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Unsupervised domain adaptation
methods for cross-species
transfer of regulatory code signals
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Due to advances in NGS technologies whole-genome maps of various functional

genomic elements were generated for a dozen of species, however experiments

are still expensive and are not available for many species of interest. Deep learning

methods became the state-of-the-art computational methods to analyze the

available data, but the focus is often only on the species studied. Here we take

advantage of the progresses in Transfer Learning in the area of Unsupervised

Domain Adaption (UDA) and tested nine UDAmethods for prediction of regulatory

code signals for genomes of other species. We tested each deep learning

implementation by training the model on experimental data from one species,

then refined the model using the genome sequence of the target species for

which we wanted to make predictions. Among nine tested domain adaptation

architectures non-adversarial methods Minimum Class Confusion (MCC) and

Deep Adaptation Network (DAN) significantly outperformed others. Conditional

Domain Adversarial Network (CDAN) appeared as the third best architecture. Here

we provide an empirical assessment of each approach using real world data. The

di�erent approaches were tested on ChIP-seq data for transcription factor binding

sites and histonemarks on human andmouse genomes, but is generalizable to any

cross-species transfer of interest. We tested the e�ciency of each method using

species where experimental data was available for both. The results allows us to

assess how well each implementation will work for species for which only limited

experimental data is available and will inform the design of future experiments

in these understudied organisms. Overall, our results proved the validity of UDA

methods for generation of missing experimental data for histone marks and

transcription factor binding sites in various genomes and highlights how robust

the various approaches are to data that is incomplete, noisy and susceptible to

analytic bias.

KEYWORDS

transfer learning, domain adaptation, domain adversarial networks, versatile domain

adaptation, Minimum Class Confusion, histone marks, transcription factors

1. Introduction

Domain Adaptation (DA) methods were designed for the task to transfer knowledge

from a labeled source domain to an unlabeled target domain. Unsupervised DA (UDA)

is an approach when source domain and target domain share the same label set. Most of

the UDA approaches can be roughly divided into three types: divergence-based, adversarial-

based and reconstruction-based methods (Jiang et al., 2022). The divergence-based methods

try to minimize the distances between distributions of the source and target domains and

usually minimize two losses during training—classification loss and divergence-based loss.
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Adversarial-based methods are based on the same approach used

in Generative Adversarial Networks (GANs) where generator

serves as a feature extractor and discriminator learns to

distinguish between source and target domains. In this case

optimization is based on classification loss and discriminator loss.

In reconstruction-based domain adaptation, the target features

are translated into source features (for example, with encoder-

decoder modules) and then a discriminator is trained to distinguish

between the generated and source domain. Recently a completely

different approach was proposed that employs a novel minimum

class confusion (MCC) loss-function (Jin et al., 2020). Since MCC

loss function can be used with any DA method, the approach

was named as Versatile Domain Adaption (VDA). In this paper

we focus only on three types of DA models—divergence-based,

adversarial-based and versatile DA with MCC and test their

robustness of their predictions with real world data. The general

schema of DA approach is presented in Figure 1.

Transfer learning methods have been already successfully

applied to solve various tasks in genomics. Transfer learning

was used for cancer classification based on gene expression data

where for tumor classification the method transferred feature

representation from other tumors (Sevakula et al., 2018). Transfer

learning was helpful in denoising scRNA-seq data using Bayesian

hierarchical model coupled with a pretrainable deep autoencoder

(Wang et al., 2019). Domain adversarial neural network was used

for prediction of enhancer promoter interactions in a cell line of

interest by learning features from enhancers and promoters shared

among all cell lines (Jing et al., 2020). Few-shot learning and meta-

transfer learning were explored on large data sets from TCGA

and GTEx and the approach helped in addressing heterogeneity,

batch effects and other forms of bias in omics data analyses (Park

et al., 2021). Functional microexons were predicted when prior

knowledge from microindels was transferred to the final model

(Cheng et al., 2021). In single cell sequencing, transfer learning was

successfully applied to transfer cell annotations from labeled data

sets from one experiment to another unlabeled data sets (Kimmel

and Kelley, 2021). Another single cell applications is an integration

of multiple single-cell datasets across samples employing algorithm

based on domain-adversarial and variational approximations (Hu

et al., 2022). Validity of domain adaptation approach based on

Domain Adversarial Neural Network (DANN) was demonstrated

for to the task of cross-species TF binding prediction (Cochran

et al., 2022).

