
Citation: Shalileh, S. An Effective

Partitional Crisp Clustering Method

Using Gradient Descent Approach.

Mathematics 2023, 11, 2617. https://

doi.org/10.3390/math11122617

Academic Editors: Hongzhi Wang

and Ye Chen

Received: 20 April 2023

Revised: 28 May 2023

Accepted: 2 June 2023

Published: 7 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Effective Partitional Crisp Clustering Method Using
Gradient Descent Approach
Soroosh Shalileh 1,2

1 Center for Language and Brain, HSE University, Myasnitskaya Ulitsa, 20, Moscow 101000, Russia;
sshalileh@hse.ru

2 Vision Modelling Lab, HSE University, Myasnitskaya Ulitsa, 20, Moscow 101000, Russia

Abstract: Enhancing the effectiveness of clustering methods has always been of great interest. There-
fore, inspired by the success story of the gradient descent approach in supervised learning in the
current research, we proposed an effective clustering method using the gradient descent approach.
As a supplementary device for further improvements, we implemented our proposed method using
an automatic differentiation library to facilitate the users in applying any differentiable distance
functions. We empirically validated and compared the performance of our proposed method with
four popular and effective clustering methods from the literature on 11 real-world and 720 synthetic
datasets. Our experiments proved that our proposed method is valid, and in the majority of the cases,
it is more effective than the competitors.
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1. Introduction: Background and Motivation

Clustering is a method of partitioning a set of data points into partitions such that the
within-partition data points are as homogeneous as possible and the between-partitions
data points are as heterogeneous as possible. The partitions are referred to as clusters.
Clustering is a crucial tool in data science, knowledge discovery and artificial intelligence
and has various applications in disciplines such as biology, social science, neuroscience,
computer science, etc. Thus, not surprisingly, an enormous number of papers have been
published addressing different aspects of clustering.

Recently, a comprehensive survey on this subject has been published [1] that extends
the well-accepted taxonomy of clustering methods and reviews the trends and open chal-
lenges. The authors classified the clustering methods into (i) hierarchical and (ii) partitional
clusterings. Furthermore, they categorized the hierarchical clusterings into (i-a) agglomera-
tive and (i-b) divisive clusterings: and they categorized the partitional clusterings into (ii-a)
crisp, (ii-b) mixture resolving and (iii-c) fuzzy clusterings. Figure 1 depicts the three first
levels of this taxonomy.

Furthermore, the authors of this survey considered the recent research works devoted
to adaptations of clustering methods to various disciplines as the recent trends in this
area of research. Moreover, they listed nine open issues in clustering algorithms, and the
“effectiveness” of clustering methods is one of them.

Our line of thought aligned with this survey. Therefore, the main objective of the
current research was to propose an effective clustering method to improve the clusters
recovery results. Therefore, inspired by the success story of the gradient descent algorithm
in the supervised learning tasks [2], we proposed a generic clustering objective function
and then adopted the gradient descent approach to optimize it. As a by-product of our
proposed method and to increase its flexibility, we implemented it using an automatic
differentiation library called JaX [3]. With this setting, any differentiable distance function

Mathematics 2023, 11, 2617. https://doi.org/10.3390/math11122617 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11122617
https://doi.org/10.3390/math11122617
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6226-4990
https://doi.org/10.3390/math11122617
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11122617?type=check_update&version=1


Mathematics 2023, 11, 2617 2 of 23

can be applied, and this can be considered as an additional tool for further improvements
of the clusters recovery results.

Figure 1. Clustering algorithms taxonomy introduced in [1] with three levels.

It is noteworthy to add that the current research introduces the following contributions:

• Proposing a generic clustering criterion with the possibility of utilizing any differen-
tiable distance functions in it;

• Adapting the gradient descent approach for the task of partitional crisps clustering;
• Equipping the proposed method to automatic differentiation as a by-product for

further improvements of cluster recovery results.

We empirically validated and compared the performance of our proposed method
with four popular and effective clustering methods on real-world and synthetic datasets.
Our experiments proved that in most cases, our proposed method enhances the cluster
recovery results. More so, our flexible implementation serves as a supplementary device
for further clustering results’ improvements.

The rest of the paper is organized as follows. Section 2 reviews the previous work.
Section 3 describes our proposed clustering. Section 4 explains the experimental setting
for scrutinizing the hyperparameters of our proposed method and comparing it with four
effective clustering methods from the literature. It presents (a) competitors; (b) datasets,
both real-world and artificially generated; (c) criteria for assessment of the quality of
experiments; and (d) the pre-processing technique. The study of the proposed methods’
hyperparameters is reported in Section 5. Section 6 describes the results of our experiments.
Finally, Section 7 concludes the paper and presents our future directions.

2. Previous Work

This section concisely reviews the principles of the clustering algorithms with respect
to the taxonomy mentioned earlier. However, since the gradient descent clustering is not
covered in [1] and it is the cornerstone of the current research, Section 2.3 reviews the scarce
number of previously published gradient descent (GD) clustering papers.

2.1. Partitional Clusterings

The partitional clusterings assign data points into K clusters by optimizing some
clustering criteria. This class of clustering methods can be further classified into three
subclasses: (i) crisp/hard, (ii) fuzzy, and (iii) mixture-resolving clusterings. In the first
subclass, each data point belongs only to one cluster, while on the contrary, in the fuzzy
clustering methods, each data point can belong to more than one cluster. The third subclass,
mixture resolving, assumes a world model leading to a probabilistic distribution for which
its parameters should be inferred from the data. The rest of this subsection is devoted to
reviewing these three subclasses.

Presumably, K-means [4] can be considered the most well-known instance of the first
subclass. K-means minimizes the total squared errors of within-cluster. K-medoids [5,6]
minimizes the dissimilarities of within-cluster data points while selecting some of the data
points as centroids, referred to as medoids, instead of the average data points of the clusters.
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The density-based clusterings [7] recover the clusters by separating the dense regions from
low-density regions in the feature space. For instance, the density-based spatial clustering
of applications with noise [8], DBSCAN, finds core samples of high-density regions and
expands clusters from them. Ordering points to identify the clustering structure [9,10],
OPTICS, tackles the issue of finding the proper range parameter in DBSCAN.

Recently, a new set of (meta)heuristic clustering methods has emerged [11–15]. The main
objective of this set of methods is to spontaneously recover the cluster structures and the
number of clusters without prior information. These methods are mainly nature-inspired
and contain an immense number of hyperparameters, which in our opinion contradicts the
ultimate goal of clustering. It ought to mention that the results in [14,15] did not enhance
the traditional methods’ cluster recovery results. These methods can be categorized under
the search-based clusterings [1] umbrella.

The deep clustering methods are another set of newly emerged methods. These
methods use deep neural networks [16,17], DNNs, to learn a cluster-friendly representa-
tion of data followed by a traditional clustering algorithm to recover clusters from the
obtained data representation by DNN. Various DNN algorithms have been applied to
learn the cluster-friendlier data representation; Ref. [18] provided a systematic overview of
this subject.

Contrary to crisp clusterings in fuzzy clusterings, the clusters overlap with a degree
of membership based on fuzzy logic [19]. The initial fuzzy clusterings had problems with
outliers, noise and initial partition dependencies [20]. The algorithms proposed in [21,22]
tried to tackle those issues. Ref. [23] combined fuzzy C-means with mini-batch gradient
descent with regularization. The authors in [24] proposed a unified combination of K-
means and C-means methods. The authors in [25] proposed a novel technique to find the
optimal number of clusters.

The underlying assumption of mixture-resolving clusterings is that the observed data
points are generated from a mixture of probabilistic distributions whose parameters should
be inferred from the dataset. These methods are model-based, and a statistical model or a
priori should be known ahead of clustering. The expectation-maximization algorithm is
the cornerstone of this category of methods [26,27].

2.2. Hierarchical Clusterings

This category of clusterings methods groups the data points to construct a hierarchical
structure: the grouping procedure can be performed either in a bottom–up (agglomerative)
or a top–down (divisive) fashion [20]. The agglomerative methods [28,29] initially start
by assigning each data point to a singleton cluster and then iteratively merge every two
clusters until (i) all clusters are merged into the root node or (ii) some stopping criteria
are met. The root node represents the entire dataset. The divisive hierarchical methods
start from a single cluster, representing the data, then in a top–down fashion splitting
the clusters.

