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Abstract

We show that the number of independent sets in every outerplanar graph is greater
than the number of its 4-dominating sets.
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1 Introduction

Throughout this paper we consider only simple and finite graphs. Let G be a graph with a vertex
set V (G) and an edge set E(G). An independent set is a pairwise nonadjacent subset of V (G). For
k ≥ 1, a k-dominating set Dk is a subset of V (G) such that every vertex not from Dk is adjacent to
at least k vertices from Dk. We use the abbriveations ‘IS’ and ‘k-DS’ for the terms ‘independent set’
and ‘k-dominating set’ respectively. Let i(G) (resp. ∂k(G)) be the number of all IS (resp. k-DS) of
a graph G. Denote by Dk(G) the family of all k-DS of a graph G.

A planar graph is called outerplanar if it has an embedding in the plane such that all vertices
belong to the boundary of its outer face. An outerplanar graph G is called maximal outerplanar

(or MOP) if G + uv is not outerplanar for any two non-adjacent vertices u, v ∈ V (G). It is well-
known that every inner face of a MOP is a triangle and every MOP with at least 3 vertices has at
least 2 vertices of degree 2. Denote by OP and MOP the classes of all outerplanar and maximal
outerplanar graphs, respectively.

The definition of k-dominating set implies that for every graph G, any two non-adjacent vertices
u, v ∈ V (G) and any integer k ≥ 1 we have ∂k(G) ≤ ∂k(G + uv). Therefore, a complete graph Kn

has the maximum number of k-independent sets among all n-vertex graphs. Trees with extremal
numbers of k-dominating sets were described in [1] for k = 1 and in [2] for k ≥ 2. In [3] and [4] for
every k ≥ 2 new upper bounds for the number of k-dominating independent sets in n-vertex graphs
were presented.
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The empty graph nK1 has the maximum possible number of independent sets among all n-vertex
graphs. Moon and Moser [5] described n-vertex graphs with maximal possible number of maximal

independent (i.e. independent 1-dominating) sets. In [6] for all n ≥ 5 the graphs Hn ∈ MOP and
H ′

n ∈ MOP with the maximum and minimum possible number of IS among all n-vertex MOPs
were described.

Figure 1: Graphs H ′

9 and H9

The main result of this paper is the following fact:

Theorem 1. For every outerplanar graph G we have i(G) > ∂4(G).

The rest of the paper is organized as follows. In Section 2 we introduce some graph terminology
and present a maximal outerplanar graph partition. In Section 3 we prove Theorem 1. In Section 4
we consider a possible generalization of Theorem 1 and obtain a similar result for the class of trees.

2 Preliminaries

2.1 Basic terminology

A tree is a connected acyclic graph and a leaf is a vertex of degree one in a tree. A support vertex

in a tree is a vertex which is adjacent to at least one leaf. A diameter of a connected graph is the
maximum possible distance between its vertices. A simple path is called diametral, if its length is
equal to the diameter of a graph. Clearly, the ends of any diametral path in a tree are leaves.

For a graph G ∈ OP we consider a weak dual graph T (G), such that the vertices of T (G)
correspond to the inner faces of G and two vertices are adjacent if and only if the corresponding
faces have a common edge. It is well-known that if G ∈ MOP , then T (G) is a subcubic tree.

Let G be a graph and U ⊂ V (G) be its vertex subset. Let G \ U be an induced subgraph of G
with the set of vertices V (G) \ U .

An inner face of a MOP is called an end face if it has a vertex of degree 2. Note that a face f
of a MOP G is an end face if and only if the corresponding vertex in T (G) has degree at most one.
We say that a graph G contains a face f , if all vertices and edges from f belong to G.

Suppose that f and f ′ are two adjacent inner faces of G with a common edge uv. Denote by
G[f ; f ′] the maximal by inclusion subgraph of G such that it contains f , does not contain f ′ and
uv is its outer edge. It is easy to see that if G ∈ MOP , then G[f ; f ′] ∈ MOP .

2.2 Independent and 4-dominating sets

Let G be a graph and u, v ∈ V (G). Let i(G,u+) (resp. i(G,u−)) be the number of IS of G which
contain (resp. do not contain) u. We denote by i(G,u+, v+) the number of IS of G such that u, v ∈ I



and denote the values i(G,u+, v−), i(G,u−, v+) and i(G,u−, v−) in the similar way. Clearly, for
any vertices u, v ∈ V (G) we have

i(G) = i(G,u+, v+) + i(G,u+, v−) + i(G,u−, v+) + i(G,u−, v−).

Moreover, i(G,u+, v+) = 0, if and only if uv ∈ E(G).
Let ∂4(G,u+) (resp. ∂4(G,u−)) be the number of 4-DS in G which contain (resp. do not

contain) u. We denote the values ∂4(G,u+, v+), ∂4(G,u+, v−), ∂4(G,u−, v+) and ∂4(G,u−, v−) in
the similar way. Again, for any vertices u, v ∈ V (G) we have

∂4(G) = ∂4(G,u+, v+) + ∂4(G,u+, v−) + ∂4(G,u−, v+) + ∂4(G,u−, v−).

Note that ∂4(G,u+, v+) > 0 for any graph G. It is easy to see that ∂4(G,u−, v+) > 0, if and
only if deg(u) ≥ 4. Moreover, ∂4(G,u−, v−) > 0, if and only if either min(deg(u), deg(v)) ≥ 5 or
uv /∈ E(G) and min(deg(u), deg(v)) ≥ 4.

2.3 MOP-partition

Consider a graph G ∈ MOP and its edge uv ∈ E(G). Let GL, GR ∈ MOP be two maximal by
inclusion subgraphs of G such that E(GL) ∩ E(GR) = uv and uv is an outer edge in both GL

and GR. Clearly, if uv is not an outer edge in G than both GL and GR have at least 3 vertices
(otherwise one of them has 2 vertices and the other coincides with G). Call a triple (GL, GR, uv) a
MOP-partition of G. For the given MOP-partition (GL, GR, uv) we shall use the notation

I00 = i(GR, u
−, v−), I01 = i(GR, u

−, v+), I10 = i(GR, u
+, v−).