Whole-genome maps for different genomic elements have

been continuously generated by the Encode project (Luo et al.,

2020). However, many experiments for a particular species are

often absent. Here we take advantage of the transfer learning

methods and test the unsupervised domain adaptation methods to

generate missing experiment labels based on the knowledge gained

from experimental data from another species. In the proposed

approach, a good performing deep learning model is trained on

the genome of one species and then it is applied to another species

after additional training with the targeted genomic sequence.

Each method currently available for performing this task is quite

computationally expensive. In this current work we compare each

implementation using the same real world datasets to provide a

benchmark for others to use and for future improvements to the

underlying algorithms.

We tested nine domain adaptation methods: Domain

Adversarial Neural Network (DANN) (Ganin et al., 2016), Deep

Adaptation Network (DAN) (Long et al., 2015), Joint Adaptation

Network (JAN) (Long et al., 2017), Adversarial Discriminative

Domain Adaptation (ADDA) (Tzeng et al., 2017), Conditional

Domain Adversarial Network (CDAN) (Long et al., 2018),

Maximum Classifier Discrepancy (MCD) (Saito et al., 2018),

Adaptive Feature Norm (AFN) (Xu et al., 2019), Margin Disparity

Discrepancy (MDD) (Zhang et al., 2019), and Minimum Class

Confusion (MCC) (Jin et al., 2020). DANN, CDAN, ADDA,

MCD are adversarial-based approaches; DAN, JAN, MDD, AFN

are divergence-based approaches; and MCC is a versatile DA

method. All the methods differ from each by the way labeled

source and unlabeled target data are supplied during the training.

Schematically all the approaches are presented in Figure 2.

Adversarial-based DA methods differ from each other by the way

the adversarial training is organized. Some are trained as a whole,

and some are sequentially, such as ADDA and MCD (Figure 2A).

Divergence-based method are more similar to each other and

differ only in methods they minimize divergence of feature

representations (Figure 2B). The difference between each approach

is reflected in the specific details of how each is implemented.

Domain adversarial learning methods are based on using

adversarial neural networks inspired by GAN (Generative

Adversarial Network). DANN (Domain Adversarial Neural

Network) consists of three blocks. The first block is a feature

generator that extracts a hidden representation of data. The second

block is a classifier that makes class predictions using the hidden

representation. The last block is a discriminator that predicts the

domain of the data. The model is trained on labeled data from the

source domain and unlabeled data from the target domain in a

way that the discriminator tries to distinguish between the source

domain and target domain, the feature extractor tries to make it

indistinguishable, and the classifier block tries to predict the label

of an object. As a result, a model from this class is trained to extract

the common features for both target and source domains. Domain

transfer works better when predictions are made based on features

that cannot discriminate between the source and target domains.

The difference between DANN and ADDA (Adversarial

Discriminative Domain Adaptation) is in the training process.

ADDA, unlike DANN, splits the optimization of the discriminator

and the feature extractor into two parts. Representation learning

is done at the first step from the source domain. At the second

step, called adversarial adaptation, training is performed in an

adversarial manner when discriminator cannot reliably predict

domain labels of the encoded source and target samples.

CDANs are inspired by conditional GANs and implement

conditioning of the cross- covariance between feature

representations and entropy conditioning of the uncertainty

of classifier predictions.

