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LIE ELEMENTS AND THE MATRIX-TREE THEOREM

YURII BURMAN AND VALERIY KULISHOV

Abstract. For a finite-dimensional representation V of a group G we
introduce and study the notion of a Lie element in the group algebra
k[G]. The set L(V ) ⊂ k[G] of Lie elements is a Lie algebra and a G-
module acting on the original representation V .

Lie elements often exhibit nice combinatorial properties. In partic-
ular, we prove a formula, similar to the classical matrix-tree theorem,
for the characteristic polynomial of a Lie element in the permutation
representation V of the group G = Sn.
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1. Introduction: Lie Elements in the Group Algebra

Let V be a finite-dimensional representation of a group G over a field k. For
every g ∈ G and every m define linear operators Gm〈g〉, Am〈g〉 : V ∧m → V ∧m as
follows:

Gm〈g〉(v1 ∧ · · · ∧ vm) = g(v1) ∧ · · · ∧ g(vm),

Am〈g〉(v1 ∧ · · · ∧ vm) =

m∑
p=1

v1 ∧ · · · ∧ g(vp) ∧ · · · ∧ vm.

(here and below v1, . . . , vm are arbitrary vectors in V ). Also take by definition

G0〈g〉 = I,
A0〈g〉 = 0

for every g ∈ G. Here and below I means the identity operator.
Denote by k[G] the group algebra of G; extend Gm and Am by linearity to

operators k[G]→ End(V ∧m). In particular, A0 = 0 and G0〈
∑
g∈G agg〉 =

∑
g∈G ag

(a constant regarded as an operator k → k).
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Definition 1.1. An element x ∈ k[G] satisfying

Gm〈x〉 = Am〈x〉 (1)

for all m = 0, 1, . . . , dimV is called a Lie element (with respect to the representa-
tion V ). The set of Lie elements is denoted by L(V ) ⊂ k[G].

Remark 1.2. In particular, if x =
∑
g∈G agg is a Lie element then

∑
g∈G ag =

G0〈x〉 = A0〈x〉 = 0.

Example 1.3. Let G = Sn (a permutation group), k = C and V = Cn, the permu-
tation representation of Sn (an element of the group permutes the coordinates of a
vector v = (x1, . . . , xn) ∈ Cn).

Lemma 1.4. κij
def
= 1− (ij) ∈ C[Sn] is a Lie element.

Here (ij) ∈ Sn means a transposition of i and j; more generally, we will use
notation like (i1 . . . ik) for a cyclic element in Sn, that is, a permutation sending
i1 7→ i2 7→ · · · 7→ ik 7→ i1 and leaving the other elements of {1, . . . , n} fixed.

We call κij ∈ C[Sn] a Kirchhoff difference as a tribute to G. Kirchhoff’s seminal
paper [7] (1847); see Theorem 2.4 below.

Proof of Lemma 1.4. The proof is a direct computation. First, Gm〈1〉 = I and

Am〈1〉 = m I. Obviously (cf. Proposition 1.7 below), one can assume i = 1,
j = 2 without loss of generality. Denote by v1, . . . , vn the standard basis in Cn;
by linearity, it is enough to check the action of Gm〈(12)〉 and Am〈(12)〉 on v =
vi1 ∧ · · · ∧ vim where 1 6 i1 < · · · < im 6 n.

Consider now three cases:

• i1 > 3: here Gm〈(12)〉v = v and Am〈(12)〉v = mv, and therefore

Gm〈1− (12)〉v = 0 = Am〈1− (12)〉v.
• i1 = 2: here Gm〈(12)〉v = v1 ∧ vi2 ∧ · · · ∧ vim and

Am〈(12)〉v = (v1 + (m− 1)v2) ∧ vi2 ∧ · · · ∧ vim ,
so that Gm〈1 − (12)〉v = Am〈1 − (12)〉v = (v2 − v1) ∧ vi2 ∧ · · · ∧ vim . The
case i1 = 1 and i2 > 3 is similar.
• finally, i1 = 1, i2 = 2: here Gm〈(12)〉v = −v, so Am〈(12)〉v = (m − 2)v,

and therefore Gm〈1− (12)〉v = 2v = Am〈1− (12)〉v.