Since i(GR, u
+, v+) = 0, we have i(GR) = I00 + I01 + I10. Morever, if GR has at least 3 vertices,

than I00 > max(I01,I10).
We now introduce a similar concept for 4-DS. For the given MOP-partition (GL, GR, uv) of a

graph G let D11 = ∂4(GR, u
+, v+). Denote by Dk

01 the number of 4-DS D′ of a graph GR \ u such
that v ∈ D′ and the vertex u has at least max(0, 4− k) neighbors from D′ \ v in G. In other words,
Dk

01 is the number of ‘almost 4-dominating’ sets D′ of GR with respect to the vertex u. Denote Dk
10

in the same way as Dk
01. Finally, let Dkl

00 be the number of 4-DS D′′ of a graph GR \ {u, v}, such
that in the graph GR the vertices u and v have at least max(0, 4 − k) and max(0, 4 − l) neighbors
from D′′, respectively.

From the definitions of Dk
01, D

k
10 and Dkl

00 it follows immediately that for all 1 ≤ k′ ≤ k and
1 ≤ l′ ≤ l we have Dk′

01 ≤ Dk
01,D

l′

10 ≤ Dl
10 and Dk′l′

00 ≤ Dkl
00. We now prove a few more similar

properties.

Lemma 1. Let G ∈ MOP. For the given MOP-partition (GL, GR, uv) the following holds:

1. For all k, l ≥ 0 we have D11 ≥ max(Dk
10,D

k
01) and min(Dk

10,D
k
01) ≥ Dkl

00.
2. If degGR

(u) ≥ 2, then 2 · D3
10 ≥ D4

10 and 2 · D3
01 ≥ D4

01.

3. If degGR
(u) = 3, then 3 · D2

01 ≥ D3
01. Moreover, if degGR

(u) ≥ 4, then 2 · D2
01 ≥ D3

01.

Proof. Statement 1. We show that for all k ≥ 0 the inequality D11 ≥ Dk
10 holds. Consider the

function
F : D4(GR \ v) −→ D4(GR),

which maps a 4-DS D of GR \ v into a 4-DS D ∪ {v} of GR. Clearly, F is injective, therefore
∂4(GR\v) ≤ ∂4(G), this implies the inequality. The inequalities D11 ≥ Dk

01 and min(Dk
10,D

k
01) ≥ Dkl

00

are easy to prove using the same approach.



Statement 2. The inequality degGR
(u) ≥ 2 means that the subgraph GR has at least 3 vertices,

thus degGR
(v) ≥ 2. We denote by w the common neighbor of u and v, such that w ∈ V (GR) (since

uv is an outer edge of GR ∈ MOP , there is exactly one such vertex). Our goal is to show that
D4

10 − D3
10 ≤ D3

10. The left hand side equals to the number of 4-DS of the graph GR \ v such that
they don’t have vertices from NGR

[u] \ v. The right hand side equals the number of 4-DS of the
same graph which contain at least 1 vertex from the set NGR

[u] \ v, therefore the inequality holds.
It is easy to prove that 2D3

10 ≥ D4
10, using the same approach.

Statement 3. By the definition, D2
01 is the number of 4-DS of GR \u with at least two vertices

from the set NGR
[u] \ v. Therefore, the difference D3

01 − D2
01 equals to the number of 4-DS of the

graph GR \u, with exactly one vertex from the set NGR
[u] \ v. Let NGR

[u] \ v = {w1, . . . ws}, where
s ≥ 2. If s = 2, then the number of 4-DS with both vertices w1 and w2 is at least half of the number
of 4-DS with one fixed vertex, this yields the inequality D3

01−D2
01 ≥ 2 ·D2

01. If s ≥ 3, then it is easy
to see that the number of 4-DS with exactly one vertex from the set NGR

[u] \ v is less than then
the number of 4-DS with at least two vertices, therefore D3

01 −D2
01 ≥ D2

01, as required.

3 Proof of Theorem 1

We call a graph G ∈ MOP critical, if i(G) ≤ ∂4(G) and for every outerplanar graph G′ such that
|V (G′)| < |V (G)| we have i(G′) > ∂4(G

′). In this section we show that there are no critical graphs,
therefore Theorem 1 holds. It suffices to consider only maximal outerplanar graphs, since for every
graph G0 ∈ OP there exists a graph G ∈ MOP such that G0 is a spanning subgraph of G and the
inequalities i(G0) > i(G) and ∂4(G0) ≤ ∂4(G) hold.

Therefore, we consider a graph G ∈ MOP and its weak dual graph T (G) (remind that T (G)
is a subcubic tree). Let x1x2 . . . xk be some diametral path in T (G). If k ≤ 3, then there are only
3 possible MOPs up to isomorphism and it is easy to check that they are not critical. Thus we
assume that k ≥ 4.

Lemma 2. If a graph G ∈ MOP has an edge uv such that deg(u) = 2 and deg(v) = 3, then G is

not critical.

Proof. Since G ∈ MOP, the vertices u and v have the unique common neighbor a and the vertices
v and a have the unique common neighbor b, other then u. Let G1 = G \ u and G3 = G \ {u, a, v}.
Then

i(G) = i(G,u−) + i(G,u+) = i(G1) + i(G3).

We now show that
∂4(G)− ∂4(G1) ≤ ∂4(G3).

The difference ∂4(G)− ∂4(G1) equals to the number of 4-DS D of the graph G such that D \ u
is not a 4-DS for the graph G1. Since v belongs to every 4-DS in both G and G1, this is possible if
and only if a /∈ D and exactly two vertices from the set N(a) \ {u, v} belong to D. Let D′

4(G1) be
the family of 4-DS D′ of G such that D′ \ u is a 4-DS of G1. Consider the function

F : (D4(G) \D′

4(G1)) −→ D4(G3),

such that F (D) = (D ∪ {b}) \ {u, v}. It is easy to see that F is injective, because if D′,D′′ ∈
D4(G) \D′

4(G1) are two distinct 4-DS of D4(G), then the sets D′ \ {u, v, b} and D′′ \ {u, v, b} are
also distinct. Therefore,

∂4(G) ≤ ∂4(G1) + ∂4(G3) < i(G1) + i(G3) = i(G)

and G is not critical.