The merging or splitting decision generalizes the distance metrics of individual data
points to distance metrics of subsets of data points. The distance metrics between subsets
usually is referred to as linkage metrics. The single linkage—when the least interconnecting
(dis)similarity between two components is considered [30], complete linkage, average
linkage, McQuitty methods [31], median and centroid methods [32] are some of the promi-
nent agglomerative (bottom–up) clustering methods employing different linkage metrics.
Ward’s methods [33] are another type of agglomerative clustering in which instead of
linkage metrics, the merging decision is based on the optimal values of an objective func-
tion [34]. Balanced iterative reducing and clustering using hierarchies [35], BIRCH, is an
online and memory-efficient agglomerative algorithm developed for large-scale datasets.
The clustering using representative (CURE) addresses the drawbacks of BIRCH and is more
robust to outliers, and it claims to detect different clusters’ shapes and sizes.

The divisive methods are the reverse of agglomerative clustering. They start by split-
ting the entire dataset into smaller subsets until the predefined number of clusters is de-
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tected [36–38]. The natural splitting solution would be to analyze all possible bipartitions
and select the two optimal ones. This solution is computationally expensive, and various
divisive approaches have been developed to tackle this. For instance, bisecting K-means [39],
reference point-based dissimilarity measure [40], and particle optimizer [41] are some of the
efforts proposed to tackle this expensive computational complexity. In principle, divisive
methods can be classified into monothetic and polythetic classes. The former uses the features
one-by-one and was initially proposed for binary data [42,43] but later applied to multi-modal
data. The latter class uses all features at once and utilizes the distance values [44,45].

2.3. Gradient Descent Clusterings

The majority of the previous GD-based clustering papers used it to optimize the
proposed clustering objective function. For instance, the authors in [46] proposed a new
graph cut clustering. They derived the graph cut using the Parzen windowing; then, they
used GD for optimizing the proposed graph cut. In [47], it was employed to optimize the
Gaussian kernel density estimators; similarly, ref. [48] used this optimization algorithm to
learn Gaussian mixture models parameters. The methods proposed in [49,50] exploited
GD to improve the K-means clustering performance; and the authors in [51] applied it
for fuzzy clustering. While the previous works were devoted to partitional clustering,
the authors in [52] adopted gradient descent for hierarchical clustering by embedding the
representation of tree structures in hyperbolic space.

On the contrary, there are few papers in which they used GD for cluster refinement
purposes or fine-tuning the parameters of the proposed methods. For instance, in [53],
a fuzzy clustering method was proposed, and GD was used to fine-tune the parameters of
the constructed fuzzy model to obtain a more accurate fuzzy model from the given input–
output data. The authors in [54] used fuzzy clustering methods to construct the similarity
matrices of each partition. Next, they aggregated partitions employing the direct sum of
weighted vectors. Finally, the ultimate membership matrix was calculated by optimizing
the sum of square errors through the gradient descent method.

3. Methodology
3.1. Problem Formulation, Notation and Motivation of the Proposed Method

Consider a set of N data points X = {xi}N
i=1 for xi ∈ RV , where V is the dimensionality

of the data points. Our goal is to partition X into K subsets, S = {sk}K
k=1, such that (i) the

within-cluster data points are as homogeneous as possible and (ii) the between-clusters
data points are as heterogeneous as possible. To accomplish our goal, as a standard practice,
we associate each subset with the so-called cluster centroid ck forming our set of centroids
C. Then, we define the following clustering criterion:

F(X, S, C) =
K

∑
k=1

N

∑
i=1

f (xi, ck) (1)

where f : X × C −→ R represents a (generic) distance function that will be applied to
measure the distance between the data point xi and the centroid ck.

In principle, optimizing clustering criterion (1) in a reasonable time depends on (i) the
availability of any prior knowledge, including the number of clusters, (ii) the expected
cluster membership type, i.e., being crisp or fuzzy, and (iii) the choice of the distance
function, i.e., being differentiable or not. For instance, by defining f to be the Euclidean
distance and pursuing the alternating optimization algorithm, for a given number of
clusters, the popular K-means method [4] can be obtained. In contrast, using the same
distance function in the one-by-one cluster extracting strategy [55], when the number of
clusters is not known, leads to the i-K-means method [56]—it extended to a more complex
data structure in [57] recently. Interested readers may advise [20,56] for more details on
clustering methods and [58] about generic optimization algorithms.



Mathematics 2023, 11, 2617 5 of 23

The authors in [58], a recent and comprehensive textbook on optimization algorithms,
categorized the existing algorithms into eight families of methods, as shown in Figure 2.
They explained the conditions for which each family is applicable and discussed the
challenges and limits of the algorithms under consideration. Among those possible options,
due to the simplicity, intuitiveness, and yet proven effectiveness of the derivative-based
methods, we were interested in applying them. This family can be further categorized into
first-order and second-order methods, for which, in the multivariate optimization setting,
the former relies on gradients, and the latter relies on Hessian information to direct the
search to find an optimum.

Figure 2. The first level of optimization algorithms taxonomy introduced in [58].

Although the second-order methods are proven to be more effective than first-order
methods, as we observed in our preliminary experiments, they suffer from expensive
computational complexity. Therefore, despite some of the disadvantages of the first-order
methods such as their sensitivity to seed initialization or the step size, the possibility of
being stuck in local minima or close to the global minimum, etc., we decided to proceed
with first-order methods. This set of methods starts from a random initial point, and based
on the fact that the negative of the gradient represents the steepest descent, iteratively
modifies the initial guess to find a minimum using the gradient information.

In this work, we assumed that the clusters are crisp, and their number, K, is given.
Moreover, although any differentiable distance function can be exploited, we limit our
choice to the Minkowski distance with p-values limited to 1 ≤ p ≤ 4. This setting enables
us to adopt the celebrated gradient descent optimization algorithm, a well-known and
popular member of first-order-derivative-based optimization methods, for the task of
cluster recovery. Since gradient descent is an iterative method, we should update our
notation by adding subscript (t) to reflect the concept of iterations. Concretely, we denote
the set of cluster centroids at iteration t with C(t) = {c(t)k }

K
k=1. Similarly, we denote the set

of detected clusters at iteration t with S(t) = {s(t)k }
K
k=1.

3.2. Gradient Descent Clustering Methods

Our proposed gradient descent clustering (GDC) method consists of three constituents:
(A) cluster assignment criterion, (B) cluster update rules and (C) convergence condition. In
the remainder of this subsection, we explain them.

The first constituent of GDC, the cluster assignment criterion, is shown in Equation (2):

argmin
k

f (xi, c(t)k ) < f (xi, c(t)j ), ∀j 6= k. (2)

that is, at iteration t, the data point xi will be assigned to the cluster k for which its distance
to the centroid c(t)k , is minimum.

The second constituent of GDC, i.e., the update rule, in its Vanilla form is explained in
Equation (3):

c(t+1)
k = c(t)k − α∇

c(t)k
f (xi, c(t)k ), (3)

where α represents the so-called step size, and∇c(t)k is the gradient of the distance function,
f , with respect to the k-th centroid at iteration t evaluated with the data point xi. It ought
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to point out that our preliminary experiments, aligned with the results of [59], showed
that the per-data-point, or online, update rule is significantly more efficient than the batch
version of the gradient descent algorithm; therefore, we always update the centroids in an
online manner.

Furthermore, our unreported experiments were aligned with the well-known fact
that the Vanilla update rule, i.e., Equation (3), is prone to slow convergence, especially at
nearly flat surfaces [58]. To tackle this issue, accumulating momentum was proposed [60].
However, this accumulation may lead to overshoots at the valley floor; to avoid the
overshooting, we exploit the Nesterov-accelerated momentum [61] to modify the gradient
at the projected future position as follows:

v(t+1) = β1v(t) − α∇
c(t)k

f (xi + β1v(t), c(t)k ) (4a)

c(t+1)
k = c(t)k + v(t+1) (4b)

where v(t) is the so-called momentum vector, with initial values of zero, and is the ac-
cumulation of the gradient’s history up to iteration t. The coefficient β1 ∈ [0, 1) is a
hyperparameter that decays the momentum. We empirically study its impact and show
that any value ∈ [0.3, 0.6] leads to superior results. It is noteworthy to add that since at
each iteration, we compute the gradients of f with respect to the closet centroid of xi, thus,
adding v(t) to xi usually has a desirable impact. More precisely, consider the ideal situation
for which the data and the momentum vectors point to the same direction in the (feature)
space. Thus, this addition decreases the gradients, which is desirable to avoid overshooting.
Meanwhile, the first term in (4a) provides additional momentum for going down the hill.
However, in less ideal circumstances, this addition may have less desirable influences, and
this negative influence becomes more exaggerated when some of the components of the
gradient vectors (or the momentum) have constantly high values: for which they nega-
tively influence the update direction. The adaptive gradient optimization methods [62–64]
have been proposed to dull the effect of such components. We postponed applying those
methods to our future studies.

