
Vol.:(0123456789)

Optimization Letters
https://doi.org/10.1007/s11590-023-02017-5

1 3

ORIGINAL PAPER

Structured (min,+)‑convolution and its applications
for the shortest/closest vector and nonlinear knapsack
problems

D. V. Gribanov1 · I. A. Shumilov2 · D. S. Malyshev1

Received: 29 September 2022 / Accepted: 8 May 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
In this work we consider the problem of computing the (min,+)-convolution of two
sequences a and b of lengths n and m, respectively, where n ≥ m . We assume that a
is arbitrary, but bi = f (i) , where f (x) ∶ [0,m) → ℝ is a function with one of the fol-
lowing properties: f is linear, f is monotone, f is convex, f is concave, f is piece-wise
linear, f is a polynomial function of a fixed degree. To the best of our knowledge, the
concave, piece-wise linear and polynomial cases were not considered in literature
before. We develop true sub-quadratic algorithms for them. We apply our results to
the knapsack problem with a separable nonlinear objective function, shortest lattice
vector, and closest lattice vector problems.

Keywords Convolution · Nonlinear knapsack · Separable objective · Shortest vector
problem · Closest vector problem · Dynamic programming · Integer programming ·
Piece-wise linear

The article was prepared within the framework of the Basic Research Program at the National
Research University Higher School of Economics (HSE). The authors would like to thank A. Vanin
and the anonymous reviewers for useful discussions and remarks during preparation of this article.

 * D. V. Gribanov
 dimitry.gribanov@gmail.com

 I. A. Shumilov
 ivan.a.shumilov@gmail.com

 D. S. Malyshev
 dsmalyshev@rambler.ru

1 National Research University Higher School of Economics, 25/12 Bolshaja Pecherskaja Ulitsa,
Nizhny Novgorod, Russian Federation 603155

2 Lobachevsky State University of Nizhny Novgorod, 23 Gagarina Avenue, Nizhny Novgorod,
Russian Federation 603950

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-023-02017-5&domain=pdf
http://orcid.org/0000-0002-4005-9483

 D. V. Gribanov et al.

1 3

1 Introduction

1.1 Structured (min,+)‑convolution

The standard (min,+)-convolution problem is formulated in the following way. For
given a = {a0, a1,… , an−1} and b = {b0, b1,… , bm−1} , where n ≥ m , it is to com-
pute a ⋆ b ∶= c , defined by the formula:

In the current paper, it is more natural for us to work with another problem that
is clearly linear-time equivalent to the original one. The problem is to compute
a ∙ b ∶= c , defined by the formula:

This formulation of MinConv can be found, for example, in [51]. We will call
it ReducedMinConv. Unlike the standard (+,×)-convolution, it is not known whether
the (min,+)-convolution admits the existence of truly sub-quadratic algorithms.
Moreover, the lack of truly sub-quadratic algorithms, despite considerable efforts,
has led researchers to postulate the MinConv-hypothesis that MinConv cannot be
solved in O(n2−�) time, for any constant 𝛿 > 0 [17, 35]. Many problems are known to
have conditional lower bounds from the MinConv hypothesis, see, for example, [8,
13, 17, 29, 35, 36].

The trivial O(n2) running time can be improved to n2∕2�(
√
log n) using a reduction

to the (min,+)-matrix product, due to Bremner et al. [12], and using the Williams’
algorithm for all the pairs shortest path (APSP) problem [51], which was derand-
omized later by Chan and Williams [15]. However, the O(n2)-time barrier can be
beaten for different special cases. Let bi = f (i) , for some function f ∶ [0,m) → ℝ .
For some f, the computational complexity of MinConv can be significantly reduced.
In this paper, we consider the following cases:

 (i) the linear case, when f (i) = � ⋅ i + �;
 (ii) the convex case, when f (i + 1) − f (i) ≥ f (i) − f (i − 1);
 (iii) the concave case, when f (i + 1) − f (i) ≤ f (i) − f (i − 1);
 (iv) the polynomial case,1 when f (x) ∈ ℤ

d[x] , for some fixed d;
 (v) the piece-wise linear case, when f(x) is represented by a piece-wise linear

function with p pieces;
 (vi) the monotone case, when a and b are both monotone sequences and

|ai| = O(n), |bi| = O(n).

(MinConv)ck = min
i+j=k

{ai + bj}, for k ∈ {0,… , n + m − 2}.

(ReducedMinConv)
ck = min

0≤i≤m−1
{ak+i + bi}, for k ∈ {0,… , n − m}.

1 Actually, a more general class of rational functions f(x)/g(x), where f , g ∈ ℤ
d[x] , could be considered

by the cost of using 2d instead of d in the complexity bound. But for the sake of simplicity, this case is
not considered. More generally, our approach is applicable to any functions f(x) with a fixed number of
inflection points.

1 3

Structured (min,+)-convolution and its applications for t…

Definition 1 For the second and third cases, we assume that f is defined by the
evaluation oracle, which is denoted by EV in our paper. Given f and x ∈ dom (f) ,
this oracle returns (if it is possible) the value of f(x). For the sake of simplicity, we
assume that EV can also compare the values of given f in pairs of different points
x, y ∈ dom (f).

To the best of our knowledge, the third, fourth, and fifth cases are new, and we
develop the first sub-quadratic algorithms for them in the current paper. For the third
and fifth cases, we simultaneously estimate the oracle and arithmetic complexities.
In the following Table 1, we emphasize the best known complexity bounds for the
cases, mentioned above. Details and the space complexity bounds could be found in
Sect. 3.2 and in Theorems 2, 3 of Sect. 3.3.

Despite that the linear case is a special variant of the convex case, we make a
separate category for it, because of the beautiful folklore linear-time solution. This
solution is based on the folklore queue data structure that additionally supports que-
ries to a minimal element and contains a really low constant term, which is hiding
inside the O-notation. Since we did not find a description of this solution in litera-
ture, we will give it in Sect. 3.1. Probably, an O(n)-time solution for the MinConv
linear case was firstly implicitly presented by Pferschy in [43], where an O(n ⋅W)

-time dynamic programming algorithm (DP-algorithm) for the bounded knapsack
problem was presented. But, since the description of a knapsack DP-algorithm from
[43] is quite complex, it is hard to extract an algorithm for MinConv from it, and the
folklore solution looks more natural and effective.

Table 1 Complexity bounds for (MinConv)

Case Time Reference

General n2∕2�(
√
log n) Bremner et al. [12] & Williams [51]

See also [15]
Monotone Õ(n1.5) Shucheng et al. [16]

See also [14]
f is linear O(n) Folklore

Another variant due to Pferschy [43]
f is convex O(n) Axiotis & Tzamos [7] (2019)

O(n ⋅ log(n)) Kellerer and Pferschy [31] (2004)
f is concave O(n4∕3 ⋅ log2(n)) This work
f is piece-wise linear O(p ⋅ n ⋅ log(n)) This work

p is a number of pieces
f ∈ ℤ

d[x] O
(
d3 ⋅ n

1+
�−1

� ⋅ log2(n)
)

This work

� = log2(d) +
1

1+log2(d)

Examples:
f ∈ ℤ

2[x] Õ(n4∕3)

f ∈ ℤ
3[x] Õ(n1.493)

f ∈ ℤ
4[x] Õ(n11∕7)

 D. V. Gribanov et al.

1 3

1.2 The nonlinear knapsack problem

Let w ∈ ℤ
n
>0

 , W ∈ ℤ>0 , u ∈ ℤ
n
>0

 , and f ∶ ℤ
n
→ ℝ be a separable function. That

is f (x) = f1(x1) +⋯ + fn(xn) , where fi(x) ∶ ℤ → ℝ . Let us consider the bounded
knapsack problem with a general separable objective function, defined as follows:

We are interested in the following special cases for f(x) that define the corresponding
problems:

Note that any algorithm that solves a variant of the bounded knapsack problem also
can be used to solve the unbounded one. Additionally, note that KNAP-POLY is a
natural generalization of KNAP-LIN, since KNAP-POLY with d = 1 is equivalent
to KNAP-LIN.

1.2.1 Some results about KNAP‑LIN

Denote wmax = ‖w‖∞ , cmax = ‖c‖∞ , and umax = ‖u‖∞ . The paper [37] gives a
reduction of KNAP-LIN to {0, 1}-knapsack of O

(
n ⋅ log(umax)

)
 weights, bounded

by O(umax ⋅ wmax) . Together with the basic dynamic programming technique, due
to Bellman [10], it gives Õ(n ⋅W)-time algorithm for KNAP-LIN. The paper [43]
removes the logarithmic term and gives an O(n ⋅W)-time algorithm. The linear-time
algorithm for the monotone convex (min,+)-convolution, due to [7], together with
the principle to put equivalent-weight items into buckets, due to [31] (see also [7,
45]), reduces the running time to O(n + m ⋅W) , where m is the number of unique
weights. Since m ≤ min{wmax, n} , it gives an O(n + wmax ⋅W)-time algorithm.

The paper [21] introduces an elegant proximity argument and uses it to give
an Õ(n ⋅ w2

max
)-time algorithm. The work [23] combines the above proximity

(KNAP-GEN)

f (x) → max

⎧
⎪⎨⎪⎩

w⊤x = W

0 ≤ x ≤ u

x ∈ ℤ
n.

(KNAP-LIN)f (x) = c⊤x, for some c ∈ ℤ
n
>0
;

(KNAP-CONV)fi(x) are all convex functions;

(KNAP-CONC)fi(x) are all concave functions;

(KNAP-PLIN)fi(x) are all piece-wise linear, with p pieces;

(KNAP-POLY)fi(x) ∈ ℤ
d[x], for some fixed d.

1 3

Structured (min,+)-convolution and its applications for t…

argument with the folklore linear (min,+)-convolution algorithm and reduces
logarithmic factors in the last complexity bound to give an O(n ⋅ w2

max
)-time algo-

rithm. The same algorithm is presented in [25] for more general class of prob-
lems, which contains �-modular simplicies and closed polyhedra. Finally, the
paper [45] carefully combines ideas of a part of the previous papers to give the
state of the art O(n + m ⋅ w2

max
)-time algorithm for KNAP-LIN. The state of the art

algorithms with different parametrizations by cmax are given in [9, 45]. The fol-
lowing Table 2 gives some comparison of the above results.

