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Abstract

In the present paper we consider class G of orientation preserving Morse-Smale
diffeomorphisms f , which defined on closed 3-manifold M3, and whose non-wandering
set consist of four fixed points with pairwise different Morse indices. It follows from
S. Smale and K. Meyer results that all gradient-like flows with similar properties has
Morse energy function with four critical points of pairwise different Morse indices.
This implies, that supporting manifold M3 for these flows admits a Heegaard decom-
position of genus 1 and hence it is homeomorphic to a lens space Lp,q. Despite the
simple structure of the non-wandering set in class G there exist diffeomorphisms with
wild embedded separatrices. According to V. Grines, F. Laudenbach, O. Pochinka
results such diffeomorphisms do not possesses an energy function, and question about
topology their supporting manifold is open. According to V. Grines, E. Zhuzhoma
and V. Medvedev results M3 is homeomorphic to a lens space Lp,q in case of tame
embedding of closures of one-dimensional separatrices of diffeomorphism f ∈ G. More-
over, the wandering set of f contains at least p non-compact heteroclinic curves. In
the present paper similar result was received for arbitrary diffeomorphisms of class
G. Also we construct diffeomorphisms from G with wild embedding one-dimensional
separatrices on every lens space Lp,q. Such examples were known previously only on
the 3-sphere.

1 Formulation of results

It’s well known that the Morse-Smale systems exist on any manifolds. These systems
describe regular (non-chaotic) processes in technology. They have finite hyperbolic non-
wandering set, which is fully described by numbers orbits of different Morse indices (the
dimension of their unstable manifold). A natural question arises, what we say about the
supporting manifold topology of such system, if we know the structure of it non-wandering
set. The classic example of an exhaustive answer to the question are the systems with two
points of extremal Morse indices. In this case, it follows from Reeb’s theorem [1], that the
supporting manifold is homeomorphic to the n-sphere. Another example of following global
properties from local ones is the equality for a gradient-like system of the alternating sum
of number periodic points of different Morse indices to Euler characteristic of the ambient
surface. For flows this fact follows from classical Poincare-Hopf theorem [2], [3] and for
cascades it follows from the existence of a Morse energy function, proved by D. Pixton [4],
and from Morse inequality.

For the dimension equals 3 this equality also is true. However, the Euler characteristic
of all closed orientable 3-manifolds is equal to zero and, accordingly, it does not shed any
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light on the supporting space topology. A more cunning play with the numbers of periodic
points of different Morse indices leads to the fact that for flows it is possible to find a
connection between these numbers and the genus of the Heegaard decomposition of a 3-
manifold. In the absence of a topological classification of 3-manifolds, an information about
the Heegaard decomposition of a given manifold is very informative and identifying in some
cases. A similar question for diffeomorphisms is open today due to the possibility of wild
behaviour of the saddle point separatrices, first discovered by D. Pixton [4].

The effect of the possibly wild embedding of saddle separatrices of a Morse-Smale 3-
diffeomorphism into an ambient manifold had a revolutionary impact on the understand-
ing of the dynamics of such systems. It became clear that their description does not fit
into the framework of purely combinatorial invariants, and requires the involvement of a
topological apparatus. Nevertheless, a complete topological classification of Morse-Smale
3-diffeomorphisms, including the realization, was obtained in the works of C. Bonatti, V.
Grines and O. Pochinka [5], [6]. However, these invariants does not answer the question,
whether this 3-manifold admits a gradient-like diffeomorphism with wildly embedded saddle
separatrices or not.

In papers of V. Grines, E. Zhuzhoma and V. Medvedev [7] it was established that
gradient-like diffeomorphisms with tame embedded one-dimensional saddle separatrices are
look like to flows, therefore the structure of the non-wandering set of such a diffeomorphism
uniquely determines the Heegaard decomposition of its supporting manifold. In some partial
cases this result was generalized on mildly wild embedding of separatrices by V. Grines, F.
Laudenbach and O. Pochinka [8], and on diffeomorphisms with a single saddle point with
wild separatrices – by C. Bonatti and V. Grines [9]. In both case the Heegaard’s genus of
the ambient manifold is 0, that is M3 is the 3-sphere.

In the present paper we consider the class G of orientation-preserving Morse-Smale
diffeomorphisms, defined on a closed 3-manifold M3, whose non-wandering set consists of
exactly four points of pairwise different Morse indices. It follows from the results of S.
Smale [10] and K. Meyer [11] that all gradient-like flows with similar properties (see Fig. 1)
has a Morse energy function with exactly four critical points of pairwise different indices.
It immediately implies that the supporting manifold M3 for such flows admits a Heegaard
decomposition of genus 1 and, therefore, it is homeomorphic to a lens space Lp,q (see, for
example, [12]).

Despite the simple structure of the non-wandering set, there are diffeomorphisms in the
class G with wildly embedded saddle separatrices [13] (see Fig. 2). However, all currently
known examples were constructed on the 3-sphere.

One of the results of this paper is a constructive proof of the following fact.

Theorem 1. On any lens space Lp,q there exists a diffeomorphism f ∈ G with wildly
embedded one-dimensional saddle separatrices.

According to [8] such diffeomorphisms do not have a Morse energy function, and the
2



Figure 1: Gradient-like 3-flow with four points of pairwise distinct Morse indices on lens
L1,0

∼= S3
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Figure 2: Diffeomorphism from the class G with wildly embedded saddle separatrices

question of the topology of their supporting manifold has remained open until today. Ac-
cording to [7], in the case of tame embedding of the closures one-dimensional separatrices
of the diffeomorphism f ∈ G, the supporting manifold M3 is homeomorphic to the lens
space Lp,q. The wandering set of the diffeomorphism f contains at least p non-compact
heteroclinic curves.

In the present paper, a similar result is obtained for arbitrary diffeomorphisms of the
class G. In more detail.

Let f ∈ G. It follows from the definition of the class that the non-wandering set of
f consists of exactly four points ωf , σ

1
f , σ

2
f , αf with Morse indices 0, 1, 2, 3, respectively.

Thus f has exactly two saddle points σ1
f , σ

2
f of Morse indices 1 and 2, respectively, the

intersection of two-dimensional manifolds of which forms a heteroclinic set

Hf = W s
σ1
f
∩W u

σ2
f
.

We introduce the concept of the heteroclinic index If of f as follows. If the set Hf does not
contain non-compact curves, then we assume If = 0. Otherwise, any non-compact curve
γ ⊂ Hf contains, together with any point x ∈ γ, a point f(x). We will consider the curve

3



γ oriented in the direction from x to f(x). We will also fix the orientation on manifolds
W s

σ1
and W u

σ2
. For a non-compact heteroclinic curve γ, we denote by

vγ = (v⃗1γ, v⃗
2
γ, v⃗

3
γ)

a triple of vectors with the origin at the point x ∈ γ such that v⃗1γ – normal vector to W s
σ1

,
v⃗2γ – normal vector to W u

σ2
and v⃗3γ – tangent vector to the oriented curve γ. Let’s put

Iγ = +1 (Iγ = −1) in the case of right (left) orientation of vγ. The number

If =

∣∣∣∣∣∣
∑
γ⊂Hf

Iγ

∣∣∣∣∣∣
is called the heteroclinic index of diffeomorphism f . For an integer p ⩾ 0, we denote by
Gp ⊂ G a subset of diffeomorphisms f ∈ G such that If = p (see Fig. 3). The main result

21

f f
f
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Figure 3: Diffeomorphism f ∈ G with non-orientable set Hf consisting of three non-compact
curves and heteroclinic index 1

of the work is the proof of the following fact.