Lemma is proved. �

Our first motive to write this paper was the article [5], where equation (1) for
Kirchhoff differences was used to study a question in low-dimensional topology
(see [5, Proposition 3.4]). Lie elements are also known to have nice combinatorial
properties, which have been studied since 1847 when G. Kirchhoff [7] discovered the
classical matrix-tree theorem (Theorem 2.4 below). See also its Pfaffian version by

G. Masbaum and A.V̇aintrob [8] (Theorem 2.6) and their numerous generalizations
([1], [6], to name just a few). The main result of this paper, Theorem 2.8, is also
an analog of Theorems 2.4 and 2.6.

For anyG and V the k-vector spaces k[G] and End(V ∧m) are associative algebras;

consider them as Lie algebras with the commutator bracket: [p, q]
def
= pq − qp.
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Proposition 1.5. Maps Gm, Am : k[G] → End(V ∧m) are Lie algebra homomor-
phisms.

Proof. Obviously, Gm : k[G]→ End(V ∧m) is an associative algebra homomorphism,
hence a Lie algebra homomorphism. For Am take x =

∑
g∈G agg, y =

∑
h∈G bhh,

to obtain

Am〈x〉Am〈y〉v1 ∧ · · · ∧ vm =
∑

h∈G,16p6m

bhAm〈x〉v1 ∧ · · · ∧ h(vp) ∧ · · · ∧ vm

=
∑

g,h∈G,16p6m

agbhv1 ∧ · · · ∧ g(h(vp)) ∧ · · · ∧ vm

+
∑

g,h∈G,16p,q6m,p 6=q

agbhv1 ∧ · · · ∧ h(vp) ∧ · · · ∧ g(vq) ∧ · · · ∧ vm,

so that Am〈[x, y]〉 = [Am〈x〉, Am〈y〉]. �

Corollary 1.6. The set of Lie elements L(V ) ⊂ k[G] is a Lie subalgebra.

Proposition 1.7. Operators Gm and Am are conjugation-invariant : if x ∈ k[G]
and y ∈ k[G] is invertible then for any m one has y Gm〈x〉y−1 = Gm〈yxy−1〉 and
yAm〈x〉y−1 = Am〈yxy−1〉.

The proof is straightforward.

Corollary 1.8. The Lie algebra L(V ) ⊂ k[G] is a G-module where elements of the
group act by conjugation.

2. Lie Elements in the Relection Representation
of the Permutation Group

2.1. Kirchhoff differences and their commutators. Let G = Sn (a permu-
tation group), and V be its reflection (a.k.a. Coxeter or geometric) representation;
dimV = n−1. The permutation representation Cn is a sum of V = {(x1, . . . , xn) |
x1 + · · ·+ xn = 0} and a trivial representation 1 = {(x, x, . . . , x) | x ∈ C}. It fol-
lows from Remark 1.2 that any Lie element x ∈ L(Cn) acts on 1 by zero. Therefore,

L(V ) = L(Cn); we’ll denote it Ln for short.
For a finite-dimensional representation W of Sn denote by χWx (t) = det(t I −x)

the characteristic polynomial of an element x ∈ C[Sn] acting in W . It follows from
the remarks above that χCn

x (t) = tχVx (t) for all x ∈ Ln.

Theorem 2.1 ([2], cf. [5]). (1) For all pairwise distinct i, j, k, l ∈ {1, . . . , n} el-

ements κij
def
= 1 − (ij), νijk

def
= (ijk) − (ikj) and ηijkl

def
= (ijkl) + (ilkj) −

(ijlk)− (iklj) belong to Ln.
(2) Consider, for all 1 6 i < j < k < l 6 n, vector spaces Kij , Nijk, Hijkl ⊂ C[Sn]

spanned by all κpq, νpqr, ηpqrs where the indices (p, q), (p, q, r) and (p, q, r, s)
are permutations of (i, j), (i, j, k) and (i, j, k, l), respectively. Then dimKij =
1, dimNijk = 1 and dimHijkl = 2; bases in them are {κij}, {νijk} and
{ηijkl, ηiklj}.
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(3) Let permutation groups S2, S3 and S4 act on Kij, Nijk and Hijkl permuting
indices of the elements κpq, νpqr and ηpqrs. This makes Kij a trivial repre-
sentation of S2, Nijk, a sign representation of S3, and Hijkl, an irreducible
2-dimensional representation of S4.

