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The aim of the study was to develop, evaluate, and validate an artificial neural network to predict coronary microvascular obstruction 
(CMVO) during percutaneous coronary interventions (PCI) in patients with myocardial infarctions (MI) based on the parameters, which are 
routinely available in an operating room when choosing a surgical approach.

Materials and Methods. 5621 patients with MI and emergency PCI were retrospectively selected from the database of the City 
Clinical Hospital No.13 (Nizhny Novgorod, Russia); among them, there were 3935 men (70%) and 1686 women (30%), their mean age was 
61.5±10.8 years. CMVO was recorded in 201 (4%) patients (the blood flow in the infarction-related artery after PCI was less than 3 points 
according to TIMI flow grade). The following input parameters were assessed: age, gender, past history of coronary artery disease, previous 
revascularization, presence of ST-segment elevation, a class of acute heart failure, a fact of systemic thrombolytic therapy administration 
and its effectiveness, symptom-to-balloon time, severity of coronary thrombosis and atherosclerosis, the number of stents and the number 
of operated coronary arteries. The sampling was divided into a training group (n=4060), a testing group (n=717), and an independent 
validation group (n=844).

Results. We developed an artificial neural network by a fully connected multilayer perception with forward signal propagation and two 
hidden layers (the area under the ROC curve — 0.69) to predict CMVO based on the subsampling for training and testing. The network 
model was tested on an independent subsampling (the area under the ROC curve — 0.64, negative predictive value — 97.4%, positive 
predictive value — 14.6%).

Conclusion. The developed artificial neural network enables to use the parameters routinely available in an operating room when 
choosing a surgical approach and predict CMVO development during PCI in MI patients with accuracy sufficient for practical use.

Key words: myocardial infarction; coronary microvascular obstruction; no-reflow; percutaneous coronary intervention; artificial neural 
network; logistic regression; machine learning.

Corresponding author: Alexey A. Frolov, е-mail: frolov-al-al@yandex.ru

А.А. Frolov, I.G. Pochinka, B.Е. Shakhov, А.S. Mukhin, I.А. Frolov, М.K. Barinova, Е.G. Sharabrin



СТМ ∫ 2021 ∫ vol. 13 ∫ No.6   7

AdvAnced ReseARches

Introduction

By coronary microvascular obstruction (CMVO, 
a no-reflow phenomenon) we mean an inadequate 
myocardial perfusion after successful recanalization of 
the coronary artery (CA) operated during percutaneous 
coronary intervention (PCI). The phenomenon is still 
one of the most common complications in endovascular 
treatment of myocardial infarction (MI) and occurs 
in about 10% patients in case of using angiographic 
criteria [1]. Formidable difficulties in CMVO prognosis 
and therapy, to a greater degree, are due to the fact 
that several mechanisms underlie its pathogenesis; and 
the contribution of the mechanisms to its development 
varies considerably in different patients [2].

Currently, the most promising technique to predict 
the phenomenon is a prognostic model by Wang et al. 
[3]; the method was developed by a logistic regression 
and is characterized by rather high quality (the area 
under ROC curve is 0.800; confidential interval is 95% 
(95% CI) — 0.772–0.826), and acceptable sensitivity 
and specificity values (76.1 and 70.8%, respectively). 
However, the model has a number of restrictions: the 
use of laboratory markers, which are usually unavailable 
in case of emergency MI patients, and no validation 
using independent data.

One of the relevant approaches that can provide a 
prognostic model compatible in efficiency and lacking 
the above-mentioned limitations is the analysis of a 
large bulk of data using machine learning techniques, in 
particular — artificial neural networks (ANN).

No-Reflow Phenomenon Prognosis using an Artificial Neural Network

The aim of the study was to develop, evaluate, and 
validate an artificial neural network to predict coronary 
microvascular obstruction (no-reflow phenomenon) 
during percutaneous coronary interventions in patients 
with myocardial infarctions based on the parameters, 
which are routinely available in an operating room when 
choosing a surgical approach.