Theorem 2. If a manifold M3 admits a diffeomorphism f ∈ Gp then M3 is homeomorphic
to a lens space Lp,q.

Acknowledgments. The study was supported by a grant from the Russian Science Foun-
dation, contract 23-71-30008.

2 Necessary definitions and facts

2.1 Topology

For any subset X of the topological space Y we will denote by iX : X → Y the inclusion
map. For any continuous map ϕ : X → Y from the topological space X to the topological
space Y will be denoted by ϕ∗ : π1(X) → π1(Y ) its induced homomorphism.
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By Cr-embedding (r ⩾ 0) of a manifold X into a manifold Y is called a map f : X → Y

such that f : X → f(X) is a Cr-diffeomorphism. C0-embedding is also called a topological
embedding.

The topological embedding λ : X −→ Y of an m-manifolds X into an n- manifold Y

(n ⩽ m) is called locally flat at a point λ(x), x ∈ X, if the point λ(x) belongs to a local
chart (U, ψ) of the manifold Y , that ψ(U ∩ λ(X)) = Rm, where Rm ⊂ Rn – the set of
points whose last n −m coordinates are 0 or ψ(U ∩ λ(X)) = Rm

+ , where Rm
+ ⊂ Rm – the

set of points whose last coordinate is non-negative. The embedding λ is called tame, and a
manifold X is tamely embedded, if λ is locally flat at every point λ(x), x ∈ X. Otherwise,
the embedding λ is called wild, and the manifold X is wildly embedded. Any point λ(x)
that is not locally flat is called a wildness point.

Let Dn = {(x1, . . . , xn) ∈ Rn :
n∑

i=1

x2i ⩽ 1} — is a standard n-disk (ball), D0 = {0},

Sn−1 = {(x1, . . . , xn) ∈ Rn :
n∑

i=1

x2i = 1} — it is a standard (n− 1)-sphere, S−1 = ∅.

Proposition 2.1 ([14], Lemma 2.1). Let λ : S2 → M3 be a topological embedding that is
smooth everywhere except at one point s0, x0 = λ(s0), Σ = λ(S2), y0 ∈ Σ \ {x0} be a fixed
point and V be a fixed neighborhood of the sphere Σ. Then there exists a smooth 3-ball B
contained in V such that x0 ∈ B and ∂B transversally intersects Σ along a single curve
separating the points x0 and y0 in Σ.

A topologically embedded into n-manifold X (n − 1)-sphere Sn−1 is called cylindrical
or cylindrically embedded if there is a topological embedding e : Sn−1 × [−1, 1] → X such
that e(Sn−1 × {0}) = Sn−1.

An n-manifold X is called irreducible if any (n − 1)-sphere cylindrical embedded in X

bounds an n-ball there.
A 3-manifold X is called simple if it is either irreducible or homeomorphic to S2 × S1.

A surface F topologically embedded into a 3-manifold X is called properly embedded if
∂X ∩F = ∂F . A properly embedded into X a surface F is called compressible in X in one
of the following two cases:

1) there is a non-contractible simple closed curve c ⊂ intF and an embedded 2-disk
D ⊂ intX such that D ∩ F = ∂D = c;

2) there is a 3-ball B ⊂ intX such that F = ∂B.
A surface F is called incompressible in X if it is not compressible in X.

Proposition 2.2 ([9], Theorem 4). Let T be a two-dimensional torus smoothly embedded
in the manifold S2 × S1 so that iT∗(π1(T )) ̸= 0. Then T is a boundary of a solid torus,
smoothly embedded into S2 × S1.

Proposition 2.3 ([9], Lemma 3.1). Let S be a two-dimensional sphere cylindrical embedded
in the manifold S2 × S1. Then S either bounds a 3-ball there, or is ambiently isotopic to
the sphere S2 × {s0}, s0 ∈ S1.
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Proposition 2.4 ([15], Exercise 6). Any two-sided compressible 2-torus T in an irreducible
3-manifold X either restricts the solid torus, or it is contained in a 3-ball there.

Proposition 2.5 ([16], Chapter 4, sec. 5, corollary 1). Any n-dimensional manifold cannot
be separated by a subset of dimension ⩽ n− 2.

2.2 Morse-Smale diffeomorphisms

Let Mn be a smooth closed n-manifold with the metric d and f : Mn → Mn be an
orientation-preserving diffeomorphism.

A compact f -invariant set A ⊂ Mn is called an attractor of a diffeomorphism f if it
has a compact neighborhood UA such that f(UA) ⊂ int(UA) and A =

⋂
k⩾0

fk(UA). The

neighborhood UA is called trapping. Repeller is defined as an attractor for f−1.
A point x ∈ Mn is called a wandering point of the diffeomorphism f if it has a neigh-

borhood Ux ⊂Mn such that fk(Ux)∩ Ux = ∅ for any k ̸= 0. The complement to the set of
wandering points is called a non-wandering set of the diffeomorphism f .

If the non-wandering set of f is finite that it consists of periodic points. An isolated
periodic point p of the period mp of the diffeomorphism f is called hyperbolic if absolute
values of all the eigenvalues of the Jacobi matrix

(
∂fmp

∂x

)
|p are not unit. If all eigenvalues

by modulo are less than (greater than) one, then p is called a sink (source) point. The sink
and source points are called nodes. If a hyperbolic periodic point is not nodal, then it is
called saddle point.

If f has a finite number of periodic points, all of them are hyperbolic, then the hyperbolic
structure of the periodic point p implies that its stable

W s
p = {x ∈Mn : lim

k→+∞
d(fkmp(x), p) = 0}

and unstable
W u

p = {x ∈Mn : lim
k→+∞

d(f−kmp(x), p) = 0}

manifolds are smooth submanifolds, diffeomorphic to Rqp and Rn−qp , respectively, where qp
is the number of eigenvalues of the Jacobi matrix with the absolute value greater than 1
(Morse index of the point p). The stable and the unstable manifolds are called invariant
manifolds.

A number νp = +1 (−1) is called an orientation type of the point p if the map fmp|W u
p

preserves (changes) the orientation.
A connected component ℓup (ℓsp) of the set W u

p \ p (W s
p \ p) is called an unstable (stable)

separatrix of the point p.
Diffeomorphism f : Mn → Mn defined on a smooth closed connected orientable n-

dimensional manifold (n ≥ 1) Mn is called a Morse-Smale diffeomorphism if

1. its nonwandering set Ωf consists of a finite number of hyperbolic orbits;
6



2. intersection of the invariant manifolds W s
p , W u

q is transversal for any nonwandering
points p, q.

Denote by MS(Mn) the set of orientation-preserving Morse-Smale diffeomorphisms de-
fined on an orientable n-manifold Mn.

Proposition 2.6 ([17], Theorem 2.1.1.). Let f ∈MS(Mn). Then

1. Mn =
⋃

p∈Ωf

W u
p ;

2. W u
p is a smooth submanifold of the manifold Mn, diffeomorphic to Rqp for any periodic

point p ∈ Ωf ;

3. cl(ℓup) \ (ℓup ∪ p) =
⋃

r∈Ωf :ℓup∩W s
r ̸=∅

W u
r for any unstable separatrix ℓup(ℓsp) of periodic point

p ∈ Ωf .

