%  

Fig. 2. Co-outputs a and b Marginal profit (MP in USD per ton) and production (ton per year) in the average scenario.  
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production plans for both cases. The results indicate that the production 
can be split into phases of (1) learning (2) exploitation. In the learning 
period, the firm focuses on the production of feedstock and processing it 
into single output that has a comparative advantage, rarely switching 
between the outputs. LBD stimulates producing more of the output given 
that the more of the good is generated the cheaper it becomes to produce 
it. The second phase is the exploitation period. In this phase parallel to 
exploiting the profit from the good that the firm has learned to produce 
it also learns to produce the complementary output of processing. Given 
that the first-stage good has already become profitable the firm learns to 
produce the second good much more aggressively than it used to with 
the first output. This outcome reinforces the results from optimization 
analysis for the Philippines and yet again supports the theoretical 
intuition of Propositions 2–3. 

6.2.1. The Philippines 
Fig. 3 presents the impact of learning effect of each of the stages of 

ISC on the profitability within three years for the case of Philippines. 
Evidently, reaching profitability within 3 years for the range of LBD 
elasticities reported in the literature is plausible but not certain. The 
simulations confirm the observed stage of the industry in the 
Philippines, where for current rates of LBD elasticities the supply chain 
of seaweed cultivation and processing to carrageenan is mostly profit-
able within a short period of time, while profitability of processing to 
high value output is not certain. For the time horizon of 3 years, the LBD 
and first-unit cost parameters play the prevalent role over the prices in 
the decision of what to produce. The NPV is the most sensitive to ψ -the 
LBD elasticity of the output a (proteins), while second correlate is μ - the 
LBD of feedstock cultivation. 

Fig. 4 investigates the substitutability of LBD elasticities for profit-
able production. It plots the results of NPV given different LBD rates 
using Support Vector Machine (SVM) (Chapelle et al., 2002). SVM is the 
supervised machine learning classification technique, which identifies 
the separating hyper-curve using the labeled data. Here, instead of a 
simple linear estimator, the nonlinear SVM is implemented using the 
“kernel trick”. The highlighted SVMs are those defining the separating 
curve. This analysis supports previous results in identifying the sensi-
tivity of profitable ISC to LBD elasticities with ψ as the most important, 
then μ followed by ζ. Moreover, the results reveal a constrain of at least 
0.1 for ψ to insure profitable ISC, no matter what learning elasticities are 
in the other stages. In other words, a learning rate of about 7% in pro-
cessing macroalgae into proteins is required to reach profitability within 
3 years. 

Importantly Fig. 4 demonstrates by reconstructing the separating 
hyperplane using SVM that to keep the profitability of the ISC a change 
of 0.1 in ψ is corresponding to about 0.2 change in μ. The economic 
meaning is that to maintain profitability, a reduction of 7% in costs of 

processing macroalgae into proteins is equivalent to 13% decline in costs 
of seaweed farming for each doubling of cumulative production. 

Fig. 5 presents the results of the simulations for the horizon of 10 
years. 

The profitability in this case is almost always positive implying that 
high pace of learning is less critical. However, ψ remains the primary 
correlate to profitability, although the spread for other learning elas-
ticities is reduced. Therefore, the relative importance of learning in the 
longer horizon is reduced reflecting opportunities to exploit the output 
with lower LBD as well. 

6.2.2. Ireland 
Fig. 6 presents the results for profitability of macroalgae-based ISC 

over 3 years in Ireland. We observe that reaching payback period for the 
ISC in the developed country is highly unlikely within the range of LBD 
elasticities reported in the literature. Generally, the probability for profit 
in the short run is low. Both ψ and μ might affect profitability, while the 
impact of ζ is negligible. The major reason for this is that J – the first 
unite cost of farming - is relatively larger in Ireland comparing to the 
Philippines. 

Fig. 7 presents the results of the simulations for the horizon of 10 
years. The probability of profitability increases but is not very high even 
in the long run. The impact of LBD elasticities is increased, with the 
general ordering remaining similar to the Philippines. Yet again, ψ is the 
primary correlate to profitability, and the overall impact of LBD out-
weighs the effect of prices. 