One may consider at least the five following options for the last constituent of GDC,
i.e., the convergence condition:

1. Applying the principles of first-order and second-order necessary conditions for
optimality;

2. Monitoring the obtained results by a user, i.e., by mapping clustering results to an
external source of knowledge;

3. When the value of loss function, i.e., Equation (1), is lower than a threshold, say,
for instance, a percentage of data scatter;

4. When no significant improvements occur in the minimization of the loss function (or
clusters inertia) in a pre-specified patience period;

5. When the number of iterations reaches its maximum.

We tried hard to establish a stopping condition using the item (1). Although in our
preliminary experiments, we obtained ARI = 0.91 for the IRIS dataset, we failed to compute
the Hessian matrix for large datasets, and therefore, we postponed this direction to our
future studies. Moreover, the second and third options require domain knowledge and
thus are out of the scope of the current study, and interested readers may consult Section
6.4 of [56] for more details.

We proceed in our computations with the fourth and fifth items. Nevertheless, in the
synthetic datasets, where we could adjust the complexity of data, we noticed that the
so-called patience period, the period in which we monitor the reduction of the clusters’
inertia, significantly depends on the complexity of the dataset, developing a new method
to assess the complexity of data that is required, and currently, this option is not applicable.
However, we assigned a high priority to this development in future research directions.
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Consequently, in the rest of our computations, we used the fifth item as the convergence
condition and empirically scrutinized it.

We summarized our proposed gradient descent clustering method using the Nesterov
momentum update rule in Algorithm 1, and we call it Nesterov momentum Gradient
Descent Clustering (NGDC).

Algorithm 1: Nesterov momentum Gradient Descent Clustering (NGDC)
Input: X: Data set; K: number of clusters.
Hyperparameters: α: step size; T: maximum number of iterations; τ: the loss
function upper bound; β1: momentum decay coefficient.

Result: S = {s(t)k }
K
k=1 % set of K binary cluster membership vectors;

C = {c(t)k }
K
k=1 % set of K centroids in feature space.

Initialize: Randomly initialize C and S.
for t ∈ Range(T) do

for xi ∈ X do
find k using Equation (2) and set i-th entry of the s(t)k to one;
update clusters using the Equation (4);
if Equation (1) ≤ τ then

Halt.
end

end
end

The Python implementation of our proposed methods, the code for applying all of the
methods and the metrics under consideration, and the entire datasets used in this study
are publicly available at https://github.com/Sorooshi/NGDC_method.git, accessed on 19
April 2023.

4. Experimental Setting to Validate and Compare the Performance of the
Proposed Methods

We conducted our computational experiments to (A) study the characteristics of the
hyperparameters of the NGDC to propose sustainable default values and (B) empirically
validate and compare the performance of our proposed method with the most popular
and effective clustering methods from the literature. Concerning those objectives, our
computational experiment consists of the following constituents: (1) the set of methods
under comparison; (2) the set of data under consideration; (3) the evaluation criterion for
assessing the experimental results; (4) the pre-processing technique applied to standardize
the datasets; In the rest of this section, we described each of them separately.

4.1. Competitors

We compared the performance of the NGDC with four popular clustering methods
from the literature: namely, agglomerative [28], K-means [4], Gaussian mixture models [27]
(GMM), and spectral [65] clustering methods. The reason behind our choice of competitors
was four-fold: (i) we limit our choice only to those methods for which they have a reasonable
number of hyperparameters, (ii) they require a given number of clusters, (iii) they have a
proven history of applications, and (iv) their source code is publicly available. It ought to
be mentioned that although clustering is still a relatively trendy research topic, however,
according to [1], an overwhelming majority of recent research endeavors concentrate on
the adoption of clustering methods in different disciplines: to the best of our knowledge,
there are no more recent approaches that suit our selection criteria.

Agglomerative clustering starts with N singleton clusters with each data point as-
signed to a cluster, recursively, in a hierarchical manner. At each step, it merges the two
most similar clusters until only one cluster remains. The output is a tree structure in which

https://github.com/Sorooshi/NGDC_method.git


Mathematics 2023, 11, 2617 8 of 23

the root node represents the entire dataset. We provide the pseudo-code of this clustering
method in Algorithm 2.

Algorithm 2: Agglomerative clustering
Initialize N singleton clusters: for i← 1 to N do ci ← {i};
Initialize set of available clusters to be merged: S← {1, 2, . . . , N};
repeat

select two most similar clusters to merge: (j, k)← argminj,k∈S dj,k;
create new cluster cl ← cj ∪ ck;
extract j and k from list of available clusters: S← S \ {j, k};

if cl 6= {1, 2, . . . , N} then
add l to list of available clusters to merge: S← S ∪ {l};

end
for i ∈ S do

update the dissimilarity matrix d(i, l);
end

until only one cluster remains;

Essentially, depending on how we measure the dissimilarity between the pairs of
clusters, we categorize agglomerative methods into (1) single linkage, (2) complete linkage
and (3) average linkage. The single linkage minimizes the distance between the closest data
points of pairs of clusters. Formally, for any two given clusters A and B and the selected
distance metric di,j:

dSL(A, B) = min
i∈A,j∈B

di,j,

the result of this category is a minimum spanning tree: a tree that connects all of the data
points in a way that minimizes the edge weights. The complete linkage minimizes the
maximum distance between data points of pairs of clusters. Similarly:

dCL(A, B) = max
i∈A,j∈B

di,j,

the complete linkage results in more compact clusters in comparison with the single linkage
variant. The average linkage compromises between the two previous options by minimizing
the average of the distances between all data points of pairs of clusters: formally,

dAL(A, B) =
1

NANB
∑
i∈A

∑
j∈B

di,j.

where NA and NB are the cluster cardinalities of A and B, respectively. Although dAL is
sensitive to outliers and any changes in the measurement scale may change the clustering
outputs, usually, it results in relatively compact clusters which are relatively far apart from
each other. Therefore, in our experiment, we used this linkage method with the Euclidean
distance metric.

Agglomerative clustering suffers from (i) expensive computational complexity O(N3)—
or in the best-case-scenario, O(N2 log N), (ii) ambiguity in the definition of similarity,
and (iii) it is just an algorithm, not a model, so assessing its goodness is difficult. The K-
means methods address these issues.

K-means clustering uses the alternating optimization algorithm, that is, given the
number of clusters K and N data points X = {xi}N

i=1, at first, it initializes K random
centroids ck; then, it alternates between the cluster assignment and centroids update steps
until convergence. In the cluster assignment step, each data point xi is assigned to its closest
centroid:

z∗i = argmin
k
||xi − ck||22,
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The cluster centers are updated:

ck =
1

Nk
∑

i:zi=k
xi.

where Nk is the cardinality of cluster k. K-means is sensitive to random initialization. In our
experiments, to make a fair comparison, we always applied all of the methods under
consideration, including K-means, with ten random initializations and selected the best
results with respect to cluster inertia (squared sum of the data points of a cluster with its
centroid). We summarized the alternating optimization algorithm focusing on K-means
clustering in Algorithm 3.

Algorithm 3: Alternating optimization algorithm (K-means)
Randomly initialize K centroids ck;
repeat

zi = argminkd(xi, ck) for i = 1 : N; % E-step of EM
ck =

1
Nk

∑i:zi=k xi; % M-Step of EM
until convergence;

The underlying assumption of the K-means clustering is (i) all clusters have the same
spherical shape and (ii) all clusters can be described by Gaussian distributions in the input
space. While the former assumption is relatively restrictive, the latter implies that K-means
cannot be applied to discrete data. The mixture models were developed to tackle these
issues. In our opinion, the second issue can be addressed by quantitative enveloping of the
categories of discrete data using dummy variables (also known as one-hot encoding). Thus,
we will focus on Gaussian mixture models (GMMs) to address the first issue.