MCD (Maximum Classifier Discrepancy) is based on two

players to align distributions: feature generator and domain

classifier are trained in adversarial manner. At one step the

model is trained to maximize the discrepancy between the source

classifier predictions and target classifier predictions to detect the

samples that are far from the source domain. At the next step a

feature generator learns to generate target features to minimize the

discrepancy (Figure 2A).
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FIGURE 1

General schema for domain adaptation models. In contrast to the standard deep learning methods, DA approaches use two separate sets of training

data: source domain data both with genomic regions and corresponding labels, and target domain unlabeled region dataset. The second dataset

allows the transfer learning mechanism to work, as after the model training stage the learned features in the feature extractor would contain

information that is specific for both source and target domains.

Divergence-based methods have the common general structure

and differ in a method used to minimize discrepancy between

feature distributions of source and target domains (Figure 2B).

MDD (Margin Disparity Discrepancy) minimizes a new proposed

metric, called the disparity discrepancy metric, to measure the

discrepancy between source and target classifiers. In the original

paper with AFN (Adaptive Feature Norm)method (Xu et al., 2019),

the authors empirically discovered that the quality degradation on

a target domain roots from much smaller feature norms of the

classifier’s feature norms on target domains with respect to the

feature norms of the source domain. This method progressively

adapts the feature norms of the two domains to a larger range of

values to improve transfer gains.

JAN and DAN are methods from the statistics matching

class. These methods adapt distributions of features in models.

JAN (Joint Adaptation Network) aligns the joint distributions of

multiple domain-specific layers across domains based on a joint

maximummean discrepancy criterion which measures the Hilbert-

Schmidt norm between kernel mean embedding of empirical

joint distributions of source and target data (Long et al., 2017).

DAN (Deep Adaptation Network) aligns marginal distributions of

activations in multiple domain-specific layers. This is achieved by

mapping of embeddings of all the task-specific layers to kernel

Hilbert space. Thus, the mean embeddings of different domain

distributions can be explicitly matched. Kernel choice can be

optimized to select the one that reduces domain discrepancy (Long

et al., 2015).

MCC (Minimum Class Confusion) is a non-adversarial

Versatile Domain Adaptation method with a novel loss function

based on entropy minimization methods. This type of method tries

to minimize entropy on unlabeled target class objects to increase

the confidence of predictions. The method does not explicitly align

domains leading to a faster convergence speed. The main idea

behind the method stems from the fact that classifier predictions

initially confuse the correct and ambiguous classes, and it tries to

minimize the confusion. In MCC realization feature extractor is

shared between source labeled and target unlabeled data, and MCC

loss function is defined on the class prediction of the target data.

In the original publications all these DA methods were tested

on image datasets that can be precisely measured, allowing an

evaluation of how noise, missing data, spatial orientation and other

confounder variables affect predictions. It is of interest to test

applicability of those methods to experimental molecular biology

data sets that are incomplete, noisy, and subject to other biases.

However, experiments are expensive and lacking for many species

of interest, thus understanding the potential of transfer learning in

genomics is of practical importance to guide future experiments

and to improve our knowledge of how species differ. We tested

the described above nine methods on various experimental

ChIP-seq data for histone marks and transcription factor

binding sites for cross-species predictions between human and

mouse genomes.

2. Results

2.1. Deep learning model to predict
transcription factor binding sites and
histone mark signals

First, we constructed a deep learning model to predict

transcription factor (TF) binding sites (TFBS) and histone mark

(HM) positions in the source genome from DNA sequence. DNA

regions were one-hot encoded into binary matrices. For the

classifier we chose a hybrid CNN and LSTM network as it showed

the best performance over single CNN or single LSTM networks

on our TFBS and HM data sets. The schema of the selected deep

learning model is presented in Figure 3.

For all tested data sets we first trained the source model

and with the trained source model we made predictions on the

target genomes.

2.2. Comparison of unsupervised domain
adaptation methods

We tested nine UDA methods from three types of DA

approaches: adversarial-based methods, divergence-based

methods, and versatile domain adaption approach based on MCC

loss function. The general schema for domain adaptation models

is presented in Figure 1. In this scheme TFBS or HM sequence

representations are learned with a hybrid CNN+LSTM network
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FIGURE 2

Schematic representation of di�erent types of DA models. (A) Adversarial-based DA models. (B) Divergence-based DA models. (C) MCC with

Versatile DA models.

and then the downstream task is solved either by minimizing

the distance between two domain distributions, or in minimax

adversarial manner, or by minimizing the class confusion metric.