The outcomes for Ireland indicate that to ensure profitable invest-
ment in developed countries, either a high pace of learning over a long 
term horizon or a technological breakthrough is essential. 

7. Discussion and Conclusion 

There is a growing interest in the assessment of bio-based supply 
chains. As macroalgae cultivation and utilization technologies are under 
development, this study focuses on assessing the profitability of in-
vestment in testing and initial commercialization of the technology, 
taking into account the potential gain from learning at different stages of 
the production process. We focus on the investment in innovative 
technologies when the uncertainty in yields and outputs requires further 
learning during application that validates the team’s expertise and the 
technology’s viability. This phase is the borderline between ISC and PSC 
when the initial model for a PSC is assessed. Following the initial 
learning and refinement analyzed here, the tactical timing decision 
might be considered using the RO approach. 

The contribution of this article to the literature on the assessment 
and implementation of innovations is by developing a dynamic model of 
the two-stage supply chain with non-linear cost functions, learning and 

Fig. 3. Profitability of the supply chain in the Philippines for 3 years as a function of LBD elasticities. 
Blue dots represent positive profit while red indicate negative NPV. Black lines draw the trend and dashed lines show the range of LBD elasticities. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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heterogeneous co-outputs. The modeling framework addresses the main 
challenges of the seaweed-bioeconomy, taking into consideration the 
main characteristics of natural resource utilization: the ability for multi- 
output production at the biorefinery; and uncertainly of yields and 
prices. The article incorporates non-linear profitability impacts and 
explicitly evaluates LBD dynamics. 

The theoretical contributions are illustrated using a numerical 
simulation calibrated with real data and providing solutions to pro-
duction choice problem. The ISC starts with cultivation of Kappaphycus 
that is utilized as the feedstock to the bio-refinery; the two simultaneous 
co-outputs of the bio-refinery are industrial protein and carrageenan. 
Next, Monte Carlo simulations reflect the impact of prices, learning rates 

and ISC horizon on the profitability for two representative case studies: 
Ireland and the Philippines. This work comes in response to the needs of 
decision makers in the governance of bioeconomy to evaluate emerging 
technologies with the aim of utilizing renewable natural sources for 
sustainable economic growth. 

Investigating the profitability of the supply chain in different time 
horizons allows evaluating the time to profitable commercialization. 
Importantly, the results reveal that the probability for profitable in-
vestment in the developed countries with emerging macroalgae-based 
ISC in the short-run is low. Yet, for the 10 years planning horizon the 
likelihood of profitable production sharply increases. In developing 
countries with traditional technologies of seaweed farming, the 

Fig. 4. Substitutability between LBDs for Profitable supply chain in the Philippines (3 years). 
Legend: Blue dots represent positive profit while red indicate negative NPV. Circled dotes indicate support vector. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Profitability and Substitution between LBDs in the Philippines (10 years).  

Fig. 6. Profitability and Substitution between LBDs in Ireland (3 years). 
Blue dots represent positive profit while red indicate negative NPV. Black lines draw the trend and dashed lines show the range of LBD elasticities. Circled dotes 
indicate support vector. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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probability of reaching profitable production is high even in the short 
run. Accordingly, the results show that given the learning rates from the 
literature and the actual costs and prices for developed and developing 
countries, the payback period for the industry in the Philippines is up to 
3 years, while western financiers should plan for a long-term investment 
and maintain high learning rates to reach profitable commercialization. 

Interesting results for the Philippines show the potential to diversify 
investment strategy by adding utilization of seaweed into proteins in 
coproduction with low value application (e.g. carrageenan). 

The results indicate the significance of the LBD as an indicator of the 
profitability of novel technologies. Empirical results highlight that a 
relatively high learning rate of 7% in biorefining of seaweed to proteins 
is required for a profitable production. Gaining knowledge and experi-
ence in best offshore cultivation practices is also important to boosting 
the mass utilization of the renewable resource – macroalgae. Stake-
holders from the industry confirmed these results. 

Moreover, the simulations indicate that production costs in devel-
oped countries can be sensitive to the learning effect. The first unit cost 
of cultivation of USD 4000 per ton (in 2016 prices) appears to be the 
threshold where LBD can reverse non-profitable production. 

