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Abstract—A hereditary class is a set of simple graphs closed under deletion of vertices; every
such class is defined by the set of its minimal forbidden induced subgraphs. If this set is finite,
then the class is said to be finitely defined. The concept of a boundary class is a useful tool for
the analysis of the computational complexity of graph problems in the family of finitely defined
classes. The dominating set problem for a given graph is to determine whether it has a subset
of vertices of a given size such that every vertex outside the subset has at least one neighbor in
the subset. Previously, exactly four boundary classes were known for this problem (if P ̸= NP).
The present paper considers a countable set of concrete classes of graphs and proves that each
its element is a boundary class for the dominating set problem (if P ̸= NP). We also prove
the NP-completeness of this problem for graphs that contain neither an induced 6-path nor
an induced 4-clique, which means that the set of known boundary classes for the dominating
set problem is not complete (if P ̸= NP).
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INTRODUCTION

The present paper considers only ordinary graphs, i.e., undirected graphs with no loops or mul-
tiple edges. It is a continuation of the papers [1, 2], which studied the so-called boundary classes of
graphs for the dominating set problem.

A graph class is said to be hereditary if it is closed under removal of vertices. It is well known that
every hereditary and only hereditary class X is determined by the set Y of its minimal forbidden
induced subgraphs (i.e., graphs not belonging to X that are minimal under removal of vertices); it
is customary to write the above as follows: X = Free(Y). Graphs in X are said to be Y-free. If
a hereditary class is defined by a finite set of its minimal forbidden induced subgraphs, then it is
said to be finitely defined .

Let Π be some NP-complete graph problem. A hereditary class in which Π is polynomially
solvable is said to be Π-easy . A hereditary class in which the problem Π is NP-complete is said to
be Π-hard . Throughout the paper, it is assumed that P ̸= NP, and this condition is not explicitly
included in the statements of the corresponding assertions.

A hereditary class X is said to be Π-limit if there exists an infinite sequence X1 ⊇ X2 ⊇ . . .

of Π-hard graph classes such that X =
∞⋂
i=1

Xi. An inclusion minimal Π-limit class is said to be

Π-boundary . The concept of a boundary graph class was introduced by Alekseev [3]. The meaning
of this concept is revealed by the following theorem (see [3, 4]).

Theorem 1. A finitely defined graph class is Π-hard if and only if it contains some Π-bound-
ary class.
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26 DAKHNO, MALYSHEV

A dominating set of a graph G = (V,E) is a subset D ⊆ V such that each vertex in V \D has
a neighbor in D. The cardinality of the least dominating set of a graph G is called its dominance
number and is denoted by γ(G). The dominating set problem (DS problem) for given graph G and
number k is to verify the inequality γ(G) ≤ k.

So far, exactly four boundary classes are known for the DS problem (see [1, 2]). The first of
them is the class T consisting of all possible forests each of whose connected components is a tree
with at most three leaves. The second is the class D of the edge graphs of the graphs in T . To
define the third and fourth boundary classes, we need operators Q and Q∗ on graphs as well as the
concept of hereditary closure of a graph class.

Let G = (V,E) be an arbitrary graph. We denote by Q(G) the graph on the vertex set V ∪ E
in which

E
(
Q(G)

)
=

{
xy | x, y ∈ V, x ̸= y

}
∪
{
xe | x ∈ V, e ∈ E : x is incident to e in G

}
.

Let G = (V,E) be a subcubic graph, i.e., a graph with vertex degrees ≤ 3. By V ′ we denote the
set of all its vertices of degree 3. Set V ′′ = V \V ′. The graph Q∗(G) has the vertex set V ′′ ∪E and
the edge set

E
(
Q∗(G)

)
=

{
xy | x, y ∈ V ′′, x ̸= y

}
∪
{
xe | x ∈ V ′′, e ∈ E : x is incident to e in G

}
∪

⋃
x∈V ′

{
e1(x)e2(x), e1(x)e3(x), e2(x)e3(x)

}
,

where e1(x), e2(x), and e3(x) are the edges incident to the vertex x.
Let X be an arbitrary graph class, and let F be some operator on graphs. Denote by F (X ) the

set {F (G) | G ∈ X}. Denote by [X ] the hereditary closure of X , i.e., the set of all graphs induced
by graphs in X . By Q and Q∗ we denote the sets [{Q(G) | G ∈ T }] and [{Q∗(G) | G ∈ T }].