(4) Elements κpq ∈ Kij, νpqr ∈ Nijk and ηpqrs ∈ Hijkl enjoy the following symme-
tries (for all p, q, r, s):

for Kij :

κqp = κpq;

for Nijk:

νpqr = νqrp = −νqpr;

for Hijkl:
ηpqrs = −ηqprs = −ηpqsr,
ηpqrs = ηsrqp = ηrspq = ηqpsr,

ηpqrs + ηprsq + ηpsqr = 0.

Proof. Kirchhoff differences κij belong to Ln by Lemma 1.4. νijk and ηijkl are
commutators of the κij : νijk = [κij , κjk] and ηijkl = [κil, νijk]. So by Corollary
1.6 assertion 1 is proved.

Relations of assertion 4 can be checked immediately. A straightforward computa-
tion shows that these relations imply assertions 2 and 3. The first relation for Hijkl

means that the basic elements ηijkl, ηiklj are eigenvectors of the transpositions (12)
and (13), respectively, with the eigenvalue −1. �

Conjecture 2.2. The Lie algebra Ln is generated by the Kirchhoff differences κij,
1 6 i < j 6 n.

This conjecture was tested numerically for small n, but we do not know its proof
at the moment.

Characterstic polynomials of Lie elements x ∈ Ln acting at V are often given by
nice formulas.

Example 2.3. Let Γ be a finite graph with the vertex set {1, . . . , n} and the edges

e1, . . . , em, where es connects vertices is and js; denote wΓ
def
= wi1j1 . . . wimjm .

Also denote by Tn the set of trees with the vertices 1, . . . , n.
Consider the Lie element

x =
∑

16i<j6n

wijκij ;

and assume wji = wij for convenience.

Theorem 2.4 (matrix-tree theorem, [7]).

det x|V = χVx (0) = n
∑

Γ∈Tn

wΓ.

There exist similar formulas for other coefficients of χVx as well; for details see
the review [6] and the references therein.
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Example 2.5. A finite 3-graph is defined as a union of several solid triangles (called
3-edges) with some of their vertices glued. A 3-graph is called a 3-tree if it is
contractible (as a topological space). The number n of vertices of a 3-tree is always

odd: n = 2m + 1, where m is the number of 3-edges; denote by T (3)
m the set of

3-trees with the vertices 1, . . . , 2m+ 1.
Consider the Lie element

y =
∑

16i<j<k6n

wijkνijk;

assume for convenience wjki = wkij = wijk and wjik = wikj = wkji = −wijk (cf.
assertion 4 of Theorem 2.1).

Let Γ be a 3-graph and e1, . . . , em, its 3-edges; the edge es is a triangle with the

vertices is, js, ks ∈ {1, . . . , n}. Denote wΓ
def
= wi1j1k1 . . . wimjmkm .

It is easy to observe that the operator νijk : V → V (and hence, the operator
y : V → V ) is skew-symmetric with respect to the standard scalar product in V
(inherited from Cn). So if n is even and dimV = n− 1 is odd, then det y|V = 0. If
n = 2m+ 1 is odd then the skew-symmetric operator y|V has a Pfaffian described
below.

Folllowing [8], define a sign δ(Γ) = ±1 of a 3-tree Γ ∈ T (3)
m as follows. Denote,

like above, the vertices of the s-th edge es of Γ as is < js < ks; here s = 1, . . . , m.

Consider a product of the 3-cycles σ
def
= (i1j1k1) . . . (imjmkm) ∈ Sn. An easy

induction by m shows that σ is a cyclic permutation (a1 . . . an). Now define a
permutation τ ∈ Sn as τ(s) = as, s = 1, . . . , n; the sign δ(Γ) is then defined as the
parity of τ . See [8] for details; in particular, it is proved there that δ(Γ) does not
depend on the ordering of the edges of Γ.