Gaussian mixture models (GMMs) clustering can be considered as a generalization
of K-means clustering. It also exploits the alternating optimization strategy, which is
usually referred to as the expectation maximization (EM) algorithm in this context. Given
the dataset X = {xi}N

i=1 and a set of parameters of multivariate normal distribution,
i.e., θ = {(Σk, µk)}K

k=1, each iteration consists of two steps. In the first step, i.e., the E-step,
we compute the expectations, or the responsibilities of latent variable zi (associated with
cluster k) for generating data point xi given the current parameters:

rik = p∗(zi = k|θ) = πk p(xi|θk)

∑k′ πk′ p(xi|θk′)
(5)

In the M-step, we maximize the complete data log-likelihood:

LL(θ) = E
[
∑

i
log p(zi|π) + log p(xi|zi, θ)

]
(6a)

= E
[
∑

i

(
log ∏

k
π

zik
k

)
+ log

(
∏

k
N (xi|µk, Σk)

zik

)]
(6b)

= ∑
i

∑
k
E[zik] log πk + ∑

i
∑
k
E[zik] logN (xi|µk, Σk) (6c)

where zik = I(zi = k) is the one-hot encoding of the latent categorical value zi, and
πk = 1

N ∑i rik is the mixture weight. Depending the type of covariance, Σ, different
versions of GMMs will be obtained. In this work, we assigned a full covariance matrix
to each component, and we used K-means to initialize the parameters. It ought to be
mentioned that for the sake of fairness in our comparison, we assigned one cluster to
each component.
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Spectral clustering is a set of combined approaches based on the eigenvalue analysis
of a graph’s adjacency matrix W and K-means clustering. The goal is to partition the graph
into S1, . . . , SK disjoint partitions which minimize some kind of cost. To this end, at first, we
consider every data point xi as a node, and the edge i− j represents the similarity measure
between two data points. A natural choice of the cost function is to calculate the edge
weights of nodes in each cluster to nodes outside each cluster:

cut(S1, . . . , SK) ,
1
2

K

∑
k=1

W(Sk, S̄k) (7)

where W(A, B) , ∑i∈A,j∈B wij and S̄k = {1, . . . , K} \ Sk is the complement of Sk. The cut
has a trivial optimal solution when each node is assigned to a cluster. To tackle this issue,
the normalized cut is proposed:

Ncut =
1
2

K

∑
k=1

cut(Sk, S̄k)

V(Sk)
(8)

where V(Sk) , ∑i∈A di denotes the total weight of set A and di = ∑N
j=1 wij is the weighed

degree of node i. Optimizing Ncut is NP-hard. We can relax Ncut optimization by using
the Laplacian matrix defined as L , D−W, where W is a symmetric weighted adjacency
matrix and D = diag(di) is a diagonal matrix containing the weighted degree of each node,
di = ∑j wij. It is proven that the set of eigenvectors of L with zero eigenvalues spans K
connected components of the graph: thus, one can apply K-means on the matrix U, derived
from the K eigenvectors with the smallest eigenvalue in its column, to recover the clusters.

4.2. Datasets

We scrutinized the performance of the methods under consideration using both real-
world and synthetic datasets. The following two subsections describe each of them.

4.2.1. Synthetic Data

We applied the mechanism proposed in [66], which was later used in various papers,
for instance [67–69], to generate our synthetic data. In this mechanism, first, we needed
to determine the number of data points N, clusters K, and features V. Next, the clusters’
cardinalities were determined randomly with two constraints: (a) no cluster should contain
less than a pre-specified number of data points (we set this number to 30 in our experiments),
and (b) the number of data points in all clusters should sum to N. Once the cluster
cardinalities were determined, we generated each cluster from a multivariate normal
distribution whose covariance matrix was diagonal with diagonal values derived uniformly
at random from the range [0.05, 0.1]—they specify the cluster’s spread. We generated each
component of the cluster centroid uniformly random from the range ζ[−1,+1], where
ζ ∈ A controls the cluster intermix: the smaller value of ζ, the higher the chance that
data points from a cluster fall within the spreads of other clusters. Figure 3 depicts four
examples of the generated datasets with V = 10 for ζ = 0.35 and ζ = 0.95 for N = 2000.
The upper row visualizes five clusters, whereas the lower row shows 15 clusters.

As mentioned earlier, we generated synthetic data for two purposes: (A) to scrutinize
the impact of the hyperparameters of our proposed methods and (B) to validate and
compare the performance of our methods with other works from the literature. Concerning
objective (A), with N = 2000 and V = 10, we generated datasets for two numbers of
clusters k = 5, 10 and three distinct cluster intermix probabilities ζ = 0.35, 0.65, 0.95. These
(synthetic data generator’s) settings led to six configurations as summarized in Table 1. We
repeated each configuration ten times, yielding 60 distinct datasets. We referred to these
datasets as “hyperparameter-scrutinizing data.” Concerning objective (B), we studied the
performance of methods under consideration for different numbers of clusters K = 2, 10, 20,
numbers of features V = 2, 5, 10, 15, 20, 200, data points N = 1000, 3000 and cluster intermix
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probabilities ζ = 0.4, 0.8, as summarized in Table 1. These settings led to 72 configurations,
each repeated ten times, yielding 720 distinct synthetic datasets. We called these datasets
as “comparison data”. We ran each method with ten random seed initializations and chose
the one that led to the best cluster inertia; then, we reported the averages and standard
deviations of ten datasets of each configuration.

(a) (b)

(c) (d)

Figure 3. Scatter plots of the top two principal components of four synthetically generated data
with ten features and 2000 data points at different cluster intermix probabilities ζ = 035, 0.95 and
two distinct numbers of clusters K = 5, 15. The value ζ controls the clusters’ intermix: the smaller
the ζ, the greater the intermix. (a) ζ = 0.95, K = 5; (b) ζ = 0.35, K = 5; (c) ζ = 0.95, K = 15;
(d) ζ = 0.35, K = 15 .

Table 1. Synthetic datasets configurations to study the hyperparameters of proposed methods
(six configurations) and to validate and compare the methods under consideration (72 configurations):
each case consists of 10 repeats summing up to 780 datasets.

Generator Hyperparameter-Scrutinizing Comparison
Parameters Values Values

Clusters (K) 5, 15 2, 10, 20
Features (V) 10 2, 5, 10, 15, 20, 200

Data points (N) 2000 1000, 3000
Clusters intermix (ζ) 0.35, 0.65, 0.95 0.4, 0.8

4.2.2. Real-World Data

We used 11 real-world datasets to validate and compare the performance of the
methods under consideration. We downloaded ten datasets from the popular UCI Machine
Learning repository [70] and the Chernoff Fossile dataset from [71]. We summarized the
characteristics of these datasets in Table 2.
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Table 2. The real-world dataset’s characteristics.

Dataset Points Features Clusters

Breast Tissue 106 9 6
Ecoli 336 7 8
Fossil 87 6 3
Glass 214 9 6
Iris 150 4 3
Leaf 340 15 30

Libras Movement 360 90 15
Optical Recognition 3823 62 10

Spam Base 4601 57 2
Pen-Based

Recognition 7494 16 10

Wine 178 13 3

4.3. Evaluation Metric

We assess the performance of the clustering methods utilizing the normalized mutual
information, NMI [72]. The NMI is a popular metric based on the concept of entropy
to quantify the similarity between the cluster recovery results, S = {Sk}K

k=1, and the
ground truth T = {Tl}L

l=1. Concretely, given S and T, NMI relies on the so-called contin-
gency table, a two-way table whose rows correspond to components Sk (k = 1, 2, . . . , K)
of S, and the columns correspond to components Tl (l = 1, 2, . . . , L) of T, such that its
(k, l)-th entry is nkl = |Sk ∩ Tl |. The marginal row and marginal column, in respect, are
defined as ak = ∑L

l=1 nkl = |Sk| and bl = ∑K
k=1 nkl = |Tl |. The probability that an object

picked at random falls into Sk is a(k) = ak/N. Similarly, the probability that an object
picked at random falls into Tl is b(l) = bl/N. Therefore, we define the entropy of S as
H(S) = −∑K

k=1 a(k) log(a(k)). Similarly, we define H(T) = −∑L
l=1 b(l) log(b(l)) as the

entropy of T. Thus, the mutual information (MI) between S and T is calculated using:

MI(S, T) =
K

∑
k

L

∑
l=1

pkl log(
pkl

a(k)× b(l))
), (9)

where pkl = nkl/N is the probability that an object picked at random falls into both Sk and
Tl (k = 1, 2, . . . , K; l = 1, 2, . . . , L). Therefore, normalized mutual information is defined as

NMI =
MI(S, T)

max(H(S), H(T))
. (10)

For the NMI ∈ [0, 1], the closer its values are to one, the better the match between the
clustering results and the ground truth and vice versa.

4.4. Data Pre-Processing

To pre-process the data, we used the so-called Min–Max standardization technique.
Let X = {xiv}N

i=1 for v = 1, . . . , V, where V is the number of features, represent the dataset.
In addition, let xva and xvb represent the minimum and maximum of feature v for the
entire dataset. The Min–Max method standardizes the data point x̂iv = xiv−xva

xvb−xva
such that

x̂iv ∈ [0, 1]. Although it was empirically shown, for instance in [67], that the clustering
result might differ depending on how the data were standardized, due to the intuitiveness
of the output of the Min–Max technique, we chose it as the default for our experiments.

