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ON IMAGES OF AFFINE SPACES

IVAN ARZHANTSEV

Abstract. We prove that every non-degenerate toric variety, every homogeneous space of
a connected linear algebraic group without non-constant invertible regular functions, and
every variety covered by affine spaces admits a surjective morphism from an affine space.

1. A-images and very flexible varieties

There is no doubt that the affine spaces Am play the key role in mathematics and other
fields of science. It is all the more surprising that despite the centuries-old history of study, to
this day a number of natural and even naive questions about affine spaces remain open. Here
we can mention the Jacobian conjecture, the cancellation problem, the linearization problem,
the problem of recognition of tame and wild automorphisms, and a number of other unsolved
problems. The question of which varieties can be realized as images of morphisms from an
affine space to other varieties also seems nontrivial. The purpose of this note is to show that
the class of such images is surprisingly wide and entirely includes several important classes of
algebraic varieties. Our results are based on the theory of flexible varieties developed in [2]
and subsequent works, and on a canonical quotient realization of a variety coming from the
theory of Cox rings, see [6, 1].

Below we consider algebraic varieties over an algebraically closed field K of characteristic
zero.

Definition 1. An algebraic variety X is called an A-image if for some positive integer m
there is a surjective morphism ϕ : Am → X .

Clearly, every A-image is irreducible. Moreover, if f is an invertible regular function on X ,
the pull-back function ϕ∗(f) is an invertible regular function on Am. This proves that every
invertible regular function on an A-image is constant. Finally, let us recall that an irreducible
algebraic variety X is unirational if the field of rational functions K(X) can be embedded in
a purely transcendental extension K(x1, . . . , xm) of the ground field K, or, equivalently, there
exists a rational dominant morphism from some affine space Am to X . It follows that every
A-image is a unirational variety. Honestly speaking, we have no example of a unirational
variety without non-constant invertible regular functions which is not an A-image. Moreover,
explicit computations show that many varieties from this class can be realized as images of
affine spaces.

Example 1. There is a surjective morphism ϕ : A1 → P1. It can be given, for example, by

x→ [1 + x2 : x].

2010 Mathematics Subject Classification. Primary 14A10, 14R10 Secondary 14M20, 14M22.
Key words and phrases. Affine space, morphism, image, unirational variety, invertible function, flexible

variety, toric variety, homogeneous space.
Supported by the grant RSF-DST 22-41-02019.

1

http://arxiv.org/abs/2209.08607v2


2 IVAN ARZHANTSEV

Example 2. It is easy to check that the image of the morphism A2 → A2 given by

(x, y) → (1 + xy, x+ y2 + xy3)

is A2 \ {0}. So we obtain a surjective morphism ϕ : A2 → A2 \ {0}. Let us note that in [20,
Section 1] the authors were interested in the existence of such a morphism.

Remark 1. As we learned from [5], Zbigniew Jelonek has constructed such and more general
examples much earlier, see [14]. In [5, Proposition 1.5], one may find an explicit formulas for
a morphism Cn → Cn, n ≥ 2, such that the complement of the image is a given finite set of
points.

Since there is a quotient morphism A2 \ {0} → P1, Example 2 provides one more way to
obtain the projective line P1 as an image of affine space. In the present note we generalize
this approach in order to obtain many varieties as A-images.

Let us proceed with the following obvious observations.

Lemma 1. a) If ψ : X1 → X2 is a surjective morphism of algebraic varieties and X1 is
an A-image, then X2 is an A-image.

b) If X1 and X2 are A-images, then the direct product X1 ×X2 is an A-image.
c) An irreducible curve C is an A-image if and only if the normalization of C is P1

or A1. In these cases C is an image of the line A1.

It is useful to observe that an affine variety X is an A-image if and only if the algebra of
regular functions K[X ] can be embedded into some polynomial algebra K[x1, . . . , xm] is such
a way that any proper ideal in K[X ] generates a proper ideal in K[x1, . . . , xm].