Theorem 2.6 [8]. Pf y|V = n
∑

Γ∈T (3)
n

δ(Γ)wΓ.

The article [4] describes a technique (called discrete path integration) giving a
uniform proof of Theorems 2.4 and 2.6 and of some more similar statements as well.
We are going to use this technique to prove the main result of the paper, Theorem
2.8.

2.2. The main theorem. Theorem 2.8 is a formula for the characteristic poly-
nomial of the Lie element

z =
∑

16i<j<k<l6n

ξijkl : V → V, (2)

where ξijkl ∈ Hijkl are arbitrary, that is, ξijkl = wijklηijkl + wikljηiklj for some
wijkl, wiklj ∈ C (see Theorem 2.1 above).

Let A = (aij) and B = (bij) be n × n-matrices, and I ⊆ {1, . . . , n}. Their
I-shuffle is defined as a n× n-matrix (A, B)I = (uij), where

uij =

{
aij , i ∈ I,
bij , i /∈ I.
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Definition 2.7. The shuffle determinant of the matrices A and B is

sdet(A, B)
def
=

∑
I⊆{1,...,n}

det(A, B)I det(A, B)Ī ,

where bar means the complement: Ī
def
= {1, . . . , n} \ I.

Let 1 6 r 6 n and let E be a r-element set of 4-tuples (i1, j1, k1, l1), . . . ,
(ir, jr, kr, lr). Consider the vector space HE =

⊗r
s=1Hisjsksls of dimension 2r and

define a linear functional Φr : HE → C as follows. Let AE , BE be r × n-matrices
with the elements

(AE)sis = 1, (AE)sjs = −1,

(BE)sks = 1, (BE)sls = −1,

(AE)ij = (BE)ij = 0 for all other i, j;

(3)

here s = 1, . . . , r. For a r-element set J ⊆ {1, . . . , n} denote by AJE and BJE the
r × r-submatrices of AE and BE , respectively, containing all the r rows and the
columns listed in J . Then take by definition

Φr(ηi1j1k1l1 ⊗ · · · ⊗ ηirjrkrlr ) =
∑

J⊆{1,...,n},#J=r

sdet(AJE , B
J
E ). (4)

and extend Φr to the whole HE by linearity.

Theorem 2.8. Let z be defined by (2) and Φr, by (4). Then

χCn

z (t) = tn + µ1t
n−1 + · · ·+ µn−1t,

where

µr = Φr(z
⊗r)

for every r = 1, . . . , n− 1.

See Section 4 for the proof.
If r = n− 1 then the definition of Φr can be simplified:

Proposition 2.9. If r = n−1 then all the summands in (4) are equal, so one may
take

Φn−1(ηi1j1k1l1 ⊗ · · · ⊗ ηin−1jn−1kn−1ln−1
) = n sdet(AJE , B

J
E ).

for any subset J ⊂ {1, . . . , n} of cardinality (n− 1), e.g., J = {1, . . . , n− 1}.

The proof of the proposition is also in Section 4.

3. Shuffle Determinant

Here are basic properties of the shuffle determinant of Definition 2.7:

Theorem 3.1. (1) sdet(A, B) is a polynomial of variables aij and bij, 16 i, j6n,
with integer coefficients, bihomogeneous of degree n (thus, its total degree is 2n).

(2) sdet(B, A) = sdet(A, B).
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(3) Let X
def
= diag(x1, . . . , xn) be a diagonal matrix with x1, . . . , xn as diagonal

entries. Then sdet(A, B) = [x1 . . . xn : det(A + BX)2] (that is, sdet(A, B)
is equal to the coefficient at the monomial x1 . . . xn in the polynomial det(A+
BX)2).

(4) sdet(CA, CB) = sdet(A, B) detC2 for any n × n-matrix C. In particular, if
B is invertible then sdet(A, B) = sdet(B−1A, I) detB2.

(5) sdet(A, I) = (−1)n
∑
σ∈Sn

(−2)ν(σ)a1σ(1) . . . anσ(n), where ν(σ) is the number
of independent cycles in σ.