Lemma 2 implies that every support vertex of T (G) has degree 3. In partucular, deg(x2) = 3
and f2 is adjacent to some end faces f1 and f ′

1. In the rest of the chapter we denote the faces f1,
f ′

1, f2 and f3 by a1a2b1, a2a3b2, b1b2a2 and b1b2c1 respectively.

Lemma 3. If deg(x2) = deg(x3) = deg(x′2) = 3, then G is not critical.

Proof. Suppose that b2c1 is the common edge of the faces f3 and f4. Let GL = G[f3; f4]. Consider
the (GL, GR, b2c1)-partition of G. Since G is critical, we have i(GR) > ∂4(GR). Our goal is to find
a constant c > 0 such that i(G) ≥ c · i(GR) and ∂4(G) ≤ c · ∂4(GR). It is easy to check that the
following holds:

i(G) = i(GL) · I00 + i(GL, c
+

1
) · I01 + i(GL, b

+

2
) · I10 = 29 · I00 + 10 · I01 + 10 · I10.

Since I00 ≥ max(I01,I10), we have

i(G) > 16 · (I00 + I01 + I10) = 16 · i(GR).

Moreover,
∂4(G) = ∂4(G, b+

2
, c+

1
) + ∂4(G, b+

2
, c−

1
) + ∂4(G, b−

2
, c+

1
) + ∂4(G, b−

2
, c−

1
)

= 5 · D11 + (2 · D4
10 +D3

10) + (2 · D4
01 +D3

01) + (D44
00 +D33

00).

By Lemma 1, we have ∂4(G) ≤ 13 · D11 < 16 · ∂4(GR). Therefore, G is not critical.

Lemma 4. If deg(x3) = 3 and f3 is adjacent to some end face f ′

2, then G is not critical.

Proof. Denote the face f4 by c1b2c2 and let GL = G[f3; f4]. Consider the (GL, GR, b2c1)-partition of
graph G and the (G′

L
, GR, b2c1)-partition of graph G2 = {a1, a3}, where G

′

L
= GL \{a1, a3}. Again,

our goal is to find a constant c > 0 such that i(G) ≥ c · i(G2) and ∂4(G) ≤ c · ∂4(G2). We have

i(G) = i(GL) · I00 + i(GL, c
+
1
) · I01 + i(GL, b

+
2
) · I10 = 12 · I00 + 5 · I01 + 4 · I10;

i(G2) = i(G′

L) · I00 + i(G′

L, c
+
1
) · I01 + i(G′

L, b
+
2
) · I10 = 5 · I00 + 2 · I01 + 2 · I10.

Since I00 ≥ max(I01,I10), we have i(G) > 16

7
· i(G2). Moreover,

∂4(G) = 3 · D11 + (2 · D3
10 +D2

10) + (D4
01 +D3

01) +D32
00;

∂4(G2) = 2 · D11 +D3
10 +D3

01 +D22
00 .

We now show that

3 · D11 + (2 · D3
10 +D2

10) + (D4
01 +D3

01) +D32
00 ≤

16

7
· (2 · D11 +D3

10 +D3
01 +D22

00).

It is sufficient to prove the inequality

D2
10 +D4

01 +D32
00 ≤

11

7
· D11 +

2

7
· D3

10 +
9

7
· D3

01.

If |V (GR)| = 2, then D2
10 = D32

00 = 0 and we are done. Otherwise by Lemma 1 we have
2 · D3

01 ≥ D4
01 and D3

01 ≥ D32
00, therefore

D2
10 +

6

7
· D4

01 ≤
11

7
· D11 +

2

7
· D3

10.

This completes the proof.



In the rest of the chapter we assume that deg(x3) = 2 and denote the face f4 by b2c1c2.

Lemma 5. If deg(x4) = 3, then G is not critical.

Proof. Let GL = G[f4; f5]. and f ′

3 be the face adjacent to f4, other than f3 and f5. We have two
cases depending on the location of f ′

3.
Case 1. f ′

3 contains the edge b2c2. We consider the (GL, GR, c1c2)-partition of G.
Subcase 1. deg(x′3) = 1. Let G3 = G \ {a1, a2, a3}. Consider the (G′

L
, GR, c1c2)-partition of

G3, where G′

L
= GL \ {a1, a2, a3}. We have

i(G) = 16 · I00 + 7 · I01 + 10 · I10 > 3 · (5 · I00 + 2 · I01 + 2 · I10) = 3 · i(G3);

∂4(G) = 4 · D11 + (2 · D3
10 +D2

10) + (3 · D3
01 +D2

01) + (2 · D22
00 +D11

00);

∂4(G3) = 2 · D11 +D3
10 +D3

01 +D22
00 .

Clearly, ∂4(G) ≤ 3 · ∂4(G3) < 3 · i(G3) ≤ i(G), as required.
Subcase 2. deg(x′3) = 3. By the previous lemma, f ′

3 is adjacent to some end faces f ′

2 and f ′′

2 .
We have

i(G) = 39 · I00 + 14 · I01 + 25 · I10 ≥ 26 · (I00 + I01 + I10) = 26 · i(GR);

∂4(G) = 7 · D11 + (3 · D4
10 +D3

10) + (4 · D4
01 +D3

01) + (2 · D12
00 +D01

00).

By Lemma 1, we have ∂4(G) ≤ 19 · D11 < 26 · ∂4(GR).
Subcase 3. deg(x′3) = 2 and deg(b2) = 6. In this case f ′

3 is adjacent to a face f ′

2 which is
adjacent to end faces f ′

1 and f ′′

1 . Therefore,

i(G) = 59 · I00 + 14 · I01 + 35 · I10 ≥ 36 · (I00 + I01 + I10) = 36 · i(GR);

∂4(G) = 11 · D11 + (6 · D3
01 + 2 · D2

01) + (3 · D4
10 +D3

10) + 2 · (D24
00 +D13

00)

≤ 26 · D11 = 26 · ∂4(GR).