If σ1, σ2 different saddle periodic points of the diffeomorphism f ∈MS(Mn), for which
W s

σ1
∩W u

σ2
̸= ∅, then the intersection W s

σ1
∩W u

σ2
is called the heteroclinic intersection. The

path connected components of a heteroclinic intersection are called heteroclinic points if
their dimension is 0, heteroclinic curves if their dimension is 1, and heteroclinic manifolds
if their dimension is greater than 1.

The diffeomorphism f ∈ MS(Mn) is called gradient-like if from the condition W u
σ1

∩
W u

σ2
̸= ∅ for different points σ1, σ2 ∈ Ωf it follows that dimW u

σ1
< dimW u

σ2
. This is

equivalent to the absence of heteroclinic points for the diffeomorphism f .

Proposition 2.7 ([17], Proposition 2.1.3.). If a separatrix ℓuσ of a saddle point σ of a
diffeomorphism f ∈ MS(Mn) does not participate in the heteroclinic intersection, then
there is a unique sink point ω such that

cl(ℓuσ) = σ ∪ ℓuσ ∪ ω.

At the same time, cl(ℓuσ) is homeomorphic to the segment if qp = 1 and homeomorphic to
the sphere Sqp if qp > 1.

Let’s put Ŵ u
p = (W u

p \ p)/fmp and denote by pŴu
p
: W u

p \ p→ Ŵ u
p natural prection.

Proposition 2.8 ([17], Theorem 2.1.3). The projection pŴu
p

is a covering that induces the
structure of a smooth qp-manifolds on the space of orbits Ŵ u

p . At the same time:

• for qp = 1, νp = −1 the space Ŵ u
p is homeomorphic to a circle;

• for qp = 1, νp = +1 the space Ŵ u
p is homeomorphic to a pair of circles;

• for qp = 2, νp = −1 the space Ŵ u
p is homeomorphic to the Klein bottle;

• for qp = 2, νp = +1 the space Ŵ u
p is homeomorphic to a two-dimensional torus;
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• for qp ⩾ 3, νp = −1 space Ŵ u
p is homeomorphic to the generalized Klein bottle

Sqp−1×̃S1;

• for qp ⩾ 3, νp = +1 the space Ŵ u
p is homeomorphic to Sqp−1 × S1.

Let f ∈ MS(Mn). Denote by Ω0
f , Ω

1
f , Ω

2
f the set of sinks, saddles and sources of

diffeomorphism f . We divide the set Ω1
f into two disjoint subsets ΣA and ΣR such that the

sets
A = Ω0

f ∪W u
ΣA
, R = Ω2

f ∪W s
ΣR

are closed and invariant. By construction, the sets A, R contain all periodic points of
the diffeomorphism f . The largest dimension of the unstable (stable) manifold of periodic
points from A(R) is called dimension of A (R).

Proposition 2.9 ([18], Theorem 1). Let f ∈MS(Mn). Then the set A (respectively R) is
an attractor (repeller) of the diffeomorphism f . Moreover, if the dimension of the attractor
A (repeller R) ⩽ n− 2, then the repeller R (attractor A) is connected.

Following [18], we will call A and R a dual attractor and repeller of the Morse-Smale
diffeomorphism f ∈MS(Mn), and the set V =Mn \ (A∪R) – a characteristic set. Denote
by

V̂ = V/f

the set of orbits of the action of the group F = {fk, k ∈ Z} on the manifold V – character-
istic space, which coincides with the set of orbits of the diffeomorphism f on V . Let

pV̂ : V → V̂

be a natural projection that matches the point x ∈ V with its orbit by virtue of the
diffeomorphism f and endows the set V̂ with a factortopology.

Proposition 2.10 ([18], Theorem 2). For any dual pair of attractor-repeller A,R of the
Morse-Smale diffeomorphism f ∈MS(Mn) the following is true:

• the characteristic space V̂ is a closed smooth orientable n-manifold, whose each con-
nected component is either irreducible or homeomorphic to Sn−1 × S1;

• projection pV̂ : V → V̂ is a cover;

• a map ηV̂ , which assigns to each homotopy class [ĉ] of loops ĉ ⊂ V̂ closed at a point
x̂ an integer n such that lifting the loop ĉ by V connects some point x ∈ p−1

V̂
(x̂)

with a point fn(x), is a homomorphism on the fundamental group of each connected
component of the space V̂ ;

• if the dimension of the attractor A and the repeller R ⩽ n−2, then V, V̂ are connected
and the map ηV̂ : π1(V̂ ) → Z is an epimorphism.
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A submanifold X̂ ⊂ V̂ is called ηV̂ -essential, if ηV̂ (iX̂∗(π1(X̂)) ̸= {0}.
Let UA be a trapping neighborhood of an attractor A of a Morse-Smale diffeomorphism

f : Mn → Mn and R be the dual to it repeller. Let FA = UA \ f(UA), then cl(FA) is the
fundamental domain of the diffeomorphism f restriction to V . Suppose V̂A = cl(FA)/f ,
then V̂A is a smooth closed n-manifold obtained from cl(FA) by identifying boundaries due
to the diffeomorphism f . Denote by pA : cl(FA) → V̂A the natural projection.

Consider the family Ef ∈ Diff(Mn) of diffeomorphisms such that Ωf ′ = Ωf for any
diffeomorphism f ′ ∈ Ef and the diffeomorphism f ′ coincides with the diffeomorphism f on
UA and in some neighborhood of R.

For any diffeomorphism f ′ ∈ Ef , we put l̂sf ′ = pA(W
s
ΣA

∩ FA) and l̂uf ′ = pA(W
u
ΣR

∩ FA).

Proposition 2.11 ([19], Lemma 1). Let ĥ : V̂A → V̂A be an isotopic to identity diffeomor-
phism. Then there exists a smooth arc φt ⊂ Ef such that φ0 = f, φ1 = f ′ and l̂uf ′ = ĥ(l̂uf ),
l̂sf ′ = l̂sf .

2.3 Classification of Morse-Smale 3-diffeomorphisms

Let f ∈MS(M3). Let’s put

Af = W u
Ω0∪Ω1

, Rf = W s
Ω2∪Ω3

, Vf =M3 \ (Af ∪Rf ).

By proposition 2.10 set Af (Rf ) is a connected attractor (repeller) whose topological di-
mension is less than or equal to 1, the set Vf is a connected 3-manifold and

Vf = W s
Af∩Ωf

\ Af = W u
Rf∩Ωf

\Rf .

Moreover, the space V̂f = Vf/f is a connected closed orientable 3-manifold and the natural
projection p

f
: Vf → V̂f induces an epimorphism η

f
: π1(V̂f ) → Z, attributing to each

homotopy class [c] ∈ π1(V̂f ) of a closed curve c ⊂ V̂f an integer n such that a lift of c
connects some point x ∈ Vf with the point fn(x). Let’s put

L̂s
f = p

f
(W s

Ω1
\ Af ), L̂

u
f = p

f
(W u

Ω2
\Rf ).

Set Sf = (V̂f , ηf
, L̂s

f , L̂
u
f ) is called a scheme of the diffeomorphism f ∈MS(M3).

Proposition 2.12 ([5], Theorem 1). Diffeomorphisms f, f ′ ∈ MS(M3) are topologically
conjugate if and only if their schemes are equivalent, that is, there is a homeomorphism
φ̂ : V̂f → V̂f ′ such that

1) η
f
= η

f ′
φ̂∗;

2) φ̂(L̂s
f ) = L̂s

f ′ , φ̂(L̂u
f ) = L̂u

f ′.