Remark . Let W = (C2)⊗n be the natural representation of Sn (by permuting
factors in any decomposable tensor). It is easy to see then that the character of W
is given by χW (σ) = 2ν(σ). Now it follows from Property 5 that sdet(A, I) is equal,
up to a sign, to the immanant of the matrix A associated with the representation
W ⊗ ε (ε is the sign representation). The authors wish to thank the reviewer for
this remark.

Proof. Assertions 1 and 2 are obvious from Definition 2.7.
Assertion 3: denote by a1, , . . . , an and b1, , . . . , bn columns of the matrices

A and B, respectively; we will be writing det(a1, . . . , an) instead of detA, and
similarly for other matrices. The determinant of a matrix is a multilinear function
of its columns, so one has

[x1 . . . xn : det(A+BX)2] = [x1 . . . xn : det(a1 +x1b1, . . . , an +xnbn)2]

=
∑

I⊆{1,...,n}

[xI : det(a1 +x1b1, . . . , an +xnbn)][xĪ : det(a1 +x1b1, . . . , an +xnbn)]

(where xI
def
=
∏
i∈I

xi)

=
∑

I⊆{1,...,n}

det(w1, . . . , wn) det(w′1, . . . , w
′
n)

(where wi = bi, w
′
i = ai if i ∈ I and vice versa if i /∈ I)

=
∑

I⊆{1,...,n}

det(A, B)I det(A, B)Ī = sdet(A, B).

Assertion 4 follows from 3: det(CA + CBX)2 = det(A + BX)2 detC2. The
matrix C does not depend on x1, . . . , xn, so the same equality takes place for
coefficients at x1 . . . xn.

To prove assertion 5 note that det(A, I)I is the diagonal minor of the matrix A
formed by the rows and the columns listed in I. Hence,

det(A, I)I =
∑
σ∈Sn

σ(j)=j ∀j∈Ī

sgn(σ)
∏
i∈I

aiσ(i),

where sgnσ = 1 or −1 depending on the parity of σ. Therefore

det(A, I)I det(A, I)Ī =
∑
σ∈Sn

σ(i)∈I ∀i∈I
σ(i)∈Ī ∀i∈Ī

sgn(σ)a1σ(1) . . . anσ(n).
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Summation over I ⊆ {1, . . . , n} gives

sdet(A, I) =
∑
I

det(A, I)I det(A, I)Ī

=
∑
σ∈Sn

#{I ⊆ {1, . . . , n} | σ(i) ∈ I ∀i ∈ I} sgn(σ)a1σ(1) . . . anσ(n).

The subset I invariant with respect to σ (that is, such that σ(i) ∈ I for all i ∈ I) is
a union of several independent cycles of σ; so the number of such subsets is 2ν(σ).
On the other hand, sgn(σ) = (−1)n+ν(σ), which finishes the proof. �

Give now a more detailed description of sdet(A, B) as a polynomial of aij
and bij . By assertion 1 of Theorem 3.1 any term of the polynomial looks like

c · ai1j1 . . . ainjnbk1l1 . . . bknln , where c ∈ Z. Denote by Γ
def
= Γ(i1, j1, . . . , kn, ln)

a directed graph with the vertices 1, . . . , n and the 2n edges (i1j1), . . . , (injn),
(k1l1), . . . , (knln).

Theorem 3.2. (1) Every vertex of the graph Γ is incident to exactly four edges,
two of them entering the vertex and two, leaving it.

(2) The coefficient c at the monomial depends on the graph Γ only and is equal
to ±2m(Γ), where m(Γ) ∈ Z>0 is the number of connected components of an
auxiliary graph Γ′ determined by Γ.

The proof below contains the exact contruction of the graph Γ′.

Proof. Assertion 1: take some I ⊆ {1, . . . , n}. If i ∈ I then the elements aij (for
all j) are in the i-th column of (A, B)I ; if i /∈ I, then they are in the i-th column
of (A, B)Ī . Thus, exactly one of ai1j1 , . . . , ainjn is aij for some j, which implies
{i1, . . . , in} = {1, . . . , n}; similarly, {k1, . . . , kn} = {1, . . . , n}. So, every vertex
of Γ is an initial vertex of two edges. At the same time, for every j ∈ {1, . . . , n}
every monomial of det(A, B)I contains exactly one letter xij , where x = a or b, for
some i ∈ {1, . . . , n}; the same is true for det(A, B)Ī — hence, every vertex of Γ is
a terminal vertex for two edges.