5. Scrutinizing the Hyperparameters of the NGDC Method

Our proposed method contains two hyperparameters: (i) step size α and (ii) momen-
tum decay coefficient β1. Moreover, similar to other gradient-descent-based algorithms,
the convergence of NGDC and its sensitivity to random seed initialization needed to be
scrutinized. Consequently, we designed our hyperparameter-scrutinizing datasets, consist-
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ing of 60 synthetic data configurations, and summarized them in Table 3 to scrutinize these
four items empirically.

Table 3. The hyperparameters’ search space of the proposed methods.

Hyperparameters Values

Seed initialization 1, 5, 10, 20
Step size (α) 0.0001, 0.001, 0.01, 0.1, 0.2, 0.5

Number of Iterations (T) 5, 10, 20, 40
Momentum decay (β1) 0.01, 0.1, 0.3, 0.6, 0.9, 0.99

Minkowski p-values 1, 1.5, 2, 2.5, 3, 3.5, 4

5.1. Random Seed Initialization

The NGDC method is non-deterministic, implying that different seed initializations
lead to different results. In supervised learning, where the evaluation of results due to
the existence of ground truth is easily feasible, it is recommended to apply the (non-
deterministic) algorithm under consideration with different random seed initializations
and select the one which leads to more desirable results. Although in clustering there is
no ground truth available, still, this framework can be applied by considering the value
of the clustering criteria or any other accessible external source of information to evaluate
the results. In this work, our goal was to scrutinize the hyperparameters and validate our
proposed method empirically. Thus, we ran the NGDC method with the hyperparameter-
scrutinizing data with four different numbers of random seed initialization, n_init, and
reported the results concerning the NMI in Table 4.

Table 4. Studying the impact of different seed initialization using NMI values at fixed α = 0.01,
β1 = 0.45 and the maximum number of iterations equal to ten.

K ζ n_init = 1 n_init = 5 n_init = 10 n_init = 20

5
0.35 0.540 ± 0.052 0.561 ± 0.055 0.567 ± 0.054 0.571 ± 0.056
0.65 0.714 ± 0.075 0.758 ± 0.076 0.856 ± 0.063 0.886 ± 0.062
0.95 0.851 ± 0.074 0.944 ± 0.068 0.963 ± 0.049 0.993 ± 0.010

15
0.35 0.400 ± 0.046 0.412 ± 0.050 0.413 ± 0.049 0.417 ± 0.048
0.65 0.815 ± 0.032 0.839 ± 0.024 0.848 ± 0.033 0.863 ± 0.029
0.95 0.898 ± 0.030 0.930 ± 0.015 0.948 ± 0.012 0.953 ± 0.009

The reported results of this table strongly suggest repeating the seed initialization at
least five or ten times. Although the higher the number of seeds initialization, the better the
performance of NGDC, still, the reported difference between 10 and 20 seeds initialization,
in our opinion, is application-dependable. In addition, if the time has higher priority than
accuracy, this difference can be neglected. In the rest of our computations, we use ten
seeds initialization.

5.2. Convergence and the Number of Iterations

The convergence of gradient descent algorithms in the supervised learning tasks with
random initialization has been well-studied and (under specific conditions) proved to
be convergent; for instance, refer to [73,74] for more details. In our opinion, this subject
deserves independent research devoted to clustering, and therefore, in the current study,
relying upon the results of the two papers mentioned earlier, we limited our analyses to
the impact of different numbers of iterations on the quality of the recovered clusters using
the NMI values.

Relying on the number of iterations has its advantages and disadvantages. The main
advantages are (i) not limiting the choice of the distance functions in the central loss
function shown in Equation (1), and (ii) the termination of the NGDC is guaranteed. The
disadvantages are that (i) the inappropriate number of iterations may lead NGDC to be
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stuck in local minima or pass a global minimum; and (ii) an external source of knowledge
for assessing the quality of obtained results might be required for further adjustments.

Table 5 represents the results of our investigation on the number of iterations. Taking
an attentive look at these results, one can conclude that in the majority of settings, the higher
the number of iterations, the larger the value of NMI. However, except for one case,
i.e., (K = 5, ζ = 0.65), in the rest of the cases, the improvement obtained by setting the
number of iterations to more than 10 is insignificant (approximately less than 1%) and can
be ignored. In our opinion, this exception (the second row) includes instances of the first
disadvantage discussed earlier.

Table 5. Studying the impact of different numbers of iterations using NMI at fixed α = 0.01, β1 = 0.45
and 10 random seeds initializations.

K ζ T = 1 T = 5 T = 10 T = 20 T = 40

5
0.35 0.426 ± 0.045 0.567 ± 0.054 0.565 ± 0.055 0.567 ± 0.056 0.571 ± 0.055
0.65 0.749 ± 0.076 0.838 ± 0.097 0.856 ± 0.063 0.779 ± 0.068 0.786 ± 0.079
0.95 0.873 ± 0.043 0.974 ± 0.037 0.976 ± 0.043 0.973 ± 0.030 0.976 ± 0.035

15
0.35 0.315 ± 0.043 0.404 ± 0.051 0.418 ± 0.051 0.419 ± 0.048 0.423 ± 0.046
0.65 0.716 ± 0.030 0.842 ± 0.026 0.848 ± 0.033 0.860 ± 0.027 0.869 ± 0.026
0.95 0.864 ± 0.015 0.930 ± 0.013 0.953 ± 0.009 0.954 ± 0.013 0.961 ± 0.016

5.3. Step Size

Assuming that the loss function under consideration is convex and differentiable,
i.e., its gradient is Lipschitz continuous with a constant L, it is not hard to prove its conver-
gence. However, finding the constant L to adjust the proper step size is computationally
expensive, and intuitively, numerical fine-tuning the step size has become a common prac-
tice in supervised learning. Following this convention, we studied the impact of the step
size with the fixed number of iterations, in our case equal to ten, and applied NGDC to
each dataset with ten different seeds.

We reported the results of our investigations to fine-tune the step size in Table 6. From these
results, it is not hard to conclude that the appropriate step size should be set to 0.01.

Table 6. Study of step size (α) with fixed n_init = max_iter = 10, µ = 0.9 and p-value = 2. The best
results are bold-faced.

Configuration α = 0.0001 α = 0.001 α = 0.01 α = 0.1 α = 0.2
K ζ NMI NMI NMI NMI NMI

5
0.35 0.342 ± 0.060 0.524 ± 0.057 0.539 ± 0.052 0.003 ± 0.002 0.000 ± 0.000
0.65 0.734 ± 0.078 0.806 ± 0.088 0.766 ± 0.063 0.005 ± 0.003 0.000 ± 0.000
0.95 0.885 ± 0.062 0.950 ± 0.034 0.990 ± 0.011 0.004 ± 0.001 0.000 ± 0.000

15
0.35 0.287 ± 0.039 0.344 ± 0.045 0.388 ± 0.048 0.006 ± 0.007 0.000 ± 0.000
0.65 0.666 ± 0.038 0.770 ± 0.026 0.844 ± 0.036 0.008 ± 0.008 0.000 ± 0.000
0.95 0.840 ± 0.020 0.913 ± 0.018 0.953 ± 0.017 0.015 ± 0.008 0.000 ± 0.000

5.4. NGDC Update Rule: β1

We scrutinized and recorded the impact of the momentum (β1) in the NGDC update
rule in Table 7. As one can see, unlike the recommended value for this hyperparameter in
classification tasks, usually 0.9, here smaller values of β1, specifically in more challenging
datasets, lead to better cluster recovery results. Since there is no clear-cut edge between
0.3 and 0.6, we suggested fixing the default value to 0.045.
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Table 7. Study of β1 with fixed step size = α = 0.01 n_init = max_iter = 10 and p-value = 2. The best
results are bold-faced.

Configuration β1 = 0.01 β1 = 0.1 β1 = 0.3 β1 = 0.6 β1 = 0.9 β1 = 0.99
K ζ NMI NMI NMI NMI NMI NMI

5
0.35 0.568 ± 0.054 0.568 ± 0.055 0.570 ± 0.054 0.562 ± 0.056 0.539 ± 0.039 0.005 ± 0.001
0.65 0.792 ± 0.072 0.785 ± 0.054 0.837 ± 0.102 0.804 ± 0.090 0.766 ± 0.063 0.013 ± 0.008
0.95 0.975 ± 0.032 0.960 ± 0.048 0.953 ± 0.052 0.992 ± 0.009 0.990 ± 0.011 0.011 ± 0.005

15
0.35 0.418 ± 0.053 0.417 ± 0.049 0.417 ± 0.049 0.416 ± 0.048 0.388 ± 0.048 0.025 ± 0.001
0.65 0.844 ± 0.031 0.850 ± 0.038 0.849 ± 0.028 0.850 ± 0.029 0.844 ± 0.036 0.028 ± 0.002
0.95 0.951 ± 0.014 0.955 ± 0.018 0.947 ± 0.012 0.943 ± 0.018 0.953 ± 0.017 0.029 ± 0.002

5.5. Tuned Parameters

In this section, we empirically scrutinized the impact of different hyperparameters of
the NGDC method to propose the default values. Considering our experimental results, we
propose the following default values: (i) the step size α = 0, 01; (ii) the momentum decay
coefficient, β1, for any value in the range [0.3, 0.6], we fixed it to 0.45; (iii) the number of
seeds initialization, n_init = 10; and (iv) the number of iterations, T = 10.

