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a b s t r a c t

The discovery of new catalysts is one of the significant topics of computational chemistry as it has the
potential to accelerate the adoption of renewable energy sources. Recently developed deep learning
approaches such as graph neural networks open new opportunity to significantly extend scope for
modeling novel high-performance catalysts. Nevertheless, the graph representation of a particular
crystal structure is not a straightforward task due to the ambiguous connectivity schemes and numerous
embeddings of nodes and edges. Here, we present embedding improvement for graph neural networks
that has been modified by Voronoi tessellation and is able to predict the energy of catalytic systems
within the Open Catalyst Project dataset. The enrichment of the graph was calculated via Voronoi
tessellation, and the corresponding contact solid angles and types (direct/indirect) were considered as
edges’ features, and Voronoi volumes were used as node characteristics. The auxiliary approach was
enriching node representation by intrinsic atomic properties (electronegativity, period, and group po-
sition). The proposed modifications allowed us to improve the mean absolute error of the original model,
and the final error equals to 651 meV on the Open Catalyst Project dataset and 6 meV/atom on the
intermetallics dataset. Also, by the consideration of an additional dataset, we show that a sensible choice
of data can decrease the error to values below a physically-based 20 meV/atom threshold.
© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Catalysis is a key and emergent concept in renewable energy
enabling high yield, strongly specific chemical processes. This
concept is in high demand in the field of chemical engineering,
renewable energy, and batteries. A general target of research is to
develop more efficient catalysts, which stand for quite different
aspects. Among others, this can be a higher activity, higher selec-
tivity, longer lifetimes, better availability, or preferable materials
[1,2]. Despite remarkable achievements in materials design and,
particularly, heterogeneous catalysts development for various
chemical processes such as water splitting and carbon dioxide
reduction, etc., the experimental trial-and-error approach is still
predominate. There are difficulties associated with the transition
from empirical and experimental approaches towards a predictive
catalyst design. The main ones lie in the fact that an ordinary
rovin).

r Ltd. This is an open access article
heterogeneous catalysis process time span and spatial scale is of
higher orders of magnitude than ab initio computational chemistry
can cover [3]. Moreover, catalyst performance depends on many
variables, such as the catalyst composition, morphology, support
material, and reaction environment (for example, temperature,
solvent, and external potential).

The development of a computational chemistry approach
providing an understanding of individual elementary processes of
catalytic reactions is the key to overcome the time span and spatial
scale problem. However, such an approach significantly reduces the
complexity of the problem and considers a single crystal of an
actual catalyst material [4]. Modern computational methods for the
investigation of catalytic processes mainly include: a) density
functional theory (DFT) or high-throughput theoretical calculations
to estimate the energetic parameters of the elementary steps in
catalysis reactions [5,6]; b) reactive force field (ReaxFF)-based
molecular dynamics simulations,prediction of real-time reaction
dynamics [7,8]; c) kinetic (e.g. mean-field or Monte Carlo)
modeling, which can simulate reaction dynamics at the time scales
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where the experimental reaction conditions often take place
[9e11]. Still, such a simplification for the model catalyst is a good
starting point for the more efficient data-driven search for a new
catalyst material with potentially outstanding properties. However,
presented classes of ab initio methods are still too computationally
expensive to cover an enormously large region of interest in the
configurational and compositional spaces and are confined only to
the specific spatial and time scales at which those methods were
developed.

Machine learning is a robust tool that can be used to learn the
relationship between the input features of an assumed catalyst and
its predicted output performance [12,13]. Due to the ability to learn
from raw data, deep learning approaches have boosted research
andmade it possible to discover new catalyst structures and extract
the underlying correlated features for catalytic reactions
[3,5,14e16].

In past few years, graph neural networks (GNNs) have been
developed, most of which use spatial convolution operation to
efficiently address properties of crystalline structures. For example,
GNNs have been used to predict photosynthetic ammonia [17] or
the catalytic behavior of materials in the competition named Open
Catalyst Project (OCP) [18,19], which is driven by the deep learning
methods materials design.