Assertion 2: note first that the monomial is not determined uniquely by the
graph Γ since one cannot tell which edges correspond to aij and which to bkl.
Prove that this ambiguity does not influence the coefficient.

By assertion 1, every mononial in sdet(A, B) is equal to

x = a1j1a2j2 . . . anjnb1l1b2l2 . . . bnln

for some j1, . . . , jn, l1, . . . , ln. It is enough to show that the coefficient at x is the
same as the coefficient at the monomial x′ = b1j1a2j2 . . . anjna1l1b2l2 . . . bnln . Note
that for every I ⊆ {1, . . . , n} the contribution of the term det(A, B)I det(A, B)Ī
to the coefficient at x is equal to the contribution of det(A, B)I′ det(A, B)Ī′ to the

coefficient at x′, where I ′
def
= I 4 {1}. But I 7→ I 4 {1} is an invertible operation

(indeed, an involution) on the set of subsets of {1, . . . , n}, so the coefficients at x
and at x′ are equal.

To obtain a formula for the coefficient take a monomial x as above and paint
every edge (ij) of the graph Γ blue if the corresponding letter comes from I (that
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is, i ∈ I and the letter is bij or i ∈ Ī and the letter is aij) and red if it comes from
Ī. A blue-red painting of the edges of Γ corresponds to a subset I ⊆ {1, . . . , n} if
each vertex is initial and terminal for exactly one red and one blue edge; if I exists,
then it is obviously unique. The subgraphs of Γ formed by red and blue edges are
graphs of some permutations; call them σr and σb, respectively. The contribution
of the term det(A, B)I det(A, B)Ī into the coefficient is equal to the product of
parities of σr and σb.

Consider a graph Γ′ whose vertices are edges of Γ; two vertices are connected
by an edge if the corresponding edges of Γ share the same initial vertex or the
same terminal vertex. By assertion 1, every vertex of Γ′ is incident to exactly
two edges — hence, Γ′ is a union of nonintersecting cycles. Red and blue vertices
alternate in the cycle; therefore, each cycle in Γ′ has even length.

The graph Γ = Γ(i1, j1, . . . , kn, ln) determines Γ′. To fix a subset I one should
paint vertices of Γ′ so that the colors alternate in every cycle. For each cycle there
are obviously two such paintings possible; thus, the number of subsets I for the
graph G is 2m, where m is the number of cycles (connected components) in Γ′.

Let now I1, I2 ⊆ {1, . . . , n} be two sets making nonzero contributions to the
coefficient at the monomial x and such that the corresponding colorings differ on
one cycle of the graph Γ′ only; let this cycle be e1 . . . e2s. Then permutations (σ1)r
and (σ2)r differ by a product of transpositions (e1e2)(e3e4) . . . (e2s−1e2s), and their
parities differ by (−1)s. The same is true for permutations (σ1)b and (σ2)b, so the
terms det(A, B)I1 det(A, B)Ī1 and det(A, B)I2 det(A, B)Ī2 make equal contribu-
tions of ±1 into the coefficient. This finishes the proof. �

4. Proof of Theorem 2.8 and Final Remarks

4.1. Proofs

Proof of Proposition 2.9. The set J⊂{1, . . . , n} of cardinality (n−1) is {1, . . . , n}\
{k} for some k; denote AJ

def
= Ak and BJ

def
= Bk for short. By definition,

sdet(Ak, Bk) =
∑
I⊆{1,...,n} det(Ak, Bk)I det(Ak, Bk)Ī . Denote by ξ1, . . . , ξn the

columns of the (n − 1) × n-matrix (A, B)I ; one has ξ1 + · · · + ξn = 0. The ma-
trix (Ak+1, Bk+1)I is obtained from (Ak, Bk)I by replacement of the column ξk+1

with −ξ1 − · · · − ξk−1 − ξk+1 − · · · − ξn. Since all the rows ξi except ξk+1 are
present in (Ak+1, Bk+1)I , the determinant of (Ak+1, Bk+1)I is the same as if the
replacement row were still −ξk+1. Thus, det(Ak+1, Bk+1)I = −det(Ak, Bk)I . The
subset I is arbitrary, so det(Ak+1, Bk+1)Ī = −det(Ak, Bk)Ī , too, and therefore
sdet(Ak+1, Bk+1) = sdet(Ak, Bk), proving the proposition. �

Proof of Theorem 2.8. Let v, α ∈ Cn be nonzero vectors. Denote byM [α, v] : Cn→
Cn a rank 1 linear operator defined as M [α, v](u) = (α, u)v, u ∈ Cn, where (·, ·)
is the standard (C-valued) scalar product in Cn .

Lemma 4.1. Let v1, . . . , vn be the standard basis in Cn (orthonormal with respect
to (·, ·)). Then the Lie element ηijkl = (ijkl) + (ilkj) − (ijlk) − (iklj) acts in the
permutation representation Cn as M [vi − vj , vl − vk] +M [vl − vk, vi − vj ].
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The proof is an immediate check.
Lemma 4.1 allows to derive Theorem 2.8 from [4, Corollary 2.4]. To keep up

with the notation of [4], let’s take by definition

es,0 = vis − vjs ,
es,1 = vks − vls ,
αs,0 = vks − vls ,
αs,1 = vis − vjs ,

(5)

so that z =
∑m
s=1

∑
u∈{0,1}M [es,u, αs,u]. Now Corollary 2.4 of [4] implies that

µr =

m∑
s1,...,sr=1

wis1 js1ks1 ls1 . . . wisr jsrksr lsr

1∑
u1,...,ur=0

det
(
(αsp,up

, esq,uq
)
)r
p,q=1

=

m∑
s1,...,sr=1

wis1 js1ks1 ls1 . . . wisr jsrksr lsr

×
1∑

u1,...,ur=0

∑
J⊆{1,...,n}

#J=r

det(αsp,up)p∈J det(esp,up)p∈J ;

in the last equation by det(c1, . . . , cr) we mean a determinant of a r × r matrix
having vectors c1, . . . , cr ∈ Cr as columns. Instead of indices u1, . . . , ur ∈ {0, 1}
consider a set I

def
= {i | ui = 1} ⊆ {1, . . . , r}. Taking (5) and (3) into account one

can write

µr =

m∑
s1,...,sr=1

wis1 js1ks1 ls1 . . . wisr jsrksr lsr

∑
J⊆{1,...,n}

#J=r

∑
I⊆{1,...,r}

det(AJE )I det(BJE )Ī

=

m∑
s1,...,sr=1

wis1 js1ks1 ls1 . . . wisr jsrksr lsr

∑
J⊆{1,...,n}

#J=r

sdet(AJE , B
J
E ).

Theorem 2.8 is proved. �

4.2. Final remarks and further research

4.2.1. Geometry of 4-graphs. For every 1 6 i < j < k < l 6 n consider two different
tetrahedra with the vertices i, j, k, l, and call them 4-edges T1 and T2. A 4-graph
is defined a union of several 4-edges glued by vertices.

The main result of the paper, Theorem 2.8, expresses a coefficient µr of the
characteristic polynomial as a homogeneous (degree r) polynomial of the coefficients
wijkl. If one puts a coefficient wijkl on the 4-edge T1 and wiklj , on the 4-edge T2,
then this polynomial becomes a sum over the set of all 4-graphs with r edges. The
summand corresponding to a graph E is the product of weights of all the edges of E
times an integer coefficient cE described in the theorem (sum of shuffle determinants
of minors of the matrices AE and BE).