Materials and Methods
Sampling description. To create ANN, we 

retrospectively studied the data of 19,596 patients 
from the register of treatment and hospital outcomes 
of patients with acute coronary syndrome in the City 
Clinical Hospital No.13 (Nizhny Novgorod, Russia) 
over the period of 2011–2020. Before selection and 
statistical processing, the information about patients was 
anonymized. 

Inclusion criteria were: confirmed MI and performed 
PCI. Patients’ files with incomplete data and the files 
containing the information that should be considered 
statistically as “an outlying case” were excluded from 
the subsequent analysis. Finally, 5621 patients were 
chosen. Figure 1 represents a general diagram of 
patients’ inclusion into the study and the development of 
prognostic models.

MI diagnosis was made based on clinical and 
biochemical criteria according to the third, and then 
the fourth universal MI definition [4]. PCI consisted in 
implanting a stent into the infarction-responsible artery 
(IRA) with residual stenosis of less than 50%. Congestive 

Figure 1. Scheme of patients’ inclusion into the study and development of prognostic models

19,596 patients with acute coronary 
syndrome over the period of 2011–2020

Development of an artificial neuronal network  
and a logistic regression model

5621 patients with myocardial infarction 
and percutaneous coronary intervention

TRAIN subsample 
(n=4060)

TEST subsample 
(n=717)

VALID subsample 
(n=844)

Assessment of efficiency  
and comparison of obtained models
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heart failure (CHF) severity was evaluated according to 
Killip classification [1, 3], blood flow degree in IRA after 
PCI — according to thrombolysis in myocardial infarction 
(TIMI) flow grade [5], IRA thrombosis intensity (after 
the passage of coronary guide) — according to TIMI 
thrombus grade [6].

CMVO phenomenon was revealed in 201 patients 
(4%) from all the subjects involved in the study (n=5621). 
CMVO development was diagnosed based on blood 
flow assessment in IRA according to TIMI flow grade 
as of the moment of PCI completion. CMVO diagnostic 
criterion was blood flow assessed less than 3 points 
providing there were no other causes, which could make 
it decrease (persisting spasm, CA dissection, a large 
thrombo-embolus, marked residual stenosis).

To create ANN, the following parameters were used: 
age, gender, angina pectoris and/or past history MI, 
previous PCI and/or coronary bypass surgery, the 
presence of steady ST-segment elevation on ECG, CHF 
class, the fact of performed systemic thrombolytic therapy 
and its efficiency, symptom-to-balloon time (from anginose 
status to coronary blood flow recovery during PCI), 
marked IRA thrombosis (4, 5 degree according to TIMI 
thrombus grade), severe atherosclerotic CA (one-, two-, 
three-vessel disease and/or left CA trunk disease), the 
number of implanted stents and the number of operated 
CA. Table 1 shows the characteristics of patients’ groups 
with developed or undeveloped CMVO.

Statistical processing. To determine the distribution 
character, we used Kolmogorov–Smirnov test, Mann–
Whitney test was used to assess statistical significance 
of the qualitative data; and to evaluate the significance 
of qualitative data differences. We used χ2 Pearson 
criterion. The differences were considered statistically 
significant if p≤0.05. Quantitative data were represented 
in the form of median and interquartile intervals (Me 
[Q1; Q3]). The data were statistically processed using 
Statistica 10.0 (StatSoft Inc., USA) and MedCalc 11.5 
(MedCalc Software Ltd, Belgium).

Data preparation. The patients involved in the study 
(n=5621) were randomly divided into three subsamples 
(subgroups): a training subgroup (TRAIN), a control 
subgroup (TEST), and a valid subgroup (VALID) in 
the ratio 4060 (72.2%), 717 (12.8%), and 844 (15.0%) 
patients, respectively (see Figure 1). The number of 
CMVO patients in TRAIN subsample was 143 (3.5% from 
4060 patients), in TEST subsample there were 25 (3.5% 
from 717) patients, in VALID subsample: 33 (3.9% from 
844) patients.