We tested 9 UDA methods on 10 histone marks (H2B,

H3K23ac, H3K36ac, H3K36me1, H3K79me1, H3K27ac,

H3K4me1, H3K4me2, H3K4me3, and H3K9me3) and 4

transcription factors (CTCF, RAD21, SPI1 and TBX21) on

blood, kidney, lung, liver, breast, prostate, pancreas, neural tissues,

and stem cells totaling 71 experimental data sets for both genomes

(see Methods for the full list of tissue and cell types). We chose

those experimental data sets for which data was available for both

human and mouse genome. Some histone marks are not frequent

so that samples from one tissue type do not contain enough data

needed for training. In this case we combined different tissue types

in one data set.

We first trained the deep learning model on the source genome,

either human or mouse, and tried to predict regulatory signals

on the target genome without transfer learning (referred to as the
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FIGURE 3

Schema of a Baseline Deep Learning Model for prediction of TF and HM signals.

baseline model). Then we run nine DA models and compared the

performance of each model (referred to as the TL model) with

the performance of the baseline model based on accuracy, PR

AUC and ROC AUC. In total we ran 1,420 models: 1 baseline

model and 9 DA TL models for 59 HM and 12 TF ChIP-seq peak

sets for human→mouse and mouse→human transfer learning

experiments. The summary results are presented in Figures 4–7 and

Supplementary Table 1.

The comparison of DA performance metrics (ROC AUC) with

respect to the baseline model for selected 6 HMs are presented

in Figure 4A; comparison based on PR AUC and accuracy are

presented in Supplementary Figure 1. For 3 histone marks—

H2B, H3K23ac and H3K36me1—experiments were combined in

one set from all available tissue types. The figure shows the

difference between the baseline model and the TL model. For

other 3 histone marks—H3K27ac, H3K4me1 and H3K4me3—the

experiments were taken for macrophages and blood tissue. The

absolute values for all DA model metrics along the baseline model

for different HMs and different cells and tissues are given in

Supplementary Table 1.

The comparison of DA performance metrics for the TL model

(ROC AUC) with respect to the baseline model for selected 6 TFs

are presented in Figure 4B; comparison based on PR AUC and

accuracy are presented in Supplementary Figure 2. 6 TF ChIP-seq

experiments include CTCF for lung and neural tissue, RAD21 for

macrophages, SPI1 hematopoietic stem cells and neutrophils, and

TBX21 for T-helper cells. The absolute values for all DA model

metrics along the source model for all TF experiments are given

in Supplementary Table 1.

To estimate the validity of DA approach we counted how

many times each DA model worked better than the baseline model

separately for HMs and TFs and for all experiments jointly. The

comparison results are presented in Figure 5. We can see that non-

adversarial method MCC is an absolute winner for both TFs and

HMs when transferring representations from human to mouse and

from mouse to human genomes. Divergence-based approach DAN

appeared to be the second-best method for TFs for both human and

mouse genomes but for HMs mostly when transferring knowledge

from human to mouse. Among adversarial methods, we observed

that conditional domain adaptation approach CDAN worked for

some sets of histone marks when transferring annotations from

human to mouse (but not vice versa) for some HMs. The same is

true but to a lesser extent for adversarial-based method MCD. Two

other adversarial models—DANN and ADDA—did not perform

better than the baseline model for most of the experiments. The

results of DA model comparison based on PR AUC and accuracy

are given in Supplementary Figure 3.

2.3. Tissue-specific vs. combined
regulatory signal prediction

In case of histone marks, we tested UDA methods for tissue-

specific and combined HM signals and found that combined

approach works better for sparse HM signals (for example,

H3K36me1 and H3K23ac) as compared to the dense H3K27ac.