Subcase 4. deg(x′3) = 2 and deg(b2) = 8. Again, f ′

3 is adjacent to a face f ′

2 which is adjacent
to end faces f ′

1 and f ′′

1 . Therefore,

i(G) = 53 · I00 + 35 · I01 + 35 · I10 ≥ 41 · (I00 + I01 + I10) = 41 · i(GR);

∂4(G) ≤ 4 · ∂4(G, b+
2
, c+

2
) = 4 · 10 · D11 ≤ 40 · i(GR).

Case 2. The face f ′

3 contains the edge c1c2. Consider the (GL, GR, b2c2)-partition of G.
Subcase 1. deg(x′3) = 1. Let G3 = G \ {a1, a2, a3}. Consider the (G′

L
, GR, b2c2)-partition of

G3, where G′

L
= GL \ {a1, a2, a3}. We have

i(G) = 19 · I00 + 7 · I01 + 4 · I10 > 3 · (5 · I00 + 2 · I01 + 2 · I10) = 3 · i(G3);

∂4(G) = 5 · D11 + 3 · D3
10 +D4

01 +D42
00 ≤ 3 · (2 · D11 +D3

10 +D3
01 +D22

00) = 3 · ∂4(G3).

By Lemma 1, we have D11 + 3 · D3
01 > D42

00 +D4
01, as required.

Subcase 2. deg(x′3) = 3. By the previous lemma, f ′

3 is adjacent to end faces f ′

2 and f ′′

2 . We
have

i(G) = 45 · I00 + 14 · I01 + 10 · I10 ≥ 23 · (I00 + I01 + I10) = 23 · i(GR);

∂4(G) = 8 · D11 + (3 · D4
10 + 2 · D3

10) + 3 · D4
01 +D43

00 ≤ 17 · D11 < 23 · ∂4(GR).



Subcase 3. deg(x′3) = 2 and deg(c1) = 4. f ′

3 is adjacent to a face f ′

2 which is adjacent to end
faces f ′

1 and f ′′

1 . We have

i(G) = 74 · I00 + 14 · I01 + 14 · I10 ≥ 34 · (I00 + I01 + I10) = 34 · i(GR);

∂4(G) = 13 · D11 + 3 · D4
10 + 3 · D4

01 +D44
00 ≤ 20 · D11 < 34 · ∂4(GR).

Subcase 4. deg(x′3) = 2 and deg(c1) = 6. f ′

3 is adjacent to a face f ′

2 which is adjacent to end
faces f ′

1 and f ′′

1 . We have

i(G) = 59 · I00 + 35 · I01 + 14 · I10 > 36 · (I00 + I01 + I10) = 36 · i(GR);

∂4(G) ≤ 3 · ∂4(G, b+
2
, c+

2
) + ∂4(G, b−

2
, c−

2
) = 3 · 11 · D11 + (2 · D42

00 +D31
00)

By Lemma 1, we have ∂4(G) ≤ 36 · D11 ≤ 36 · ∂4(GR).

Lemma 6. If deg(x3) = deg(x4) = 2 and deg(c1) = 3, then G is not critical.

Proof. If deg(x3) = deg(x4) = 2 and deg(c1) = 3, then f5 contains b2c2. Let GL = G[f3; f4]. For
the (GL, GR, b2c1)-partition of G we have

i(G) = 7 · I00 + 5 · I01 + 2 · I10 > 4 · (I00 + I01 + I10) = 4 · i(GR);

∂4(G) = ∂4(G, b+
2
, c+

1
) + ∂4(G, b−

2
, c+

1
) = 3 · D11 +D4

01 ≤ 4 · D11 ≤ ∂4(GR).

Therefore, G is not critical.

Lemma 7. If deg(x3) = deg(x4) = 2 and deg(x5) = 3, then G is not critical.

Proof. We denote the faces f2, f3, f4 by a2b1b2, b1b2c1, b2c1c2 respectively. By the previous lemma,
deg(c1) ≥ 4 and the face f5 corresponds to the triangle c1c2d1. Let f ′

4 be the face adjacent to f5,
other than f4 and f6. Let GL = G[f5; f6]. There are two possible cases depending on the location
of f ′

4 in G.
Case 1. The face f ′

4 contains the edge c1d1. Let d0 be the third vertex of f ′

4. Consider the
(GL, GR, c2d1)-partition of G.

Subcase 1a. deg(x′4) = 1 and min(degG(c2), degG(d1)) ≥ 5. Consider the graph G6 = G \
{a1, a2, a3, b1, b2, d0} and the (GL ∩ V (G6), GR, c2d1)-partition of G6. We have

i(G) = 23 · I00 + 9 · I01 + 14 · I10 > 10 · (2 · I00 + I01 + I10) = 10 · i(G6).

We now prove that

∂4(G) = 7 · D11 + (4 · D3
10 + 2 · D2

10) + (3 · D3
01 + 3 · D2

01) + (3 · D22
00 +D12

00) ≤

10 · (D11 +D2
10 +D2

01 +D11
00) = 10 · ∂4(G6).

It remains to show that

3 · D11 + 8 · D2
10 + 7 · D2

01 ≥ 4 · D3
10 + 3 · D3

01 + 3 · D22
00 +D12

00 .

Since min(deg(a), deg(c)) ≥ 5, we have 3 · D2
10 ≥ D3

10 and 3 · D2
01 ≥ D3

01 by Lemma 1. Moreover,
min(D2

01,D
2
10) ≥ D22

00. If deg(a) = 5, then D12
00 = 0 and we are done. If deg(a) ≥ 6, then 2·D2

01 ≥ D3
01

and we are done.



Subcase 1b. deg(x′4) = 1 and min(deg(a), deg(c)) = 4. Consider the graph G4 = G \
{a1, a2, a3, b1} and the (GL ∩ V (G4), GR, c2d1)-partition of G4. We have

i(G) = 23 · I00 + 9 · I01 + 14 · I10 ≥
9

2
· (5 · I00 + 2 · I01 + 2 · I10) =

9

2
· i(G4).