In the paper, we discuss the pros and cons of GNNs models
referring to the OCP challenge and compare our solutionwith other
models. We show that existing models still cannot accurately
approximate the DFT calculation results within the OCP dataset. We
also speculate about the origin of this. Finally, we show howa GNN-
based model provided within the OCP challenge is able to predict
energetics of intermetallics, which is a more specific task providing
two orders of magnitude smaller errors of predictions.

2. Computational methods

2.1. Models

GNNs are able to solve awide range of problems/tasks related to
data in a graph format, including the prediction of a numeric
property of an entire graph. In turn, molecules and crystal struc-
tures can be considered as graphs in a natural way, which allows
one to apply GNNs for energy and force prediction tasks [20].
Nevertheless, GNNs have some principal restrictions: they operate
with a graph as a formal object (a set of nodes and edges), while
chemical compounds are complex spatial systems and thus, two
isomorphic graphs can represent completely different structures
[21]. To overcome this drawback, modern models utilize informa-
tion about the relative atoms' positions as nodes' and edges’ fea-
tures and use invariant (and/or equivariant) convolution operators.

There are developed energy-rotation invariant (and force-
rotation equivariant) GNN-based models of different architecture,
size, complexity, and performance (CGCNN [22], SchNet [23],
DimeNet [24], and GemNet [25], etc.). Trying to achieve a trade-off
between the speed, quality, and flexibility of the model's archi-
tecture (the ease of encoding of angular information about node's
neighbors), we chose the SpinConv [26] model.

All models mentioned above are capable to encode mutual
atomic arrangements via edge-to-edge angles, dihedral angles,
spherical projections, etc., and various spatial convolution opera-
tors. SpinConv uses Gaussian smearing and trainable linear trans-
formation for distance encoding. Additionally, projection onto the
unit sphere with one-dimensional convolution in the longitudinal
direction of local spherical coordinate systems is applied for
aggregating information about node neighbors to embedding.
These distinctions determine such physical restrictions as a rota-
tion equivariance and a difference in radii of atoms.
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However, except for CGCNN, all models (including SpinConv) do
not consider chemical information for atoms, bounding themselves
only with atomic numbers (or providing convolutional layers to
learn all this information). Also, all models turn chemical com-
pounds into graphs using a radius graph, which, as presented
before, seems non-physical and compels the convolution operators
to handle excess neighbors.

2.2. Crystal graph modifications

2.2.1. Graph connectivity and edge properties
As mentioned, the most commonly used approach (also

implemented in SpinConv) to set graph connectivity is the radius
graph, which considers atoms located closer than the predefined
cut-off Rcut as connected, taking into account periodic boundary
conditions. Thus, the intrinsic symmetry properties of a crystal
structure as well as the anisotropic nature of crystalline materials
are vanished by the reconstruction of graph connectivity. Further-
more, such an approach is not free of parameters, selection of
which may influence the results obtained.

Inspired by the recent success of the CGCNNmodifications [27]
and the presence of particular GNN architectures [28], we have
considered the Voronoi partition [29] of crystal space to modify
the graph connectivity of the identical SpinConv model. This
approach is based on the real space tessellation allowing to set a
number of edges of the crystal structure graph concerning only
the nearest neighbors of a particular node (atom) and, subse-
quently, accounting for a crystal symmetry in a parameter-free
manner. Particularly, for the considered task, one can obtain a
list of the crystal surface atoms that are most ‘open’ to the
molecule. Comparison of the radius-graph connectivity and Vor-
onoi partition is given in Fig. 1.

By using the Voronoi partition instead of the crystal graph
method (providing a set of distances only), one can obtain addi-
tional properties for each edge and each node of the graph (see
Fig. 1b). For instance, the edge obtained for the updated connec-
tivity can belong to direct or indirect contacts of the Voronoi net.
For the formerly mentioned group, the line corresponding to the
contact between the central atom and its neighbor crosses the
edge of the Voronoi polyhedron. This is not the case for indirect
contacts.

Additionally, the number of the neighbors (faces of the corre-
sponding Voronoi polyhedron) can be interpreted as a coordination
number of a particular node of the graph (atom). For each of the
neighbors (contacts), the solid angle provides information on the
interaction intensity (see Fig. 1c). The higher the solid angle, the
stronger the interaction between the central atom and particular
neighbor. Thus, the solid angles become an additional property of
the edges (contacts) of the crystal graph.