To solve the realization problem it is necessary to identify the set of all abstract schemes
that can be implemented by a Morse-Smale diffeomorphism.
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Let V̂ be a simple smooth 3-manifold whose fundamental group admits an epimorphism
η : π1(V̂ ) → Z, ℓ̂ ⊂ V̂ be an η-essential smooth torus and Nℓ̂ ⊂ V̂ is its tubular neighbor-
hood. Let Ŷ = D2 × S1 and µ̂ be a meridian of the solid torus Ŷ (closed curve contractible
on Ŷ and essential on ∂Ŷ ) and ζ

ℓ
: ∂Ŷ × S0 → ∂Nℓ̂ be a diffeomeomorphism such that

η(ζ
ℓ
(µ̂× S0)) = 0. It is said that the space V̂ℓ̂ = (V̂ \ intNℓ̂) ∪ζ

ℓ
(Ŷ × S0) is obtained from

the manifold V̂ by a cut-gluing operation along the torus ℓ̂.
Structure of a smooth closed 3-manifold on the set V̂ℓ̂ induced by the natural projection

p
ℓ̂
: (V̂ \ intNℓ̂) ⊔ (Ŷ × S0) → V̂ℓ̂. Since any homeomorphism of the boundary of the

solid torus that translates meridian to meridian can be extended to the solid torus [20], the
described operation is correctly defined, that is, it does not depend (up to homeomorphism)
on the choice of the tubular neighborhood Nℓ̂ and the homeomorphism ζ

ℓ
.

Similarly, a cut-gluing operation along an η-essential smooth Klein bottle ℓ̂ ⊂ V̂ is defined
and it consists of a gluing the solid torus Ŷ to the boundary of the manifold V̂ \ intNℓ̂.
Also, the cut-gluing operation is generalized to the set L̂ ⊂ V̂ , which is a disjoint union of
smooth η-essential tori and Klein bottles, we will denote by VL̂ the manifold obtained as a
result of such an operation.

For a gradient-like diffeomorphism f ∈ MS(M3) each connected component ℓ̂s (ℓ̂u) of
the sets L̂s

f (L̂
u
f ) is either a torus or a Klein bottle, η

f
-essentially embedded into the manifold

V̂f .
The scheme of any gradient-like diffeomorphism f ∈MS(M3) is an abstract schema in

the sense of the following definition.
A collection S = (V̂ , η, L̂s, L̂u) is called an abstract scheme if:
1) V̂ is a simple manifold whose fundamental group admits an epimorphism η : π1(V̂ ) →

Z;
2) the sets L̂s, L̂u ⊂ V̂ are transversally intersecting disjoint unions of smooth η-essential

tori and Klein bottles;
3) each connected component of the manifolds V̂L̂s , V̂L̂u is homeomorphic to the manifold

S2 × S1.

Proposition 2.13 ([6], Theorem 1). For any abstract scheme S = (V̂ , η, L̂s, L̂u) there is a
gradient-like diffeomorphism f ∈MS(M3) whose scheme Sf is equivalent to the scheme S.

2.4 Topology of 3-manifolds admitting Morse-Smale diffeomor-

phisms with a given structure of a non-wandering set

Let f ∈MS(M3). Let’s say

g
f
=
r
f
− l

f
+ 2

2
,

where r
f

is the number of saddle points and l
f

is the number of nodal periodic points of
the diffeomorphism f . According to [17], the number g

f
is a non-negative integer for any

diffeomorphism f ∈MS(M3).
10
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Figure 4: Wild frame of separatrix in which each separatrix is tame

If f ∈ MS(M3) is a gradient-like diffeomorphism. According to proposition 2.7, the
closure cl(ℓuσ) of any one-dimensional unstable separatrix ℓuσ of the saddle point σ of the
diffeomorphism f is homeomorphic to a segment that consists of this separatrix and two
points: σ and some sink ω. Let Lω be a union of unstable one-dimensional separatrices
of saddle points that contain ω in their closures. According to proposition 2.8, W s

ω is
homeomorphic to R3 and the set Lω ∪ ω is a union of simple arcs with a single common
point ω, then by analogy with a frame of arcs in R3, Lω ∪ ω is called a frame of one-
dimensional unstable separatrices.

According to [7], a frame of separatrix Lω∪ω is called tame if there is a homeomorphism
ψω : W s

ω → R3 such that ψω(Lω ∪ ω) — a frame of rays in R3. Otherwise, the separatrix
frame is called wild (see Fig. 4).

If α is the source of the diffeomorphism f , then the tame (wild) bundle Lα of one-
dimensional stable separatrices is similarly defined.

Proposition 2.14 ([7], Theorem 4.1). If all frames of one-dimensional separatrices of a
gradient-like diffeomorphism f ∈MS(M3) are tame, then the ambient manifold M3 admits
a Heegaar splitting of the genus gf .

Proposition 2.15 ([14], Theorem 1). Let f ∈MS(M3) be a Morse-Smale diffeomorphism
without heteroclinic curves. Then the following statements are true:

1) if g
f
= 0, then M3 – 3-sphere;

2) if g
f
> 0, then M3 – connected sum of g

f
copies of S2 × S1.

Conversely, for any non-negative integers r, l, g such that the number g = r−l+2
2

is an
integer and non-negative, there is a diffeomorphism f ∈ MS(M3) without heteroclinic
curves, with the following properties:

a) M3 – 3-sphere if g = 0 and M3 – connected sum of g copies of S2 × S1 if g > 0;
11



b) the non-wandering diffeomorphism set f consists of r saddle and l node points.

Recall that lens space is defined as a gluing of two solid tori by means of a homeomor-
phism of their boundaries and is denoted by Lp,q, p, q ∈ Z, where ⟨p, q⟩ is the homotopy type
of the image of a meridian with respect to the gluing homeomorphism. Some well-known
3-manifolds are actually lens spaces, for example, the three-dimensional sphere S3 = L1,0,
the manifold S2 × S1 = L0,1, the projective space RP 3 = L1,2.

Proposition 2.16 ([7], Theorem 6.1). Let f : Lp,q → Lp,q be a Morse-Smale diffeomorphism
whose non-wandering set consists of exactly four points. Then

1) f – gradient-like;

2) periodic points of the diffeomorphism f have pairwise different Morse indices;

3) if all frames of one-dimensional separatrices of f are tame, then the wandering set of
diffeomorphism f contains at least p of non-compact heteroclinic curves.

3 Dynamics of diffeomorphisms of the class G

In this section, we establish some dynamic properties of the diffeomorphism f :M3 →M3

from the class G.
Recall that the class G consists of diffeomorphisms f ∈ MS(M3) having exactly four

non-wandering points ωf , σ
1
f , σ

2
f , αf with Morse indices 0, 1, 2, 3, respectively.

Due to the absence of heteroclinic points in the diffeomorphism f , one-dimensional
saddle manifolds contain a unique nodal point in their closures (see, sentence 2.7). Exactly,

cl(W u
σ1
f
) = W u

σ1
f
∪ ωf , cl(W

s
σ2
f
) = W s

σ2
f
∪ αf .

In this case, by proposition 2.8, the sets Af = cl(W u
σ1
f
), Rf = cl(W s

σ2
f
) are pairwise disjoint

topologically embedded circles (see Fig. 2, 3, 5, 6), possibly wild at the nodal points. Recall
that

Hf = W s
σ1
f
∩W u

σ2
f
.

If the set Hf is not empty, then, by proposition 2.6,

cl(W s
σ1
f
) = W s

σ1
f
∪Rf , cl(W

u
σ2
f
) = W u

σ2
f
∪ Af .