1.2.2 Nonlinear separable objective function

Many tricks, developed for KNAP-LIN, do not work in this case. To the best of our
knowledge, the best known algorithm, parameterized by W or wmax that we can apply
for the problem KNAP-GEN, is a straightforward application of the Bellman’s DP-
principle [10] that gives an O(n ⋅W2)-time algorithm. A straightforward application
of the linear-time monotone convex (min,+)-convolution algorithm, due to [7], gives
an O(n ⋅W)-time algorithm for KNAP-CONV. We can use different variants of the
(min,+)-convolution, considered in our paper, to construct pseudopolynomial algo-
rithms for the problems KNAP-CONC, KNAP-PLIN, and KNAP-POLY. Related
results are given in the following Table 3 (details could be found in Theorem 4):

1.3 The shortest and closest vector problems

Let A ∈ ℤ
n×n , 𝛥 = |det(A)| > 0 , q ∈ ℚ

n , and �(A) = {At ∶ t ∈ ℤ
n} . Clearly, �(A) is

a full rank integer lattice with determinant � . The shortest lattice vector problem and
the the closest lattice vector problem with respect to the lp-norm can be formulated
as follows:

(SVP)min
�‖x‖p ∶ x ∈ �(A) ⧵ {0}

�
,

Table 2 Complexity bounds for KNAP-LIN with respect to W and wmax

Time Reference

Õ(n ⋅W) Bellman [10] & Lawler [37]
O(n ⋅W) Pferschy [43]
O(n + m ⋅W) = O(n + wmax ⋅W) Axiotis & Tzamos [7]

See also [31] and [45]
Õ(n ⋅ w2

max
) Eisenbrand & Weismantel [21]

O(n ⋅ w2
max

) Gribanov [23]
See also [25]

O(n + m ⋅ w2
max

) = O(n + w3
max

) Polak, Rohwedder & Węgrzycki [45]
m ≤ min{n,wmax} is a number of unique weights

 D. V. Gribanov et al.

1 3

In our paper, we consider only exact algorithms for SVP and CVP with theoretically
provable complexity bounds. So, we avoid many works about approximate solutions
or efficient practical algorithms. For a recent survey, see [52], see also [26]. Exact
algorithms for SVP and CVP have a rich history. The first direction of enumeration-
based algorithms dates back to the papers of Pohst [44], Kannan [30], and Fincke
& Pohst [22]. The Kannan’s paper [30] gives an nO(n)-time algorithm for SVP and
CVP, and many others improved upon his technique to achieve better running times
[22, 27, 28, 41]. An important feature of these algorithms is that they are of poly-
nomial space. To the best of our knowledge, the state of the art complexity bound
n

n

2e
+o(n) for SVP via enumeration-based approach is given in [41], due to Micciancio

& Walter.
Another direction is sieving-based algorithms for SVP. It is dated to the semi-

nal paper of Ajtai et al. [3]. The algorithms from this class have better theoreti-
cal running time 2O(n) with respect to enumeration-base algorithms, but use expo-
nential 2O(n) space. Many extensions and improvements of sieving technique have
been proposed in [1, 4, 6, 11, 26, 38, 39, 42, 46]. The paper [1], due to Aggarwal,
Dadush & Regev, gives the state of the art 2n+o(n)-complexity bound. In fact, this
paper solves the more general Discrete Gaussian Sampling (DGS) problem. Note
that above papers do not give single-exponential 2O(n)-time algorithms for CVP.
The first paper that generalizes the sieving approach to solve CVP in single-expo-
nential time is due to Aggarwal, Dadush & Stephens-Davidowitz [2]. This paper
extends the DGS sampling technique from [1] and solves CVP by an 2n+o(n)-time
algorithm.

The last direction that we want to refer concerns algorithms, which use the Voro-
noi cell of a lattice – the centrally symmetric polytope, corresponding to the points
closer to the origin than to any other lattice point. This direction is started from
the paper [48], due to Sommer, Feder & Shalvi. The seminal work of Miccian-
cio & Voulgaris [40], which is built upon the approach of [48], gives first known

(CVP)min
�‖x − q‖p ∶ x ∈ �(A)

�
.

Table 3 Complexity bounds for
KNAP-LIN, the nonlinear cases

Case Time Reference

KNAP-GEN O(n ⋅W2) Bellman [10]
KNAP-CONV O(n ⋅W) Axiotis & Tzamos [7]
KNAP-CONC Õ(n ⋅W4∕3) This work
KNAP-PLIN Õ(p ⋅ n ⋅W) This work
KNAP-POLY Õ(d3 ⋅ n ⋅W

1+
𝜎−1

𝜎) This work

� = log2(d) +
1

1+log2(d)

Examples:
d = 2 Õ(n ⋅W4∕3)

d = 3 Õ(n ⋅W1.493)

d = 4 Õ(n ⋅W11∕7)

1 3

Structured (min,+)-convolution and its applications for t…

deterministic single exponential time algorithms for SVP and CVP. More precisely,
it gives 22n+o(n)-time algorithms. The space usage is 2n+o(n).

The existence of 2O(n)-time polynomial-space exact algorithms for SVP or CVP is
the major open problem in the lattice algorithms field. The works, mentioned above,
are mainly concerned with the Euclidean norm ‖⋅‖2 . Some results about SVP-solv-
ers for other norms are presented, for example, in [11, 18–20]. The paper [20] (see
also the monograph [18]) presents a general technique to extend any Euclidean norm
solvers to arbitrary norms with an additional 2O(n)-time multiplicative factor.

Now, let us discuss our motivation. All the algorithms, mentioned above,
are fixed polynomial tractable (FPT) with respect to the dimension n param-
eter. In other words, a complexity bound of any of the algorithms above looks
like f (n) ⋅ poly (size (A, q)) , where f(n) is a computable function, depend-
ing only on n, and size (A, q) is the input encoding size. Is it possible to choose
another parameterization? For example, could we build an algorithm, param-
eterized by the lattice determinant � ? The paper [24] answers positively and
gives an O

(
n� ⋅ log(�) + n ⋅ �2

⋅ log(�)
)
-time dynamic programming algo-

rithm for both SVP and CVP with respect to any ‖⋅‖p , for p ≥ 1 , where w is the
matrix multiplication exponent. In our work, we improve this running time to
O(n� ⋅ log(�) + m ⋅ � ⋅ log(�)) , where m = min{n,�} . The improvement consists
just in careful using of the linear-time monotone convex (min,+)-convolution algo-
rithm, due to [7]. Our algorithm uses O(�) space.

Strictly speaking, we solve the following slightly more general problems
than SVP and CVP. Let f ∶ ℤ

≥0 → ℝ be a monotone and convex function. We
define the generalized shortest lattice vector problem in the following way:

Clearly, the original SVP problem is equivalent to GENERALIZED-SVP with
f (x) = xp . We also define the generalized closest vector problem in the following
way:

Again, the original CVP problem is equivalent to GENERALIZED-CVP with
f (x) = xp.

In the following Table 4, we group the state of the art results for different cases,
mentioned above, together with our new result. All the algorithms from the table
below are deterministic, except the sieving-based algorithm. Details could be found
in Theorems 5 and 6.

Remark 1 Strictly speaking, the algorithms, presented in Theorems 5 and 6, use
of O(n ⋅ �) space. But, they can be transformed to O(�)-space algorithms without

(GENERALIZED-SVP)

min

{
n∑
i=1

f
(||xi||

)
∶ x ∈ �(A) ⧵ {0}

}
.

(GENERALIZED-CVP)

min

{
n∑
i=1

f
(||xi − qi

||
)
∶ x ∈ �(A)

}
.

 D. V. Gribanov et al.

1 3

significant effort. Definitely, our algorithms use dynamic tables with O(n ⋅ �) entries.
It can be easily seen that if we want only to compute the optimal value of the objec-
tive function, then it is sufficient to store only one row of these tables at each compu-
tational step, which reduces the space requirement to O(�) . However, if we want to
compute an optimal solution vector, then this simple trick is not applicable and more
sophisticated technique need to be used. Such a technique is described, for example,
in [32, Paragraph 3.3] (see also [43]), and it can be applied for our dynamic pro-
gramming algorithms without any restrictions to produce space complexity bounds
of the type O(n + �) . The same trick works for knapsack space complexity bounds
from Table 3, i.e. bounds of the type O

(
n ⋅WO(1)

)
 can be replaced by O

(
n +WO(1)

)

bounds.

2 Data structures

In this Section, we describe data structures that will be used for our (min,+)-convo-
lution algorithms. The first two of them, the queue with minimum operation and the
compressed segment tree, are classical. The third data structure is our modification
of the segment tree, we call it the augmented segment tree.

2.1 Queue with minimum support

The queue with minimum support is a classical data structure that looks to be folk-
lore. We did not able to find any correct historical references on it. This data struc-
ture just represents a generic queue that stores elements of some linearly ordered set,
but with an additional operation min() that returns the current minimum. Let Q be an
instance of the queue, we list all the operations with their complexities:

 (i) the operation Q.min() returns a current minimum in Q. Its complexity is O(1)
in the worst case;

 (ii) the operation Q.push(x) inserts an element x to the tail of Q. Its complexity is
O(1) in the worst case;

 (iii) the operation Q.pop() removes an element from the head of Q. Its complexity
is O(1) amortised.

Table 4 Complexity bounds for SVP and CVP

Technique Time Space Reference

Enumeration n
n

2e
+o(n) nO(1) Micciancio and Walter [41]

Sieving 2n+o(n) 2n+o(n) Aggarwal et al. [1, 2]
Voronoi cell 22n+o(n) 2n+o(n) Micciancio and Voulgaris [40]
DP Õ(n𝜔 + n ⋅ 𝛥2) O(n + �) Gribanov et al. [24]
DP Õ(n𝜔 + m ⋅ 𝛥) O(n + �) This work

m = min{n,�}

1 3

Structured (min,+)-convolution and its applications for t…

Since we are not able to give a correct reference to this data structure, we give a
brief explanation of how it works. First of all, note that it is easy to implement a
stack with minimum support and with the worst-case complexity O(1), for all the
operations. To do this, we just need to create a second stack, which will store the
current minimum.

A queue Q with minimum support can be implemented just by using two
stacks Sh and St that are glued by the bottom side. The stack St represents a tail
of Q, and the stack Sh represents a head of Q. Now, the operation Q.min() can be
implemented just by taking the minimum value between St.min() and Sh.min() .
When we need to insert a new element x to Q, we just need to call St.push(x) .
Finally, the operation Q.pop() can be implemented in the following way: if Sh is
not empty, we just call Sh.pop() . If Sh is empty, we move all the elements from St
to Sh and call Sh.pop() after that. Clearly, the worst case complexity of Q.pop()
is O(n). But, since any element of Q can be moved from St to Sh only ones, the
amortised complexity of Q.pop() is O(1).

2.2 Segment tree

The segment tree is a classical data structure to perform the range minimum, the
sum or update queries in sub-intervals of a given array, using only logarithmic
worst-case time. We did not find any correct historical references on it, but a
detailed description could be found in the internet [5]. The brief description of
the weaker version without range update operations could be found in [34, Sec-
tion A.3]. Additionally, the work [34] gives a good survey and interesting new
results about queries on arbitrary semigroups.

Let T be an instance of a segment tree. We list the required operations with
their complexities:

 (i) the operation T.build(A) builds the data structure on an array A of length n. Its
worst-case complexity is O(n);

 (ii) the operation T.min(i, j) returns a minimal element in the sub-array A[i, j). Its
worst-case complexity is O(log(n));

 (iii) the operation T.add(i, j, x) adds the value of x to all the elements of the sub-
array A[i, j). Its worst-case complexity is O(log(n)).