We now prove that

∂4(G) = 7 · D11 + (4 · D3
10 + 2 · D2

10) + (3 · D3
01 + 3 · D2

01) + (3 · D22
00 +D11

00) ≤

9

2
· (2 · D11 +D3

10 +D3
01 +D22

00) =
9

2
· ∂4(G4).

It suffices to show that

2 · D11 +
1

2
· D3

10 +
3

2
· D3

01 ≥ 2 · D2
10 + 3 · D2

01.

Since min(deg(a), deg(c)) = 4, we have min(D2
10,D

2
01) = 0, therefore the inequality holds.

Subcase 2. deg(x′4) = 3. The face f ′

4 is adjacent to some faces f ′

3 and f ′′

3 . By the previous
lemmas, both f ′

3 and f ′′

3 are end faces. Therefore,

i(G) = 55 · I00 + 18 · I01 + 35 · I10 ≥ 36 · (I00 + I01 + I10) = 36 · i(GR);

∂4(G) ≤ 2 · ∂4(G, c+
2
, d+

2
) + 2 · ∂4(G, c+

2
, d−

2
) = 2 · (11 · D11 + 4 · D4

10 + 2 · D3
10)

≤ 34 · D11 < 36 · ∂4(GR).

In the remaining subcases we consider the induced subgraph G′ of G with the vertex set (V (G)\
V (GL))∪{b2, c2, d2} and the (G′

L
, GR, c1d1)-partition of G, where G′

L
is an induced subgraph of GL

with the vertex set {b2, c1, c2, d0, d1}.
Subcase 3. deg(x′4) = deg(x′3) = 2. The face f ′

3 is adjacent to some face f ′

2. By Lemma 3 f ′

2

is adjacent to end faces f ′

1 and f ′′

1 . Moreover, by the previous lemmas, the faces f ′

3 and f ′

4 does not
contain any vertices of degree 3.

Subcase 3a. deg(c1) ≥ 6. If deg(c1) ≥ 7, then deg(d0) = 3, a contradiction. Suppose that
deg(c1) = 6.

i(G) = 106 · I00 + 63 · I01 + 63 · I10 > 20 · (5 · I00 + 2 · I01 + 2 · I10) = 20 · i(G′);

∂4(G) ≤ 25 · D11 + (12 · D3
10 + 10 · D2

10) + (12 · D3
01 + 10 · D2

01)

+9 · D22
00 + 3 · D21

00 + 3 · D12
00 + 4 · D11

00

≤ 25 · D11 + 22 · D3
10 + 22 · D3

01 + 19 · D22
00

< 20 · (2 · D11 +D3
10 +D3

01 +D22
00) = 20 · ∂4(G

′).

Subcase 3b. deg(c1) = 5. If degGL
(d1) ≥ 5, then deg(d0) = 3 and we use Lemma 6. Suppose

that degGL
(d1) = 4 and degGL

(d0) = 5. We have

i(G) = 116 · I00 + 45 · I01 + 63 · I10 > 23 · (5 · I00 + 2 · I01 + 2 · I10) = 23 · i(G′);

∂4(G) = 28 · D11 + (8 · D4
10 + 14 · D3

10 + 2 · D2
10) + (12 · D3

01 + 10 · D2
01)

+(6 ·D23
00 + 3 ·D22

00 + 2 ·D13
00 + 1 ·D12

00) ≤

≤ 28 · D11 + 8 · D11 + 16 · D3
10 + 22 · D3

01 + 8 · D11 + 4 · D22
00



≤ 23 · (2 · D11 +D3
10 +D3

01 +D22
00) ≤ 23 · ∂4(G

′).

Subcase 4. deg(x′4) = 2, deg(x′3) = 3. This is possible only if f ′

3 is adjacent to end faces,
otherwise we use Lemma 5.

Subcase 4a. deg(c1) = 7. The face f ′

3 is adjacent to two end faces by Lemmas 3 and 6. We
have

i(G) = 73 · I00 + 45 · I01 + 49 · I10 > 14 · (5 · I00 + 2 · I01 + 2 · I10) = 14 · i(G′);

∂4(G) ≤ 15 · D11 + 15 · D3
10 + 15 · D3

01 + 15 · D22
00

< 14 · (2 · D11 +D3
10 +D3

01 +D22
00) ≤ 14 · ∂4(G

′).

Subcase 4b. deg(c1) = 5, deg(x′4) = 2, deg(x′3) = 2. The face f ′

3 is adjacent to two end faces
by Lemmas 3 and 6. We have

i(G) = 88 · I00 + 18 · I01 + 49 · I10 > 15 · (5 · I00 + 2 · I01 + 2 · I10) = 15 · i(G′);

∂4(G) ≤ 18 · D11 + 6 · D4
10 + (9 · D3

01 + 9 · D2
01) + (3 · D23

00 +D13
00)

< 15 · (2 · D11 +D3
10 +D3

01 +D22
00) ≤ 14 · ∂4(G

′).

Case 2. The face f ′

4 corresponds to the triangle c2d1d2. We consider the (GL, GR, c1d1)-
partition of G.

Subcase 1. deg(x′4) = 1. Consider the graph G4 = G \ {a1, a2, a3, b1} and the (GL ∩
V (G4), GR, c2d1)-partition of G4. We have

i(G) = 25 · I00 + 9 · I01 + 10 · I10 ≥
34

7
· (5 · I00 + 2 · I01 + 2 · I10) =

34

7
· i(G4).

Moreover,
∂4(G) = 7 · D11 + 4 · D3

10 + (2 · D4
01 +D3

01) + (2 · D32
00 +D22

00) ≤

34

7
· (2 · D11 +D3

10 +D3
01 +D22

00) =
34

7
· ∂4(G4).

It suffices to show that
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7
· D11 +

6

7
· D3

10 +
27

7
· D3

01 ≥ 2 · D4
01 + 2 · D32

00.

By Lemma 1, we have D11 > D4
01 and D3

01 > D32
00, thus the inequality holds.