The results emphasize that the value of a technology depends on the 
initial (fixed) costs, output prices and learning. Of major importance is 
the early period learning, when the entrepreneur absorbs losses for the 
sake of future profits. We show that for every learning rate, the time to 
maturity of the technology declines with the increase in output prices, 
output of the co-product, but increases with first unit costs. 

The empirical results for both countries stress the importance of the 
investment in R&D in the production of algae and in the purification of 
protein in order to reduce the costs of natural resource utilization and 
increase the overall profitability of the supply chain. Naturally, prices 
change and once the technology is mature timing considerations should 
be introduced. 

Our focus on macroalgae is driven by high yields of this renewable 
natural resource, which does not compete with food crops for arable 
land or potable water, and is a potential feedstock for sustainable food, 
high value chemicals and biofuels, allowing also for carbon sequestra-
tion. Carbon pricing can increase the demand for the outputs of bio-
refinery while reducing costs seaweed farming leading to the adoption 
macroalgae-based bioeconomy (Zilberman et al., 2022). Developing 
novel uses to proteins and sugars and other unique chemicals extracted 
from macroalgae at the biorefinery can boost the viability of the utili-
zation. To generalize, rather than competing with existing goods, the 
scientific challenge can be the investigation of the potential to utilize 
macroalgae for unique foods, high value chemicals and fuels. 

This work can be extended in several directions. First, incorporating 
entrepreneurs’ attitudes towards risk considerations (Zilberman et al., 
2017a). The reliability of the volume, timing, and intermediary input 

quality may be uncertain (Zilberman et al., 2022). Risk aversion will 
lead to producing less total output. Similarly, riskier processing of the 
intermediary input is likely to lower production (Lu et al., 2016). Over 
time, learning and adaptation may reduce the risk of supply and pro-
cessing activities and increase overall production. In practice, entre-
preneurs operate under credit constraints, which are more restrictive in 
developing countries and reflect asymmetric information between bor-
rowers and lenders (Stiglitz and Weiss, 1986). Furthermore, entrepre-
neurs need opportunities to invest in protective measures to increase 
resilience of their supply chains to extreme weather risks. 

Another conceivably important aspect that was beyond the scope of 
this article is the innovation spillover. As proteins and sugars are pro-
duced simultaneously from a given quantity of the seaweed, the accu-
mulation of R&D and experience in processing seaweeds into proteins 
can stimulate the efficiency in production of sugars, and vice versa. 
Therefore, the possibility of correlation between learning rates of co- 
outputs of the biorefinery should be investigated. 

Finally, the present article evaluated the profitability of natural 
resource utilization without considering the environmental and social 
externalities. Large-scale macroalgae cultivation involves direct and 
external effects on marine environment, carbon absorption, potable 
water, land use and employment. If macroalgae-based products, e.g. 
biofuels, proteins and sugars, crowd-out the use of substitutes, the 
negative effects of fossil and crop-based energy might be mediated 
(Zilberman et al., 2017b). Further analysis on macroalgae external costs 
and benefits, as well as social welfare analysis, is required for an accu-
rate policy intervention. The analysis on the technological prospects of 
macroalgae biorefinery should evaluate the social net benefit too. 
Consequently, the recommendation upon optimal mix of outputs is to be 
based on social (versus private) costs. 
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Fig. 7. Profitability and Substitution between LBDs in Ireland (10 years). 
Blue dots represent positive profit while red indicate negative NPV. Black lines draw the trend and dashed lines show the range of LBD elasticities. Circled dotes 
indicate support vector. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Appendix A. First Order Conditions 

Let H to define the temporal Hamiltonian: 

H =

(

Pa xa +Pb xb − A
xϕ

a

Xa,cum
ψ − B

xξ
b

Xb,cum
ζ − J

xa + xb
(
Xa,cum + Xb,cum

)μ

)

e− rt (A.1)  

and apply the Hamiltonian equation as a first order condition for the optimization problem: 

∂H
∂Xa,cum

=

[

ψA
xϕ

a

Xa,cum
ψ+1 + μ J

xa + xb
(
Xa,cum + Xb,cum

)μ+1

]

e− rt; (A.2)  