Otherwise, according to proposition 2.7, the sets

cl(W s
σ1
f
) = W s

σ1
f
∪ αf , cl(W

u
σ2
f
) = W u

σ2
f
∪ ωf

are topologically embedded disjoint two-dimensional spheres (see Fig. 6).

12
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Figure 5: Phase portrait of a diffeomorphism f ∈ G with a non-empty set Hf

3.1 Consistent neighborhoods system

Let N1 = {(x1, x2, x3) ∈ R3 : x21(x
2
2 + x23) ⩽ 1} and N2 = {(x1, x2, x3) ∈ R3 : (x21 + x22)x

2
3 ⩽

1}. Define in the neighborhood of N1 a pair of transversal foliations Fu
1 ,F s

1 as follows:

Fu
1 =

⋃
(c2,c3)∈Ox2x3

{(x1, x2, x3) ∈ N1 : (x2, x3) = (c2, c3)},

F s
1 =

⋃
c1∈Ox1

{(x1, x2, x3) ∈ N1 : x1 = c1}.

Define in the neighborhood of N2 a pair of transversal foliations Fu
2 ,F s

2 as follows:

Fu
2 =

⋃
c3∈Ox3

{(x1, x2, x3) ∈ N3 : x3 = c3},

F s
2 =

⋃
(c1,c2)∈Ox1x2

{(x1, x2, x3) ∈ N3 : (x1, x2) = (c1, c2)}.

We define diffeomorphisms νi : R3 → R3 by formulas:

ν1(x1, x2, x3) =
(
2x1,

x2
2
,
x3
2

)
, ν2 = a−1

1 .

Note that for i ∈ {1, 2}, the set Ni is invariant with respect to diffeomorphism νi, which
translates leaves of the foliation Fu

i (F s
i ) into leaves of the same foliation.

By [21], the saddle point σi
f of the diffeomorphism f ∈ G has a linearizing neighborhood

N i
f equipped with the homeomorphism µi : N

i
f → Ni, conjugating the diffeomorphism f |N i

f

with the diffeomorphism νi|Ni
and being a diffeomorphism on N i

f \ (W s
σi
f
∪W u

σi
f
). Foliations

Fu
i ,F s

i are induced by the homeomorphism µ−1
i , f -invariant foliations of F u

i , F
s
i on the

13
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Figure 6: Phase portrait of a diffeomorphism f ∈ G with an empty set Hf

linearizing neighborhood N i
f . For any point x ∈ N i

f we will denote by F u
i,x (F s

i,x) a unique
leaf of the foliation F u

i (F s
i ) passing through the point x.

If the set Hf is empty, then the set Nf of disjoint linearizing neighborhoods N1
f , N

2
f of

saddle points of the diffeomorphism f is called a consistent neighborhoods system, and the
foliations F s

i , F
u
i (i = 1, 2) – consistent.

If Hf ̸= ∅, then we choose f -invariant tubular neighborhood NHf
⊂ M3 of curves of

the set Hf , equipped with f -invariant C1,1-foliation F , consisting of two-dimensional disks,
transversal to Hf . For any point x ∈ NHf

, we will denote by Fx a unique leaf of the foliation
F passing through the point x.

The unionNf of linearizing neighborhoods ofN1
f , N

2
f saddle points of the diffeomorphism

f is called a consistent neighborhoods system, and the foliations F s
i , F

u
i (i = 1, 2), are

consistent if for any point x ∈ (N1
f ∩N2

f ∩NHf
) and the leaf Fx of the foliation F passing

through the point x, the conditions are met (see Fig. 7):

F s
1,x ∩ Fx = F s

2,x ∩ (N1
f ∩NHf

), F u
2,x ∩ Fx = F u

1,x ∩ (N2
f ∩NHf

).

Proposition 3.1 ([5], Theorem 1). For any diffeomorphism f ∈ G there is a consistent
neighborhoods system.

3.2 Quotients

Consider the characteristic spaces Vωf
= W s

ωf
\ωf and V̂ωf

= Vωf
/f . By proposition 2.8, V̂ωf

is diffeomorphic to the manifold S2×S1. By proposition 2.10, the projection pωf
: Vωf

→ V̂ωf14



Figure 7: Consistent neighborhoods system

is covering which generate an epimorphism ηωf
: π1(Vωf

) → Z. Let’s put (see Fig. 8)

Âf = pωf
(Af ).

By proposition 2.8, Âf consists of a pair of disjoint knots L1
f ⊔ L2

f such that the map

L1

f

Lf
2

Figure 8: Space V̂ωf

iLi
f∗ : π1(L

i
f ) → π1(V̂ωf

), i ∈ {1, 2} is an isomorphism. Moreover,

NÂf
= pωf

(N1
f ∩ Vωf

)

is a disjoint union of tubular neighborhoods NL1
f
, NL1

f
of knots L1

f , L
2
f , accordingly.

15



Proposition 3.2 ([17], Lemma 4.4). If at least one of the sets V̂ωf
\ intNL1

f
, V̂ωf

\ intNL2
f

is not homeomorphic to a solid torus, then the manifold W u
σ1
f

is wildly embedded into the
supporting manifold M3.

By proposition 2.9, the sets Af and Rf are dual attractor and repeller, respectively, for
the diffeomorphism f . Let’s put

Vf =M3 \ (Af ∪Rf ).

By proposition 2.10, the characteristic space V̂f = Vf/f is a smooth simple orientable
3-manifold, and the natural projection p

f
: Vf → V̂f is a cover inducing an epimorphism

η
f
: π1(V̂f ) → Z.

Let’s put (see Fig. 9)

T s
f = p

f
(W s

σ1
), T u

f = p
f
(W u

σ2
), Cf = p

f
(Hf ).

By propositions 2.8 and 2.10, the sets T s
f , T

u
f are smoothly embedded 2-tori in V̂f such

Figure 9: Space V̂f

that η
f
(iT s

f ∗(π1(T
s
f ))) = η

f
(iTu

f ∗(π1(T
u
f )))

∼= Z. Moreover

NT s
f
= p

f
(N1

f ∩ Vf ), NTu
f
= p

f
(N2

f ∩ Vf )
16



are tubular neighborhoods of the tori T s
f , T

u
f , accordingly.

3.3 The scheme of f ∈ G

As was mentioned above the collection

Sf = (V̂f , ηf
, T s

f , T
u
f )

is the scheme of f ∈ G and, by proposition 2.12, is a complete invariant of the topological
classification.

The main result of the section is the following lemma.

Lemma 3.1 ([19], Lemma 2). For any diffeomorphism f ∈ G, the following is true:

1. the manifold V̂f is irreducible and the tori T s
f , T

u
f are incompressible in it;

2. the set Cf consists of a finite number of smoothly embedded closed curves, while
η
f
([c]) = 0 if and only if the curve c ⊂ Cf is a projection of a compact heteroclinic

curve;

3. any curve c ⊂ Cf such that η
f
([c]) = 0 is contractible (or non-contractible) simulta-

neously on both tori T s
f , T

u
f .

Proof. Let us prove successively all the statements of the lemma.
1. By virtue of the sentence 2.9, the manifold V̂f is simple. Since the torus T s

f is η
f
-

essential in V̂f , then it does not lie in a 3-ball. Let’s show from the opposite that the torus
T s
f does not bound the solid torus in V̂f . It follows from proposition 2.2, that the manifold
V̂f is not homeomorphic to S2 × S1 and, therefore, is irreducible. Then, by proposition 2.4,
the torus T s

f is incompressible in V̂f .
If we assume that V̂f ∼= S2 × S1, then the torus T s

f bounds a solid torus there by
proposition 2.2, and therefore V̂f \ T s

f consists of two connected components. On the other
hand, by proposition 2.6,

M3 = W s
ωf

∪W s
σ1
f
∪W s

σ2
f
∪W s

αf
.