Expectedly, by using the Voronoi partition, we have met a
problem of slab-to-slab connections through the vacuum region
(see Fig. 1a). Such connections possess non-physically large dis-
tances (anisotropic Voronoi polyhedra of large volumes), although
they satisfy Voronoi tessellation rules. For this reason, an additional
limiting parameter Rlim was introduced to eliminate inter-slab
connections due to the periodic boundary conditions. This
limiting parameter Rlim determines the longest edge distance
within the crystal graph and, in this sense, is similar to Rcut within
the radius graph approach.

2.2.2. Node (atom) properties
Based on the Voronoi partition, each node of the graph can be

characterized by the volume of the Voronoi polyhedron that rep-
resents the volume of the crystal structure ‘occupied’ by the cor-
responding atom. The identical SpinConv model describes each



Fig. 1. (a) The sample crystal structure from those provided within the Open Catalyst Project dataset, and representation of neighbors of a certain node (atom) obtained using the
radius graph method. Rcut ¼ 6 Å. (b) For the same node of the graph, the Voronoi polyhedron and the corresponding nearest neighbors are determining its shape. The snapshots of
the crystal structure were obtained by using ToposPro software [30] (c) The two-dimensional example of the Voronoi partition demonstrating the connection of interaction in-
tensity differences in terms of Voronoi polygon edges. PBCs, periodic boundary conditions.
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atomic species as a one-hot-encoded atomic number, which can
potentially reduce the generalization ability of the trained model.
For this reason, we have additionally checked a number of atomic
(nodal) features.

Instead of atomic numbers, we have also considered the
embedding of chemical properties previously used in a CGCNN
model [22] including group and period numbers, electronegativity,
covalent radius, valence electrons, and ionization energy. Addi-
tionally, electronegativity representing an intrinsic feature of a
particular chemical element is a numerical type property which
was checked. Within an individual model, the combination of a
period and group (one-hot-encoded) was used instead of atomic
numbers of the original SpinConv.

2.2.3. Graph modifications
The modifications tested within the current research are listed

in Table 1, where RG and VG stands for the radius-graph and Vor-
onoi graph, respectively.
Table 1
The detailed description of modifications of implemented models.

model short names graph connectivity

VG6Å and Voronoi volumes Vg þ vol VG

VG6Å and solid angles Vg þ angle VG

VG6Å Vg VG

VG6Å and electronegativity Vg þ e-neg VG
RG6Å and CGCNN embeds Rg þ embeds RG
RG6Å and periods þ groups Rg þ table RG

RG6Å Rg RG

Abbreviations: RG, radius-graph; VG, Voronoi graph
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2.3. Datasets

2.3.1. Open Catalyst Project
Predictions of catalysts are even more challenging as combina-

tions of small molecules, and multiple crystalline surfaces should
be considered. Open Catalyst Challenge [18], one of recent and
aspiring attempts to tackle this problem, is an open dataset
combining about half amillion DFTmodels stable and small organic
reactants (up to 225 atoms).

2.3.2. Additional dataset. ScePd intermetallics
An auxiliary dataset was utilized to further test the proposed

modifications of the graph representation and to study the
dependence of the performance of the GNN-based solution on the
provided data. We used a recently developed [31] dataset of
structurally disordered ScePd, SceRh, ScePt, and SceIr complex
intermetallics. Taking into account the structural similarity of the
aforementioned series of compositions, we tested the proposed
node properties edge properties

immanent system-dependent

atomic
numbers

Voronoi volumes distances

atomic
numbers

e distances,
solid angles

atomic
numbers

e distances

electronegativity e distances
CGCNN embeds e distances
periods
and groups

e distances

atomic
numbers

e distances
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modifications only for the thermodynamic properties of the ScePd
systems.

This data collection represents the composition/configuration
space (model crystal structures) for searching for 1/1 Mackay-type
[32,33] quasicrystal approximants. The obtained results for the OCP
dataset for structures that contain Pd show the lowest average
mean absolute error (MAE) among the transitional metals (Pd, Pt, Ir,
and Rh) studied within the aforementioned work [31]. Each entry
of the additional dataset represents a 3-periodic complex crystal
structure with more than 100 metal atoms per unit cell and dis-
ordering within the region shown in Fig. 2. In contrast to the OCP
dataset, the full DFT-based relaxation of such systems does not
require restrictions neither for atomic positions (selective dy-
namics) nor for a unit cell size/shape.