Continuous numeric parameters (age and 
symptom-to-balloon time) were normalized to a mean 
value and standard deviation (M±SD) [7]. Mean and 
standard deviation were calculated based on TRAIN 
subsample data. The obtained data were used then 
to normalize the indices in other subsamples. Mean 
age in TRAIN subgroup was 61.4±10.0 years, mean 

T a b l e  1
Characteristics of patient groups with or without coronary microvascular obstruction

Parameter Patients with developed CMVO 
(n=201)

Patients with no CMVO 
(n=5420) p

Age (years), Me [Q1; Q3] 64.3 [56.5; 72.4] 61.7 [54.7; 68.4] 0.001
Males/females, n (%) 140 (69.7)/61 (30.3) 3795 (70.0)/1625 (30.0) 0.911
Past angina pectoris, n (%) 64 (31.8) 1494 (27.6) 0.184
Past myocardial infarction, n (%) 37 (18.4) 779 (14.4) 0.110
Past percutaneous coronary intervention, n (%) 20 (10.0) 392 (7.2) 0.147
Past coronary bypass, n (%) 1 (0.5) 49 (0.9) 0.547
Diabetes mellitus, n (%) 49 (24.4) 1144 (21.1) 0.265
Mortality during hospitalization, n (%) 36 (17.9) 177 (3.3) <0.001
Myocardial infarction with ST-segment elevation, n (%) 181 (90.0) 4167 (76.9) <0.001
CHF, class 4 according to Killip classification, n (%) 28 (13.9) 149 (2.7) <0.001
Effective pre-hospital systemic thrombolytic therapy, n (%) 18 (9.0) 650 (12.0) 0.191
Noneffective pre-hospital systemic thrombolytic therapy, n (%) 49 (24.4) 888 (16.4) 0.003
Symptom-to-balloon time (h), Me [Q1; Q3] 9.3 [4.2; 18.0] 9.7 [4.3; 19.5] 0.041
TIMI thrombus grade in infarction-responsible artery, IV–V degree, n (%) 43 (21.4) 421 (7.8) <0.001
Three-vessel CA impairment and/or left CA trunk impairment, n (%) 95 (47.3) 2176 (40.1) 0.043
PCI using three or more stents, n (%) 31 (15.4) 373 (6.9) <0.001
Single-step PCI on several CA, n (%) 17 (8.5) 416 (7.7) 0.683

N o t e: CMVO — coronary microvascular obstruction; CHF — congestive heart failure; CA — coronary artery; PCI — 
percutaneous coronary intervention.
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symptom-to-balloon time was 14.9±14.2 h. Categorical 
data were re-encoded using a unitary code (one-hot 
encoding) [7]. In the end, the data were mixed.

Taking into account the imbalance of the data set 
on CMVO patients’ percentage (only 3.5% in TRAIN 
subgroup) we applied a number of methods to correct 
the imbalance of classes in a training subsample. The 
following techniques were used: random undersampling 
up to ratio 143/143, random oversampling up to ratio 
3917/3917, synthetic minority oversampling technique 
(SMOTE) up to ratio 3917/3917, training considering 
correction weighs for predictable classes (0.52 — for 
patients without CMVO, and 14.20 — for patients with 
CMVO) [8].

Structure and training of artificial neural 
networks. ANN was developed in Python programming 
environment using machine learning libraries with 
an open-source code TensorFlow, Keras, and scikit-
learn [9]. In order to correct imbalanced initial data, 
we used the algorithms from imbalanced-learn library 
[10]. For model training, we used TRAIN subsample, 
for “convergence” control — TEST subsample. VALID 
subsample was used subsequently for independent 
validation (see Figure 1). While developing and training 

ANN, we probed various versions of network structure 
and size, activation function and loss function, training 
and regularization algorithms, as well as various 
approaches to imbalanced data work.

An optimal ANN has the structure of a fully connected 
multilayered perceptron (MLP) [11] with direct signaling, 
the number of inputs — 35, two buried layers (36 and 72 
hidden neurons), and the number of inputs — 1 (MLP 
formula 35-36-72-1). On the first hidden layer, we used 
a linear function as an activation function, and on the 
second layer — a function of rectified linear unit (ReLU), 
on the output element — sigmoid function.