It was observed by the referee that the concept of an A-image is natural in the context of
the famous Zariski Cancellation problem, which asks whether an affine variety X such that
the direct product X × Ak is isomorphic to the affine space Am is necessarily isomorphic to
the affine space A

m−k. Any potentional counterexample to this problem is an affine variety,
which is non-isomorphic to an affine space and is an image of Am under the projection to the
first component in the direct product decomposition.

Let us mention one geometric property that all A-images have. It is well known that for
any m ≥ 2, any positive integer k and any two k-tuples of pairwise distinct points on A

m

there is an automorphism of Am which sends the first tuple to the second one. This implies
that for any finite subset F in Am there is a curve C in Am isomorphic to A1 that contains F ;
cf. [2, Corollary 4.18]. We conclude that every A-image X is a strongly A1-connected variety,
i.e., for every finite subset F in X there is a morphism A1 → X whose image contains F . At
the same time it is known that for any finine subset F in a complete unirational variety X
there exists a moprhism from P1 (and thus from A1) to X , whose image contains F ; see [18,
IV.3.9].

Now we come to a central concept of this note. Denote by Ga the additive group (K,+) of
the ground field. Any nontrivial regular action Ga ×X → X on an algebraic variety X gives
rise to a subgroup H in the automorphism group Aut(X), which we call a Ga-subgroup. Let
SAut(X) be the subgroup in Aut(X) generated by all Ga-subgroups.

Definition 2. An irreducible variety X is called very flexible if the group SAut(X) acts on
X transitively.
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Any very flexible variety is smooth. By [2, Theorem 0.1], [3, Theorem 2], and [9, Theo-
rem 1.11], for a smooth quasi-affine variety the condition to be very flexible is equivalent to
flexibility in the sence of definitions given in these papers.

Proposition 1. [2, Proposition 1.4] Let X be a very flexible variety. Then there are (not
necessarily distinct) Ga-subgroups H1, . . . , Hm in Aut(X) such that

X = (H1 · . . . ·Hm).x

for any point x ∈ X.

The next proposition is borrowed from [2, Corollary 1.11].

Proposition 2. Every very flexible variety is an A-image.

Proof. Fix a point x ∈ X and take a sequence ofGa-subgroupsH1, . . . , Hm as in Proposition 1.
Then the map

H1 × . . .×Hm → (H1 · . . . ·Hm).x, (h1, . . . , hm) 7→ h1 . . . hm.x

is a surjective morphism from Am to X . �

Below we show that Proposition 2 allows to realize many varieties as A-images. The next
result follows directly from [9, Theorem 0.1].

Theorem 1. Let X be a very flexible quasi-affine variety and Z ⊆ X be a closed subvariety
of codimension at least 2. Then the variety X \ Z is very flexible.

Corollary 1. Let Z be a closed subset in An of codimension at least 2. Then the variety
An \ Z is very flexible.

2. Three classes of A-images

2.1. Toric varieties. Let T be an algebraic torus. A normal irreducible variety X is called
toric, if there is a faithful action of T on X with an open orbit. We refer to [7, 11] for a
systematic theory of toric variety.

A toric variety X is called degenerate if it is isomorphic to a direct product Y × K× for
some toric variety Y . By [7, Proposition 3.3.9], a toric variety X is degenerate if and only
if there exists a non-constant invertible regular function on X . It is easy to see that any
toric variety X is isomorphic to a direct product X ′× (K×)k for some non-negative integer k,
where X ′ is a non-degenerate toric variety. Clearly, a toric variety can be an A-image only if
X is non-degenerate.

Theorem A. A toric variety X is an A-image if and only if X is non-degenerate.

Proof. It remains to prove that a non-degenerate toric variety X is an A-image. By [6,
Theorem 2.1], the variety X can be realized as a good quotient by an action of a diagonalizable
group on the open subset Al \Z, where Z is (maybe empty) union of some coordinate planes
of codimension at least 2 in Al. By Corollary 1, the variety Al \Z is an A-image. So X is an
A-image as well. �
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Remark 2. It follows from [10, Theorem 1.6] that for every compact smooth complex toric
variety X of dimension n there exists a surjective morpshim ϕ : Cn → X . The proof is based
on an algebraic version of a theory of subelliptic manifolds. The technique used in this work
is new to us, and we failed to construct explicitly the corresponding surjective morphisms.
But this result motivated us to write the present note.