The selected Sc positions of the crystal structure in Fig. 2
correspond to the disordering region between Mackay clusters,
where vacancies and substitutions are added in different amounts
during dataset generation and determining the structural and
compositional diversity. Among the dataset comprising 2107
crystal structure realizations with different Sc/Pd contents, 1896
structures (ca. 90%) were used within the GNN training, whereas
the rest of the structures were considered for validation (211 en-
tries, ca. 10%). A test dataset comprising 63 energetically favored
realizations of the studied crystal structures was additionally pre-
pared and used.

We considered the DFT-relaxed energies of intermetallic crys-
tals and the corresponding energies above the convex hull of the
studied ScePd system. The latter one is a good example of a ther-
modynamic property that is less independent of the calculation
scheme. For more information on the dataset preparation and
content, the readers are referred to the original work [31].
3. Results and discussion

3.1. Model performances

3.1.1. Open Catalyst Project dataset
For the OCP dataset, the results listed in Table 2 clearly show

the influence of some of the proposed modifications of the graph
connectivity and additional properties of nodes and edges
Fig. 2. The sample crystal structure from those provided within the additional dataset comp
disordered region variable within the dataset. The snapshot was prepared using the Vesta
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(available from the Voronoi partitions) on the validation scores. It
is worth noting that the proposed modifications were tested on
the val_ood_both datasets comprising structures with substrates
and molecular fragments out of the training set domain. The re-
sults listed in Table 2 correspond to the models trained on the full
dataset (ca. 460k structures) and 10k structure subset; the Vgþvol
model is omitted in Table 2 and excluded from further consider-
ation because of its poor performance on the OCP (10k) dataset
(MAE 1.1 eV).

For the OCP datasets, the best MAE value of 0.651 eV was ob-
tained by using updated connectivity accompanied by the solid
angles as properties of each edge of the crystal graphs of the
modeled systems. Nevertheless, the difference between this
improvement and the identical SpinConvmodel is ca. 0.02 eV/atom.
In turn, the additionally considered modification of embeddings of
nodes (atomic species) by period/group combinations as well as
accounting for their tabular electronegativities result in an increase
of the corresponding MAE values of the comparable magnitudes.
An important observation at the current stage of the analysis is the
fact of a non-uniform distribution of MAE with respect to the
chemical compositions of the systems under consideration, sche-
matically shown in Fig. 3.

As one can see, the lowest MAE obtained corresponds to the
systems comprising transitional metals including Pt (mean MAE of
0.4953), Pd (mean MAE of 0.4317), Rh (mean MAE of 0.4628), etc.
commonly used as catalysts.
3.1.2. ScePd intermetallics dataset
The obtained results for the DFT-relaxed energies of ScePd in-

termetallics and the corresponding energies above the convex hull
for this system are given in Table 2. It is worth noting that the MAE
scores obtained using the identical SpinConv model are more than
10 times smaller for the studied intermetallic compounds, which
can be associated with both a much poorer chemical/structural
diversity resulting in a narrower target energy distribution for the
studied dataset and the settings of the DFT-based modeling.
Despite such inaccuracy of the GNN model, it was shown [31] to
provide reliable thermodynamic property predictions and a num-
ber of stable phases in good agreement with available experimental
data [35].
rising ScePd intermetallics. The selected (in yellow) atomic positions correspond to the
program [34].



Table 2
For the studied datasets, the obtained MAE scores with respect to the modification of the crystal graph connectivity and the features of its nodes and edges. See Table 1 for
detailed information about the models.

model all OCP 10k OCP RE test intermet EH test intermet RE val intermet EH val intermet

Vg þ angle 0.651 0.931 0.02013 0.00579 0.0182 0.0151
Vg e 1.002 0.0234 0.0194 0.0186 0.0126
Vg þ e-neg 0.7096 0.9488 0.0409 0.01584 0.0259 0.01902
Rg 0.6686 0.954 0.0422 0.0169 0.0262 0.0193
Rg þ embeds e 1.009 0.046 0.017 0.0272 0.0188
Rg þ table 0.6731 0.9348 0.0578 0.0189 0.0292 0.0196