Signal distribution function was standard for the 
above-mentioned ANN type. For each node of the 
current layer, the overlying layer node value was 
multiplied by its weight and was added to the values of 
other nodes and displacement weight; after that, it was 
processed by an activation function [11]:

ƒ(x1w1+x2w2+…+xnwn+b),

where: ƒ — activation function of a current layer; x — 
node value of an overlying layer; w — node weight of an 
overlying layer relating to a current layer; n — a number 

No-Reflow Phenomenon Prognosis using an Artificial Neural Network
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of the first open layer

Bias neuron  
of the second open layer

Bias neuron  
of an output layer

Input characteristics
Age (years), normalized  
as M±SD
Symptom-to-balloon time (h), 
normalized as M±SD
Non-ST-segment elevation MI, 
0 (no)/1 (yes)
ST-segment elevation MI,  
0 (no)/1 (yes)

… 

…

IRA has TIMI thrombus  
grade 4, 5,
0 (no)/1 (yes)
IRA has no TIMI thrombus  
grade 4, 5,
0 (no)/1 (yes)

Predictable 
outcome

CMVO  
will develop,  
0 (no)/1 (yes)

Output layer (n=1)

Linear 
function

Input layer  
(n=35)

First hidden layer 
(n=36)

Second hidden layer 
(n=72)

Rectified linear unit function

Figure 2. Structural graph of a developed artificial neuronal network
n — number of neurons in a layer

Sigmoid function

 



10   СТМ ∫ 2021 ∫ vol. 13 ∫ No.6 

AdvAnced ReseARches

of nodes in an overlying layer; b — displacement weight 
for a current layer.

Obtained ANN made adverse outcome prognosis 
(CMVO) in the range from 0 to 1. For result 
classification, the threshold value was used; its 
elevation was considered that ANN predicted an 
adverse outcome.

Since further network complicacy and size gain did 
not result in its efficiency improvement, we decided upon 
the above-described architecture. Figure 2 represents a 
structure graph of the developed ANN.

To optimize weights during ANN training, we used 
an algorithm of adaptive moment estimation (Adam) 
with the rate of learning 0.001 and other parameters by 
default [12]. As a loss assessment function, we used 
binary cross-entropy [13]. Within the training, for initial 
weight initialization, Xavier uniform initialization (Glorot 
uniform initialization) was applied, and an initial bias was 
calculated to speed up training [14].

To assess ANN efficiency and search for an optimal 
cut-off value, we used ROC analysis to evaluate the 
area under ROC curve (AUC). Based on the obtained 
cut-off value, an error matrix was constructed to 
assess metrics. An error matrix included four cells with 
incidence referred to one of the categories: true positive 
(TP), false positive (FP), true negative (TN), and false 
negative (FN). As metrics, we studied sensitivity/recall, 
specificity, positive predictive value, negative predictive 
value/precision, F1-score. The metrics were calculated 
according to the following formulas:

sensitivity = TP/(TP + FN);
specificity = TN/(TN + FP);

positive predictive value = TP/(TP + FP);
negative predictive value/precision = TN/(TN+FN);

F1-score = 2·precision·recall/(precision + recall).

In order to prevent ANN retraining, we used 
intermediate dropout layers with exclusion probability 
of 0.5, applied L1-regularization of an output layer with 
a regularization factor of 0.1, and realized an early 
shutdown function based on F1-score [15].

The most effective ANN (with maximum F1-score 
and AUC) was obtained when training using correction 
weights for predictable classes. The network was chosen 
for further work and validation.

Development of a comparative logistic regression 
model. For comparative analysis of the obtained ANN 
efficiency, a logistic regression model was developed:

logit (p)  = –6.2683 + 0.03052·age (years) + 
+ 0.9561·TIMI thrombus grade 4, 5 (yes/no) + 

+ 0.6897·MI with ST-segment elevation (yes/no) + 
+ 1.4631·4 CHF class according to Killip (yes/no) +  

+ 0.9496·implantation of 3 and more stents (yes/no) +  
+ 0.5813·ineffective systemic thrombolysis (yes/no).