The classes Q and Q∗ are DS-boundary. This result is generalized in the present paper. For
an edge xy of an arbitrary graph, its l-subdivision, where l is a nonnegative integer, consists in
removing this edge and adding vertices z1, . . . , zl and edges xz1, z1z2, . . . , zl−1zl, zly. The operation
of 1-subdivision of an edge is simply called a subdivision of an edge. The operation inverse to
the l-subdivision is called the l-contraction. Denote by Qk(G) the result of the 3k-subdivision
of all edges of the form xe, ye in the graph Q(G), where e = xy ∈ E(G). Denote by Qk the
set [Qk(T )]. Note that Q0 = Q. In this paper, we prove that the class Qk is DS-boundary for
each k.

In the paper [5], a complete classification of the complexity of the DS problem for monogenic
classes, i.e., hereditary classes defined by exactly one forbidden induced subgraph, is obtained. It
is stated in that paper in terms of an explicit description of the corresponding subgraphs. In terms
of DS-boundary classes, this can be reformulated as follows: a monogenic class is DS-simple if it
does not include any of the classes T , D, and Q; otherwise, it is DS-hard. A similar result (with the
same statement) is obtained in [6] for a family of hereditary classes defined by minimal forbidden
induced subgraphs with at most 5 vertices each.

As far as the present authors are aware, so far for the DS problem there are no complete di-
chotomies of its complexity in families of hereditary classes defined by two minimal forbidden
induced subgraphs or minimal forbidden induced subgraphs with at most 6 vertices each. In this
paper, a new step is taken in both of these directions. Namely, we prove that the graph class defined
by the prohibition of the induced path with 6 vertices and the complete subgraph with 4 vertices
is DS-hard. Based on this and Theorem 1, it follows that there exist DS-boundary classes distinct
from T , D, Qk (k ≥ 0), and Q∗.

The interested reader can refer to the survey papers [4, 7], which summarize the recent achieve-
ments in the field of boundary graph classes. In particular, the set of boundary classes may have the
cardinality of continuum (see [8]), and a complete description of boundary classes for nonartificial
problems on graphs may be attainable (see [9]).
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ON A COUNTABLE FAMILY OF BOUNDARY GRAPH CLASSES 27

1. SOME DEFINITIONS, NOTATION, AND FACTS

1.1. Graphs, Subgraphs and Operations on Them
As usual, by Pn, Cn, and Kn we denote a simple path, a simple cycle, and a complete graph

on n vertices, respectively. The graphs Pn and Cn are called an n-path and an n-cycle, respectively.
By Kp,q we denote the complete bipartite graph with p vertices in one part and q vertices in the
other part. The “diamond” graph is obtained by removing an edge from K4, and the “butterfly”
graph is obtained by identifying two triangles by a common vertex.

The graphs P ′
k and C ′

k are obtained by adding a 3-path (x, y, z) to Pk and Ck, respectively,
where x, y, z ̸∈ V (Pk) and x, y, z ̸∈ V (Ck), and an edge yv, where v is the end of Pk or v ∈ V (Ck).
The graphs P ′′

k and C ′′
k are obtained by adding an edge xz to P ′

k and C ′
k, respectively. The graph Ce

k,l

is obtained by identifying Ck and Cl along one edge.
The graph A1 is isomorphic to C ′

3, the graph A2 is isomorphic to C ′′
3 , the graph A3 is obtained

from A1 by the subdivision of yv, the graph A4 is obtained from A3 by removing the edge incident
to its vertices of degree 2, and the graph A5 is obtained from A4 by subdividing its edge incident
to vertices of degree 2 and 3.

Let G = (V,E) be a graph, and let V ′ ⊆ V be a subset of its vertices. By G \ V ′ we denote the
result of deleting all vertices belonging to the set V ′ from G.

By G we denote the graph complementary to the graph G. The operation of disjoint union of
graphs is applied only to graphs with disjoint sets of vertices. For graphs G1 and G2, by G1 + G2

we denote their disjoint union. By kG we denote the disjoint union of k graphs each of which is
isomorphic to the graph G.

1.2. Graph Classes
A monotone class of graphs is a hereditary class that is also closed with respect to removal of

edges. Each such class is defined by the set of its own minimal forbidden subgraphs (i.e., graphs
that are minimal with respect to removal of vertices and edges that do not belong to the class). If
this set is finite, then it is also said to be finitely defined . If X is a monotone graph class and Y is
the set of its forbidden subgraphs, then X = Freem(Y). By G we denote the set of all graphs and
by G3, the set of subcubic graphs.