∂H
∂Xb,cum

=

[

ζB
xξ

b

Xb,cum
ζ+1
b

+ μ J
xa + xb

(
Xa,cum + Xb,cum

)μ+1

]

e− rt; (A.3)  

∂H
∂xa

=

[

Pa − ϕA
xϕ− 1

a

Xa,cumψ+1
−

J
(
Xa,cum + Xb,cum

)μ

]

e− rt; (A.4)  

∂H
∂xb

=

[

Pb − ξB
xξ− 1

b

Xb,cumζ+1
−

J
(
Xa,cum + Xb,cum

)μ

]

e− rt; (A.5)  

d
dt

[
∂H
∂xa

]

= − re− rt ∂H
∂xa

+ e− rt

[

Ṗa + μJ
xa + xb

(
Xa,cum + Xb,cum

)μ+1 − ϕA
(ϕ − 1) xϕ− 2

a ẋaXa,cum − ψ xϕ
a

Xa,cum
ψ+1

]

; (A.6)  

d
dt

[
∂H
∂xb

]

= − re− rt ∂H
∂ẋb

+ e− rt

⎡

⎣Ṗb + μJ
xa + xb

(
Xa,cum + Xb,cum

)μ+1 − ξB
(ξ − 1) xξ− 2

b ẋbXb,cum − ζ xξ
b

Xb,cum
ζ+1

⎤

⎦ (A.7) 

Where ẋa, ẋb are time derivatives of outputs xa and xb respectively, which are equal to growth rates for small changes. Accordingly Ṗa, Ṗb are time 
derivatives of prices. To find the solution, we solve the system of equations (A.8): 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂H
∂Xa,cum

−
∂
∂t

[
∂H
∂xa

]

= 0

∂H
∂Xb,cum

−
∂
∂t

[
∂H
∂xb

]

= 0
(A.8) 

Then we obtain the following first order conditions (FOCs): 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ψA
xϕ

a

Xa,cumψ+1
+ ϕA

(ϕ − 1)xϕ− 2
a ẋaXa,cum − ψxϕ

a

Xa,cumψ+1
− rϕA

xϕ− 1
a

Xa,cumψ
−

Jr
(
Xa,cum + Xb,cum

)μ − Ṗa + rPa = 0

ζB
xξ

b

Xb,cumζ+1
+ ξB

(ξ − 1)xξ− 2
b ẋbXb,cum − ζxξ

b

Xb,cumζ+1
− rξB

xξ− 1
b

Xb,cumζ
−

Jr
(
Xa,cum + Xb,cum

)μ − Ṗb + rPb = 0

(A.9) 

Lemma: The solution to FOCs is a global maximum of the firm problem. 
Proof. Let us check that strict globalized version of Legendre condition is satisfied, since the second derivative ∇xxH: 

∇xxH =

⎡

⎢
⎢
⎢
⎢
⎣

− Aϕ(ϕ − 1)
xϕ− 2

a

Xa,cumψ
e− rt 0

0 − Bξ(ξ − 1)
xξ− 2

b

Xb,cumζ
e− rt

⎤

⎥
⎥
⎥
⎥
⎦

(A.10) 

∇xxH is negative definite whenever ξ, ϕ > 1. Therefore, we can apply the strict Weierstrass condition and guarantee that the obtained solution is a 
strong local maximum. Note as well, that since π(xa,xb) is a concave function, then the second variation would be negative, therefore, the local 
maximum is also a global one. 

Appendix B. Propositions and Proofs 

Propositions B1 and B2 are validating the economic intuition of the model: 

Proposition B1. The present discounted value of expected life-time profit is increasing in prices Pa, Pb and the elasticities of learning by-doing ψ, ζ, μ. 

Proof. This statement is evident from FOCs (Eq. A.9, Appendix A). 

Proposition B2. The profit is decreasing in first-unit costs A, B, J, and marginal cost growth of output φ and ξ. 
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Proof. Propositions B1 and B2 can be proven by taking the derivatives of profit function with respect to the corresponding parameters. Note that 
none of the parameters depends on time. Therefore, taking the derivative of the integral functional is the same as taking the derivative of the functional 
under the integral sign. 