Abbreviations: MAE, mean absolute error; OCP, Open Catalyst Project; RE, relaxed energy; EH, energy above the convex hull; Rg, radius graph; Vg, Voronoi graph

Fig. 3. The characteristic mean MAE distribution averaged over the systems comprising particular chemical species within the OCP dataset for the identical SpinConv model. MAE,
mean absolute error; OCP, Open Catalyst Project
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On the other hand, the obtained MAEs are more drastically
dependent on solid angles for the both studied target energies. In
the case of relaxed energy, the obtained results can also be
improved by the graph connectivity only (see Table 2). For the
studied ScePd systems, the lowest obtainedMAE of ca. 6meV/atom
for the energies above the convex hull is comparable to the metrics
obtained by the modifications of the SpinConv architecture imple-
mented and tested recently [31].

As one can see in Fig. 4, the implemented modifications possess
stability in terms of prediction quality with respect to the sub-
samples (validation and test subsets) of the intermetallic dataset as
well as for different target properties studied. In contrast, for the
OCP dataset, the obtained results do not follow any regular pattern.
This observation can be associated with the intrinsic properties of
the 2-periodic (slab-like) crystal structures, for which the Voronoi
partition is not a straightforward (the aforementioned slab-to-slab
connections) approach and requires a cut-off introduction for the
graph edges.
3.2. Data preparation aspects

Obviously, the presented reduction in the chemical/structural
diversity of model datasets providing better test scores is limited
for any high-throughput screenings or general-purpose applica-
tions. For this reason, here we want to reflect on some additional
aspects of data preparation and their possible effects on the
developing data-driven approaches for searching for new func-
tional materials including heterogeneous catalysts on the basis of
‘synthetic’ (e.g. DFT-derived) properties.
5

3.3. Target properties independent on the calculation scheme

The consideration of different target properties available from
DFT calculations in connection with synthesizability of novel ma-
terials and their stability is widely discussed [36,37]. Obviously,
there is a direct connection between the DFT-relaxed and formation
energies (or energies above the convex hull) of a particular crystal
structure. Nevertheless, from a computational point of view, the
relaxed energies are dependent on the chosen calculation scheme
(pseudopotentials, basis set size, sampling of the reciprocal space,
etc.), whereas formation energies or any derivative thermodynamic
properties obtained from these are free of any calculation biases.
Moreover, the results obtained demonstrate possible differences in
the model prediction quality for different target energies (see
Table 2). In turn, the descriptor-based approaches may show dif-
ferences between compositional and structural feature importance,
when changing target values. For instance, structural descriptors
became more important features (in comparison to the chemical
composition) for the energies above the convex hull (in comparison
to the DFT-relaxed energies) [31]. The presence of datasets that are
widely diverse from chemical and structural points of view, such
that of OCP, provides a great possibility for the pre-training of GNN-
based models and their subsequent fine tuning for the purposes of
any more particular problems [31].

To compare energy efficiency of models, we measured energy
consumption with the help of an open-source python library,
eco2AI [38]. A carbon footprint was also estimated using a regional
specific carbon intensity coefficient equal to 240.56 g/kWh). As one
can see from Table 3 models a pre-calculated Voronoi graph (Vg)
were more than one order of magnitude more effective for the



Fig. 4. performance of the models with various modifications on different samples. Top panel: the performance on the OCP val_ood_both dataset (models were trained on the OCP
train 10k subset). Bottom panel: the performance on the ScePd intermetallics validation and test datasets (models were trained on the relaxed energy and energy above the convex
hull as target values). Please refer to Table 1 for detailed information about the models. OCP, Open Catalyst Project

Table 3
For the studied datasets, the energy spent for model training and corresponding

A.N. Korovin, I.S. Humonen, A.I. Samtsevich et al. Materials Today Chemistry 30 (2023) 101541
estimation of relaxed energy (RE) comparing to models where the
radius graph (Rg) was recalculated at each step.
carbon emissions. See Table 1 for detailed information about the models.