It ought to be mentioned that not only our proposed methods but also some of our
competitors can adopt different distance functions. For instance, the K-means clustering
with cosine distance has proven to be an efficient alternative to the innate Euclidean
distance as reported in [75]. However, to maintain a fair comparison in the rest of our
computations, we fixed p = 2 that imitates the innate Euclidean distance in the majority of
the clustering methods.

5.6. p-Value in Minkowski Distance

As mentioned earlier, one of the contributions of our proposed method and our
software implementation is its flexibility for accepting any differentiable distance function.
We used the Minkowski distance with p-values bounded in [1.0, 4.0] and ran the NGDC
method at the hyperparameter-scrutinizing datasets to demonstrate this advantage. We
reported the corresponding results in Table 8.

Table 8. Study of p-value with fixed step size α = 0.01, n_init = 10, β1 = 0.9 and max_iter = 10.
The best results are bold-faced.

Configuration P = 1 P = 1.5 P = 2 P = 2.5 P = 3 P = 3.5 P = 4
K ζ NMI NMI NMI NMI NMI NMI NMI

5
0.35 0.056 ± 0.020 0.449 ± 0.060 0.544 ± 0.056 0.537 ± 0.057 0.504 ± 0.064 0.458 ± 0.068 0.391 ± 0.063
0.65 0.353 ± 0.076 0.775 ± 0.091 0.806 ± 0.065 0.849 ± 0.082 0.840 ± 0.092 0.816 ± 0.070 0.772 ± 0.047
0.95 0.705 ± 0.109 0.982 ± 0.019 0.970 ± 0.044 0.974 ± 0.032 0.953 ± 0.044 0.945 ± 0.038 0.942 ± 0.028

15
0.35 0.109 ± 0.014 0.340 ± 0.047 0.384 ± 0.051 0.376 ± 0.048 0.344 ± 0.043 0.312 ± 0.040 0.285 ± 0.035
0.65 0.360 ± 0.055 0.826 ± 0.033 0.848 ± 0.033 0.834 ± 0.037 0.793 ± 0.035 0.750 ± 0.042 0.676 ± 0.039
0.95 0.686 ± 0.047 0.953 ± 0.010 0.949 ± 0.016 0.936 ± 0.016 0.916 ± 0.021 0.895 ± 0.014 0.854 ± 0.028

From Table 8, one can observe that not only p-value equal to 1.5 in two configurations
has an edge over the others, but also the p = 2.5 led to winning the competition when the
cluster overlap probability is equal to 0.65 and there were five clusters.

6. Experiments
6.1. Experimental Results at Real-World Data

We reported the comparison results of the methods under consideration using 11 real-
world datasets in Table 9. Considering the number of wins, the NGDC won eight competi-
tions, which turned it into the overall winner. Agglomerative clustering, by winning three
competitions, can be considered the second winner.
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Table 9. Comparison on real-world datasets with n_init = 10. The best results regarding NMI are
bold-faced.

K-Means GMM Spectral Agglomerative NGDC

Breast Tissue 0.515 ± 0.020 0.381 ± 0.047 0.462 ± 0.030 0.419 ± 0.000 0.549 ± 0.017
Ecoli 0.599 ± 0.010 0.388 ± 0.061 0.559 ± 0.007 0.667 ± 0.000 0.630 ± 0.024
Fossil 1.000 ± 0.000 0.687 ± 0.242 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
Glass 0.338 ± 0.018 0.331 ± 0.035 0.277 ± 0.001 0.294 ± 0.000 0.387 ± 0.031
Iris 0.742 ± 0.000 0.629 ± 0.032 0.658 ± 0.000 0.784 ± 0.000 0.766 ± 0.020
Leaf 0.648 ± 0.010 0.589 ± 0.013 0.622 ± 0.017 0.621 ± 0.000 0.653 ± 0.009

Libras Movement 0.597 ± 0.015 0.197 ± 0.019 0.563 ± 0.016 0.563 ± 0.000 0.602 ± 0.012
Optical Recognition 0.761 ± 0.011 0.387 ± 0.068 0.699 ± 0.001 0.733 ± 0.000 0.774 ± 0.019

Spam Base 0.085 ± 0.115 0.080 ± 0.043 0.004 ± 0.000 0.001 ± 0.000 0.259 ± 0.003
Pen-Based Recognition 0.692 ± 0.006 0.691 ± 0.034 0.692 ± 0.000 0.635 ± 0.000 0.708 ± 0.010

Wine 0.846 ± 0.006 0.332 ± 0.107 0.909 ± 0.000 0.018 ± 0.000 0.858 ± 0.012

We ought to highlight the following intriguing observations about NGDC performance:
(i) it won in approximately 73% of the real-world data; (ii) it obtained a relatively acceptable
NMI equal to 0.55 at the breast tissue dataset which is approximately 4% higher than
its closest competitor; (iii) similarly, using the glass dataset, it outperforms its closest
competitor with approximately 5% better NMI; (iv) except for NGDC, which obtained a
poor NMI value equal to 0.26, the rest of the methods under consideration failed to detect
the clusters in the spam dataset. All these observations can be considered as pieces of
evidence for the robustness and effectiveness of our proposed method. Nevertheless, we
should emphasize that spectral clustering has a significant edge over its closest competitor,
NGDC, in the wine dataset. More interestingly, except for GMM, the rest of the methods
performed faultlessly on the Fossil dataset.

6.2. Experimental Results Using Synthetic Data

In this section, we compared the performance of our proposed methods with four
popular and effective clustering methods described in Section 4.1 using our comparison
datasets as outlined in the second half of Table 1.

We summarized the methods’ performance for the case of two clusters with 1000 and
3000 data points in Tables 10 and 11, respectively. In both tables, NGDC, with slightly better
results compared to its closest competitors, can be considered the overall winner. However,
its unstable performance in Table 10 with 200 features and ζ = 0.4, leading to NMI equal
to 0.6 with a high standard deviation of 0.49, might require further investigations. The
K-means and spectral clusterings each won eight settings in the total of both tables and
can be considered the second winners. Moreover, considering the overall performances
of methods, one may consider the settings with two features as the most challenging,
especially when ζ = 0.4 and V = 200 as the most straightforward. However, surprisingly,
the GMM failed even in such simple settings, and except for a couple of other simple
settings, i.e., ζ = 0.8, the GMM performed poorly. Although the agglomerative also did not
perform encouragingly in most settings, it still performed better than GMM.

Table 10. Comparison on synthetic datasets with 1000 data points and two clusters. The best results
regarding NMI are bold-faced.

V ζ K-Means GMM Spectral Agglomerative NGDC

2 0.40 0.257 ± 0.212 0.041 ± 0.050 0.255 ± 0.215 0.008 ± 0.011 0.284 ± 0.200
0.80 0.487 ± 0.286 0.075 ± 0.119 0.484 ± 0.282 0.180 ± 0.354 0.499 ± 0.286

5 0.40 0.538 ± 0.156 0.044 ± 0.059 0.537 ± 0.159 0.064 ± 0.184 0.523 ± 0.195
0.80 0.876 ± 0.137 0.106 ± 0.087 0.877 ± 0.138 0.581 ± 0.474 0.837 ± 0.201
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Table 10. Cont.

V ζ K-Means GMM Spectral Agglomerative NGDC

10 0.40 0.562 ± 0.151 0.415 ± 0.145 0.627 ± 0.138 0.006 ± 0.007 0.685 ± 0.175
0.80 0.987 ± 0.033 0.976 ± 0.066 0.990 ± 0.024 0.895 ± 0.295 0.993 ± 0.009

15 0.40 0.869 ± 0.072 0.754 ± 0.294 0.883 ± 0.063 0.268 ± 0.399 0.882 ± 0.066
0.80 1.000 ± 0.000 0.902 ± 0.293 1.000 ± 0.000 0.999 ± 0.003 1.000 ± 0.000

20 0.40 0.951 ± 0.039 0.310 ± 0.434 0.950 ± 0.037 0.281 ± 0.428 0.958 ± 0.033
0.80 1.000 ± 0.000 1.000 ± 0.000 0.993 ± 0.008 0.997 ± 0.010 1.000 ± 0.000

200 0.40 1.000 ± 0.000 0.000 ± 0.000 0.992 ± 0.016 1.000 ± 0.000 0.600 ± 0.490
0.80 1.000 ± 0.000 0.001 ± 0.001 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

Table 11. Comparison on synthetic datasets with 3000 data points and two clusters. The best results
regarding NMI are bold-faced.