Proposition 1. The expected output of the innovative technology increases, if the learning by doing effect is greater than the price effect when prices 
decline. 

Proof. Rearranging F.O. C. (Eq. A.9, Appendix A) we can derive: 

Ṗa

Pa
− r =

ψA(1 − ϕ)xϕ
a

PaXψ+1
a,cum

− rϕA
xϕ− 1

a

PaXa,cumψ
−

Jr
(
Xa,cum + Xb,cum

)μ +

ϕA(ϕ − 1)xϕ− 1
a

(
ẋa

/

xϕ
a

)

PaXψ
a,cum

(B.1) 

We can further rearrange the term: 
(

ẋa

/

xa

)

=
PaXψ

a,cum

ϕA(ϕ − 1)

⎡

⎣

⎛

⎝Ṗa

Pa
− r

⎞

⎠+
ψA(ϕ − 1)xϕ

a

PaXψ+1
a,cum

+ rϕA
xϕ− 1

a

PaXψ
a,cum

+
Jr

(
Xa,cum + Xb,cum

)μ

⎤

⎦ (B.2) 

Where the left hand side is the growth of output and the right hand side (RHS) denotes affecting it factors. 
As ϕ ≥ 1, the first three terms on the right hand side of Eq. (B.2), which represent learning effect on the marginal cost, are negative. The last term, 

representing production growth effect, can be positive or negative depending on the growth rate of output a. Therefore, the cost function implies there 
may be an increase in volume of production and a reduction of price. Eq. (B.2) states that even if prices decline over time, production indeed remains 
profitable. As the cost function for output b is symmetrical to a, similar rule applies. 

The next propositions describe the comparative statics of the profit function. 

Proposition 2. Production of one or both co-outputs may occur in early period even if at least one of them are not profitable, to accumulate learning 
of feedstock that will result in profitable supply chain in the longer term. 

Proof: From Eqs. (A.6) and (A.7), it is evident that the more feedstock is produced in the first stage (macroalgae cultivation), the faster is learning at 
the first stage of production, and the unit production costs decrease, no matter whether the feedstock is mainly processed into output a or b. The 
economic meaning is that co-production has a positive complementarity effect of learning. The more profitable output contributes to the increase in 
productivity in the first stage of ISC (cultivation) that serves as an input also to the less profitable output of the second stage (processing). The 
feedstock accumulates faster, resulting cheaper unit costs to the benefit of all co-produced outputs a biorefinery. 

Proposition 3a. The growth rate of output is non-decreasing in output price growth and increasing if its price growth is higher than the interest rate. 

Proof. Derive ẋa or ẋb (time derivatives of outputs a and b which are equal to growth rates for small changes) from F.O.C. (Eq. A.9): 

ẋa =
Xa,cumψ

Aϕ(ϕ − 1)xϕ− 2
a

Pa

⎛

⎝Ṗa

Pa
− r

⎞

⎠and ẋb =
Xb,cumζ

Bξ(ξ − 1)xξ− 2
ab

Pb

⎛

⎝Ṗb

Pb
− r

⎞

⎠ (B.3) 

Evidently the growth rate of output is smaller than the growth rate of prices. Yet if price increases over time, the output increases over time too. 
The dynamic nature of the model clarifies the intuition that if the price growth is higher than the discount rate, then increasing production is 

profitable. 

Proposition 3b. If learning is faster than the increase in costs, then output grows faster than prices. 

The output growth is non-decreasing in output price growth, and non-increasing in output price level. 
Proof: The time derivatives of output with respect to the time derivative of own price is (for output a, since for b they would look symmetric): 

∂ẋa

∂ Ṗa
=

Xa,cumψ

Aϕ(ϕ − 1)xϕ− 2
a

≥ 0 (B.4) 

Keeping in mind that the numerator in Eq. (B.4) represents learning and the denominator represents costs of the second stage of production, the 
result indicates that if learning is faster than the increase in costs, output grows faster than prices. 
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Fluch, S., et al., 2021. Current status of the algae production industry in Europe: an 

emerging sector of the blue bioeconomy. Front. Mar. Sci. 7, 626389 https://doi.org/ 
10.3389/fmars.2020.626389. 