For tissue-specific predictions the baseline model applied directly

to the target genome without domain adaptation performs with a

good prediction power so that DA approach brings relatively little

improvement. However, in cases when the baseline model initially

does not perform well on the target genome, DA methods can

improve predictions by up to 9% of ROC AUC. For example, for

H3K4me1 in liver hepatocytes or for H3K36me1 for the combined

data set from all available tissues and cell types the increase in

model performance is 8.74 and 8.86% correspondingly (Figure 4A,

Supplementary Table 1).

TFBS signals are more tissue specific and thus we did not

combine TFBS from different tissues in one set. When TFBS are

compared to HMs, we observe even larger positive effect of DA

with an improvement in model predictions power on average by

up to 29% (as in the case for SPI1 signal in dendritic cells and

neutrophils) when comparing to the baseline model without DA

(Figure 4B, Supplementary Table 1).

We also measured average performance gains for each DA

method across each tissue both for histone marks and transcription

factors (Figures 6, 7, Supplementary Figures 4, 5). For histone

marks (Figure 6, Supplementary Figure 4) in case of human-to-

mouse conversion we can see small score-wise improvements in

every tissue of interest except for the breast and pluripotent stem

cells. The highest gains of around ∼3% are achieved for the

MCC method. Interestingly, in all cases except for the “all cells”

for mouse-to-human conversion we do not observe DA method

performance improvements except for the MCC, which scores
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FIGURE 4

Comparative performance (ROC AUC) of Domain Adaptation methods for cross-species prediction of (A) 6 selected histone marks and (B) 6 selected

transcription factors. Y axis depicts di�erence between DA performance metrics (ROC AUC) with respect to the baseline model, i.e., model trained on

the source genome and applied to the target genome directly without DA approach (see comparison based on PR AUC and accuracy in

Supplementary Figure 1). The best performing DA model is marked with an arrow with the corresponding metrics of the baseline model plus a gain in

performance achieved by the DA model. See full list of experiments in Supplementary Table 1.

higher on average in blood, cardiovascular, liver and pancreas cells.

ADDA, CDAN, DANN, and JAN show no average performance

gains across the observed tissues.

The score improvements are more significant when

measured across transcription factor tissues (Figure 7,

Supplementary Figure 5). For both transfer learning

tasks we can observe up-to 11% ROC AUC score

gains. In case of mouse-to-human conversion the DAN

and MCC methods constantly perform better than the

baseline source-only model. ADDA and MDD show no

average performance gains with ADDA being the least

effective one.
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FIGURE 5

Comparative performance of 9 DA models tested on TFs and HMs human-mouse and mouse-human cross-species predictions. Y axis depicts

percentage of DA experiments when at least 1 out of 9 DA models worked better than the baseline model. Absolute numbers are given next to the

corresponding bars.

FIGURE 6

Comparison of DA model performance (ROC AUC) across tissues for histone marks (see comparison based on PR AUC and accuracy in

Supplementary Figure 4).

Overall direct cross-species predictions, with or without DA,

work better for TFBS than for HM indicating the more conserved

nature of sequences bearing TF binding signals.

3. Discussion

The general schema of transfer learning models can be

represented as a two-stage process during which a model first

is pretrained for gaining the transferable knowledge (feature

representations) and then adapted to the downstream task to

predict labels in the target domain (Jiang et al., 2022). When the

target domain has unlabeled data, then the source data with the

same labels but different distribution is used to improve domain

adaptation (Ganin and Lempitsky, 2015).

Our task of transferring signals of genomic regulatory code

from one species to the other corresponds to the case when a source

domain with labeled data (experimental data from one genome)

is used to improve the prediction quality of a classifier of a target

domain with unlabeled data (regulatory code signals in another

genome). Representations of sequences for TF binding sites or

HM locations in human and mouse genomes come from different

but similar distributions. The goal is to select features that cannot

discriminate between the source and target domains, i.e., invariant

features of the genomic regulatory code.

The initially trained deep learning model (here, hybrid CNN-

LSTM but any deep learning model could be used) provides

feature representations of both source and target genomes. The

distributions of these sequence-based representations are close but

different due to species-specific differences. The task of domain

adaptation approaches is then to reduce the domain dissimilarity.