Here: logit (p) — response variable of logistic regression.
To develop a model, we used a stepwise technique 

excluding if p>0.05 [16]. The model was developed 
on a concatenated data set from TRAIN and TEST 
subsamples. The efficiency of the obtained logistic 
model was assessed similarly to that of ANN.

Independent validation. The obtained models were 
validated using VALID subsample. DeLong test was 
used to compare AUC of the models.

Results
Hospital mortality in the sampling under study 

was 3.8% (213 patients from 5621 died). Table 1 
demonstrates the comparison of patients with and 
without CMVO. CMVO group was found to have a 

T a b l e  2
Results of development, training, and validation of models

Metrics ANN training result 
(TRAIN)

ANN test result  
(TEST)

ANN validation 
result (VALID)

Regression model
Initial result 

(TRAIN + TEST)
Validation result 

(VALID)
Area under ROC curve, 95% CI 0.69 (0.68–0.71) 0.73 (0.70–0.77) 0.64 (0.61–0.67) 0.71 (0.70–0.73) 0.64 (0.61–0.67)
Cut-off value of model result >0.4928 >0.4928 >0.4928 >–2.705 >–2.705
True positive cases (n) 49 6 13 57 10
False positive cases (n) 399 72 76 456 74
True negative cases (n) 3518 620 735 4153 737
False negative cases (n) 94 19 20 111 23
Sensitivity (%) 34.3 24.0 39.4 33.9 30.3
Specificity (%) 89.8 89.6 90.6 90.1 90.9
Positive predictive value (%) 10.9 7.7 14.6 11.1 11.9
Negative predictive value (%) 97.4 97.0 97.4 97.4 97.0
F1-score (%) 16.6 11.7 21.3 16.7 17.1

H e r e: ANN — artificial neural network.
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higher hospital mortality rate and more patients with 
such CMVO predictors as age, MI with ST-segment 
elevation, severe CHF, ineffective thrombolytic therapy, 
marked IRA thrombosis, more marked atherosclerotic 
CA, a great number of stents, and single-step stenting 
of several CA. However, symptom-to-balloon time in this 
group was less.

Table 2 represents training outcomes, ANN precision 
and validation assessment, as well as the development 
and validation of a logistic regression model.

Comparison of AUC obtained using ANN and logistic 
regression on VALID subsample (Figure 3) showed no 
statistically significant differences (p=1.00).

Discussion
Due to the use of a retrospective analysis and 

associated limitation of the available information, CMVO 
was stated only according to TIMI flow grade in IRA after 
PCI. Thus, most severe CMVO cases were studied, 
their frequency in practice was relatively few (4% in 
the present study). Severe CMVO was associated with 
“classical” predictors and increased hospital mortality 
risk. Less symptom-to-balloon time in CMVO patients 
was likely due to patients with non-ST-segment elevation 
MI included in the study. Such patients came to surgery 
later and have lower CMVO risk.

CMVO syndrome pathogenesis is known to be highly 
heterogeneous. The phenomenon can result from 
distal thrombotic microembolization, ischemic perfusion 
impairment, and endothelial dysfunction a patient initially 
had against the background of accompanying pathology 

or the presence of some variants of single nucleotide 
gene polymorphism [2]. Due to this, every patient 
can exhibit a various combination and intensity of the 
above-described pathogenic mechanisms; that, in its 
turn, causes some difficulties in CMVO and underlines 
the need for independent data validation [17].

The attempts to unite within one model the 
characteristics presenting all pathogenic CMVO 
elements result in model overcomplication and difficulties 
of its effective usage in real clinical practice. So, for a 
famous model by Wang [3], the laboratory findings are 
needed, which are rarely available during an operation 
on patients with MI due to the necessity to perform 
emergency PCI immediately.

Within the terms of the present study, we attempted 
to develop a prognostic model combining simplicity 
(the use of indices, which are routinely available when 
choosing a surgical approach), adequate accuracy (a 
result should have some clinical value), and proved 
efficiency (the presence of validation on independent 
data). Such requirements, to a large extent, determined 
the choice of ANN to develop a prognostic model.