Argaman, A., 2020, April 27. COO Sekura. (R. R. Palatnik, D. Hertzenstein, & S. Nagash, 
Interviewers). 

Arrow, K.J., 1962. The economic implications of learning by doing. Rev. Econ. Studies 29 
(3), 155–173. https://doi.org/10.2307/2295952. 

Babcock, Bruce, A., Stephan, M., David, T., 2011. Opportunity for profitable investments 
in cellulosic biofuels. Energy Policy 39, 714–719. 

Barrett, C.B., Reardon, T., Swinnen, J., Zilberman, D., 2022. Agri-food value chain 
revolutions in low-and middle-income countries. Journal of Economic Literature 60 
(4), 1316–1377. 

Berg, E., 1987. A sequential decision model to determine optimal farm-level grain 
marketing policies. Eur. Rev. Agricult. Econ. 14 (1), 91–116. 

Bergemann, D., Hege, U., 2005. The financing of innovation: learning and stopping. Rand 
J. Econ. 36 (4), 719–752. 

Boyle, P.P., 1977. Options: a Monte Carlo approach. J. Finan. Econ. 4 (3), 323–338. 
https://doi.org/10.1016/0304-405X(77)90005-8. 

Brandes, W., Budde, H.-J., Sperling, E., 1980. A computerised planning method for risky 
investments. Eur. Rev. Agricult. Econ. 7 (2), 147–175. 

R.R. Palatnik et al.                                                                                                                                                                                                                             

http://refhub.elsevier.com/S0921-8009(23)00044-7/rf0005
http://refhub.elsevier.com/S0921-8009(23)00044-7/rf0005
http://refhub.elsevier.com/S0921-8009(23)00044-7/rf0005
https://doi.org/10.1016/B978-0-08-100596-5.21587-4
https://doi.org/10.1016/B978-0-08-100596-5.21587-4
https://doi.org/10.1111/ajae.12255
https://doi.org/10.1093/ajae/aay103
http://www.nber.org/chapters/c14609
http://www.nber.org/chapters/c14609
https://doi.org/10.3389/fmars.2020.626389
https://doi.org/10.3389/fmars.2020.626389
http://refhub.elsevier.com/S0921-8009(23)00044-7/rf0045
http://refhub.elsevier.com/S0921-8009(23)00044-7/rf0045
https://doi.org/10.2307/2295952
http://refhub.elsevier.com/S0921-8009(23)00044-7/rf0060
http://refhub.elsevier.com/S0921-8009(23)00044-7/rf0060
http://refhub.elsevier.com/S0921-8009(23)00044-7/rf0065
http://refhub.elsevier.com/S0921-8009(23)00044-7/rf0065
http://refhub.elsevier.com/S0921-8009(23)00044-7/rf0065
http://refhub.elsevier.com/S0921-8009(23)00044-7/rf0075
http://refhub.elsevier.com/S0921-8009(23)00044-7/rf0075
http://refhub.elsevier.com/S0921-8009(23)00044-7/rf0080
http://refhub.elsevier.com/S0921-8009(23)00044-7/rf0080
https://doi.org/10.1016/0304-405X(77)90005-8
http://refhub.elsevier.com/S0921-8009(23)00044-7/rf0095
http://refhub.elsevier.com/S0921-8009(23)00044-7/rf0095


Ecological Economics 207 (2023) 107781

13

Broch, O.J., Alver, M.O., Bekkby, T., Gundersen, H., Forbord, S., Handå, A., 2019. The 
kelp cultivation potential in coastal and offshore regions of Norway. Front. Mar. Sci. 
5, 529. https://doi.org/10.3389/fmars.2018.00529. 

Brown, T.R., 2015. A techno-economic review of thermochemical cellulosic biofuel 
pathways. Bioresour. Technol. 178, 166–176. 

Buck, B., Buchholz, C., 2004. The offshore-ring: a new system design for the open ocean 
aquaculture of macroalgae. J. Appl. Phycol. 16 (5), 355–368. 

Buschmann, A., Varela, D., Cifuentes, M., Hernández-González, M., Henríquez, L., 
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