This goal is achieved either by divergence-based methods or

adversarial-based methods. Divergence-based methods try to make

domain and source feature distribution more similar based on

some divergence criteria. Adversarial-based methods work for

extracting invariant features for both domains due to the addition

of a module where domain discriminator is trained to distinguish

source and target features. Our results showed that among four

adversarial-based methods, only conditional domain adversarial

network (CDAN) showed reasonably good performance, being the

third-best after the MCC and divergence-based method DAN.

CDAN approach was borrowed from conditional GANs. In

case of adversarial domain adaptation models, the conditioned

module is a domain discriminator. The domain discriminator is
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FIGURE 7

Comparison of DA model performance (ROC AUC) across tissues for transcription factors (see comparison based on PR AUC and accuracy in

Supplementary Figure 5).

conditioned on the cross-covariance of domain-specific feature

representations and classifier predictions. For our data, CDAN

worked very well for SPI1 data sets with a significant (up to 29 %)

increase in model performance and it also worked, though not that

noticeable for CTCF (4 out of 6 experiments). Another adversarial

method MCD showed a small surplus by <0.5 mostly for HM and

mostly for human to mouse label transfer.

MCC is neither adversarial nor divergence-based method.

It introduces a novel loss function—Minimum Class Confusion

(MCC). MCC is defined on the target label predictions produced

by the source classifier on the target data. With this definition

MCC can be applied to both adversarial and divergence-based

methods, hence the name: Versatile Domain Adaption (VDA).

The VDA method does not explicitly align domains and thus has

faster convergence speed. MCC showed the highest performance

for both TFs and HMs and in both knowledge transfer directions:

from human to mouse and from mouse to human. In the original

MCC publication for a UDA task based on image classification,

the method performance in some instances compared to that of

CDAN, similar to what we observe for our genomic sequence

data sets where CDAN is the second-best method. Also, in the

original publication, the authors showed that MCC can be used as

a general regularizer for other DA methods, especially for CDAN

and AFN.

In the original publication MCC method for UDA tasks was

trained on standard image data sets: VisDA-2017 and Office-31.

MCC outperforms all current DANN, DAN JAN, CDAN, AFN,

MDD (Jin et al., 2020). When MCC was used as regularizer,

it yielded larger improvements when compared to entropy

minimization and batch spectral penalization to adversarial-

based DA methods such as DANN, CDAN and divergence-based

approach AFN. The second and third best models along with MCC

in its original publication are CDAN and AFN for VisDA-2017 and

CDAN and MDD for Office-31 data set. While CDAN is also in the

top-3 models for genomics ChiP-seq data, the second-best—DAN–

second before last for image data sets.

DAN is a divergence-based method that employs the multiple

kernel variant of maximummean discrepancies (MK-MMD). DAN

is represented as a multilayer architecture for learning transferable

features. Features are transitioned from general to specific when the

first three layers are general and frozen, then the fourth and fifth

layers are slightly less transferable, hence these layers are learned via

fine-tuning, and then remaining fully connected layers are adapted

with MK-MDD and are not transferable and aimed at fitting to

specific tasks [see Figure 1 in Long et al., 2015]. Obviously, this

method better finds features invariant for both domains, however

the theoretical grounds of the observed phenomenon remain out of

the scope of the presented study.

Overall, when comparing patterns of DA model performance,

the results are qualitatively the same for all TFs and all types of

tissues, with MCC and DAN being the two best models when

the domain adaptation approach provides a surplus for model

performance compared to the direct application of the source

model predicting target labels. Patterns of HMs are less obvious,

but MCC remains an absolute winner.