2.2. A-covered varieties. Let us recall from [3, Definition 4] that an irreducible algebraic
variety X is said to be A-covered if there is an open covering X = U1 ∪ . . .∪Ur, where every
chart Ui is isomorphic to the affine space An. The class of A-covered varieties includes smooth
complete spherical varieties, smooth projective rational surfaces, smooth complete rational
varieties with a torus action of complexity 1, and many other varieties; see [3, Section 4].

Let us give non-tivial examples of affine A-covered varieties.

Example 3. Fix an integer k ≥ 1 and consider the surface X = V (x21 − xk2x3 − 1) in A3.
Take the divisor D+ on X given by x1 = 1, x2 = 0 and the divisor D− on X given by
x1 = −1, x2 = 0. Clearly, D+ and D− have empty intersection. The subset U+ := X \D+ is
the complement to a divisor on a smooth affine variety, so U+ is affine; see [22, Lemma 3.3].
Similarly, the open subset U− := X \D− is affine as well.

Consider the rational function

f =
x3

x1 − 1
=
x1 + 1

xk2
.

It is clear that f is regular on U+ and x1 = xk2f−1, x3 = (x1−1)f . It follows that the algebra
of regular functions K[U+] is the polynomial algebra with generators x2 and f . Similarly, the
algebra K[U−] is the polynomial algebra with generators x2 and g, where

g =
x3

x1 + 1
=
x1 − 1

xk2
.

We conclude that X is covered by two open charts U+ and U− each isomorphic to A2. So
the surface X is A-covered and is not isomorphic to A2.

Remark 3. The referee drew our attention to the fact that the idea of the computation
performed in the above example is contained in the unpublished work [8]. Moreover, the
referee proposed the following generalization of this construction. Let X be a smooth affine
surface endowed with a smooth surjective A1-fibration ϕ : X → A1. Miyanishi proved that
every scheme-theoretic fiber of ϕ, which is not isomorphic to A1, decomposes as a disjoint
union of curves all isomorphic to A

1. Removing from each such fiber all such curves but
one, we obtain an open affine subset in X with a smooth surjective A1-fibration over A1 with
irreducible fibers. By [17, Theorem 1], such an affine open subset is isomorphic to A2. We
conclude that the surface X is A-covered.

Theorem B. Every A-covered variety is an A-image.

Proof. By [3, Theorem 3], an A-covered variety X is a geometric quotient of a very fllexible
quasi-affine variety by an action of a torus. So the claim follows from Proposition 2. �

Corollary 2. Every complete rational surface is an A-image.

Proof. Passing to normalization and desingularization, we may assume that we deal with a
smooth projective rational surface. The latter is A-covered; see [3, Section 4]. �
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2.3. Homogeneous spaces. Let X be a homogeneous space G/H , where G is a connected
linear algebraic group and H is a closed subgroup in G.

Theorem C. A homogeneous space X is an A-image if and only if K[X ]× = K×.

Proof. We already know that an A-image has no non-constant invertible regular function.
Conversely, assume that K[X ]× = K×. By [4, Lemma 5.1], in this case the variety X is
homogeneous with respect to the subgroup Gs in G, which is a semidirect product of a
maximal semisimple subgroup and the unipotent radical of G. Since the group Gs is generated
by Ga-subgroups (see, e.g., [23, Lemma 1.1]), we conclude that X is very flexible and hence
is an A-image. �

Remark 4. Since a homogeneous space of the group SL(V ) need not be rational (see, e.g.,
[23, Example 1.22]), we conclude that an A-image is not always rational.

Corollary 3. There is a quasi-affine A-image X with a non-finitely generated algebra of
regular functions K[X ].