Then Vf \W s
σ1
f
= W s

ωf
\Af and, hence, the manifolds V̂f \T s

f and V̂ωf
\Âf are homeomorphic.

Since a one-dimensional submanifold does not divide a manifold of dimension three (see
proposition 2.5), the set V̂ωf

\ Âf is connected (see Fig. 8). We got a contradiction with
the fact that a connected manifold is homeomorphic to an non-connected one.

2. It follows directly from the definition of the epimorphism η
f

that η
f
([c]) = 0 if and

only if c is a projection of a compact curve.
3. Suppose that some curve c ⊂ Cf is contractible on the torus T u

f and essential on the
torus T s

f . Then, by definition, the torus T s
f is compressible in V̂f , which contradicts the

proven point 1.
17



Denote by C0
f a subset of Cf consisting of contractible on T u

f curves. Let’s call the
heteroclinic curves from the set H0

f = p−1
f (C0

f ) inessential, the remaining heteroclinic curves
will be called essential.

4 Trivialization of the dynamics of diffeomorphisms

from G

Recall that for any diffeomorphism f ∈ G, we introduced the concept of a heteroclinic index
If of f and for an integer p ⩾ 0 we denote by Gp ⊂ G a subset of diffeomorphisms f ∈ G

such that If = p. Note that any essential compact heteroclinic curve γ ⊂ Hf bounds a
disk dγ ⊂ W s

σ1
f

containing the saddle σ1
f . We will consider any such curve oriented so that

when moving along it, the disk dγ remains on the left. Then for the curve γ, similarly to a
non-compact curve, an orientation vγ is determined.

The set Hf is called orientable if it consists only of essential heteroclinic curves with the
same orientation. Otherwise, we will call the set Hf not orientable (see Fig. 3). Denote
by G+

p ⊂ Gp, p ⩾ 0 a subset of diffeomorphisms f ∈ Gp with an orientable set Hf . Thus,
for any diffeomorphism f ∈ G+

p , the set Hf is either empty, or consists either only of
non-compact or only of compact heteroclinic curves (see Fig. 10).

f

f

f

f

1

Hf

Figure 10: Diffeomorphism f ∈ G+
0 with an orientable set Hf consisting of an infinite set of

compact curves

The main result of this chapter is the proof of the following theorem.

Theorem 3. For any diffeomorphism f : M3 → M3 from the class Gp, p ⩾ 0 in the
set Diff(M3) there is an arc connecting the diffeomorphism f with some diffeomorphism
f+ ∈ G+

p .
18



The proof of the theorem will directly follow from the lemmas 4.1, 4.2, proved below.

4.1 Disappearance of inessential heteroclinic curves

Denote by G̃p ⊂ Gp a subclass of diffeomorphisms f for which the set H0
f is empty.

The main result of this section is the proof of the following fact.

Lemma 4.1. For any diffeomorphism f : M3 → M3 from the class Gp there exists an arc
in the set Diff(M3) connecting the diffeomorphism f with some diffeomorphism f̃ ∈ G̃p.

Proof. Let f ∈ Gp. If H0
f = ∅, then the lemma is proved. Otherwise, by lemma 3.1, for any

u
d

d

b

Figure 11: Construction of the 3-ball bc

curve c ⊂ C0
f there exists a unique disk dsc such that dsc ⊂ T s

f , c = ∂dsc and a similar disk
duc ⊂ T u

f curve c = ∂duc (see Fig. 11).
Among the curves of the set C0

f , we choose an innermost curve c, that is, such that
int dsc ∩ C0

f = ∅. Since dsc ∩ duc = c, the set dsc ∪ duc is a two-dimensional sphere cylindrical
embedded into the manifold V̂f . By lemma 3.1, the manifold V̂f is irreducible and, therefore,
this sphere bounds a three-dimensional ball bc there. Denote by T u

f,c a two-dimensional
torus obtained by smoothing the torus (T u

f \ duc ) ∪ dsc. Then there is an isotopic to identity
diffeomorphism ĥ : V̂f → V̂f such that ĥ(T u

f ) = T u
f,C0

f
. Then by proposition 2.11 there is an

arc ζt ⊂ Ef such that ζ0 = f and T u
ζ1
= T u

f,c, T s
ζ1
= T s

f .
Repeating this process for each innermost curve, we get a required diffeomorphism

f̃ ∈ G̃p.
19



4.2 Disappearance of non-orientable heteroclinic curves

The main result of this section is the proof of the following fact.

Lemma 4.2. For any diffeomorphism f : M3 → M3 from the class G̃p there exists an arc
in the set Diff(M3) connecting the diffeomorphism f with some diffeomorphism f+ ∈ G+

p .

Proof. Let f ∈ G̃p. If the set Hf is either empty or orientable, then the lemma is proved.

Figure 12: Projections of non-compact heteroclinic curves with different orientations into the
space V̂f

Otherwise, Cf consists of essential pairwise homotopy on each of the tori T s
f , T

u
f (see, for

example, [20]) curves and among them there are curves c+, c− with the positive, negative
orientation, accordingly (see Fig. 12, 13).

We show that the number of curves in Hf can be reduced by at least two.
To do this, put Yf = pωf

(W u
σ2
f
∩ Vωf

) and Ỹf = Yf \ int (NL1
f
⊔ NL2

f
). Then Ỹf consists

of a finite number of annuli whose boundaries lie on the tori T 1
f = ∂NL1

f
, T 2

f = ∂NL2
f
. Due

to the non-orientability of the set Hf , there is a connected component Ku of the set Ỹf
having boundary circles on the same connected component of the set T 1

f ⊔T 2
f , for certainty

we assume that on T 1
f . Then the circles ∂Ku divide the torus T 1

f into two annuli, each of
which Ks forms a two-dimensional torus TKu when combined with the annulus Ku. We
show that Ks can be chosen such that the torus TKu is a boundary of a solid torus QKu ,
whose the interior avoids NL1

f
⊔NL2

f
in V̂ωf

(see Fig. 14, 15).
Since the torus T 1

f is ηωf
-essential in V̂ωf

, then the annulus Ku can be chosen so that
the torus TKu is also ηωf

-essential in V̂ωf
. By proposition 2.2, the torus TKu bounds a solid

torus QKu in V̂ωf
. If NL1

f
⊂ QKu , then, by construction, cl(QKu \NL1

f
) is also a solid torus

bounded by a torus constructed by the second annulus Ks. Therefore, everywhere else we
assume that QKu ∩NL1

f
= Ks.
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Figure 13: Projections of compact heteroclinic curves with different orientations into the space
V̂f

Thus, every annulus Ku is associated with a torus TKu , bounding the solid torus QKu

in V̂ωf
. Since, by proposition 2.4, any torus homotopically nontrivially embedded in a solid

torus bounds a unique solid torus there, then among all such solid tori QKu there exists
QKu

0
whose interior does not intersect with annuli Ku. Then the interior of the torus QKu

0

does not intersect with the tori NL1
f
⊔NL2

f
and QKu

0
∩ Yf = Ku

0 . Denote by Ks
0 the second

half of the torus TKu
0
.