Let us assume that n = 2d . We call an interval [i, j) basic, if
[i, j) = [i ⋅ 2d−k, (i + 1) ⋅ 2d−k) , for some i ∈ {0,… , 2k − 1} and k ∈ {0,… , d} . The
segment tree is represented as a full binary tree, where each node v corresponds
to some basic interval [iv, jv) and additionally stores a minimum element in the
sub-array A[iv, jv) . If v is not leaf, then it has two children a and b, corresponding
to the intervals [ia, ja) = [iv, iv + h) and [ib, jb) = [iv + h, jv) , where h = (jv − iv)∕2 .
The leafs correspond to intervals of length 1, associated with all the elements of
A. If v is a root node, we just have [iv, jv) = [0, 2d) and the minimum value in v
corresponds to the minimum in A.

 D. V. Gribanov et al.

1 3

The key idea that helps to compute the minimum value in a general interval
[i, j) is a special algorithm that splits a given interval [i, j) into at most 2d basic
intervals. We emphasise this in the following lemma, which will be used later:

Lemma 1 For any given interval [i, j), there is an O(d)-complexity algorithm that
splits [i, j) into at most 2d basic intervals, corresponding to the nodes of T.

2.3 Augmented segment tree

Assume again that n is a power of 2. Let A be an array of length n, and let
f (x) ∶ [0, n) → ℝ be a function. Given x ∈ {0,… , n − 1} and i, j ∈ {0,… , n} , we
are interested in the problem to efficiently compute a function

assuming that some preprocessing is done for A. To compute the values of f for
x ∈ [0, n) , the EV-oracle can be used (see Definition 1). The following main prop-
erty of the function F([i, j); x) can be checked straightforwardly:

Proposition 1 Let an interval [i, j) be partitioned into the intervals [i1, j1) and [i2, j2) ,
i.e. [i, j) = [i1, j1) ∪ [i2, j2) , where i2 ≥ i1 . Then,

Definition 2 The interval [a, b) ⊆ ℝ is called integer if its end-points a and b are
integers.

Definition 3 Let f ∶ [0, n) → ℝ and I ⊆ [0, n) be an integer interval. Let
I1, I2,… , Im be a set of integer intervals, such that

 (i) the intervals I1,… , Im partition I ;
 (ii) for any j, we have either f (x) ≥ 0 or f (x) ≤ 0 for all points inside Ij.

A minimal set of such intervals I1,… , Im is called a minimal sign partition of f.
The set of all such minimal partitions is denoted by P(f , I).
Definition 4 By SP we denote the minimal sign partition oracle. For given f and
I ⊆ dom (f) , it returns some minimal sign partition from P(f , I).

Next, we need to define a special characteristic pf of a function f ∶ I → ℝ ,
defined on an integer interval I , which will be extensively used further.

F([i, j); x)

= min
{
A[i] + f (x), A[i + 1] + f (x + 1), … , A

[
i + (j − i − 1)

]

+f (x + (j − i − 1))} = min
0≤k<j−i

{A[i + k] + f (x + k)},

(1)F([i, j); x) = min
{
F
(
[i1, j1); x

)
, F

(
[i2, j2); x + j1 − i1

)}
.

1 3

Structured (min,+)-convolution and its applications for t…

Definition 5 Let f ∶ I → ℝ be a function, defined on an integer interval I . Let us
define a value pf in the following way. For a ∈ ℤ

≥0 and b ∈ ℤ , let us consider a
function gab(x) = f (x + a) − f (x) + b . Let

In other words, pf is the maximal size of a minimal sign partition that
f (x + a) − f (x) + b can have on J , for the all possible values of a, b and correct
integer sub-intervals J ⊆ I .

The following theorem defines the augmented segment tree data structure:

Theorem 1 Assume that EV and SP oracles are available. Let f ∶ [0, n) → ℝ be a
function, A be an array of length n, which is a power of 2, and p ∶= pf . There exists
a data structure T, called the augmented segment tree, that supports the following
list of operations:

 (i) the operation T.build(A) builds the data structure for the array A of length n.

The worst-case SP-oracle and arithmetic complexities are O(nlog2(p)+
1

1+log2(p));
 (ii) the operation T.query(i, j, x) returns the value of F([i, j); x) . The worst-case

EV-oracle and arithmetic complexities are O(log2(n)).

The data structure uses O(nlog2(p)+
1

1+log2(p)) space. Calls to SP oracle are performed for
functions of the type g(x) = f (x + a) − f (x + b) + c , where a, b ∈ ℤ

≥0 , and c ∈ ℤ .
Calls to EV are performed for f.

The theorem proof is moved into Appendix Sect. 6.1.

3 Structured (min,+)‑convolution algorithms

In this Section, we describe how to solve the problem ReducedMinConv for the linear
(f (x) = � ⋅ x + �), piece-wise linear (f(x) is represented by a piece-wise linear function
with p pieces), polynomial (f ∈ ℤ

d[x]) and concave cases.

3.1 The linear case

W.l.o.g. we can assume that bi = � ⋅ i , for some � ∈ ℚ . We will use a queue Q, which
was described in Sect. 2.1. The algorithm consists of m − n steps: at the first step, we
just initialise Q with the elements

pf (a, b,J) be the size of some minimal sign partition of gab on J, and

pf = max
{
pf (a, b,J) ∶ a ∈ ℝ

≥0, b ∈ ℝ, J ⊆ dom (gab)
}

a0 + b0, a1 + b1, … , am−1 + bm−1,

 D. V. Gribanov et al.

1 3

which can be done in O(m)-time. After that, we assign c0 ∶= Q.min() , which can be
done in O(1)-time. Note that the difference between elements in Q is exactly � . We
will support the following invariant:

Assuming that the k-th step has been done and ck has been computed, let us show
how to perform the (k + 1)-th step. We call the Q.pop() and after that call Q.push(x),
for x = ak+m + � ⋅ (k + m) . The last operations will satisfy the invariant at the (k + 1)

-th step. Now, we can put ck+1 ∶= Q.min() − � ⋅ (k + 1) , due to the invariant, it is the
correct value of ck+1 . Since the amortised complexity of each step is O(1), the total
arithmetical complexity bound is O(m + (n − m)) = O(n).

3.2 The piece‑wise linear case

W.l.o.g. we can assume that f(x) is defined on [0, m) by the following three vec-
tors: �, � ∈ ℚ

p , and u ∈ ℤ
p+1

≥0
 . We assume, that u0 = 0 , up = n , and uj−1 < uj , for

j ∈ {1,… , p} . The formula for f is:

Assuming bi = f (i) , let us show how to compute the elements of c. We will use the
compressed segment tree data structure T, described in Sect. 2.2. The algorithm
consists of n − m steps: at the first step, we construct the array A ∶= a and assign
A[i] ∶= A[i] + bi , for all i ∈ {0,… ,m − 1} . It takes O(n) arithmetic operations.
Next, we initialise T, by calling T.build(A). It also takes O(n)-time. We will support
the following invariant:

Consequently, the equality T .query(k, k + m) = ck holds after the k-th step has been
finished.

Now, let us show how to perform the (k + 1)-th step with the complex-
ity O(p ⋅ log(n)) . Fix a number j ∈ {1,… , p} and consider the sub-array
A[k + 1 + uj−1, k + 1 + uj) . Let dj = uj − uj−1 . By the invariant, the first dj − 1 ele-
ments of this array are equal to

The last element A[k + uj] is equal to ak+uj + f (uj) = ak+uj + �j+1 + �j+1 ⋅ uj . Conse-
quently, to make the first dj − 1 elements of the sub-array to satisfy the invariant, we
need to make the update(k + 1 + uj−1, k + uj,−�j) operation, which can be done in
O(log(n))-time. Since k + uj = (k + 1) + (uj − 1) , the last element A[k + uj] must be
assigned to ak+uj + f (uj − 1) , which can also be done in O(log(n))-time. After apply-

after the k-th step the queue Q contains the following elements:

ak + � ⋅ k, ak+1 + � ⋅ (k + 1), … , ak+m−1 + � ⋅ (k + m − 1).

f (x) = �k + �k ⋅ x, for x ∈ [uk−1, uk).

after the k-th step has been done, the sub-array A[k, k + m) consists of

the elements: ak + b0, ak+1 + b1, … , ak+m−1 + bm−1.

ak+1+uj−1 + �j + �j ⋅ uj−1, … , ak+uj−1 + �j + (uj − 1) ⋅ �j.

1 3

Structured (min,+)-convolution and its applications for t…

ing this procedure for all k ∈ {1,… , p} , the invariant for the k + 1-th step will be
satisfied, and the value of ck+1 can be computed just by using the
query(k + 1, k + 1 + m) operation. The complexity of the considered step is
O(p ⋅ log(n)) . The total arithmetic complexity of the algorithm is
O(n + (n − m) ⋅ p ⋅ log(n)) = O(p ⋅ n ⋅ log(n)) . Note that the segment tree data struc-
ture needs additional O(n) space.

3.3 The polynomial and concave cases

Consider a function f ∶ [0,m) → ℝ and assume that EV and SP oracles are sup-
ported. Let us estimate the oracle and arithmetic complexities to solve Reduced-
MinConv with bi = f (i) . We will use the augmented segment tree data structure,
described in Sect. 2.3. Let us assume that n be a power of 2 and choose a block size
B, which is also be a power of 2.

We assign A ∶= a and split A into n/B consecutive blocks of size B. Let Bj be
the interval representing the j-th block, i.e. Bj = [(j − 1) ⋅ B, j ⋅ B) . Now, for each
j ∈ {1,… , n∕B} , we construct the augmented segment tree data structure Tj by
calling the operation Tj.build(A[Bj]) . Due to Theorem 1, the oracle, arithmetic, and
space complexities of this step can be expressed by the formula

where � = log2(p) +
1

1+log2(p)
.