Subcase 2. deg(x′4) = 3. We assume that f ′

4 is adjacent to end faces f ′

3 and f ′′

3 (it was shown
in the previous case that the other configurations are not possible). Therefore,

i(G) = 59 · I00 + 18 · I01 + 25 · I10 ≥ 34 · (I00 + I01 + I10) = 34 · i(GR);

∂4(G) = 12 · D11 + (4 · D4
10 + 3 · D3

10) + (4 · D4
01 + 4 · D4

01) + 2 · D33
00 +D23

00

≤ 30 · D11 < 34 · ∂4(GR).

In the remaining subcases we consider the induced subgraph G′′ of G with the vertex set (V (G)\
V (GL))∪{b2, c2, d2} and the (G′

L
, GR, c1d1)-partition of G, where G′

L
is an induced subgraph of GL

with the vertex set {b2, c2, d2, c1, d1}.
Subcase 3. deg(x′4) = deg(x′3) = 2. As in the previous case, f ′

3 is adjacent to some face f ′

2

which is adjacent to end faces f ′

1 and f ′′

1 . Again, we assume that the faces f ′

3 and f ′

4 does not
contain vertices of degree 3.



Subcase 3a. deg(c2) ≥ 5. If deg(c2) = 7, then deg(d2) = 3, a contradiction. Thus we assume
that deg(c2) = 5 and d2 belongs to f ′

2 and f ′

3. Therefore,

i(G) = 116 · I00 + 63 · I01 + 45 · I10 ≥ 23 · (5 · I00 + 2 · I01 + 2 · I10) = 20 · i(G′′);

∂4(G) ≤ 24 · D11 + 12 · (D4
10 +D3

10) + 8 · (D4
01 +D3

01) + 12 · D32
00

< 20 · (2 · D11 +D3
10 +D3

01 +D22
00) = 20 · ∂4(G

′′).

Subcase 3b. deg(c2) = 4. If deg(d2) = 3, the we apply Lemma. We assume that deg(d2) = 5.
Therefore,

i(G) = 130 · I00 + 45 · I01 + 45 · I10 > 24 · (5 · I00 + 2 · I01 + 2 · I10) = 24 · i(G′′);

∂4(G) = 25 · D11 + (8 · D4
10 + 4 · D3

10) + (8 · D4
01 + 4 · D3

01) + (4 · D22
00 + 2 · D32

00 + 2 · D23
00 +D22

00);

∂4(G) ≤ 24 · (2 · D11 +D3
10 +D3

01 +D22
00) = 24 · ∂4(G

′′).

Subcase 4. deg(x′4) = 2, deg(x′3) = 3. As in the previous case, it is possible only if f ′

3 is
adjacent to two end faces.

Subcase 4a. deg(c2) = 6. We have

i(G) = 77 · I00 + 45 · I01 + 35 · I10 > 15 · (5 · I00 + 2 · I01 + 2 · I10) = 15 · i(G′′);

∂4(G) ≤ 16 · D11 + (8 · D3
10 + 3 · D2

10) + (6 · D4
01 + 6 · D3

01 +D2
01) + (4 · D32

00 + 2 · D22
00 + 2 · D21

00 +D11
00)

≤ 16 · D11 + 11 · D3
10 + 13 · D4

01 + 9 · D32
00 ≤ 15 · (2 · D11 +D3

10 +D3
01 +D22

00) ≤ 15 · ∂4(G
′′).

Subcase 4b. deg(c2) = 4. We have

i(G) = 98 · I00 + 18 · I01 + 35 · I10 > 16 · (5 · I00 + 2 · I01 + 2 · I10) = 16 · i(G′′);

∂4(G) ≤ 18 · D11 + 4 · D4
10 + (6 · D4

01 + 3 · D3
01) + 2 · (D34

00 +D24
00)

≤ 18 · D11 + 4 · D4
10 + 9 · D4

01 + 3 · D34
00

< 16 · (2 · D11 +D3
10 +D3

01 +D22
00) ≤ 16 · ∂4(G

′′).

Lemma 8. If deg(x3) = deg(x4) = deg(x5) = deg(x6) = 2, then G is not critical.

Proof. We denote the faces f2, f3, f4 by a2b1b2, b1b2c1, b2c1c2 respectively. By Lemma 6, we have
deg(c1) ≥ 4. There are three possible cases.

Case 1. deg(c1) ≥ 5. In this case deg(c2) = 3, the face f5 contains c1c2 and c1 belongs to f6.
Let GL = G[f4; f5]. Consider the (GL, GR, c1c2)-partition of G.

i(G) = 9 · I00 + 7 · I01 + 5 · I10 ≥ 7 · (I00 + I01 + I10) = 7 · i(GR);

∂4(G) = 4 · D11 + (2 · D3
01 +D2

01) ≤ 7 · D11 ≤ 7 · ∂4(GR).

In the remaining cases we denote the faces f5 and f6 by c1c2d1 and c2d1d2 respectively.
Case 2. deg(c2) ≥ 5. In this case deg(d1) = 3. Let GL = G[f5; f6]. Consider the (GL, GR, c2d1)-

partition of G.

i(G) = 14 · I00 + 9 · I01 + 7 · I10 > 10 · (I00 + I01 + I10) = 10 · i(GR);



∂4(G) = ∂4(G, c+
2
, d+

1
) + ∂4(G, c−

2
, d+

1
) = 6 · D11 + 3 · D3

01 +D2
01 ≤ ∂4(GR).

Case 3. deg(c1) = deg(c2) = 4. Let GL = G[f4; f5]. Consider the (GL, GR, c1c2)-partition of G
and the (G′

L
, GR, c1c2)-partition of the graph G3 = G \ {a1, a2, a3}, where G′

L
= GL \ {a1, a2, a3}.

First, we show that I00 ≤ I01+I10. Denote by G′

R
the induced subgraph of GR with the vertex

set V (GR) \ {c1, c2}. Clearly,

I00 = i(G′

R), I10 = i(G′

R, d
−

1
), I01 = i(G′

R, d
−

1
, d−

2
).