1.3. Special Vertex Subsets
An independent set in a graph is an arbitrary subset of V (G) consisting of pairwise nonadjacent

vertices. The cardinality of the largest independent set in a graph G is denoted by α(G). A vertex
cover of a graph is a subset of its vertices such that each edge of the graph is incident to at least
one vertex in the subset. A clique of a graph is any subset of its pairwise adjacent vertices. It is
easy to see that for any graph G = (V,E) a subset V ′ ⊂ V is an independent set in G if and only
if V \ V ′ is a vertex cover of G or if V ′ is a clique in G.

An independent set problem (IS problem) for a given graph G and a number k is to determine
whether the inequality α(G) ≥ k is satisfied. The class T is IS-boundary; moreover, it is the only
IS-boundary class in the family of monotone classes of graphs (see Theorems 4 and 5 in [3]). The
uniqueness of T as an IS-boundary in a family of monotone classes and the connection between
independent sets/vertex covers in a graph G and dominating sets in the graph Q(G) was used in [1]
to prove that Q is DS-boundary. A similar idea will also be used in the present paper.

2. ON THE DS-BOUNDARY PROPERTY OF CLASSES Qk

The following assertion shows that for any k the class [Qk(G3)] is finitely defined.

Lemma 1. For each k ≥ 1, the equality[
Qk(G3)

]
= Free(Xk)

holds, where

Xk =
{
K1,5, C4, . . . , C6k+2, C6k+4, . . . , C12k+5, diamond, butterfly,
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K1,3 + C3,K1,3 + P6k+2, C3 + P6k+2, 2K1,3, 2C3, 2P6k+2,

P ′
6k+3, C

′
6k+3, P

′′
6k+2, C

e
6k+3,6k+3, A1, A2, A3, A4, A5

}
.

Proof. It can be proved that each element of the set Xk is a minimal forbidden induced subgraph
of the class [Qk(G3)], so that [Qk(G3)] ⊆ Free(Xk). Let us show that this inclusion is an equality.
Consider an arbitrary graph G ∈ Free(Xk). Since

2P6k+2, C4, . . . , C6k+2, C6k+4, . . . , C12k+5 ∈ Xk,

it follows that all induced cycles of G are 3- or (6k+3)-cycles, and each of its induced paths has at
most 12k + 4 vertices. Since

C4, C5, C6,K1,3 + C3, 2K1,3, 2C3, diamond, butterfly, A2, A3, A4, A5 ∈ Xk,

we see that any two vertices of the graph G of degree at least three are adjacent.
Let G not contain triangles. If G ∈ Free({C6k+3}), then, since 2K1,3 ∈ Xk, the graph G is

a forest in which all but possibly one of the components are simple paths. Each such {K1,5, 2P6k+2,
K1,3 + P6k+2, P

′
6k+3}-free graph belongs to [Qk(G3)]. If G contains an induced (6k + 3)-cycle , then

it is unique, because
2P6k+2, C

′
6k+3, C

e
6k+3,6k+3 ∈ Xk.

Each such {K1,5, 2P6k+2,K1,3 + P6k+2, P
′
6k+3}-free graph belongs to [Qk(G3)].

Suppose that G contains triangles. Consider the largest clique V ′ in G; it contains at least three
vertices. It is easily seen that each connected component of G \ V ′ is a path with at most 6k + 1
vertices, and each of their inner vertices is not adjacent to any vertex of V ′, while each of their
terminal vertices has at most one neighbor in V ′. Each such {K1,5, butterfly, Ce

6k+3,6k+3}-free graph
belongs to [Qk(G3)]. The proof of the lemma is complete. □

The next lemma is a generalization of Lemma 11 in [3] (note that the latter actually deals with
monotone classes rather than just hereditary ones).

Lemma 2. For any number k and monotone class X , the IS problem in the class X is polyno-
mially equivalent to the DS problem in the class [Qk(X )].