Relatively high cross-species deep learning model performance

confirms the presence of evolutionary conserved sequence

determinants. Machine learning approach based on SVM and
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CNNs were tested for cross-species predictions of enhancers

in mammalian species (Chen et al., 2018) and even without

transfer learning, the findings confirmed presence of evolutionary

conserved signals. The DANN approach was recently tested on

cross-species prediction of transcription factor binding in human

and mouse and demonstrated the viability of the approach

(Cochran et al., 2022). The authors explored effect of species-

specific transposon repeats on DA methods when they introduce

noise in the sequences around detectable signals. We obtained

results that are consistent with the results obtained for TFs in cross-

species mouse-human and human-mouse predictions for one type

of DA models—DANN. We extended the approach up to nine

models and also enlarged it with histone mark annotations.

The results of our tests showed that non-adversarial methods

work better for this specific genomic task, even without additional

filtering for obvious species-specific sequences such as human Alu

and mouse B1 transposons. Overall, the DA approach already

shows sufficient quality and can be of practical use for cross-

species transfer for human and mouse genomes. With DA models

researchers can generate predictions about gene regulation in new

species to guide experimentation, produce results and reiterate

until we have a good enough model to explain the difference, if any,

between the source and target species.

Another direction of research is to explore invariant sequence

features of regulatory code across evolutionary divergent species.

Those invariant features will correspond to evolutionary-conserved

DNA motifs. With DA approach it is possible not only extract

invariant sequence features but also select subset of divergent

species- and/or tissue-specific. For that task use of CNN

architecture will be more practical since it is possible to convert

active filters to DNA motifs.

The study presented here provides a practical guide which

models work better, and how to choose the right DA approach

to transfer experimental results from genome of one species

to another.

4. Conclusion

Even if the cost of sequencing significantly decreases, it

is unfeasible to perform all needed experiments for location

of numerous regulatory elements such as histone marks and

transcription factor binding sites for all tissue types and all species

of interest. We demonstrate that the knowledge of regulatory

code in one genome can be efficiently transferred to the other

evolutionary close genomes such as human and mouse. We tested

and compared performance of different types of DA models and

found that a novel type of DA methods based on the MCC

loss function works better than adversarial and divergence-based

DA models for our genomic regulatory signal transfer tasks.

Partially this is due to the noise, incomplete and biased nature

of high-throughput molecular biology experiments, though MCC

also outperformed other DA methods on image data. In our

further research we plan to extend testing of DA methods on

evolutionary more divergent species to understand the limits of

cross-species regulatory code transfer. Entropy-based methods to

reduce mislabeling of target data show great promise.

5. Methods

5.1. Data sets

Complete genomic sequences for mouse (mm10) and human

(hg38) assembly versions were downloaded from the UCSC

genome browser (Lee et al., 2022). Histone mark and transcription

factor data sets for different tissue types were downloaded from

ChIP-atlas database (Zou et al., 2022). ChIP-seq experiments for

some histone marks do not contain enough data for training. For

these experiments we combined datasets from different tissues into

one. The size of each data set in human and mouse genome is

provided in Supplementary Table 2.

5.1.2. Histone mark data
H2B all, H3K23ac all, H3K36ac all, H3K79me1 all, H3K27ac:

Blood (B cells, CD4+ T cells, CD8+ T cells, Dendritic Cells,

Erythroblasts, Hematopoietic Stem Cells, Macrophages), Breast

(Mammary glands), Cardiovascular (Heart Ventricles), H3K27ac:

Liver (Hepatocytes), Neural (Cerebellum, Neural Stem Cells,

Neuroblastoma), Pancreas (Pancreatic adenocarcinoma), Pancreas

(Pancreatic ductal adenocarcinoma), Pluripotent stem cell (ES

cells, iPS cells), Prostate (Prostate), H3K4me1: Blood (CD4+ T

cells), H3K4me1: Blood (Hematopoietic Stem Cells, Macrophages,

Monocytes, Neutrophils), H3K4me1 [Liver (Hepatocytes),

Pluripotent stem cell (iPS cells)], H3K4me2: Blood (CD4+ T

cells, Granulocyte, Hematopoietic Stem Cells), Breast (Mammary

glands), Neural (Retina), Pluripotent stem cell (iPS cells),

H3K4me3: Blood (B cells, CD4+ T–cells, CD4 CD8 double

positive cells, CD8+ T cells, Dendritic Cells, Hematopoietic Stem

Cells, Macrophages, Mast Cells, Th1 Cells, Th2 Cells, Thymus),

Breast (Mammary epithelial cells, Mammary glands), Liver

(Hepatocytes, Liver), Lung (Lung), Neural (Neural Stem Cells),

Pluripotent stem cell (ES cells, (iPS cells), Prostate (Prostate),

Pluripotent stem cell (ES cells, iPS cells).