Denote by Ku
0 the connected component of the set T u

f \ Cf such that p
f
(p−1

ωf
(Ku

0 )) ⊂
Ku

0 and through Ks
0 the connected component of the set T s

f \ Cf such that the annulus
p
f
(p−1

ωf
(Ks

0)), Ks
0 lie in the same connected component N s

0 of the set NT s
f
\ T u

f . Denote by
K′s

0 the connected component of the set ∂NT s
f
∩N s

0 , different from p
f
(p−1

ωf
(Ks

0)). Let’s put
K′u

0 = Ku
0 ∪ (cl(N s

0 ) ∩ T u
f ).

By construction ∂Ks
0 = ∂Ku

0 = c+ ⊔ c−, where c+, c− ⊂ Cf are non-contractible curves
with the positive, negative orientation, respectively. In addition, the torus T0 = Ku

0 ∪ Ks
0

bounds in V̂fa solid torus Q0, whose interior does not intersect with the set T u
f ∪T s

f . Denote
by T ′u

f a two-dimensional torus obtained by smoothing the torus (T u
f \K′u

0 )∪K′s
0 . Since the

torus T ′
0 = K′u

0 ∪ K′s
0 bounds in V̂f a solid torus Q′

0, whose interior does not intersect with
the torus T u

f , then there is an isotopic to identity diffeomorphism ĥ : V̂f → V̂f such that
ĥ(T u

f ) = T ′u
f . Then by proposition 2.11 there is an arc ζt ⊂ Ef such that ζ0 = f, ζ1 = f ′

and T u
f ′ = T ′u

f , T s
f ′ = T s

f .
Thus, the diffeomorphism f ′ ∈ G is given on the same manifold M3 as the diffeomor-

phism f , but has two less heteroclinic curves. Continuing this process, we will construct
an arc connecting the diffeomorphism f with some diffeomorphism f+ ∈ G+

p .
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Figure 14: Projections of invariant saddle manifolds into the space V̂ωf
corresponding to the figure

12

5 Topology of a 3-manifold admitting diffeomorphisms

of the class G

In this section we prove Theorems 2 and 1.

5.1 Lens space as an ambient manifold for diffeomorphisms of class

G

Let us prove that if a manifold M3 admits a diffeomorphism f ∈ Gp then M3 is homeo-
morphic to a lens space Lp,q.

Proof. By theorem 3, without lost of generality, we will assume that f ∈ G+
p , that is, the

set of Hf of heteroclinic curves of the diffeomorphism f is orientable and the heteroclinic
index is p ⩾ 0. Let ’s consider the following cases separately: 1) p = 0, 2) p > 0.

1) In the case p = 0, the set Hf is either empty or consists only of compact curves
bounding disks on W s

σ1
f

containing the saddle σ1
f , and all curves in Hf have the same

orientation (see Fig. 10). If the set Hf is empty, then, by proposition 2.15, the ambient
manifold M3 is homeomorphic to S2 × S1 (see Fig. 6).

If the set Hf is not empty, then each connected component Ku of the set Ỹf is a smooth
two-dimensional annulus having one boundary component on the torus T 1

f , and the other
– on the torus T 2

f and each of the circles is the meridian of the solid torus NL1
f
, NL2

f
,

respectively. Denote by δ1 ⊂ NL1
f
, δ2 ⊂ NL2

f
two-dimensional disks bounded by these

meridians and having exactly one intersection point with the nodes L1
f , L

2
f , respectively.

Then the set S = Ku ∪ d1 ∪ d2 is a two-dimensional sphere cylindrical embedded in the
manifold V̂ωf

. Since the sphere S has a single intersection point with each of the knots
22
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Figure 15: Projections of invariant saddle manifolds into the space V̂ωf
corresponding to the figure

13

L1
f , L

2
f , then, by proposition 2.3, it is ambiently isotopic to the sphere S2 × {s0}, s0 ∈ S1.

Let’s choose a sphere S̃, close to the sphere S, so that the intersection of S̃ ∩ NLi
f
, i =

1, 2 is a two-dimensional disk d̃i having a single intersection point with the knot Li
f and

(S̃ ∩ Yf ) ⊂ int (d̃1 ⊔ d̃2).
Then the sphere S̄, which is a connected component of the set p−1

ωf
(S̃), bounds a 3-ball

B ⊂ W s
ωf

containing ωf in its interior. In this case, the intersection of S̄ ∩W u
σ2
f

belongs

to the disjoint union of two disks ∆1 ⊂ p−1
ωf
(d̃1), ∆2 ⊂ p−1

ωf
(d̃2) (see Fig. 16). Let’s put

I = W u
σ1
\intB. From the properties of a consistent neighborhoods system and orientability

of heteroclinic curves, it follows that there exists a tubular neighborhood NI of an arc I
such that the intersection of ∂NI ∩W u

σ2
f

consists of a single closed curve µ2. Then the set
Q1 = B ∪NI is homeomorphic to a solid torus and the curve µ2 is its meridian.

Since the curve µ2 is homotopic on W u
σ2
f
\ σ2

f by the heteroclinic diffeomorphism curve
f , then it bounds a disk δ2 containing the saddle σ2

f . Let’s choose a tubular neighborhood
Nδ2 ⊂ M3 \ intQ1 of the disk δ2 so that Nδ2 ∩ W u

σ2
f
= δ2 and Nδ2 ∩ ∂Q1 is an annulus

on the torus ∂Q1, which is a tubular neighborhood of the curve µ2. Since the curve µ2

is essential on the torus ∂Q1, the set Sα = ∂(Q1 ∪ Nδ2) is homeomorphic to the 2-sphere.
By construction, the sphere Sα does not intersect with unstable manifolds of saddle points
and, therefore, by proposition 2.6, lies in W u

α , where it bounds a 3-ball Bα.
Thus, the set Q2 = M3 \ intQ1 is so that by cutting it across the disk δ2, a 3-ball is

obtained. This means thatQ2 is a solid torus, the curve µ2 is its meridian, andM3 = Q1∪Q2

is the lens space L0,1
∼= S2 × S1 (see Fig. 10).

2) In the case p > 0, due to the orientability of the set Hf , each connected component
Ku of the set Ỹf is an ηωf

-essential annulus having boundary circles on different tori. Then
each connected component of the boundary of the set N̂f = pωf

(N1
f ∪N2

f ) is an ηωf
-essential

two-dimensional torus in S2 × S1 (see Fig. 17). According to proposition 2.2, each such
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Figure 16: Construction of the ball B

torus bounds in V̂ωf
a solid torus, which implies that N̂f belongs to the interior of the solid

torus Ĵ ⊂ V̂ωf
.

Let J = pω−1
f
(Ĵ). Since J is an f -invariant solid cylinder whose boundary does not in-

tersect the invariant manifolds of saddle points, then, by proposition 2.6, ∂J ⊂ W u
αf

. Let’s
choose a 2-disk d ⊂ (J ∩W u

αf
) so that ∂d ⊂ ∂J and d divides J into two connected com-

ponents. Select a point y0 ∈ int d. Denote by Jωf
the closure of the connected component

containing ωf . Then Jωf
is a 3-ball on the manifold M3, which is tame everywhere, except,

perhaps, the point ωf . Let’s put Sωf
= ∂Jωf

. According to proposition 2.1 there exists a
smooth 3-ball B ⊂ M3 such that ωf ∈ intB and ∂B transversally intersects Sωf

along a
single curve separating in Sωf

points ωf and y0. Without lost of generality, we assume that
∂B intersects the cylinder J along the disk ∆ transversally intersecting N1

f along two disks
and N2

f – along p disks (see Fig. 18).
Let’s put I = W u

σ1
\ intB. From the properties of the consistent neighborhoods system

and orientability of heteroclinic curves, it follows that there exists a tubular neighborhood
NI of an arc I such that NI ∩ ∆ = N1

f ∩ ∆, W s
σ1

intersects with Q1 by one 2-disk whose
boundary µ1 intersects with W u

σ2
exactly at p points and the intersection of ∂NI ∩ W u

σ2
f

consists exactly of p curves. Then the set Q1 = B ∪ NI is homeomorphic to a solid torus
and W u

σ2
∩ ∂Q1 = W u

σ2
∩ (∆ ∪ ∂NI). Since cl(W u

σ2
) \ W u

σ2
= cl(W u

σ1
) ⊂ intQ1, then

W u
σ2

∩ ∂Q1 consists of closed curves. Since the intersection of the disk W u
σ2

with the torus
∂Q1 is oriented, it consists of a single curve µ2 (see Fig. 19).