Proof. A triple subdivision (i.e., 3-subdivision) of any edge of an arbitrary graph increases
its dominance number exactly by one (see, e.g., Lemma 3 in [5]), and so γ(Qk(G)) = γ(Q0(G)) +
2k|E(G)| for any graph G. When proving Lemma 11 in [3], it was shown (see items (a) and (b)) that
for any nonempty graph G the dominance number of the graph Q0(G) is equal to the cardinality
of the smallest vertex cover of G, which is the same as |V (G)| − α(G). Thus, the relation

γ
(
Qk(G)

)
=

∣∣V (G)
∣∣+ 2k

∣∣E(G)
∣∣− α(G)

holds for any nonempty graph G.
It is easy to see that for any graph H isomorphic to Qk(G) one can compute G in a time

polynomial in |V (H)|. To this end, it suffices to find an inclusion-maximal clique in the graph H (it
will be the largest and corresponds to V (G)), remove it from H, and find the connected components
of the result, which will be paths with 6k + 1 vertices. The neighbors of the ends of these paths
in the clique correspond to the edges of G. It is clear that for any graph G the graph Qk(G) is
computed in a time polynomial in |V (G)|. Thus, the IS problem in any class Y (not necessarily
even hereditary) is polynomially equivalent to the DS problem in the class Qk(Y).

Consider an arbitrary graph G ∈ [Qk(X )] \Qk(X ). We can assume that G contains a clique V ∗

with at least three vertices; otherwise G is a disjoint union of only simple paths or a (6k + 3)-cycle
and simple paths, and for such graphs the DS problem is solved in linear time. For the same
reasons, we can assume that G is different from a complete graph, and so G consists of V ∗, several
induced (6k + 3)-cycles, each of which has exactly one common edge with V ∗, as well as several
simple paths, each of which has at most 6k + 2 vertices and also a vertex common with V ∗.

In the graph G, we perform 3-contractions as long as possible. We obtain some graph G′, which
is uniquely determined. It is clear that γ(G)− γ(G′) = k′, where k′ is the number of 3-contractions
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performed in G. The graph G′ consists of V ∗, several triangles, each of which has exactly one edge
in common with V ∗, and the induced 2-, 3-, and 4-paths, each of which has exactly one common
vertex with V ∗. If there are no such paths in G′, then G′ = Q0(H

′) for some graph H ′ ∈ X (recall
that X is monotone).

Assume that the set of above-mentioned paths in G′ is nonempty. It is clear that there exists a
least dominating set G′ containing, for each i-path, where 1 ≤ i ≤ 4, the ith vertex from the end of
the i-path belonging to V ∗. Consider the set Ṽ of those vertices in G′ that are not dominated
by these vertices of the i-paths, and also the subgraph G′′ of the graph G′ induced by Ṽ and
all their neighbors in V ∗. If G′′ is complete, then γ(G) = 1. Otherwise, there exists a graph
H ′′ ∈ X such that G′′ = Q0(H

′′) and γ(G′′) = |V (H ′′)| − α(H ′′). Thus, the DS problem in the
class [Qk(X )] \ Qk(X ) is polynomially reduced to the IS problem in the class X . The proof of
the lemma is complete. □

Theorem 2. The class Qk is DS-boundary for each k.
Proof. The set of subcubic graphs that do not contain cycles of length ≤ i will be denoted

by Xi. For any i, the class Xi is monotone and IS-hard (see [10]), X1 ⊇ X2 ⊇ · · ·, and
∞⋂
i=1

Xi = T ,

so by Lemma 2 for any k and i the class [Qk(Xi)] is DS-hard. It is easily seen that

[
Qk(X1)

]
⊇

[
Qk(X2)

]
⊇ · · · and

∞⋂
i=1

[
Qk(Xi)

]
= Qk;

therefore, the class Qk is DS-limit for each k.
Let us prove that the class Qk is DM-boundary for any k. Assume, on the contrary, that there

exists a sequence Y1,k ⊇ Y2,k ⊇ . . . of DS-hard classes such that
∞⋂
i=1

Yi,k = Q′
k ⊂ Qk = [Qk(T )].

Then for some G ∈ T we have

Q′
k ⊆

[
Qk(G3)

]
∩ Free

(
{Qk(G)}

)
⊆

[
Qk

(
Freem

(
{G}

))]
.

By Lemma 1, the class [Qk(G3)] ∩ Free({Qk(G)}) is finitely defined. Therefore, there exists an i′

such that the following inclusion holds:

Yi′,k ⊆
[
Qk

(
Freem

(
{G}

))]
.

The class Freem({G}) is monotone and does not include the class T . By Theorem 2 in [3], the
class Freem({G}) is IS-simple. Therefore, the class Yi′,k is DS-simple by Lemma 2. We obtain
a contradiction with the assumption that P ̸= NP. The proof of the theorem is complete. □

3. NP-COMPLETENESS OF THE DS PROBLEM IN THE CLASS Free({P6,K4})

Let G = (V,E) be an arbitrary graph, where V = {v1, v2, . . . , vn}. Denote by R(G) the graph
obtained from G with the help of the transformations described below.The proposed construction
is similar to the construction in [11], which proves the NP-completeness of the DS problem in the
class of chordal bipartite graphs , i.e., graphs in the class Free({C3, C5, C6, . . .}).