The algorithm consist of n − m steps. At the k-th step we try to compute the value
of ck , using the hint that ck = F([k, k + m); 0) . Let Bj,… ,Bj+t be the consecutive
blocks, affected by the window [k, k + m) , where t = O(m∕B) . If t = 1 , then we can
just put ck ∶= Tj.query(�, �, 0) , where � = k − B ⋅ (j − 1) and � = k − B ⋅ (j − 1) + m
are the relative coordinates of the [k, k + m) window in Bj . Now, let us consider the
case t ≥ 2 . Let s = j ⋅ B − k be the size of the intersection of Bj with [k, k + m) . Using
Proposition (19), we have

The interval Bj ∩ [k, k + m) is a suffix of Bj . So, the first value

can be computed by a call to Tj.query(B − s, B, 0) . The interval Bj+t ∩ [k, k + m) is a
prefix of Bj+t . So, the last value

can be computed by a call to

(2)O

(
n

B
⋅ B

log2(p)+
1

1+log2(p)

)
= O

(
n ⋅ B�−1

)
,

ck ∶= F([k, k + m); 0)

= min
{
F
(
Bj ∩ [k, k + m); 0

)
, F

(
Bj+1; s

)
, F

(
Bj+2; s + B

)
, …

F
(
Bj+t−1; s + B ⋅ (t − 2)

)
, F

(
Bj+t ∩ [k, k + m); s + B ⋅ (t − 1)

)}

F
(
Bj ∩ [k, k + m); 0

)

F
(
Bj+t ∩ [k, k + m); s + B ⋅ (t − 1)

)

 D. V. Gribanov et al.

1 3

Here k + m − B ⋅ (t − 1) is the size of Bj+t ∩ [k, k + m) . The intermediate val-
ues F

(
Bj+i; s + B ⋅ (i − 1)

)
 , for i ∈ {1,… , t − 1} , can be computed by calls to

Tj+i.query(0, B, s + B ⋅ (i − 1)).
Therefore, ck can be computed as the minimum between all this values. The

respective arithmetic and oracle complexity is expressed by O
(

m

B
⋅ log2(B)

)
. Conse-

quently, the total complexity of m − n steps without the initial preprocessing can be
estimated as

Now, the total algorithm complexity (together with the preprocessing, see the for-
mula (2)) can be expressed by the formula

Actually, a more detailed formula holds

We will try to balance this formula, solving the equation

So, the B parameter could be chosen as B = n
1

� . After this substitution, the total time
and space complexities become

Now, let us consider the polynomial case.

Theorem 2 Let f ∈ ℤ
d[x] . Then, ReducedMinConv can be solved by an algorithm

with the arithmetic complexity bound

The space complexity is O
(
d2 + n

1+
�−1

�

)
.

Proof Clearly, the complexity of EV for f is O(d). Let us estimate the complexity of
SP for polynomials of the type g(x) = f (x + a) + b − f (x) . Since deg(g) ≤ d − 1 , the
size p of any minimal sign partition g is bounded by d. To calculate this partition

Tj+t.query(0, k + m − B ⋅ (t − 1), s + B ⋅ (t − 1)).

O
(
(n − m) ⋅

m

B
⋅ log2(m)

)
= O

(
n2

B
⋅ log2(n)

)
.

O

(
n ⋅ B�−1 +

n2

B
⋅ log2(n)

)
.

(3)O

(
n ⋅ B�−1

⋅ TSP +
n2

B
⋅ log2(n) ⋅ TEV

)
.

n ⋅ B�−1 =
n2

B
⟹ B� = n.

(4)O
((

TSP + log2(n) ⋅ TEV
)
⋅ n

1+
�−1

�

)
, and O

(
n
1+

�−1

�

)
.

O
(
d3 ⋅ n

1+
�−1

� ⋅ log2(n)
)
, where � = log2(d) +

1

1 + log2(d)
.

1 3

Structured (min,+)-convolution and its applications for t…

on a given interval I , we clearly need to localize all the roots of g inside I . Since
intervals in the resulting sign partition need to have integer end-points, we do not
need to compute the roots exactly. Instead of that, we simply can calculate them with
the additive accuracy 1/3 and round-off to the nearest integer. To localize the roots
of g on I , we will use the classical Budan–Fourier theorem. It states that for any
interval (�, �) with g(�) ≠ 0 and g(�) ≠ 0 the number of roots of g(x) in the inter-
val (�, �) is equal or less than the value of W(�) −W(�) , where W(x) is the number
of sign changes in the sequence f (x), f �(x), f ��(x),… . Note that the Budan–Fourier
theorem does not calculate the exact number of roots, the real number of roots in
[�, �) can be less by an even number. But, in our case, we only need to know how the
sign changes, when x crosses an integer landmark point. So, this method can be used
without restrictions.

Clearly, the sequence of g(x)-derivatives can be computed, using O(d2) arith-
metic operations. After that, given a point x, the value of W(x) could also be com-
puted, using O(d2) arithmetic operations. Then, using the standard dichotomy
principle, we could localize all the roots of g on I with the additive accuracy 1/3,
using O(d ⋅ log(n)) calls to W(x). Hence, the complexity of SP on g is O(d3 ⋅ log(n)) .
Let us consider the formula (4). Since � = �(p) is a monotone function, we have
�(p) ≤ �(d) . Then, together with the complexity bounds for SP and EV , the formula
(4) gives the desired complexity bound for ReducedMinConv. ◻

Now, we are going to consider the concave case. First of all, we need some auxil-
iary lemmas:

Lemma 2 Let (x0, f0), (x1, f1), … , (xn−1, fn−1) be a sequence of pairs from ℝ2 . By di
we denote (fi − fi−1)∕(xi − xi−1) . Assume that

Then, there exists a C1-smooth convex function f ∶ ℝ → ℝ with f (xi) = fi.

The lemma proof is moved into Appendix Sect. 6.2.

Lemma 3 Let f ∶ [�, �) → ℝ be a convex/concave function (�, � ∈ ℝ). The follow-
ing statements hold:

 (i) pf ≤ 2;
 (ii) Assume that EV oracle is supported for f. Let g(x) = f (x + a) + b − f (x) , for

some a, b ∈ ℝ . Then, given a bounded integer interval I of length n, some
minimal sign partition from P(g, I) can be computed, using O(log(n)) calls
to EV .

The lemma proof is moved into Appendix Sect. 6.3.

Theorem 3 Let f ∶ [0,m) → ℝ be a concave function. Assume that EV ora-
cle is available. Then, ReducedMinConv can be solved by an algorithm with the

x0 ≤ x1 ≤ ⋯ ≤ xn−1, and d1 ≤ ⋯ ≤ dn−1.

 D. V. Gribanov et al.

1 3

arithmetic and oracle complexity, bounded by O
(
n4∕3 ⋅ log2(n)

)
 . The space complex-

ity is O
(
n4∕3

)
.

Proof Let g(x) = f (x + a) + b − f (x) and I ⊆ [0, n) . Due to Lemma 3, the complex-
ity of SP-oracle with the input pair (g, I) is bounded by O(log(n)) calls to EV . Addi-
tionally, p ∶= pf ≤ 2 . Let us consider the formula (4). Since � = �(p) is a monotone
function, we have �(p) ≤ �(2) = 3∕2 . Together with the complexity bound for SP ,
the formula (4) gives the desired complexity bound for ReducedMinConv. ◻

4 Applications for the bounded knapsack

Let us consider KNAP-GEN. W.l.o.g. we can assume that uk ≤ ⌊W∕wk⌋ , for
k ∈ {1,… , n} . Additionally, we consider the minimization problem instead of maxi-
mization, since we can work with −f instead f, which preserves the separability
property. Let us consider a very basic dynamic program, dated to Bellman [10]. For
k ∈ {1,… , n} and w0 ∈ {0,… ,W} , by DP(k,w0) we denote the following problem:

Clearly, the problem DP(n,W) is equivalent to the original problem KNAP-GEN.
For 2 ≤ k ≤ n , the value DP(k,w0) can be computed, using the values DP(k − 1, ⋅) by
the following formula:

assuming that DP(k,w0) = +∞ for w0 < 0 . For k = 1 , the formula is

Let us estimate the complexity to compute all the values DP(k,w0) , for k ∈ {1,… , n}
and w0 ∈ {0,… ,W} . Clearly, the values DP(1,w0) can be computed with O(W)
operations. Definitely, each of the values DP(1, 0) , DP(1,w1) , DP(1, 2w1) , etc. can
be computed with O(1) operations, using the formula (7). For other values of w0 , we
just set DP(1,w0) = +∞ . The computation of DP(k,w0) , for k ≥ 2 , can be reduced
to (min,+)-convolution. Fix k ≥ 2 and some residue r modulo wk . We define the
sequences {ai}i∈{0,…,uk}

 , {bi}i∈{0,…,uk}
 , and {ci}i∈{0,…,uk}

 as follows:

Assuming that ai = bi = ci = 0 , for i < 0 , and due to (6), we have

(5)
k�
i=1

fi(xi) → min

⎧⎪⎨⎪⎩

k∑
i=1

wixi = w0

0 ≤ xi ≤ ui
x ∈ ℤ

k.

(6)DP(k,w0) = min
j∈{0,…,uk}

{
DP(k − 1,w0 − wk ⋅ j) + fk(j)

}
,

(7)DP(1,w0) =

{
f1(w0∕w1) if w1 ∣ w0 and 0 ≤ w0∕w1 ≤ u1
+∞ , in the opposite case.

ai = DP(k − 1, r + i ⋅ wk), bi = fk(i), ci = DP(k, r + i ⋅ wk).

1 3

Structured (min,+)-convolution and its applications for t…

That gives c = (a ⋆ b)[0, uk] . Therefore, considering all the values of r, the com-
plexity to compute the level DP(k, ⋅) , in the assumption that the level DP(k − 1, ⋅)
has already been computed, can be expressed by O

(
wk ⋅ Tconv(uk)

)
 , where Tconv(⋅)

denotes the complexity of the (min,+)-convolution. The total complexity of the
whole dynamic programming scheme is

Using the previous formula, the inequality ui ≤ ⌊W∕wk⌋ , and different Tconv-com-
plexity results, due to Sect. 3.2 and Theorems 2, 3 of Sect. 3.3, we obtain the follow-
ing result:

Theorem 4 The following statements hold:

 (i) The problem KNAP-PLIN can be solved by O(p ⋅ n ⋅W ⋅ log(W)) arithmetic
complexity algorithm;

 (ii) The problem KNAP-CONC can be solved by an algorithm with the arithmetic
complexity bound

 (iii) Denote � = log2(d) +
1

1+log2(d)
≥ 1 . The problem KNAP-POLY can be solved

by an algorithm with the arithmetic complexity bound

All the computations are performed with integer numbers of the size O(log(W)).

5 SVP and CVP dynamic programming algorithms

5.1 SVP problem

Let us consider the generalized problem GENERALIZED-SVP. It is a known fact (see,
for example, [47, 49, 53]) that there exist unimodular matrices P ∈ ℤ

n×n and Q ∈ ℤ
n×n ,

such that PAQ = S , where S ∈ ℤ
n×n
≥0

 is a diagonal non-degenerate matrix. Moreover,

(8)ci = min
j∈{0,…,i}

{
ai−j + bj

}
.

(9)O

(
W +

n∑
k=2

wk ⋅ Tconv(uk)

)
.

O
(
W4∕3

⋅

(
w
−1∕3

2
+ w

−1∕3

3
+⋯ + w−1∕3

n

)
⋅ log2(W)

)

= O
(
n ⋅W4∕3

⋅ log2(W)
)
;

O

(
d3 ⋅W

1+
�−1

� ⋅

(
w

1−�

�

2
+ w

1−�

�

3
+⋯ + w

1−�

�

n

)
⋅ log2(W)

)

= O
(
d3 ⋅ n ⋅W

1+
�−1

� ⋅ log2(W)

)
.