Since the curve µ2 intersects all heteroclinic curves of the diffeomorphism f in an ori-
entable way, it bounds a disk δ2 containing the saddle σ2

f . Reasoning similarly to the case
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Figure 17: Set N̂f

of p = 0, we get that M3 = Q1 ∪ Q2 is the lens space Lp,q, where ⟨p, q⟩ is the homotopy
type of the curve µ2 on the torus ∂Q1.

5.2 Construction of diffeomorphisms with wildly nested separatri-

ces on each lens space

In this section, we constructively prove theorem 1: on any lens space Lp,q there exists a
diffeomorphism f ∈ G with wildly embedded one-dimensional saddle separatrices.

5.2.1 Construction on the lens L0,1
∼= S2 × S1

Let L1, L2 ⊂ S2 × S1 be two disjoint knots from generator class (Hopf knots), trivial and
non-trivial, respectively. Let NL1 , NL2 be their pairwise disjoint tubular neighborhoods.
Let’s choose on the torus Ti = ∂NLi

, i = 1, 2 generators λi, µi so that the parallel λi is a
Hopf knot, and µi is the meridian of the solid torus NLi

. Let ÑL1 ⊃ NL1 be also a tubular
neighborhood of the knot L1 that does not intersect with NL2 and T̃ = ∂ÑL1 (see Fig. 20).

Denote by V̂ a manifold obtained from S2×S1\int (NL1∪NL2) by identifying the bound-
ary tori by means of a diffeomorphism that translates the meridian µ1 into the meridian µ2.
Denote by q : S2×S1\int (NL1∪NL2) → V̂ the natural projection. Let’s put L̂s = q(T̃ ) and
L̂u = q(T2). Note that the fundamental group π1(V̂ ) admits an epimorphism η : π1(V̂ ) → Z,
which assigns to the homotopy class of a closed curve in V̂ the number of its revolutions
around q(λ1). At the same time, the tori L̂s, L̂u are η-essential. Let ’s put

S = (V̂ , η, L̂s, L̂u).
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By construction, the manifold V̂L̂s is homeomorphic to the initial manifold S2×S1. Since
the torus T̃ bounds two solid tori in S2 × S1, then the manifold V̂L̂u is also homeomorphic
to the manifold S2 × S1.

Thus, the scheme S is an abstract scheme. By proposition 2.13, the scheme S is realiz-
able by some gradient-like diffeomorphism f ∈MS(M3) such that the schemes Sf and S are
equivalent. Since the sets L̂s, L̂u, V̂L̂s , V̂L̂u are connected, the diffeomorphism f has exactly
four non-wandering points of pairwise different Morse indices, that is, f ∈ G. Since the tori
L̂s, L̂u do not intersect, the set Hf is empty. According to the theorem 2, the ambient man-
ifold of the diffeomorphism f is homeomorphic to the lens space L0,1

∼= S2 × S1. According
to proposition 3.2, the manifold W u

σ1
f

is wildly embedded in the supporting manifold.

5.2.2 Construction on the lens Lp,q, p ̸= 0

Let p ̸= 0 and q ̸= 0 be mutually simple with p. On the three-dimensional torus

T3 = S1 × S1 × S1 =
{(
ei2πx, ei2πy, ei2πz

)
: x, y, z ∈ R

}
let’s set the generators

a = S1 × {ei2π0} × {ei2π0}, b = {ei2π0} × S1 × {ei2π0}, c = {ei2π0} × {ei2π0} × S1.

Let’s define two-dimensional tori T̃ s, T̃ u ⊂ T3 as follows:

T̃ s =
{(
ei2πx, ei2πy, ei2πz

)
: z = 0

}
, T̃ u =

{(
ei2πx, ei2πy, ei2πz

)
: z =

p

q
y

}
.

Let’s choose tubular neighborhoods of these tori NT̃ s , NT̃u . By construction, the closure
of each connected component of the set T3 \ (NT̃ s ∪NT̃u) is a solid torus with a generator
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homotopic to the knot a. Let’s choose one such component W and denote by µ
W

the
meridian of the solid torus W (see Fig. 21).

Let L ⊂ S2 × S1 be a non-trivial Hopf knot, NL be its tubular neighborhood with
meridian µ

NL
and ζ : ∂NL → ∂W is a diffeomorphism that translates the meridian µ

NL

into the meridian µ
W

. Let’s put

V̂ = (T3 \ intW ) ∪ζ (S2 × S1 \ intNL).

Denote by q : (T3 \ intW ) ⊔ (S2 × S1 \ intNL) → V̂ the natural projection. Let’s put
L̂s = q(T̃ s), L̂u = q(T̃ u). Note that the fundamental group π1(V̂ ) admits an epimorphism
η : π1(V̂ ) → Z, which assigns to the homotopy class of a closed curve in V̂ the number of
its revolutions around q(a). At the same time, the tori L̂s, L̂u are η-essential. Let ’s put

S = (V̂ , η, L̂s, L̂u).

Let’s check the validity of the abstract scheme by showing that the manifold V̂L̂s is
homeomorphic to the manifold S2 × S1 (for the manifold V̂L̂u , the proof is similar).

By construction, the manifold T3 \ intNT̃ s is homeomorphic to T2 × [0, 1]. Gluing a
solid torus to each component of the connectivity of this manifold so that the meridian of
the solid torus is glued to the curve which is homotopic to b, we get the manifold S2 × S1.
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Figure 21: Construction of a diffeomorphism f ∈ G2 with wildly embedded separatrices

In this case, the resulting manifold is a gluing along the boundary of two solid tori W and
S2×S1 \ intW . Then the manifold V̂L̂s is obtained by gluing the manifolds S2×S1 \ intW ,
S2 × S1 \ intNL along the boundary by means of a diffeomorphism that translates the
meridian µ

NL
into meridian µ

W
. Since S2×S1 \ intW is a solid torus, V̂L̂s is homeomorphic

to the manifold S2 × S1.
Thus, the scheme S is an abstract scheme. By proposition 2.13, the scheme S is realiz-

able by some gradient-like diffeomorphism f ∈MS(M3) such that the schemes Sf and S are
equivalent. Since the sets L̂s, L̂u, V̂L̂s , V̂L̂u are connected, the diffeomorphism f has exactly
four non-wandering points of pairwise different Morse indices, that is, f ∈ G. Since the tori
L̂s, L̂u intersect orientably along p η-essential curves, the set Hf is orientable and consists
of p non-compact heteroclinic curves. According to theorem 2, the ambient manifold of the
diffeomorphism f is homeomorphic to the lens space Lp,q. According to proposition 3.2,
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the manifold W u
σ1
f

is wildly embedded into the supporting manifold.
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