model RE EH

E, kWh CO2, g E, kWh CO2, g

Vg þ angle 0.069 16.6 0.14 34.0
Vg 0.069 16.6 0.25 59.3
Rg þ e-neg 1.30 312.6 1.30 313.4
Rg 1.31 315.5 1.31 315.6
Rg þ embeds 1.32 317.6 2.22 320.9
Rg þ table 1.33 319.0 1.30 312.9

Abbreviations: RE, relaxed energy; EH, energy above the convex hull; Rg, radius
graph; Vg, Voronoi graph
3.4. Computational constrains applied

The differences between the validation/test scores obtained for
the OCP heterogeneous structures and those for the intermetallics
can also be associated with computational constraints, such as se-
lective dynamics. To briefly discuss this point, we present the dis-
tribution of target energies available from the OCP datasets Fig. 5a.
For a vast range of crystal structures, the target energies were found
to be positive, which directly points at the consequences of pre-
paring initial structure guesses comprising the crystal slab gener-
ation, placing molecular fragment, and, for sure, selective dynamics
used by the authors [18].

In modern DFT-based approaches, the presence of systems with
altered energetics (obtained within structurally constrained re-
laxations) is essential in many applications, such as the equation of
6

state calculations, static and dynamic stability investigations,
phonon spectra calculations, etc. Such ‘negative’ examples (for
instance, those with positive energies) possess also high impor-
tance for data-driven approaches. From computational



Fig. 5. (a) The distribution of the target energies available for the relaxed atomic systems within the full OCP dataset, comprising ca. 460k structures; red dotted line denotes zero
energy. (b) The distribution of the percentage of fixed atomic positions within the slabs of the OCP structures.

A.N. Korovin, I.S. Humonen, A.I. Samtsevich et al. Materials Today Chemistry 30 (2023) 101541
perspectives, any selective dynamics can affect theway for a system
going upon the energy landscape during the relaxation.

As one can see from Fig. 5b, the percentages of the fixed atomic
positions within slabs possess wide distribution. Particularly for the
Initial Structure to Relaxed Energy task, this points at the variable
scale of the described effect for the dataset entries. Thus, selective
dynamics might provide different biases of the target properties for
different systems, although each system provided within the
dataset remained structurally stable during the relaxation.
4. Conclusion and perspectives

Within the current research, we developed and tested modifi-
cations of the graph representation using the Voronoi partition in
the case ofheterogeneous systems comprising combinations of
crystal slabs and molecular fragments. The comparison of the re-
sults of the developed approach for the studied 2-periodic entries
of the OCP dataset and 3-periodic intermetallics showed advan-
tages of the usage of proposed graph representations, perspectives
of its further improvements and customization, and a set of the
most promising features being considered further (especially, the
solid angles of the contacts).

Additionally, the drastic decrease in the MAE scores accompa-
nying the change of the systems modeled from 2-periodic (the OCP
dataset) to 3-periodic (intermetallics) systems was demonstrated
using the same GNN-based solutions. We associate such a behavior
with the reduction of the chemical and structural diversity for the
studied dataset and avoiding computational constraints, namely,
selective dynamics used for the 2-periodic systems providedwithin
the OCP dataset.

We want to emphasize that selective dynamics itself might be
applicable in the case of a preset surface and the same amount/
disposition of the fixed atomic positions within this. In such a sit-
uation, the influence of the frozen degrees of freedom of the slab
relaxationmight have the same energetic effect for modifications of
interest, such as adsorbate positioning as an initial guess or mo-
lecular ensembles on the adsorbent surface. The described
approach, for sure, can hardly be aimed at any ambitious high-
throughput applications and, again, represents a routine with a
reduced structural/chemical diversity of the systems being
investigated.

Nevertheless, within the described modifications and through
the application of data-driven solutions, it may become possible to
comprehensively study a particular surface and catalytic processes
7

of interest. In such a case, thermodynamic properties of numerous
states obtained computationally allow using Boltzmann statistics to
take into account both the most energetically favorable states as
well as altered/metastable ones that may have lower but non-
negligible frequencies of occurrence [39,40]. From this perspec-
tive, the authors would like to mention that the implementation of
the Voronoi partition instead of the conventional radius graph
resulted in a reduction of the computational costs of the studied
GNN-based solutions for the obvious reason of graph simplification.
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