Therefore, I10 > I01 and I00 − I10 = i(G′

R
, d+

1
) ≤ I01. We have

i(G) = 9 · I00 + 7 · I01 + 5 · I10 ≥
10

3
· (3 · I00 + 2 · I01 + 1 · I10) =

10

3
· i(G1).

Moreover,
∂4(G) = 4 · D11 + 3 · D2

10 + 2 ·D3
01, ∂4(G

′) = D11 +D2
10 +D3

01.

It remains to show that ∂4(G) ≤ 10

3
· ∂4(G

′) or D11 ≤ 2 · D3
01. Indeed, D11 − D3

01 equals to
the number of 4-DS of GR which contain c1 and c2 and does not contain d1 and D3

01 equals to the
number of 4-DS which contain c1, c2 and d1. For every 4-DS D of GR such that d1 /∈ D, the set
D ∪ {d1} is also a 4-DS of GR, thus the inequality holds.

Lemma 9. If deg(x3) = deg(x4) = deg(x5) = 2 and deg(x6) = 3, then G is not critical.

Proof. Denote the faces f5 and f6 by c1c2d1 and c2d1d2 respectively. Let f ′

5 be the face adjacent
to f6 other than f5 and f7. By Lemma 8, deg(c1) = 4 and deg(c2) ≥ 5. Let GL = G[f4; f5]. We
assume that GL contains at most one face of degree 3 except f2, which is adjacent to two end faces.
By previous lemmas, GL contains no vertices of degree 3. There are two possible cases depending
on the location of f ′

5 in G.
Case 1. f ′

5 contains the edge c2d2. Denote by c3 the third vertex of f ′

5. In each of the following
subcases we consider the partition (GL, GR, d1d2) of the graph G and the partition (G′

L
, GR, d1d2)

of the graph G′, where G′ is a spanning subgraph of G with the vertex set (V (G) \ V (GL)) ∪
{c1, c2, c3, d1, d2}. Clearly,

∂4(G
′) = 2 · D11 +D3

10 +D3
01 +D22

00 .

It is not hard to check using Lemma 1, that in all subcases below we have i(G) > ∂4(G), therefore
G is not critical.

Subcase 1. deg(x′5) = 1.

i(G) = 35 · I00 + 14 · I01 + 18 · I10 > 7 · (5 · I00 + 2 · I01 + 2 · I10) = 7 · i(G′);

∂4(G) = 10 · D11 + (6 · D3
10 + 3 · D2

10) + (4 · D3
01 + 4 · D2

01) + 4 · D22
00.

Subcase 2. deg(x′5) = 3 and f ′

5 is adjacent to some faces f ′

4 and f ′′

4 . By the previous lemmas,
both f ′

4 and f ′′

4 are end faces. Therefore,

i(G) = 70 · I00 + 28 · I01 + 45 · I10 > 14 · (5 · I00 + 2 · I01 + 2 · I10) = 7 · i(G′);

∂4(G) = 22 · D11 + (6 · D4
10 + 4 · D3

10) + (8 · D3
01 + 4 · D2

01) + (4 · D23
00 + 4 · D12

00).

Subcase 3. deg(x′5) = 2 and f ′

4 is adjacent to end faces f ′

3 and f ′′

3 . Two configurations are
possible:



Subcase 3a. deg(c2) = 7 and c2 belong to f ′

4.

i(G) = 98 · I00 + 70 · I01 + 63 · I10 > 19 · (5 · I00 + 2 · I01 + 2 · I10) = 19 · i(G′);

∂4(G) ≤ 22 · (D11 +D3
10 +D3

01 +D22
00) ≤ 19 · (2 · D11 +D3

10 +D3
01 +D22

00).

Subcase 3b. deg(c2) = 5 and c2 does not belong to f ′

4.

i(G) = 98 · I00 + 28 · I01 + 63 · I10 > 18 · (5 · I00 + 2 · I01 + 2 · I10) = 7 · i(G′);

∂4(G) = 26 · D11 + 10 · D4
10 + (12 · D3

01 + 8 · D2
01) + 4 · D24

00 ;

Subcase 4. deg(x′5) = deg(x′4) = 2 and f ′

3 is adjacent to end faces f ′

2 and f ′′

2 . Since GL has no
vertices of degree 3 in G, only two configurations are possible:

Subcase 4a. deg(c2) = 6.

i(G) = 161 · I00 + 98 · I01 + 81 · I10 > 32 · (5 · I00 + 2 · I01 + 2 · I10) = 32 · i(G′);

∂4(G) ≤ 36 · (D11 +D3
10 +D3

01 +D22
00) ≤ 36 · (2 · D11 +D3

10 +D3
01 +D22

00).

Subcase 4b. deg(c2) = 5.

i(G) = 175 · I00 + 70 · I01 + 81 · I10 > 35 · (5 · I00 + 2 · I01 + 2 · I10) = 35 · i(G′);

∂4(G) = 39 · D11 + (12 · D4
10 + 14 · D3

10) + (16 · D3
01 + 16 · D2

01) + 8 · D33
00 + 4 · D23

00;

∂4(G
′) = 2 · D11 +D3

10 +D3
01 +D22

00 .

Subcase 5. deg(x′5) = deg(x′4) = deg(x′3) = 2 and f ′

2 is adjacent to end faces f ′

1 and f ′′

1 . Again,
since GL has no vertices of degree 3 in G, only two configurations are possible:

Subcase 5a. deg(c2) = 6.

i(G) = 245 · I00 + 126 · I01 + 126 · I10 > 49 · (5 · I00 + 2 · I01 + 2 · I10) = 49 · i(G′);

∂4(G) ≤ 52 · (D11 +D3
10 +D3

01 +D22
00) ≤ 52 · (2 · D11 +D3

10 +D3
01 +D22

00).

Subcase 5b. deg(c2) = 5.

i(G) = 259 · I00 + 98 · I01 + 126 · I10 > 51 · (5 · I00 + 2 · I01 + 2 · I10) = 52 · i(G′);

∂4(G) = 52 · D11 + (18 · D4
10 + 18 · D3

10 + 3 · D2
10) + (24 · D3

01 + 16 · D2
01) + 12 · D23

00 + 4 · D22
00.