ANN is known to enable to find complex dependencies 
and classify based on a variety of features, which are 
poorly distinguished using other analyses [8, 11]. This 
ANN property was considered most important under 
the terms of unavailability when predicting a number of 
highly specific CMVO characteristics. However, when 
performing a comparative analysis of the findings, 
the accuracy of a logistic regression model was found 
to be in many respects compatible with the accuracy 
of a developed ANN. So, AUC obtained in VALID 
subsample was the same (see Figure 3). Apparently, 
the fact can be explained by insufficient specificity of 
available characteristics in relation to CMVO. The lack 
of input data of accurate laboratory markers made the 
objective difficult and prevented ANN from realizing its 
potential in classifying complex regularities. Moreover, 
low frequency of CMVO in the sampling under study led 
to the problem of imbalanced data [8, 10]; the problem 
consisted in ignoring ANN of minority class (patients 
with CMVO) when training. The problem was solved 
using the techniques for imbalance correction and using 
special metrics (F1-score).

Most likely, the above-mentioned difficulties of CMVO 
pathogenesis, imbalance, and low specificity of input 
data are also the main reasons of moderate accuracy 
of the developing models in general (see Table 2). It 
is important to emphasize that despite all restrictions, 
an obtained ANN is not devoid of clinical value, and 
has a number of advantages over a regression model. 
Considering high negative predictive value (97.4%) 
excluding CMVO, a predicted ANN result gives a 
surgeon the confidence in safety when performing highly 
technical and “aggressive” PCI, if it is necessary (the 
use of several stents, post-dilatation with high-pressure 
balloon, etc.) [18]. On the contrary, quite modest positive 
predictive value (14.6%) taking into account low CMVO 
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Figure 3. Comparison of ROC curve models on VALID 
subsample

No-Reflow Phenomenon Prognosis using an Artificial Neural Network



12   СТМ ∫ 2021 ∫ vol. 13 ∫ No.6 

AdvAnced ReseARches

frequency (4%) makes the fact of obtaining the data 
beneficial enough. In this case, a doctor has extra 
reasons to perform a minimally invasive procedure, 
as well as to overestimate risks and administer some 
additional treatment, e.g., IIb/IIIa-platelet glycoprotein 
receptor blockers [19]. It is essential that validation 
showed ANN to have higher F1-score values — 21.3% 
versus 17.1% in a regression model suggesting its higher 
accuracy under conditions of imbalanced data. It should 
be noted that an advantage of the obtained models is 
validation on independent data, and it increases their 
reliability. A developed ANN can be considered a useful 
additional instrument when making a decision on an 
optimal surgical approach in MI patients.

Study limitations. The present study and a 
developed model have some limitations. Retrospective 
nature of characteristics and the limitations of the used 
database prevented from including a number of potential 
CMVO predictors into a model (e.g., collateral blood 
flow intensity), as well as using wide-ranging criteria 
for diagnostic outcomes (myocardial perfusion by 
myocardial blush grade (MBG) and ST-segment on an 
electrocardiogram). According to initial inclusion criteria, 
a model can be used only for patients admitted with 
MI diagnosis. Moderate accuracy characteristics of the 
model require its careful usage. It is reasonable to carry 
out an extra prospective validation using samplings from 
other medical institutions.

Conclusion
A developed artificial neural network uses routinely 

available characteristics when choosing a surgical 
approach and enables to predict the development of 
coronary microvascular obstruction (no-reflow) when 
performing percutaneous coronary interventions in 
patients with myocardial infarctions with accuracy 
sufficient for practical application (the area below ROC 
curve is 0.69). An essential advantage of a developed 
model is its validation on independent data (the area 
below ROC curve is 0.64; negative predictive value is 
97.4%; positive predictive value is 14.6%).

Study funding. The study had no sponsorship.
Conflicts of interest. The authors declare no 

conflicts of interest related to the present study.
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