 D. V. Gribanov et al.

1 3

∏k

i=1
Sii = �gcd(A, k) , for any k ∈ {1,… , n} , and, consequently, Sii ∣ S(i+1)(i+1) , for

i ∈ {1,… , n − 1} . Here �gcd(A, k) denotes the greatest common divisor of k × k sub-
determinants of A. The matrix S is called the Smith Normal Form (or, shortly, the SNF)
of A. Using the SNF, we can reformulate the problem (GENERALIZED-SVP):

Let us consider the quotient group G = ℤ
n∕S ⋅ ℤn (with respect to addition in ℤn),

and define gi = Pi mod diag (S) , where Pi is the i-th column of P and i ∈ {1,… , n} .
We identify the vectors gi with the elements of the group G . Clearly, |G| = � . Then,
the problem (10) can be reformulated as a minimization problem on G:

Remark 2 Note that since |det(S)| = � , the diagonal of S contains at most log2(�) of
elements that are not equal 1. Therefore, the arithmetic complexity of one operation
with elements of G is O(log(�)).

Remark 3 W.l.o.g. we can assume that gi ≠ ±gj , for different i, j. Conse-
quently, n ≤ �∕2 + 1 . Definitely, if for example g1 = ±g2 , then the vector
(1,∓1, 0,… , 0)⊤ ∈ ℤ

n⧵{0} is a feasible solution of (11). Clearly, the only solu-
tions, which can be better, are solutions of the type ±ei , which are be feasible only
if gi = 0 . The duplicates and zeros inside g1, g2,… , gn can be detected by an algo-
rithm, like the radix-sort using O(n ⋅ �) group operations or by any comparison-
based sorting using O(n ⋅ log(n)) group operations.

To solve the problem (11), we will use the following dynamic programming scheme.
For g0 ∈ G and k ∈ {1,… , n} , we define the problem DP(k, g0) in the following way:

Clearly, the problem DP(n, 0) is equivalent to the problem 11. Denote

(10)
n∑
i=1

f (xi) → min

{
Px ≡ 0 (mod S ⋅ ℤn)

x ∈ ℤ
n ⧵ {0}.

(11)
n�
i=1

f (xi) → min

⎧
⎪⎨⎪⎩

n∑
i=1

xi ⋅ gi = 0

x ∈ ℤ
n ⧵ {0}.

(12)
k�

i=1

fi(xi) → min

⎧⎪⎨⎪⎩

k∑
i=1

xi ⋅ gi = g0

x ∈ ℤ
k ⧵ {0}.

�+(k, g0) = min
j∈{0,…,�}

{
DP(k − 1, g0 − j ⋅ gk) + fk(j)

}
,

�−(k, g0) = min
j∈{0,…,�}

{
DP(k − 1, g0 + j ⋅ gk) + fk(j)

}
,

�(k, g0) = min
{
fk(j) ∶ j ⋅ gk = g0, j ∈ {−�,… ,�} ⧵ {0}

}
.

1 3

Structured (min,+)-convolution and its applications for t…

If the set, where we take min for �(k, g0) , is empty, then we set �(k, g0) = +∞ . Since
fk is monotone and even, we have DP(1, g0) = �(1, g0) . Similarly, for k ≥ 2 , it can be
straightforwardly checked out that

Note that we can not only use the values of �+(k − 1, g0) and �−(k − 1, g0) in the
previous formula, because in this case we are missing out the solutions of the type
(0, 0,… , 0, j)⊤ ∈ ℤ

k . So, we need additionally to take into account the values of
�(k − 1, g0).

First of all, fix k and let us show how to compute the values �(k, g0) , for all
g0 ∈ G , using O(�) group operations. Note that �(k, g0) ≠ +∞ if and only if
g0 = gk ⋅ j , for some j ∈ ℤ ⧵ {0} . Hence, we need to fill only the values �(k, j ⋅ gk) ,
for other values of g0 we can just set �(k, g0) = +∞ . To fill �(k, j ⋅ gk) , we can do
the following:

1. Assign �(k, g0) ∶= +∞ , for all g0 ∈ G;
2. For j ∈ {1,… ,� − 1} , do the following:
3. If �(k, j ⋅ gk) = +∞ , then assign �(k, j ⋅ gk) ∶= fk(j);
4. If �(k,−j ⋅ gk) = +∞ , then assign �(k,−j ⋅ gk) ∶= fk(j);

To see that the algorithm is correct, assume that j∗ ∈ ℤ⧵{0} is the value such that
g0 = j∗ ⋅ gk and |j∗| is minimal. Then, clearly �(k, g0) = fk(j

∗) . If j∗ > 0 , we will find
it during the 3-th step. If j∗ < 0 , the 4-th step will give the correct value. This value
will not be rewritten, because only the values with �(k, g0) = +∞ could be assigned
to something. Therefore, the values �(k, g0) , for k ∈ {1,… , n} and g0 ∈ G , can be
computed using O(n ⋅ �) group operations.

Fix k ≥ 2 . Let us estimate the complexity to compute �+(k, ⋅) in assumption
that the layer DP(k − 1, ⋅) is already computed. Let us consider the quotient group
Q = G∕⟨gk⟩ and fix Q ∈ Q . Let dk = ��⟨gk⟩�� . Clearly, Q = q + ⟨gk⟩ , where q ∈ G
is a representative of Q , and dk = |Q| . Let us define the sequences {ai}i∈{0,…,dk−1}

 ,
{bi}i∈{0,…,dk−1}

 , and {ci}i∈{0,…,dk−1}
 as follows:

Assuming that ai = bi = ci = 0 for i < 0 , and due to the definition of �+ , we have

That gives c = (a ⋆ b)[0, dk − 1] . Therefore, considering all the cosets Q ∈ Q , the
group operation complexity to compute �+(k, ⋅) , in the assumption that the level
DP(k − 1, ⋅) has already been computed, can be expressed by O

(
dk ⋅ Tconv(�∕dk)

)
 ,

where Tconv(⋅) denotes the complexity of the (min,+)-convolution. The values of
�−(k, ⋅) can be computed in a similar way with the same complexity bound.

Consequently, the layer DP(k, ⋅) , again in the assumption that the level DP(k − 1, ⋅)
has already known, can be computed, using O

(
dk ⋅ Tconv(�∕dk)

)
 group operations.

The total group operations complexity is

(13)DP(k, g0) = min
{
�+(k − 1, g0), �−(k − 1, g0), �(k − 1, g0)

}
.

ai = DP(k − 1, q + i ⋅ gk), bi = fk(i), ci = �+(k, q + i ⋅ gk).

ci = min
j∈{0,…,i}

{
ai−j + bi

}
.

 D. V. Gribanov et al.

1 3

Since fk is convex, due to [7], Tconv(k) = O(k) . Consequently, the last bound
becomes O(n ⋅ �) . Due to Remark 2, the arithmetic complexity of group operations
is O(log(�)) . Hence, the total arithmetic complexity to solve the problem (11) can be
expressed by

Finally, assuming that the original group problem (11) contains duplicates, we can
remove them, using Remark 3 with O(n ⋅ log(n) ⋅ log(�)) arithmetic operations.
Denoting the dimension of the resulting problem by m ≤ �∕2 + 1 and taking into
account the SNF computational complexity, denoted by TSNF(n,�) , we get the com-
plexity bound of the whole algorithm

Due to [49], TSNF(n,�) = O(n� ⋅ log(�)) of arithmetic operations with integers of the
size O(log(�)) . So, the following theorem has been proven.

Theorem 5 The problem GENERALIZED-SVP can be solved by an algorithm with
arithmetic complexity bound

where all the computations are performed with integer numbers of the size O(log(�))
and � is the matrix multiplication exponent.

5.2 CVP problem

Let us consider the generalized problem GENERALIZED-CVP. After the maps
x → x − b and q − b → q , where b = −⌊q⌉ , the problem GENERALIZED-CVP
transforms to:

with ‖q‖∞ < 1∕2 . Additionally, we can assume that q ≥ 0 , because we can map xi to
−xi , for qi < 0 . Finally, we can sort qi , so we have

Denote fi(x) = f
(||x − qi

||
)
 . It is easy to check that the following properties hold for

fi(x) :

O

(
n ⋅ � +

n∑
k=1

dk ⋅ Tconv(�∕dk)

)
.

O(n ⋅ � ⋅ log(�)).

O
(
TSNF(n,�) + n ⋅ log(n) ⋅ log(�) + m ⋅ � ⋅ log(�)

)
.

O(n𝜔 ⋅ log(𝛥) +min{n,𝛥} ⋅ 𝛥 ⋅ log(𝛥)) = Õ(n𝜔 +min{n,𝛥} ⋅ 𝛥),

(14)min

{
n∑
i=1

f
(||xi − qi

||
)
∶ x ∈ b + �(A)

}
,

(15)1∕2 > q1 ≥ q2 ≥ ⋯ ≥ qn ≥ 0.

1 3

Structured (min,+)-convolution and its applications for t…

(i) For any i ∈ {1,… , n} , fi is monotone on the sets ℤ
≥0 and ℤ

≤0 and convex on ℤ;
(ii) For any x ∈ ℤ

≥1 , f1(x) ≤ f2(x) ≤ ⋯ ≤ fn(x);
(iii) For any x ∈ ℤ

≤0 , f1(x) ≥ f2(x) ≥ ⋯ ≥ fn(x);
(iv) For any x ∈ ℤ

≥1 ,

(v) For any x ∈ ℤ
≤0 ,

The property (i) could be checked directly. The properties (ii-iii) hold, due to (15)
and the the monotonicity of f. The properties (iv-v) hold, due to (15) and the con-
vexity of f.

As in Sect. 5.1, using the SNF decomposition PAQ = S , we transform (14) to:

Let us define G and gi (for i ∈ {1,… , n}) as it was done in Sect. 5.1. Let us define
G = Pb mod diag (S) and reformulate (16) in the group minimization style:

Now, we going to remove duplicates from g1, g2,… , gn , but it is a bit more tricky
problem than its analogue discussed in Remark 3. Assume that g1 = g2 = ⋯ = gk .
We want to replace the variables x1,… , xk by only one variable y = x1 +⋯ + xk
attached to g1 . To this end, we need to replace the objective

∑k

i=1
fi(xi) with a new

equivalent objective h(y). The following lemma explains how to choose h.

Lemma 4 Let g1 = g2 = ⋯ = gk , for k ∈ {1,… , n} . There exists a function
h(x) ∶ ℤ → ℝ , such that the problem (17) and the following problem

are equivalent. The function h can be defined in the following way:

f1(x) − f1(x − 1) ≤ f2(x) − f2(x − 1) ≤ ⋯ ≤ fn(x) − fn(x − 1);

f1(x − 1) − f1(x) ≥ f2(x − 1) − f2(x) ≥ ⋯ ≥ fn(x − 1) − fn(x).

(16)
n∑
i=1

fi(xi) → min

{
Px ≡ Pb (mod S ⋅ ℤn)

x ∈ ℤ
n.

(17)
n�
i=1

fi(xi) → min

⎧⎪⎨⎪⎩

n∑
i=1

gi ⋅ xi = G

x ∈ ℤ
n.