Each vertex vi ∈ V is transformed into a graph (Vi, Ei), where

Vi = {xi, yi, zi, ai, bi}, Ei = {aixi, xiyi, yibi, aizi, xizi, yizi, bizi}.

Each edge vivj ∈ E is transformed into a pair of vertices pij, qij. We have

V (R(G)) =

n⋃
i=1

Vi ∪
⋃

vivj∈E

{pij, qij},
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E(R(G)) =

n⋃
i=1

Ei ∪
⋃

vivj∈E

{pijxi, pijyj, qijyi, qijxj} ∪
⋃

i,j∈1,...,n,
i ̸=j

{xiyj, xizj, yizj}.

Lemma 3. For any graph G, one has the relation

γ
(
R(G)

)
= 2

∣∣V (G)
∣∣− α(G).

Proof. First, we prove that γ(R(G)) ≤ n+k, where k = n−α(G) is the cardinality of the least
vertex cover of the graph G. Indeed, if {vi1 , . . . , vik} is the least vertex cover of the graph G, then

{xi1 , yi1 , . . . , xik , yik} ∪
{
zi | i ̸∈ {i1, . . . , ik}

}
is a dominating set of R(G).

Now let us prove that γ(R(G)) ≥ n+ k. Let us show that there exists a least dominating set of
the graph R(G) such that for any i ∈ 1, . . . , n the vertices xi and yi belong or do not belong to it
simultaneously. Indeed, if for some smallest dominating set D of the graph R(G) one has xi ∈ D
and yi ̸∈ D, then either bi ∈ D or zi ∈ D, because bi is dominated by the set D. If v ∈ D,
where v ∈ {bi, zi}, then (D \ {v}) ∪ {yi} is a dominating set of the graph R(G).

Let D be the least dominating set of the graph R(G) such that for any i ∈ 1, . . . , n ei-
ther xi, yi ̸∈ D or xi, yi ∈ D. We set I = {i | xi, yi ∈ D}. It follows from the minimality of D that
if pij ∈ D, then xi, xj, yi, yj ̸∈ D and qij ∈ D. Then (D \ {pij, qij}) ∪ {xi, yi} is also a dominating
set of R(G), and so we can assume that none of the vertices pij and qij belongs to D. Therefore,
the set {vi | i ∈ I} is a vertex cover of the graph G, and hence |I| ≥ k. For any i ∈ {1, 2, . . . , n} \ I,
the set D simultaneously dominates the vertices ai and bi, and so ai, bi ∈ D, or zi ∈ D, for any
such i. Since D is minimal, it follows that zi ∈ D for any such i. Therefore,

γ
(
R(G)

)
= |D| = 2|I|+ n− |I| ≥ n+ k.

The proof of the lemma is complete. □

Lemma 4. One has the inclusion R(G) ⊆ Free({P6,K4}).
Proof. In each graph in R(G), the degrees of the vertices ai, bi, pij, qij are equal to 2, and so

they cannot be contained in the subgraph K4. In each graph in R(G), the subsets

X = {xi}ni=1,

Y = {yi}ni=1,

Z = {zi}ni=1

are independent; hence R(G) ⊆ Free({K4}).
Note that in each graph in R(G), each of the vertices ai, bi, pij, qij has exactly two neighbors,

and these are adjacent. It is easily seen that the subgraph of each graph in R(G) induced by the
subset X ∪ Y ∪ Z is {P4}-free, which means that R(G) ⊆ Free({P6}). The proof of the lemma is
complete. □

Theorem 3. The class Free({P6,K4}) is DS-hard.
Proof. The graph R(G) is computed from the graph G in a time polynomial in |V (G)|, and so

by Lemma 3 the IS problem NP-complete in the class G is polynomially reduced to the DS problem
in the class R(G). Thus, the DS problem is NP-complete in the class R(G), which, by Lemma 4, is
a subset of the class Free({P6,K4}). The proof of the theorem is complete. □

Note that P6 ∈ T , P6 ∈ D, K4 ∈ Qk (k ≥ 0), and K4 ∈ Q∗. Based on this, the following
assertion is a corollary of Theorems 1 and 3.

Corollary 1. There exist DS-boundary classes other than T , D , Qk (k ≥ 0), and Q∗.
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