Case 2. f ′

5 contains the edge d1d2. Denote by d3 the third vertex of f ′

5. In each of the following
subcases we consider the partition (GL, GR, d1d2) of the graph G and the partition (G′

L
, GR, d1d2)

of the graph G′, where G′ is a spanning subgraph of G with the vertex set (V (G) \ V (GL)) ∪
{c1, c2, d1, d2, d3}. Clearly, we have

∂4(G
′) = 2 · D11 +D3

10 +D3
01 +D22

00 .

It is not hard to check using Lemma 1, that in all subcases below we have i(G) > ∂4(G).
Subcase 1. deg(x′5) = 1.

i(G) = 37 · I00 + 14 · I01 + 14 · I10 > 7 · (5 · I00 + 2 · I01 + 2 · I10) = 7 · i(G′);

∂4(G) = 10 · D11 + 6 · D3
10 + (3 · D4

01 +D3
01) + (3 · D32

00 +D22
00).



Subcase 2. deg(x′5) = 3, f ′

5 is adjacent to end faces f ′

4 and f ′′

4 .

i(G) = 70 · I00 + 28 · I01 + 45 · I10 > 14 · (5 · I00 + 2 · I01 + 2 · I10) = 7 · i(G′);

∂4(G) = 16 · D11 + (6 · D4
10 + 4 · D3

10) + (6 · D4
01 + 5 · D3

01 +D2
01) + (3 · D23

00 +D12
00).

Subcase 3. deg(x′5) = 2 and f ′

4 is adjacent to end faces f ′

3 and f ′′

3 . Two configurations are
possible:

Subcase 3a. deg(d1) = 6, d1 belongs to f ′

4.

i(G) = 116 · I00 + 70 · I01 + 49 · I10 > 23 · (5 · I00 + 2 · I01 + 2 · I10) = 23 · i(G′);

∂4(G) = 22 · D11 + 12 · D3
10 + 4 · D3

10 + (9 · D4
01 + 6 · D3

01 +D2
01) + 4 · (6 · D32

00 + 2 · D22
00).

Subcase 3b. deg(d1) = 4, d1 does not belong to f ′

4.

i(G) = 98 · I00 + 28 · I01 + 49 · I10 > 18 · (5 · I00 + 2 · I01 + 2 · I10) = 7 · i(G′);

∂4(G) = 26 · D11 + 6 · D4
10 + (3 · D3

01 + 2 · D2
01) + 3 · D34

00 + 2 · D24
00.

Subcase 4. deg(x′5) = deg(x′4) = 2 and f ′

3 is adjacent to two end faces f ′

2 and f ′′

2 .
Subcase 4a. deg(d1) = 5.

i(G) = 171 · I00 + 98 · I01 + 63 · I10 > 33 · (5 · I00 + 2 · I01 + 2 · I10) = 25 · i(G′);

∂4(G) = 36 · D11 + (18 · D3
10 + 14 · D2

10) + (12 · D4
01 + 10 · D3

01 + 2 · D2
01) + 9 · D32

00 + 3 · D22
00 .

Subcase 4b. deg(d1) = 4.

i(G) = 189 · I00 + 70 · I01 + 63 · I10 > 35 · (5 · I00 + 2 · I01 + 2 · I10) = 35 · i(G′);

∂4(G) = 36 · D11 + (12 · D4
10 + 6 · D3

10) + (12 · D4
01 + 4 · D3

01) + 12 · D33
00.

Subcase 5. deg(x′5) = deg(x′4) = deg(x′3) = 2 and x′2 is adjacent to two end faces x′1 and x′′1 .
Subcase 5a. deg(d1) = 5.

i(G) = 259 · I00 + 126 · I01 + 98 · I10 > 51 · (5 · I00 + 2 · I01 + 2 · I10) = 51 · i(G′);

∂4(G) = 52 · D11 + (24 · D3
10 + 16 · D2

10) + (18 · D4
01 + 5 · D3

01 + 4 · D2
01) + 12 · D32

00 + 4 · D22
00 .

Subcase 5b. deg(d1) = 4.

i(G) = 277 · I00 + 98 · I01 + 98 · I10 > 52 · (5 · I00 + 2 · I01 + 2 · I10) = 52 · i(G′);

∂4(G) = 52 · D11 + (18 · D4
10 + 6 · D3

10) + (18 · D4
01 + 6 · D3

01) + 16 · D33
00.

Lemmas 2–9 imply the main result of this paper.

Theorem 1. For every outerplanar graph G we have i(G) > ∂4(G).



4 Concluding remarks

It seems that the following generalization of Theorem 1 is true.

Conjecture 1. For every graph G with the average vertex degree at most k ≥ 1 the inequality

i(G) ≥ ∂k(G) holds. Moreover, equality occurs if and only if G is k-regular.

Although we are unable to prove this statement even for k = 4, it is easy to obtain a similar
result for the class of trees.

Theorem 2. For every tree T we have i(T ) > ∂2(T ).

Proof. Clearly, for every tree with at most 3 vertices the inequality holds. Let T be a n-vertex tree
such that i(T ) ≤ ∂2(T ) and for every tree T ′ such that |V (T ′)| < |V (T )| we have i(T ′) > ∂2(T

′).
Consider a diametral path X = x1x2x3 . . . xk in T . If k ≤ 3 then ∂2(T ) ≤ 2 and i(G) ≥ 5, thus
we assume that k ≥ 4. Let T2 (resp. T3) be the maximal by inclusion subtree of T such that
x2, x3 ∈ V (T2) and deg(x2) = 1 (resp. x3, x4 ∈ V (T3) and deg(x3) = 1). Since all neighbors of x2,
except possibly x3, belong to every 2-DS of T , we have

∂2(T ) = ∂2(T, x
+
2
) + ∂2(T, x

−

2
) ≤ ∂2(T2) + ∂2(T3).

On the other hand,
i(T ) = i(T, x−

1
) + i(T, x+

1
) ≥ i(T2) + i(T3).

Since i(T2) > ∂2(T2) and i(T3) > ∂2(T3), we have i(T ) > ∂2(T ).
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