(18)

h(y) +

n�
i=k+1

fi(xi−k) → min

⎧⎪⎨⎪⎩

g1 ⋅ y +
n∑

i=k+1

gi ⋅ xi−k = G

x ∈ ℤ
n−k
≥0

y ∈ ℤ
≥0

 D. V. Gribanov et al.

1 3

 (i) If y ∈ ℤ
≥0 , then compute r = y mod k and a = ⌊y∕k⌋ . Let us construct the

vector z = (a + 1,… , a + 1, a,… , a)⊤ , where a + 1 is taken r times. Put

h(y) ∶=
k∑

i=1

fi(zi);

 (ii) If y ∈ ℤ<0 , then compute r = (−y) mod k and a = ⌊(−y)∕k⌋ . Let us construct
the vector z = −(a,… , a, a + 1,… , a + 1)⊤ , where a + 1 is taken r times. Put

h(y) ∶=
k∑

i=1

fi(zi).

Additionally, for any m ≥ 0 , the sequences

can be computed using O(m) operations.

The lemma proof is moved into Appendix Sect. 6.4.
Using the previous lemma, we can remove all the duplicates and assume that

all the elements g1, g2,… , gn are unique. The remaining part of our algorithm is
very close to the algorithm from Sect. 5.1. For k ∈ {1,… , n} and g0 ∈ G , we define
DP(k, g0) , �+(k, g0) and �−(k, g0) . Clearly, the problem DP(n,G) is equivalent to
the problem 17. The values �+(k, g0) and �−(k, g0) can be computed with the same
formulas and algorithms. The only minor difference is the recurrent formula for
DP(k, g0):

Therefore, we have proven our conclusive result.

Theorem 6 The problem GENERALIZED-CVP can be solved by an algorithm with
arithmetic complexity bound

where all computations are performed with integer numbers of the size O(log(�))
and � is the matrix multiplication exponent.

Appendix

Proof of Theorem 1

Proof Description of data structure: Our new data structure is a common segment
tree T with some additional augmentations. Here we will use the same notations,
as in Sect. 2.2. We augment each vertex v of T with an additional data, represented
by a finite set Gv of functions g ∶ Dg ∩ ℤ → ℤ , where each domain Dg is an integer
sub-interval of [0, n) and g acts on Dg as a function g(x) = A[j] + f (x + t) , for some
j, t ∈ {0,… , n − 1} . We will support the following four invariants, for any v ∈ T:

h(0), h(1), … , h(m), and h(0), h(−1), … , h(−m)

DP(k, g0) = min
{
�+(k − 1, g0),�−(k − 1, g0)

}
.

O(n𝜔 ⋅ log(𝛥) +min{n,𝛥} ⋅ 𝛥 ⋅ log(𝛥)) = Õ(n𝜔 +min{n,𝛥} ⋅ 𝛥),

1 3

Structured (min,+)-convolution and its applications for t…

– Invariant 1: the intervals Dg , for any g ∈ Gv , must split [0, n):

– Invariant 2: for any x ∈ [0, n) , there exists a unique function g ∈ Gv , such that
x ∈ Dg , and

– Invariant 3: the functions g ∈ Gv are stored in the sorted order with respect to the
end-points of their domains Dg;

– Invariant 4: for any g ∈ Gv , the function g(x) acts on Dg like g(x) = A[j] + f (x + t) ,
for j, t ∈ {0,… , n − 1};

Description and analysis of the query operation for basic intervals: For the definition
of basic intervals, see Sect. 2.2. Assume that a vertex v ∈ T is given, and we want
to perform the query(iv, jv, x) operation with respect to the basic interval [iv, jv) . Due
to Invariant 2, we just need to find an appropriate function g from the set Gv . Due
to Invariant 3, the function g can be found in O(log(n)) time, because Gv contains
at most n functions. Due to Invariant 4, g(x) looks like A[j] + f (x + t) , so it can be
computed, using a single call to EV . The total complexity is O(log2(n)).

Description and analysis of the query operation for general intervals: Assume that
an interval [i, j) is given, and we want to perform the query(i, j, x) operation. Due
to Lemma 1, there exist m ≤ 2 log2(n) vertices v1, v2,… , vm ∈ T , such that [i, j) is
partitioned into the basic intervals [ivk , jvk) , for k ∈ {1,… ,m} . Let us assume that
iv1 < iv2 < ⋯ < ivm , and let hk = ivk − iv1 . Due to the property (1), we have

Consequently, due to the complexity bound on queries for basic intervals, the com-
plexity of the query(i, j, x) operation is O(log2(n)).

Description and analysis of the preprocessing:
First of all, let us construct the standard segment tree T, described in Sect. 2.2,

for the array A. It will take O(n) time and space. We need to show how to compute
Gv , for any v ∈ T , and satisfy all the invariants. The algorithm is recursive: it starts
from the leafs, and moves upper, until it meats the root of T. Let v be a leaf. Since
jv − iv = 1 , F

(
[iv, jv);x

)
= A[iv] + f (x) . Consequently, Gv consists of only one func-

tion g(x) = A[iv] + f (x) , and Dg = [0, n).
Next, we assume that v is not a leaf, and let u and w be the children of v. We

will show how the set Gv can be constructed from the sets Gu and Gw , based on the
formula

[0, n) =
⨆
g∈Gv

Dg;

F
(
[iv, jv);x

)
= g(x);

F([i, j); x)

= min
{
F
(
[iv1 , jv1); x + h1

)
,… ,F

(
[ivm , jvm); x + hm

)}

= min
k∈{1,…,m}

{
F
(
[ivk , jvk); x + hk

)}
.

(19)F
(
[iv, jv); x

)
= min

{
F
(
[iu, ju); x

)
, F

(
[iw, jw); x + ju − iu

)}
,

 D. V. Gribanov et al.

1 3

which is a direct application of (1). Let Pu and Pw be the sets of end-points of
intervals, representing the domains of functions inside Gu and Gw . We assume that
0, n ∈ Pu and 0, n ∈ Pw . Clearly, ||Pu

|| = ||Gu
|| + 1 and ||Pw

|| = ||Gw
|| + 1 . Due to Invari-

nat 3, we can assume that Pu and Pw are sorted. Next, we merge Pu and Pw into Pv ,
maintaining the same sorting order, and remove the duplicates. The last step can be
done in O(||Gu

|| + ||Gw
||)-time, since Pu and Pw are sorted. Since the points 0, n are

common for both Pu and Pv , we have

Take a pair �, � of consecutive points in Pv . Due to Invariant 2, there exist unique
functions gu ∈ Gu and gw ∈ Gw , such that [𝜈, 𝜏) ⊆ Dgu

∩Dgw
 . Due to the formula

(19), for x ∈ [�, �) , we have

Let h(x) = gu(x) − gw(x + ju − iu) , defined on [�, �) . Due to Invariant 4, the function
h(x) has the form f (x + a) − f (x + b) + c , for some a, b ∈ ℤ

≥0 and c ∈ ℤ.
To efficiently precompute F

(
[iv, jv);x

)
 for x ∈ [�, �) ∩ ℤ , we need to com-

pute a minimal sign partition S ∈ P(h, [�, �)) . It can be done by a single call to
SP . Now, for any interval I ∈ S , if h(x) ≥ 0 on I , then F

(
[iv, jv);x

)
= gu(x) and

F
(
[iv, jv);x

)
= gw(x + ju − iu) in the opposite case h(x) ≤ 0 . Consequently, for any

such interval I , we create a new function gI and put it inside Gv in the sorted order
with respect to endpoints of I . Hence, the interval [�, �) will be decomposed into at
most p new sub-intervals, and the same number of new functions will be added into
Gv.

Now, let us estimate the time and space requirements to build the set Gv . As it was
shown before, for any pair [�, �) of consecutive points from Pv , we add at most p
functions to Gv . Therefore, due to (20), we have

Denote N(m) = max
{||Gv

|| ∶ v ∈ T , jv − iv = m
}
 , for m ≤ n being a power of 2.

Since N(1) = 1 , we have

And, since we always work in the interval [0, n),

By analogy with N(m), let us denote the maximal time to construct Gv (in the
assumption that Gu and Gw are already constructed) by tnode(m) , where m = jv − iv .
By the word "time", we mean both arithmetical and oracle complexities. Clearly,
the definition is correct, because the value of m is the same for all the vertices of
the same level in T. Since the complexity to compute Gv is linear with respect to the
resulting size of Gv , due to (21),

(20)||Pv
|| ≤ ||Gu

|| + ||Gw
||.

F
(
[iv, jv); x

)
= min

{
gu(x), gw(x + ju − iu)

}
.

||Gv
|| ≤

(||Gu
|| + ||Gw

|| − 1
)
⋅ p.

N(m) ≤ 2 ⋅ N(m∕2) ⋅ p ≤ (2p)log2(m) = m1+log2(p).

(21)N(m) ≤ min{m1+log2(p), n}.

1 3

Structured (min,+)-convolution and its applications for t…

Note additionally that the space requirements to store Gv with the whole information,
related to v, can be described by the same function tnode(m) . Now, let us compute the
total time and space complexity to construct the final augmented tree T. It can be
expressed by the function

Let s =
⌈
log2

(
n

1

1+log2(p)

)⌉
 . To calculate the asymptotic of t(n), we split the sum into

two parts and estimate elements of each sum, using (22):

Estimating the sum at the end of the last formula, we have:

Finally, the total time and space requirements can be estimated as follows

 ◻

Proof of Lemma 2

Proof Put I = {0,… , n − 1} . To prove the lemma, we will use the criteria, given
in [50, Corollary 1]. For given g0, g1,… , gn−1 , it states that the C1,L-smooth convex
function f with f �(xi) = gi exists if and only if the following conditions are satisfied:

(22)tnode(m) = O(N(m)) = O
(
min{m1+log2(p), n}

)
.

t(n) =

log2(n)∑
k=0

2k ⋅ tnode(n∕2
k).

t(n) ≲

s∑
k=0

2k ⋅ n +

log2(n)∑
k=s+1

2k ⋅ (n∕2k)1+log2(p)

≲ n
1+

1

1+log2(p) + n1+log2(p) ⋅

log2(n)∑
k=s+1

2−k⋅log2(p).

log2(n)∑
k=s+1

2−k⋅log2(p) =

log2(n)∑
k=s+1

p−k =
p

p − 1
⋅

(
1

p1+s
−

1

p1+log2(n)

)

=
1

p − 1
⋅

(
1

ps
−

1

plog2(n)

)
≤

1

p − 1
⋅

(
1

n
log2(p)

1+log2(p)

−
1

nlog2(p)

)
.

t(n) ≲ n
1+

1

1+log2(p) +
1

p
⋅ n

1+log2(p)−
log2 (p)

1+log2(p)

= n
1+

1

1+log2(p) ⋅

(
1 +

1

p
⋅ n−1+log2(p)

)

= O

(
n
log2(p)+

1

1+log2(p)

)
.