5.1.3. Transcription factor data
CTCF: Blood (B cells), Blood (Erythroid Cells), Neural

(Retina), kidney, lung, Pluripotent stem cell (ES cells); SPI1:

Blood (Dendritic Cells), Blood (Hematopoietic Stem Cells), Blood

(Macrophages), Blood (Neutrophils); TBX21: Blood (Th1 Cells);

RAD21: Blood (Macrophages).

5.2. Data preprocessing

The preprocessing pipeline for TFBS and HM data sets prior

to submitting to deep learning models is implemented as a set

of shell scripts that run programs written in the Python language

version 3.10. Since the size of the initial data sample is important

for training of the deep learning models, we filter out experiments

with the number of regions outside the range 50,000 ± 12,500

segments. The average sample size was about 40,000 segments.

The selected regions were centered and extended by ±500 bp. The

corresponding 1 kb sequences were extracted from corresponding
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genomes. We excluded regions that fall into gaps and black-

listed regions.

When creating combined data sets from different tissue types,

we concatenated all regions from tissue-specific experiments and

merged overlapping segments.

For each original dataset we generated two additional data sets:

a set of randomly selected segments in a given genome of the same

size as the original sample, and a set of randomly selected segments

with a size twice as large as the original sample. The first generated

data set was used as a negative class during the training of deep

learning model, and the second data set is used as additional data

during training of the transfer learning model.

5.3. Baseline deep learning model

As a baseline source model, we chose hybrid CNN+LSTM

architecture (Figure 3). CNN consisted of one-dimensional CNN

FIGURE 8

Comparative performance (ROC AUC) of Domain Adaptation methods with di�erent baseline DL models—CNN-only, LSTM-only, and CNN+LSTM

for (A) H3K27ac histone mark and the (B) TBX21 transcription factor (see comparison based on PR AUC and accuracy in Supplementary Figure 7). Y

axis depicts absolute values of ROC AUC for each model. Overall, taking together ROC AUC, RP AUC, and accuracy, hybrid CNN+LSTM model

outperforms CNN and LSTM models for transcription factor TBX21, and CNN outperforms CNN+LSTM for histone mark H3K27ac. When performing

transfer for a particular experiment, one can make a choice between DL types based on performance of baseline model.
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layer with 256 kernel of size 20 followed by ReLU, Max Pooling

layer of size 15, and the Dropout layer. The obtained feature

representation is then directed to the bidirectional LSTM-block

with a hidden layer size of 128.

Figure 8 illustrates the comparison results between CNN-

only, LSTM-only and CNN+LSTM network architectures on the

example of H3K27ac histone mark and TBX21 transcription factor.

In the first case we can see comparable performance between the

CNN and the hybrid models. Interestingly, the latter considerably

outperforms other methods in case of MCC. As for the overall

results, the transcription factor gains are more significant both

quantitatively and qualitatively.

5.4. DA models

For DA models implementations we adapted the scripts from

github.com/thuml/Transfer-Learning-Library/tree/master/exampl

es/domain_adaptation/image_classification with slight

modifications to the model inputs (to provide a transition

from images to nucleotide sequences).

Since the computations are time-consuming we evaluated the

optimal performances achievable for DA methods by running

5 times the chosen source hybrid CNN+LSTM models with

different DA approaches for two HM data sets (H3K27AC in blood

and pancreas) and two transcription factors (CTCF and SPI1)

(Supplementary Table 3). The results showed that DA models’

performance is stable.

6. Computational resources

The study was performed using the supercomputer complex

of the National Research University Higher School of Economics

(Kostenetskiy et al., 2021).
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