Proof. Let H ⊆ GL(V ) be a unipotent subgroup such that the algebra of invariants K[V ]H is
not finitely generated. Examples of such subgroups are known since the work of Nagata [21];
they provide counterexamples to Hilbert’s Fourteenth Problem. It is proved in [12] that in this
case the algebra of regular functions on the quasi-affine homogeneous space X := SL(V )/H
is not finitely generated, while Theorem C implies that X is an A-image. �

3. Concluding remarks and problems

We say that a morphism π : X ′ → X of irreducible algebraic varieties does not contract
divisors if the image in X of any prime divisor D on X ′ is not contained in a closed subvariety
of codimension 2 in X .

Proposition 3. Let π : X ′ → X be a surjective morphism of irreducible varieties which does
not contract divisors and the variety X ′ be quasi-affine and very flexible. If Y ⊆ X is a closed
subvariety of codimension at least 2, then the complement X \ Y is an A-image.

Proof. By assumptions, the preimage π−1(Y ) does not contain divisors on X ′. By Theorem 1,
the variety X ′ \ π−1(Y ) is very flexible and hence is an A-image. So X \ Y is an A-image as
the image of X ′ \ π−1(Y ) under the restriction of the morphism π. �

Remark 5. Note that Proposition 3 is applicable to varieties from Theorems A-C. More
precisely, for a non-degenerate toric variety X the good quotient π : Al \ Z → X does not
contract divisors by [1, Proposition 1.6.1.6.(ii)] and the variety Al \ Z is very flexible by
Corollary 1. For A-covered varieties, the desired morphism π : X ′ → X is provided by [3,
Theorem 3]. Finally, for a homogeneous space G/H such that the subgroup Gs in G acts
on G/H transitively, the orbit map π : Gs → G/H is surjective, fibers of this morphism are
pairwise isomorphic, so it does not contract divisors, and the variety Gs is affine and very
flexible.

Continuing the line of Corollary 3 with exotic examples of A-images, we prove the following
result.

Proposition 4. There exists a three-dimensional complete A-image X that is not embeddable
into any toric variety.
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Proof. It is proved in [27, Theorem A] that an irreducible normal variety X admits a closed
embedding into a toric variety if and only if every pair of points onX is contained in a common
affine neighborhood. In [25, Example 6.4] the author constructs a good quotient U → X by
an action of a one-dimensional torus T , where U is an open subset in the Grassmannian
Gr(4, 2), the quotient space X is complete, and there are two points on X which are not
contained in a common affine neighborhood. It follows that X is three-dimensinal and it is
not embeddable into any toric variety.

It is clear from the construction in [25, Example 6.4] that the complement Gr(4, 2) \U has
codimension at least 2 in Gr(4, 2). Since the Grassmannian Gr(4, 2) is a homogeneous space
of the group SL4, Theorem C and Proposition 3 imply that X is an A-image. �

Corollary 4. An A-image need not be quasiprojective.

Now we would like to formulate some problems related to the subject of this note.

Problem 1. Find necessary and sufficient conditions for an algebraic variety X to be an
A-image.

One can also put a more special problem.

Problem 2. Characterize n-dimensional algebraic varieties X such that there exists a sur-
jective morphism ϕ : An → X .

In fact, we have no example of an n-dimensional A-image X such that there is no surjective
morphism ϕ : An → X . In particular, a variety X in Problem 2 need not be rational: there
are examples of quotient spaces X = An//H , where H is a finite group and X is not rational;
see [24, Theorem 3.6].

Remark 6. In the preliminary version of this note we also asked whether for any irreducible
algebraic variety X there exists a surjective morphism φ : V → X from an irreducible affine
variety V . The referee informed us that the answer to this question is positive. Namely,
Jouanolou [15] proved that every quasi-projective variety X admits a vector bundle torsor
V → X with affine total space V . This result was extended by Thomason (see [26]) to a
wider class of algebraic varieties including all smooth algebraic varieties. Applying Hironaka’s

desingularization theorem, we obtain a desingularization X̃ → X and then use Jouanolou-

Thomason’s construction Ṽ → X̃ to get a surjection Ṽ → X . Moreover, the referee observed

that X is an A-image if and only if any affine variety Ṽ obtained this way is an A-image.