 D. V. Gribanov et al.

1 3

We construct gi in the following way. We choose g0 < d1 and gn−1 > dn−1 .
For i ∈ {1,… , n − 2} , if di < di+1 , we choose gi strictly between di and di+1 :
di < gi < di+1 . In the opposite case, when di = di+1 , we just set gi ∶= di.

Fix i, j ∈ {1,… , n − 2} . Assume firstly that dk = dl , for all k, l between (inclu-
sively) i, j. Then, the following equality, for any 𝜀 > 0 , holds, which follows from
the definition of di:

Now, assume that dk ≠ dk+1 , for some k between (inclusively) i, j. Then, since
gk > dk , we have

for any sufficiently small 𝜀 > 0 . Finally, if i = 0 or j = n − 1 , the same inequality
holds, because g0 < d1 and gn−1 > dn−1.

Therefore, since I is finite, we can choose � sufficiently small, such that the fol-
lowing inequality will hold, for any i, j ∈ I :

 ◻

Proof of Lemma 3

Proof Assume that f is convex. In the opposite case, we can consider a function
−g(x) = (−f (x + a)) − b − (−f (x)) . Clearly, all the sign partitions of g(x) and −g(x)
are equivalent. Next, we can assume that f is C1-smooth. Definitely, if f is not C1

-smooth, due to Lemma 2, there exists a convex C1-smooth function h, such that
h(x) = f (x) , for all x ∈ [�, �) ∩ ℤ . Since any minimal sign partition of f consists of
intervals with integer end-points, the sign partitions for h and f are equivalent, and
we can use h instead of f.

Additionally, we assume that a > 0 , because, in the opposite case, both state-
ments are trivial. Now, we claim that the equality g(x) = 0 is possible only for points
in some connected interval [𝜈, 𝜏] ⊆ [𝛼, 𝛽) . Assume that g(�) = 0 and g(�) = 0 , for
some �, � ∈ [�, �) with 𝜏 > 𝜈 . By definition, we have

Due to C1-smoothness of f, we can use the fundamental theorem of calculus:

(23)fi ≥ fj + gj ⋅ (xi − xj) +
1

2L
⋅

|||gi − gj
|||, for i, j ∈ I.

fi = fj + gj ⋅ (xi − xj) = fj + gj ⋅ (xi − xj) + 0 ⋅
|||gi − gj

|||.

fi > fj + gj ⋅ (xi − xj) ⟹ fi ≥ fj + gj ⋅ (xi − xj) + 𝜀 ⋅
|||gi − gj

|||,

fi ≥ fj + gj ⋅ (xi − xj) + � ⋅
|||gi − gj

|||, which satisfies (23) with L = 1∕(2�).

f (� + a) − f (�) = −b and f (� + a) − f (�) = −b.

1 3

Structured (min,+)-convolution and its applications for t…

Put � = � − � . Make a change of variables x → x − � and x → x + � in (24):

Combining (24) and (25), we get

Since f is convex, f �(x + �) − f �(x) ≥ 0 and f �(x) − f �(x − �) ≥ 0 , and, consequently,

Again, since f �(x) is convex, f �(x) = const , for the whole interval [�, �] . Conse-
quently, g�(x) = 0 and g(x) = const , for x ∈ [�, �] . Since g(�) = 0 , it holds that
g(x) = 0 , for x ∈ [�, �] . So, the claim is proved.

Therefore, any given interval I ⊆ [𝛼, 𝛽) , where g is well-defined, can be parti-
tioned into at most three parts: strict inequalities g(x) > 0 or g(x) < 0 on the left
and right sides, and equality g(x) = 0 in the middle. Consequently, any minimal sign
partition of g on I consists of at most 2 pieces, which proves the inequality pf ≤ 2 .
To calculate such a partition, we need to find an integer point z ∈ I with g(z) = 0 .
Or, in the case, when g(x) ≠ 0 for all x ∈ I ∩ ℤ , we need to calculate a point z, such
that g(z) < 0 and g(z + 1) > 0 , or vice-versa. Clearly, in both cases we can use the
standard dichotomy principle that takes O(log(n)) calls to EV . ◻

Proof of Lemma 4

Proof First we need to prove the following auxiliary lemma:

Lemma 5 Let g1 = g2 = ⋯ = gk , for k ∈ {1,… , n} , and x∗ be an optimal solution
of 17. Denote S = x∗

1
+⋯ + x∗

k
 . Then, there exists an optimal solution z∗ with the fol-

lowing structure:

 (i) If S ≥ 0 , then:

 (ii) If S < 0 , then:

(24)

�+a

∫
�

f �(x)dx = −b, and

�+a

∫
�

f �(x)dx = −b.

(25)

�+a

∫
�

f �(x − �)dx = −b, and

�+a

∫
�

f �(x + �)dx = −b.

�+a

∫
�

(
f �(x + �) − f �(x)

)
dx = 0, and

�+a

∫
�

(
f �(x) − f �(x − �)

)
dx = 0.

∀x ∈ [�, � + a] f �(x) = const , and ∀x ∈ [�, � + a] f �(x) = const .

(26)z∗ = (a + 1, a + 1,… , a + 1, a, a,… , a)⊤, where a ∈ ℤ
≥0.

 D. V. Gribanov et al.

1 3

Proof Note that the expressions g1 ⋅ x∗1 +⋯ + gk ⋅ x
∗
k
 and g1 ⋅ S are equivalent in

therms of constraints of (17). Assume that S ≥ 0 . First of all, we claim that there
exists an optimal solution z∗ with the property z∗

i
≥ 0 , for i ∈ {1,… , k} . Assume that

there exist i, j ∈ {1,… , k} with x∗
i
≥ 1 and x∗

j
≤ −1 . Since S ≥ 0 , if x∗

j
 exists, then x∗

i

exists also. Next, we construct a vector z∗ , which coincides with x∗ in all the coordi-
nates, except i, j. Put z∗

i
= x∗

i
− 1 and z∗

j
= x∗

j
+ 1 . Due to Property 1, we have ∑k

i=1
fi(z

∗
i
) ≤

∑k

i=1
fi(x

∗
i
) . Such a procedure can be repeated until no negative coordi-

nates remain. Consequently, it can be assumed that x∗
i
≥ 0 , for i ∈ {1,… , k} . Let us

consider the following auxiliary optimization problem:

Clearly, x∗[1, k] gives an optimal solution of this problem, and vice versa, an optimal
solution of 6.4 could be used to generate the first k coordinates of x∗ . Let us con-
sider the set S = {x ∈ ℤ

k
≥0

∶ x1 +⋯ + xk ≤ S} . Elements of S could be treated as
the characteristic vectors of multisets with the cardinality S. Identifying vectors with
multisets, we can see that S is a matroid, see, for example, [33, Proposition 13.4,
Part 13. Matroids]. The vectors z ∈ S with z1 +⋯ + zk = S are the bases of S . Con-
sequently, an optimal solution of 6.4 is exactly a base of S with the minimal possible
value of the objective function. Since S is a matroid, an optimal solution of 6.4 can
by found by the following greedy algorithm:

1. Assign s ∶= 0 , x ∶= 0
k , and F ∶= f1(0) +⋯ + fk(0);

2. While s ≤ S do the following:
3. Choose i ∈ {1,… , k} , such that the value fi(xi + 1) − fi(xi) is minimal;
4. Assign xi ∶= xi + 1 , s ∶= s + 1 , and F ∶= F + fi(xi + 1) − fi(xi);
5. Move to the step 2;
6. Return x as a greedy solution and F as f(x);

Due to the properties 4,5, there exists a greedy solution z∗ that looks like (26).
This proves the lemma for the case S ≥ 0 . The case S < 0 is absolutely similar.
 ◻

If x∗ is an optimal solution of (17), then, due to Lemma 5, there exists an optimal
solution z∗ of (17), such that the first k components of z∗ look like (26) or (27). By
the definition of h, we have

∑k

i=1
fi(z

∗
i
) = h(y) , where y = z∗

1
+… z∗

k
 . Note that

(y, x∗[k + 1, n]) is a feasible solution of (18) with the same value of the objective
function. In the opposite direction, let (y, x∗) be an optimal solution of (18). Let

(27)z∗ = −(a, a,… , a, a + 1, a + 1,… , a + 1)⊤, where a ∈ ℤ
≥0.

k∑
i=1

fi(xi) → min

{
x1 +⋯ + xk = S

x ∈ ℤ
≥0.

1 3

Structured (min,+)-convolution and its applications for t…

us construct the vector z as it was described in the lemma definition. Clearly, the

vector
(

z

x∗

)
 is a feasible solution of (17) with the same value of the objective

function.
Finally, let us explain how to compute h(0), h(1),… , h(m) with O(m) operations.

Assume that h(i) has already been computed, and let r = i mod k and a = ⌊i∕k⌋ .
Then, by the definition of h, we have h(i + 1) = h(i) + fr+1(a + 1) − fr+1(a) . Hence,
we need O(1) operations to compute h(i + 1) and O(m) operations to compute the
whole sequence. A similar algorithm works for h(0), h(−1),… , h(−m) . The proof of
Lemma 4 is finished. ◻

References

 1. Aggarwal, D., Dadush, D., Regev, O., Stephens-Davidowitz, N.: Solving the shortest vector problem
in 2n time using discrete gaussian sampling. In: Proceedings of the Forty-Seventh Annual ACM
Symposium on Theory of Computing, pp. 733–742 (2015)

 2. Aggarwal, D., Dadush, D., Stephens-Davidowitz, N.: Solving the closest vector problem in 2n time–
the discrete gaussian strikes again! In: 2015 IEEE 56th Annual Symposium on Foundations of Com-
puter Science, pp. 563–582. IEEE (2015)

 3. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In:
Proceedings of the Thirty-Third Annual ACM Symposium on Theory of computing, pp. 601–610
(2001)

 4. Ajtai, M., Kumar, R., Sivakumar, D.: Sampling short lattice vectors and the closest lattice vector
problem. In: Proceedings 17th IEEE Annual Conference on Computational Complexity, pp. 53–57.
IEEE (2002)

 5. cp algorithms.com: Segment tree (2022). https:// cp- algor ithms. com/ data_ struc tures/ segme nt_ tree.
html

 6. Arvind, V., Joglekar, P.S.: Some sieving algorithms for lattice problems. In: IARCS Annual Confer-
ence on Foundations of Software Technology and Theoretical Computer Science. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik (2008)

 7. Axiotis, K., Tzamos, C.: Capacitated Dynamic Programming: Faster Knapsack and Graph Algo-
rithms. In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.) 46th International Col-
loquium on Automata, Languages, and Programming (ICALP 2019), Leibniz International Proceed-
ings in Informatics (LIPIcs), vol. 132, pp. 19:1–19:13. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany (2019). https:// doi. org/ 10. 4230/ LIPIcs. ICALP. 2019. 19

 8. Backurs, A., Indyk, P., Schmidt, L.: Better approximations for tree sparsity in nearly-linear time. In:
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
2215–2229. SIAM (2017)