V ζ K-Means GMM Spectral Agglomerative NGDC

2 0.40 0.306 ± 0.200 0.168 ± 0.112 0.306 ± 0.199 0.001 ± 0.001 0.313 ± 0.201
0.80 0.584 ± 0.261 0.107 ± 0.104 0.574 ± 0.255 0.249 ± 0.381 0.589 ± 0.260

5 0.40 0.395 ± 0.230 0.033 ± 0.047 0.391 ± 0.228 0.002 ± 0.004 0.403 ± 0.224
0.80 0.844 ± 0.140 0.339 ± 0.276 0.858 ± 0.135 0.463 ± 0.465 0.852 ± 0.141

10 0.40 0.750 ± 0.165 0.015 ± 0.014 0.748 ± 0.165 0.089 ± 0.264 0.757 ± 0.165
0.80 0.969 ± 0.064 0.028 ± 0.030 0.970 ± 0.062 0.884 ± 0.294 0.972 ± 0.061

15 0.40 0.835 ± 0.111 0.018 ± 0.014 0.834 ± 0.109 0.001 ± 0.001 0.843 ± 0.108
0.80 1.000 ± 0.000 0.118 ± 0.295 0.999 ± 0.002 0.998 ± 0.004 1.000 ± 0.000

20 0.40 0.918 ± 0.069 0.844 ± 0.283 0.926 ± 0.061 0.095 ± 0.280 0.922 ± 0.073
0.80 0.999 ± 0.004 1.000 ± 0.000 0.994 ± 0.007 1.000 ± 0.000 0.999 ± 0.004

200 0.40 1.000 ± 0.000 0.001 ± 0.001 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
0.80 1.000 ± 0.000 0.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

We reported the results of methods under consideration with ten clusters and 1000
data points in Table 12, and we show the results of data with 3000 data points and the
same number of clusters in Table 13. Concerning the number of wins, the NGDC and
agglomeration each, in total, won eight settings and thus can be considered the joint
winners. However, it ought to be highlighted that four out of eight wins of agglomerative
clustering were obtained using the most straightforward datasets (the last two rows).
Whilst NGDC also obtained completely acceptable results, it stocked at a local minimum in
some cases. The closeness of NGDC results to the winners in the cases for which it did not
win, for instance, N = 1000, V = 5, 10, can also be considered another piece of evidence for
its effectiveness. The spectral and K-means clusterings, in respect, are the second and third
winners. The GMM still performs poorly; however, it is slightly better than the case of the
existence of two clusters.

Table 12. Comparison on synthetic datasets with 1000 data points and ten clusters. The best results
regarding NMI are bold-faced.

V ζ K-Means GMM Spectral Agglomerative NGDC

2 0.40 0.207 ± 0.040 0.157 ± 0.045 0.193 ± 0.039 0.192 ± 0.039 0.212 ± 0.040
0.80 0.432 ± 0.041 0.321 ± 0.077 0.401 ± 0.030 0.433 ± 0.038 0.438 ± 0.043

5 0.40 0.350 ± 0.049 0.200 ± 0.045 0.285 ± 0.026 0.199 ± 0.081 0.358 ± 0.046
0.80 0.753 ± 0.044 0.607 ± 0.077 0.641 ± 0.061 0.711 ± 0.063 0.751 ± 0.042

10 0.40 0.549 ± 0.077 0.283 ± 0.072 0.460 ± 0.077 0.251 ± 0.153 0.546 ± 0.075
0.80 0.957 ± 0.029 0.765 ± 0.083 0.922 ± 0.037 0.925 ± 0.027 0.956 ± 0.025
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Table 12. Cont.

V ζ K-Means GMM Spectral Agglomerative NGDC

15 0.40 0.757 ± 0.050 0.338 ± 0.057 0.677 ± 0.075 0.363 ± 0.196 0.739 ± 0.045
0.80 0.940 ± 0.030 0.666 ± 0.051 0.991 ± 0.011 0.985 ± 0.023 0.948 ± 0.031

20 0.40 0.862 ± 0.034 0.316 ± 0.016 0.804 ± 0.031 0.566 ± 0.125 0.843 ± 0.035
0.80 0.993 ± 0.015 0.676 ± 0.051 0.999 ± 0.002 0.999 ± 0.002 0.970 ± 0.014

200 0.40 0.971 ± 0.027 0.023 ± 0.003 1.000 ± 0.000 1.000 ± 0.000 0.916 ± 0.020
0.80 0.961 ± 0.027 0.023 ± 0.003 1.000 ± 0.000 1.000 ± 0.000 0.930 ± 0.027

Table 13. Comparison on synthetic datasets with 3000 data points and ten clusters. The best results
regarding NMI are bold-faced.

V ζ K-Means GMM Spectral Agglomerative NGDC

2 0.40 0.200 ± 0.031 0.158 ± 0.041 0.193 ± 0.029 0.189 ± 0.035 0.204 ± 0.033
0.80 0.410 ± 0.052 0.346 ± 0.081 0.381 ± 0.046 0.415 ± 0.062 0.413 ± 0.052

5 0.40 0.348 ± 0.054 0.199 ± 0.056 0.283 ± 0.041 0.169 ± 0.101 0.355 ± 0.053
0.80 0.716 ± 0.057 0.685 ± 0.138 0.604 ± 0.055 0.743 ± 0.062 0.730 ± 0.066

10 0.40 0.579 ± 0.046 0.327 ± 0.132 0.484 ± 0.049 0.032 ± 0.045 0.581 ± 0.042
0.80 0.920 ± 0.035 0.892 ± 0.041 0.877 ± 0.042 0.901 ± 0.045 0.927 ± 0.021

15 0.40 0.714 ± 0.051 0.552 ± 0.113 0.616 ± 0.050 0.178 ± 0.218 0.727 ± 0.057
0.80 0.935 ± 0.031 0.909 ± 0.078 0.967 ± 0.039 0.990 ± 0.008 0.922 ± 0.034

20 0.40 0.852 ± 0.031 0.635 ± 0.067 0.784 ± 0.036 0.352 ± 0.263 0.845 ± 0.036
0.80 0.956 ± 0.025 0.834 ± 0.086 0.999 ± 0.001 0.998 ± 0.001 0.967 ± 0.019

200 0.40 0.979 ± 0.014 0.011 ± 0.001 1.000 ± 0.000 1.000 ± 0.000 0.940 ± 0.018
0.80 0.974 ± 0.022 0.015 ± 0.003 1.000 ± 0.000 1.000 ± 0.000 0.970 ± 0.008

We represented the methods’ results for the case of 20 clusters with 1000 and 3000 data
points in Tables 14 and 15, respectively. Now, the K-means, by winning nine settings, is the
winner, and the agglomerative and NGDC, in respect, by winning eight and seven settings,
are the second and third winners, respectively. Similar to the previous observations, we
noticed similar patterns in the performance of the NGDC and agglomerative clustering
concerning the relationship between data complexity and the quality of the obtained results.
We also observed similar results with subtle improvements in the performances of spectral
and GMM clustering methods.

Table 14. Comparison on synthetic datasets with 1000 data points and 20 clusters. The best results
regarding NMI are bold-faced.

V ζ K-Means GMM Spectral Agglomerative NGDC

2 0.40 0.217 ± 0.023 0.160 ± 0.028 0.191 ± 0.025 0.207 ± 0.025 0.220 ± 0.022
0.80 0.402 ± 0.028 0.333 ± 0.027 0.378 ± 0.024 0.403 ± 0.033 0.408 ± 0.027

5 0.40 0.325 ± 0.027 0.225 ± 0.026 0.286 ± 0.020 0.252 ± 0.029 0.328 ± 0.023
0.80 0.697 ± 0.048 0.513 ± 0.078 0.601 ± 0.043 0.653 ± 0.047 0.683 ± 0.043

10 0.40 0.494 ± 0.043 0.271 ± 0.017 0.424 ± 0.040 0.307 ± 0.046 0.477 ± 0.029
0.80 0.928 ± 0.020 0.689 ± 0.020 0.914 ± 0.018 0.904 ± 0.024 0.911 ± 0.017

15 0.40 0.702 ± 0.031 0.350 ± 0.017 0.631 ± 0.026 0.459 ± 0.059 0.643 ± 0.025
0.80 0.968 ± 0.013 0.717 ± 0.039 0.974 ± 0.016 0.979 ± 0.012 0.949 ± 0.019

20 0.40 0.837 ± 0.023 0.376 ± 0.021 0.793 ± 0.029 0.617 ± 0.037 0.768 ± 0.035
0.80 0.968 ± 0.009 0.708 ± 0.023 0.999 ± 0.001 0.999 ± 0.001 0.959 ± 0.013

200 0.40 0.963 ± 0.009 0.082 ± 0.008 1.000 ± 0.000 1.000 ± 0.000 0.900 ± 0.017
0.80 0.973 ± 0.006 0.083 ± 0.007 1.000 ± 0.000 1.000 ± 0.000 0.926 ± 0.014
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Table 15. Comparison on synthetic datasets with 3000 data points and 20 clusters. The best results
regarding NMI are bold-faced.