The next question asks whether we may use A-images as ambient spaces for arbitrary
algebraic varieties, just as affine (projective) spaces serve for affine (projective) varieties.

Problem 3. Let X be an algebraic variety. Is it possible to realize X as a closed subvariety

in some A-image X̃?

Finally, let us consider an even more general situation. It is well known that the image of a
morphism ϕ : X1 → X2 of algebraic varieties need not be a subvariety in X2. By Chevalley’s
theorem, the image of a morphism is a constructible subset of X2, i.e., a finite disjoint union
of locally closed subvarieties in X2; see [13, Theorem I.4.4].

Problem 4. Let W be an irreducible constructible subset of an algebraic variety X2. Do
there exist an irreducible algebraic variety X1 and a morphism ϕ : X1 → X2 such that the
image of ϕ coincides with W ?
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Remark 7. After a preprint version of this note appeared in September, 2022, three more
works [5, 16, 19] with new results on A-images became available.

Acknowledgements. The author is grateful to Yuri Prokhorov and Constantin Shramov for
helpful consultations and references, and to Viktor Balch Barth for useful e-mail correspon-
dence. Special thanks are due to the referee for deep observations and comments that clarify
many points related to this research.
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[10] Frank Forstnerič. Surjective holomorphic maps onto Oka manifolds. In: Complex and Symplectic Geom-
etry, Springer INdAM Ser., vol. 21, Springer, Cham, 2017, pp. 73-84

[11] William Fulton. Introduction to Toric Varieties. Annales of Math. Studies 131, Princeton University
Press, Princeton, NJ, 1993

[12] Frank Grosshans. Observable groups and Hilbert’s fourteenth problem. Amer. J. Math. 95 (1973), no. 1,
229-253

[13] James Humphreys. Linear Algebraic Groups. Graduate Texts Math. 21, Springer Verlag, New York, 1975
[14] Zbigniew Jelonek. A number of points in the set C2 \ F (C2). Bull. Polish Acad. Sci. Math. 47 (1999),
no. 3, 257-261

[15] Jean-Pierre Jouanolou. Une Suite exact de Mayer-Vietoris en K-Theorie Algebrique. In Algebraic K-
theory, I: Higher K-theories. Lecture Notes in Math., vol. 341, Springer, Berlin, 1973, pp. 293-316

[16] Shulim Kaliman and Mikhail Zaidenberg. Gromov ellipticity of cones over projective manifolds.
arXiv:2303.02036, 21 pages

[17] Tatsuji Kambayashi and Masayoshi Miyanishi. On flat fibrations by the affine line. Illinois J. Math. 22
(1978), no. 4, 662-671

[18] János Kollár. Rational Curves on Algebraic Varieties. Ergeb. Math. Grenzgeb. (3) 32, Springer-Verlag,
Berlin, 1996

[19] Yuta Kusakabe. Surjective morphisms onto subelliptic varieties. arXiv:2212.06412, 7 pages
[20] Finnur Lárusson and Tuyen Trung Truong. Approximation and interpolation of regular maps from affine
varieties to algebraic manifolds. Math. Scand. 125 (2019), no. 2, 199-209

[21] Masayoshi Nagata. On the 14th problem of Hilbert. Amer. J. Math. 81 (1959), 766-772
[22] Masayoshi Nagata. Note on orbit spaces. Osaka Math. J. 14 (1962), 21-31
[23] Vladimir Popov. On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic
varieties. CRM Proc. Lecture Notes, vol. 54, Amer. Math. Soc., Providence, RI, 2011, pp. 289-311

[24] David Saltman. Noether’s problem over an algebraically closed field. Invent. Math. 77 (1984), 71-84



8 IVAN ARZHANTSEV
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