Matrix-tree theorems 2.4 and 2.6 have similar structure with ordinary graphs
and 3-graphs in place of the 4-graphs. In Theorem 2.4 the coefficient cE is equal to
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n if E is a tree and is zero otherwise. In Theorem 2.6 one has µn−1 =
(

Pf y|V
)2

, so

cE = n2
∑
δ(G1)δ(G2), where the sum is taken over all representations E = G1tG2

of E as a union of two 3-trees. The formula for cE in Theorem 2.8 is explicit, but
unlike theorems 2.4 and 2.6 it is not related to the geometry of the underlying
4-graph. Finding such a relation would be an interesting combinatorial problem to
solve.

4.2.2. Structure of Ln as a Lie algebra and as a Sn-module. For any group G and
its representation V the elements x ∈ L(V ) ⊂ k[G] act in the representation V .
This action may have a kernel; denote it K(V ) ⊂ L(V ) (and Kn ⊂ Ln if V is the
permutation representation of Sn).

Conjecture 4.2. dimLn/Kn = (n − 1)!. The repeated commutators of Kirchhoff
differences

[[. . . [[κ1i1 , κ2i2 ], κ3i3 ], . . . ], κn−1,in−1
]

for all i1, . . . , in−1 such that s + 1 6 is 6 n for all s = 1, . . . , n − 1 form a basis
in Ln /Kn.

We tested the conjecture numerically for small n; yet it is not proved at the
moment of writing.

For any n consider the embedding ιn : Sn → Sn+1 of Sn to Sn+1 as a stabilizer of
(n+ 1); extend it by linearity to the algebra homomorphism ιn : C[Sn]→ C[Sn+1].

Proposition 4.3. ιn(Ln) ⊂ Ln+1.

Proof. Let u =
∑
σ∈Sn

aσσ ∈ Ln; consider the action of Gm〈ιn(u)〉 and Am〈ιn(u)〉
on x

def
= xi1 ∧ · · · ∧ xim , where 1 6 i1 < · · · < im 6 n + 1. If im 6 n then

Gm〈ιn(u)〉(x) = Gm〈u〉(x) = Am〈u〉(x) = Am〈ιn(u)〉(x), hence ιn(u) ∈ Ln+1.
Let now im = n + 1. Then Gm〈ιn(u)〉(x) = Gm−1〈u〉(xi1 ∧ · · · ∧ xim−1

) ∧ xn+1.
On the other hand,

Am〈ιn(u)〉(x) =

(∑
σ∈Sn

aσ

n∑
p=1

xi1 ∧ · · · ∧ xσ(ip) ∧ · · · ∧ xim−1

)
∧ xn+1 +

∑
σ∈Sn

aσ · x.

By Remark 1.2 the last term in the equation above is zero. Thus,

Am〈ιn(u)〉(x) = Am−1〈u〉(xi1 ∧ · · · ∧ xim−1
) ∧ xn+1,

and therefore Gm〈ιn(u)〉(x) = Am〈ιn(u)〉(x), which means ιn(u) ∈ Ln+1. �

Proposition 4.3 allows to consider the inductive limit L∞ of L2
ι2
↪→ L3

ι3
↪→ . . . . It

is a representation of the group S∞ of finitely supported permutations of {1, 2, . . .}
and a Lie subalgebra of C[S∞] (conjecturally, generated by the Kirchhoff differences
κij = 1− (ij), 1 6 i < j). Very few is known yet about both structures on L∞.

4.2.3. Lie elements and embedded graphs. Let (i1j1), . . . , (imjm) be a sequence of
transpositions in Sn or, which is the same, the numbered edges of a graph Γ with
the vertices 1, . . . , n. There exists a uniquely defined embedding of Γ into a sphere
M with handles and holes sending the vertices of Γ to the boundary of M ; distri-
bution of the vertices among components of the boundary coincides with the cyclic
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structure of the permutation σ = (i1j1) . . . (imjm). The embedding is described
in [5]; the paper [3] (in preparation) containes a more detailed analysis of its prop-
erties, as well as a generalization to nonorientable surfaces. This construction and
the Lie element property of 1 − (ij) allow, in particular, to obtain a formula for
the number of “minimal” (one-faced) embeddings of any graph; see [5, Theorem 2].
Probably, there exists a version of this theory for embedded 3-graphs, 4-graphs etc.;
Lie element properties of νijk and ηijkl will give some important information about
the embeddings.
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