 9. Bateni, M., Hajiaghayi, M., Seddighin, S., Stein, C.: Fast algorithms for knapsack via convolution
and prediction. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Com-
puting, pp. 1269–1282 (2018)

 10. Bellman, R.: Dynamic programming. Science 153(3731), 34–37 (1966)
 11. Blömer, J., Naewe, S.: Sampling methods for shortest vectors, closest vectors and successive min-

ima. Theoret. Comput. Sci. 410(18), 1648–1665 (2009)
 12. Bremner, D., Chan, T.M., Demaine, E.D., Erickson, J., Hurtado, F., Iacono, J., Langerman, S.,

Taslakian, P.: Necklaces, convolutions, and x + y . In: European Symposium on Algorithms, pp.
160–171. Springer (2006)

 13. Chan, T.M., Har-Peled, S.: Smallest k-enclosing rectangle revisited. Discrete Comput. Geom. 66(2),
769–791 (2021)

 14. Chan, T.M., Lewenstein, M.: Clustered integer 3sum via additive combinatorics. In: Proceedings of
the Forty-Seventh Annual ACM Symposium on Theory of Computing, STOC ’15, pp. 31–40. Asso-
ciation for Computing Machinery, New York (2015). https:// doi. org/ 10. 1145/ 27465 39. 27465 68

https://cp-algorithms.com/data_structures/segment_tree.html
https://cp-algorithms.com/data_structures/segment_tree.html
https://doi.org/10.4230/LIPIcs.ICALP.2019.19
https://doi.org/10.1145/2746539.2746568

 D. V. Gribanov et al.

1 3

 15. Chan, T.M., Williams, R.: Deterministic apsp, orthogonal vectors, and more: Quickly derandomiz-
ing razborov-smolensky. In: Proceedings of the twenty-seventh annual ACM-SIAM symposium on
Discrete algorithms, pp. 1246–1255. SIAM (2016)

 16. Chi, S., Duan, R., Xie, T., Zhang, T.: Faster min-plus product for monotone instances (2022)
 17. Cygan, M., Mucha, M., Węgrzycki, K., Włodarczyk, M.: On problems equivalent to (min,+)-convo-

lution. ACM Trans. Algorithm (TALG) 15(1), 1–25 (2019)
 18. Dadush, D.: Integer programming, lattice algorithms, and deterministic volume estimation. Georgia

Institute of Technology, ProQuest Dissertations Publishing, Ann Arbor (2012)
 19. Dadush, D., Peikert, C., Vempala, S.: Enumerative lattice algorithms in any norm via m-ellipsoid

coverings. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 580–
589 (2011). https:// doi. org/ 10. 1109/ FOCS. 2011. 31

 20. Eisenbrand, F., Hähnle, N., Niemeier, M.: Covering cubes and the closest vector problem. In: Pro-
ceedings of the Twenty-Seventh Annual Symposium on Computational Geometry, pp. 417–423
(2011)

 21. Eisenbrand, F., Weismantel, R.: Proximity results and faster algorithms for integer programming
using the steinitz lemma. ACM Trans. Algorithms (2019). https:// doi. org/ 10. 1145/ 33403 22

 22. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in a lattice, includ-
ing a complexity analysis. Math. Comput. 44(170), 463–471 (1985)

 23. Gribanov D., V.: An FPTAS for the �-Modular Multidimensional Knapsack Problem (2021). https://
doi. org/ 10. 1007/ 978-3- 030- 77876-7_6

 24. Gribanov, D.V., Malyshev, D.S., Pardalos, P.M., Veselov, S.I.: FPT-algorithms for some problems
related to integer programming. J. Comb. Optim. 35, 1128–1146 (2018). https:// doi. org/ 10. 1007/
s10878- 018- 0264-z

 25. Gribanov D., V., Shumilov I., A., Malyshev D., S., Pardalos P., M.: On �-modular integer linear
problems in the canonical form and equivalent problems. J. Glob. Optim. (2022). https:// doi. org/ 10.
1007/ s10898- 022- 01165-9

 26. Hanrot, G., Pujol, X., Stehlé, D.: Algorithms for the shortest and closest lattice vector problems. In:
International Conference on Coding and Cryptology, pp. 159–190. Springer (2011)

 27. Hanrot, G., Stehlé, D.: Improved analysis of kannan’s shortest lattice vector algorithm. In: Annual
International Cryptology Conference, pp. 170–186. Springer (2007)

 28. Helfrich, B.: Algorithms to construct minkowski reduced and hermite reduced lattice bases. Theo-
ret. Comput. Sci. 41, 125–139 (1985)

 29. Jansen, K., Rohwedder, L.: On integer programming and convolution. In: 10th Innovations in Theo-
retical Computer Science Conference (ITCS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik (2018)

 30. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3),
415–440 (1987)

 31. Kellerer, H., Pferschy, U.: Improved dynamic programming in connection with an fptas for the
knapsack problem. J. Comb. Optim. 8(1), 5–11 (2004)

 32. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer Science & Business Media,
Berlin (2013)

 33. Korte, B., Vygen, J.: Combinatorial Optimization. Springer, Berlin (2011)
 34. Kulikov, A.S., Mikhailin, I., Mokhov, A., Podolskii, V.: Complexity of Linear Operators. In: P. Lu,

G. Zhang (eds.) 30th International Symposium on Algorithms and Computation (ISAAC 2019),
Leibniz International Proceedings in Informatics (LIPIcs), vol. 149, pp. 17:1–17:12. Schloss Dag-
stuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2019). https:// doi. org/ 10. 4230/ LIPIcs.
ISAAC. 2019. 17

 35. Künnemann, M., Paturi, R., Schneider, S.: On the Fine-Grained Complexity of One-Dimensional
Dynamic Programming. In: I. Chatzigiannakis, P. Indyk, F. Kuhn, A. Muscholl (eds.) 44th Inter-
national Colloquium on Automata, Languages, and Programming (ICALP 2017), Leibniz Inter-
national Proceedings in Informatics (LIPIcs), vol. 80, pp. 21:1–21:15. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany (2017). https:// doi. org/ 10. 4230/ LIPIcs. ICALP. 2017.
21. http:// drops. dagst uhl. de/ opus/ vollt exte/ 2017/ 7468

 36. Laber, E.S., Bardales, W., Cicalese, F.: On lower bounds for the maximum consecutive subsums
problem and the (min,+)-convolution. In: 2014 IEEE International Symposium on Information The-
ory, pp. 1807–1811. IEEE (2014)

 37. Lawler, E.L.: Fast approximation algorithms for knapsack problems. In: 18th Annual Symposium on
Foundations of Computer Science (sfcs 1977), pp. 206–213. IEEE (1977)

https://doi.org/10.1109/FOCS.2011.31
https://doi.org/10.1145/3340322
https://doi.org/10.1007/978-3-030-77876-7_6
https://doi.org/10.1007/978-3-030-77876-7_6
https://doi.org/10.1007/s10878-018-0264-z
https://doi.org/10.1007/s10878-018-0264-z
https://doi.org/10.1007/s10898-022-01165-9
https://doi.org/10.1007/s10898-022-01165-9
https://doi.org/10.4230/LIPIcs.ISAAC.2019.17
https://doi.org/10.4230/LIPIcs.ISAAC.2019.17
https://doi.org/10.4230/LIPIcs.ICALP.2017.21
https://doi.org/10.4230/LIPIcs.ICALP.2017.21
http://drops.dagstuhl.de/opus/volltexte/2017/7468

1 3

Structured (min,+)-convolution and its applications for t…

 38. Liu, M., Wang, X., Xu, G., Zheng, X.: Shortest lattice vectors in the presence of gaps. Cryptology
ePrint Archive (2011)

 39. Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest vector problem. In:
Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms, pp. 1468–
1480. SIAM (2010)

 40. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for most lattice
problems based on voronoi cell computations. SIAM J. Comput. 42(3), 1364–1391 (2013)

 41. Micciancio, D., Walter, M.: Fast lattice point enumeration with minimal overhead. In: Proceedings
of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 276–294. SIAM
(2014)

 42. Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are practical. J. Math.
Cryptol. 2(2), 181–207 (2008)

 43. Pferschy, U.: Dynamic programming revisited: Improving knapsack algorithms. Computing 63(4),
419–430 (1999). https:// doi. org/ 10. 1007/ s0060 70050 042

 44. Pohst, M.: On the computation of lattice vectors of minimal length, successive minima and reduced
bases with applications. ACM Sigsam Bull. 15(1), 37–44 (1981)

 45. Polak, A., Rohwedder, L., Wegrzycki, K.: Knapsack and subset sum with small items (2021). arXiv:
2105. 04035 v1 [cs.DS]

 46. Pujol, X., Stehlé, D.: Solving the shortest lattice vector problem in time 2 ̂ 2.465 n. Cryptology
ePrint Archive (2009)

 47. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1998)
 48. Sommer, N., Feder, M., Shalvi, O.: Finding the closest lattice point by iterative slicing. SIAM J.

Discret. Math. 23(2), 715–731 (2009)
 49. Storjohann, A.: Near optimal algorithms for computing Smith normal forms of integer matrices. In:

Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation, ISSAC
’96, pp. 267–274. Association for Computing Machinery, New York, NY, USA (1996). https:// doi.
org/ 10. 1145/ 236869. 237084

 50. Taylor, A.B., Hendrickx, J.M., Glineur, F.: Smooth strongly convex interpolation and exact worst-
case performance of first-order methods. Math. Program. 161(1), 307–345 (2017)

 51. Williams, R.R.: Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput. 47(5), 1965–
1985 (2018)

 52. Yasuda, M.: A survey of solving svp algorithms and recent strategies for solving the svp challenge.
In: International Symposium on Mathematics, Quantum Theory, and Cryptography, pp. 189–207.
Springer, Singapore (2021)

 53. Zhendong, W.: Computing the Smith forms of Integer Matrices and Solving Related Problems. Uni-
versity of Delaware, Newark, DE (2005)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

https://doi.org/10.1007/s006070050042
http://arxiv.org/abs/2105.04035v1
http://arxiv.org/abs/2105.04035v1
https://doi.org/10.1145/236869.237084
https://doi.org/10.1145/236869.237084

	Structured -convolution and its applications for the shortestclosest vector and nonlinear knapsack problems
	Abstract
	1 Introduction
	1.1 Structured -convolution
	1.2 The nonlinear knapsack problem
	1.2.1 Some results about KNAP-LIN
	1.2.2 Nonlinear separable objective function

	1.3 The shortest and closest vector problems

	2 Data structures
	2.1 Queue with minimum support
	2.2 Segment tree
	2.3 Augmented segment tree

	3 Structured -convolution algorithms
	3.1 The linear case
	3.2 The piece-wise linear case
	3.3 The polynomial and concave cases

	4 Applications for the bounded knapsack
	5 SVP and CVP dynamic programming algorithms
	5.1 SVP problem
	5.2 CVP problem

	Appendix
	Proof of Theorem 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4

	References