V ζ K-Means GMM Spectral Agglomerative NGDC

2 0.40 0.179 ± 0.024 0.148 ± 0.026 0.174 ± 0.023 0.176 ± 0.022 0.182 ± 0.023
0.80 0.390 ± 0.042 0.342 ± 0.055 0.373 ± 0.043 0.392 ± 0.045 0.394 ± 0.042

5 0.40 0.298 ± 0.042 0.199 ± 0.039 0.264 ± 0.038 0.218 ± 0.060 0.303 ± 0.042
0.80 0.691 ± 0.025 0.462 ± 0.083 0.581 ± 0.031 0.648 ± 0.044 0.689 ± 0.026

10 0.40 0.486 ± 0.040 0.282 ± 0.059 0.396 ± 0.031 0.220 ± 0.057 0.482 ± 0.041
0.80 0.919 ± 0.016 0.835 ± 0.029 0.889 ± 0.024 0.894 ± 0.030 0.922 ± 0.025

15 0.40 0.686 ± 0.037 0.433 ± 0.044 0.586 ± 0.045 0.258 ± 0.159 0.670 ± 0.034
0.80 0.913 ± 0.016 0.870 ± 0.034 0.937 ± 0.023 0.983 ± 0.011 0.914 ± 0.016

20 0.40 0.797 ± 0.021 0.480 ± 0.045 0.728 ± 0.037 0.538 ± 0.087 0.787 ± 0.027
0.80 0.975 ± 0.010 0.815 ± 0.043 0.996 ± 0.005 0.997 ± 0.003 0.961 ± 0.005

200 0.40 0.960 ± 0.013 0.046 ± 0.002 0.999 ± 0.001 1.000 ± 0.000 0.917 ± 0.016
0.80 0.960 ± 0.019 0.061 ± 0.005 1.000 ± 0.000 1.000 ± 0.000 0.938 ± 0.017

It is noteworthy to mention that we ran NGDC with T = 20 and T = 40; however,
since these increases in the number of iterations, as expected, did not lead to significant
improvements, we did not report those results.

7. Conclusions and Future Work

In this work, we proposed a generic clustering criterion and adopted the GD algorithm
to optimize it; our unreported experiments were aligned with the well-known fact that
the Vanilla GD is prone to slow convergence, especially at nearly flat surfaces. Conse-
quently, inspired by the Nesterov momentum, we proposed the NGDC method. As a
by-product of our proposed method, we implemented the NGDC using Jax (an automatic
differentiation library).

The NGDC method contains two hyperparameters: (i) step size α and (ii) momentum
decay coefficient β1. Similar to other gradient-descent-based algorithms, the convergence
of NGDC and its sensitivity to random seed initialization needed to be scrutinized. Conse-
quently, we designed the hyperparameter-scrutinizing datasets consisting of 60 synthetic
data configurations (refer Table 3) to study the items mentioned earlier empirically.

Our investigations on the impact of random seed initialization showed that exploiting
five or ten random initializations is sufficient; therefore, in the rest of our computations, we
set this parameter to ten. Next, we studied the convergence of NGDC. The convergence
of gradient-descent-based algorithms is well-studied, and it is proven that all GD-based
algorithms under a specific set of conditions are convergent: although we think this subject
deserves a separate study devoted to gradient descent adopted for clustering, relying
on the results of previous research, we limited the current study to establish a stopping
condition, i.e., the relationship between convergence and the number of iterations. Our
results demonstrated that usually, NGDC converges within ten iterations; therefore, in the
rest of our computations, we used ten iterations.

Following, we analyzed the impact of step size and momentum decay coefficient using
our hyperparameter-scrutinizing datasets. Our computations suggested that one can set
the step size equal to 0.01 and choose any values from the range [0.3, 0.6] for the momentum
decay coefficient; we fixed β1 = 0.45.

Furthermore, our experiments using hyperparameters-scrutinizing datasets showed
that our flexible implementation of the NGDC enables users to adopt any differentiable
distance function for further improvements of the cluster recovery results. More so, we
demonstrated that there were cases in which setting the p-value of Minkowski distance to
1.5 or 2.5 led to higher NMI values than the innate p = 2. One may consider these cases as
preliminary pieces of evidence for a better scalability and generalization power of NGDC.
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Once we fine-tuned the NGDC’s hyperparameters, we statistically validated and
compared its performance with four clustering methods from the literature on 11 real-
world and 720 synthetic datasets. In the real-world data competitions, the NGDC won
approximately 73% of the competitions, turning it into the prevailing winner when using
real-world datasets. More so, for the breast tissue and glass datasets, in respect, it ob-
tained approximately 4% and 5% higher NMI compared to its closest competitor, K-means.
The performance of methods in the Spam and Fossile datasets needs to be highlighted.
For the Fossile dataset, except for GMM with NMI = 0.69, the rest of the methods recov-
ered the clusters without any mistakes. Conversely, in the Spam dataset, except for NGDC
with poor NMI = 0.26, the rest of the methods failed to detect the clusters. Agglomer-
ative clustering by winning three competitions and spectral clustering by winning two
competitions are the second and third winners of real-world data competition.

Similar to real-world data competitions, in the synthetic data competitions, NGDC
won 300 competitions and took first place. K-means won 230 datasets and took second
place. Agglomerative and spectral clustering each won 210 competitions and jointly won
third place. The GMM won only 20 competitions and performed poorly in most settings.

Taking a closer look at synthetic data results reveals the following points: (a) In general,
we have three groups of algorithms. The first group consists of NGDC and K-means with
frequently acceptable performance; the second group consists of spectral and agglomer-
ative clusterings for which they usually performed acceptably on the settings with large
number of features; and the third group contains GMM with frequent poor performances.
(b) Although NGDC frequently performed acceptably; however, it constantly failed to
recover completely faultless clusters when there were more than two clusters, and the
number of features was equal to 200. In our opinion, these nuances in the performance
of NGDC could occur due to convergence near the optimum, while the exhaustive search
in the agglomeration clustering led to faultless recovery. (c) The reason for the constantly
acceptable performance of the K-means might be because the underlying assumption of this
algorithm and our synthetic data were both multivariate Gaussian distributions. (d) The
performance of all methods under consideration in V = 2, ζ = 0.4, 0.8 and V = 5, ζ = 0.4
settings were moderate or even poor. This issue can be tackled by using a more powerful
model and the same algorithm.

The current research is not without drawbacks, and those drawbacks form some
aspects of our future research as follows.

The central purpose of the current research was to improve the effectiveness of cluster-
ing methods, and thus, we proposed a generic clustering criterion and used the JAX library
to implement it: with this setting, we equipped users with the possibility of applying a
diverse range of (differentiable) distance functions and adjusting the hyperparameters
depending on the data under consideration. Although we empirically studied the hyper-
parameters of NGDC and proposed some default values, and they proved to be effective,
however, due to the “no free lunch theorem,” we believe developing a novel framework
for employing NGDC in a semi-supervised manner can be a promising future direction.

Despite our endeavors in the current research, we failed to establish new convergence
conditions and instead empirically scrutinized the impact number of iterations on the
quality of recovered clusters. Theoretical analysis of NGDC convergence is another ben-
eficial future direction. Furthermore, in the current research, we applied the Minkowski
distance on our hyperparameter-scrutinizing data to demonstrate the possibility for further
improvement in cluster recovery. However, we believe this subject needs a more rigor-
ous investigation, and thus scrutinizing the impact of various distance metrics, including
Minkowski metrics with different p-values, could be the third future direction.

Adopting other update rules such as RMSProb and ADAM can be considered our
fourth direction. Reformulating our proposed clustering objective functions using a prob-
abilistic approach so that we can determine the probability of clusters’ membership is
another promising future direction. Last but not least, extending the NGDC method to
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more complex data structures, for instance, to the feature-rich networks [68], is another
promising future area of research.
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