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Abstract

We show that the number of independent sets in every outerplanar graph is greater
than the number of its 4-dominating sets.
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1 Introduction

Throughout this paper we consider only simple and finite graphs. Let G be a graph with a vertex
set V(G) and an edge set E(G). An independent set is a pairwise nonadjacent subset of V(G). For
k > 1, a k-dominating set Dy, is a subset of V(G) such that every vertex not from Dy, is adjacent to
at least k vertices from Dj. We use the abbriveations ‘IS’ and ‘k-DS’ for the terms ‘independent set’
and ‘k-dominating set’ respectively. Let i(G) (resp. 0x(G)) be the number of all IS (resp. k-DS) of
a graph G. Denote by D (G) the family of all k-DS of a graph G.

A planar graph is called outerplanar if it has an embedding in the plane such that all vertices
belong to the boundary of its outer face. An outerplanar graph G is called mazimal outerplanar
(or MOP) if G 4 uv is not outerplanar for any two non-adjacent vertices u,v € V(G). It is well-
known that every inner face of a MOP is a triangle and every MOP with at least 3 vertices has at
least 2 vertices of degree 2. Denote by OP and MOP the classes of all outerplanar and maximal
outerplanar graphs, respectively.

The definition of k-dominating set implies that for every graph G, any two non-adjacent vertices
u,v € V(@) and any integer k > 1 we have 0x(G) < 0x(G + uwv). Therefore, a complete graph K,
has the maximum number of k-independent sets among all n-vertex graphs. Trees with extremal
numbers of k-dominating sets were described in [I] for £ =1 and in [2] for £ > 2. In [3] and [4] for
every k > 2 new upper bounds for the number of k-dominating independent sets in n-vertex graphs
were presented.
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The empty graph nK; has the maximum possible number of independent sets among all n-vertex
graphs. Moon and Moser [5] described n-vertex graphs with maximal possible number of mazimal
independent (i.e. independent 1-dominating) sets. In [6] for all n > 5 the graphs H,, € MOP and
H] € MOP with the maximum and minimum possible number of IS among all n-vertex MOPs
were described.

Figure 1: Graphs H{ and Hy

The main result of this paper is the following fact:
Theorem 1. For every outerplanar graph G we have i(G) > 04(G).

The rest of the paper is organized as follows. In Section 2 we introduce some graph terminology
and present a maximal outerplanar graph partition. In Section 3 we prove Theorem 1. In Section 4
we consider a possible generalization of Theorem [Iland obtain a similar result for the class of trees.

2 Preliminaries

2.1 Basic terminology

A tree is a connected acyclic graph and a leaf is a vertex of degree one in a tree. A support vertex
in a tree is a vertex which is adjacent to at least one leaf. A diameter of a connected graph is the
maximum possible distance between its vertices. A simple path is called diametral, if its length is
equal to the diameter of a graph. Clearly, the ends of any diametral path in a tree are leaves.

For a graph G € OP we consider a weak dual graph T(G), such that the vertices of T(G)
correspond to the inner faces of G and two vertices are adjacent if and only if the corresponding
faces have a common edge. It is well-known that if G € MOP, then T'(G) is a subcubic tree.

Let G be a graph and U C V(G) be its vertex subset. Let G \ U be an induced subgraph of G
with the set of vertices V/(G) \ U.

An inner face of a MOP is called an end face if it has a vertex of degree 2. Note that a face f
of a MOP G is an end face if and only if the corresponding vertex in T'(G) has degree at most one.
We say that a graph G contains a face f, if all vertices and edges from f belong to G.

Suppose that f and f’ are two adjacent inner faces of G with a common edge uv. Denote by
G|f; f'] the maximal by inclusion subgraph of G such that it contains f, does not contain f’ and
uv is its outer edge. It is easy to see that if G € MOP, then G[f; f'] € MOP.

2.2 Independent and 4-dominating sets

Let G be a graph and u,v € V(G). Let i(G,u™") (resp. i(G,u~)) be the number of IS of G which
contain (resp. do not contain) u. We denote by i(G,u™,v™) the number of IS of G such that u,v € T



and denote the values i(G,ut,v™), i(G,u”,v") and ¢(G,u",v”) in the similar way. Clearly, for
any vertices u,v € V(G) we have

i(Q) = i(G,u™,vT) +4i(Gut,v7) +i(Gou”,vT) +i(GouT 7).

Moreover, i(G,u",v") = 0, if and only if uv € E(G).

Let 04(G,u™) (resp. 04(G,u”)) be the number of 4-DS in G which contain (resp. do not
contain) u. We denote the values 04(G,u™,v"), 04(G,u™,v7), 04(G,u,v") and 94 (G,u™,v™) in
the similar way. Again, for any vertices u,v € V(G) we have

04(G) = 04(G,u™,vT) + 04(G,u™,v7) + 04(Gyu™,vT) + 04(Gyu™,v7).

Note that 94(G,ut,vt) > 0 for any graph G. It is easy to see that 94(G,u™,v") > 0, if and
only if deg(u) > 4. Moreover, 94(G,u™,v~) > 0, if and only if either min(deg(u), deg(v)) > 5 or
wv ¢ E(G) and min(deg(u),deg(v)) > 4.

2.3 MOP-partition

Consider a graph G € MOP and its edge wv € E(G). Let Gr,Gr € MOP be two maximal by
inclusion subgraphs of G such that E(Gr) N E(Gr) = wv and wv is an outer edge in both Gp,
and GpRr. Clearly, if uv is not an outer edge in GG than both Gy and Gr have at least 3 vertices
(otherwise one of them has 2 vertices and the other coincides with G). Call a triple (G, GRr,uv) a
MOP-partition of G. For the given MOP-partition (G, Ggr,uv) we shall use the notation

IOO = ’L'(GR,’LL_,U_), IOI = i(GR,U_,U+), IlO = i(GR,U+,U_)-

Since i(Gg,u™,v") = 0, we have i(Gr) = Zoo + Zo1 + Z19. Morever, if G has at least 3 vertices,
than Zgy > max(I()l,Ilo).

We now introduce a similar concept for 4-DS. For the given MOP-partition (G, Ggr,uv) of a
graph G let D11 = 04(GRr,u™,v"). Denote by Dgl the number of 4-DS D’ of a graph G \ u such
that v € D" and the vertex u has at least max(0,4 — k) neighbors from D'\ v in G. In other words,
DE, is the number of ‘almost 4-dominating’ sets D’ of G'r with respect to the vertex u. Denote D%,
in the same way as DF;. Finally, let D§, be the number of 4-DS D" of a graph Gg \ {u, v}, such
that in the graph G the vertices u and v have at least max(0,4 — k) and max(0,4 — [) neighbors
from D", respectively.

From the definitions of D’gl, Dfo and D’&l] it follows immediately that for all 1 < k¥’ < k and
1 <1I' <1 we have Df, < DE, D, < D, and D} < DE.. We now prove a few more similar
properties.

Lemma 1. Let G € MOP. For the given MOP-partition (Gr,,Gr,uv) the following holds:
1. For all k,1 > 0 we have D11 > max(D}y, D) and min(D¥y, D) > DEL.
2. If degay, (u) > 2, then 2 - D3, > Dy, and 2 - D3, > Dg,.
3. If deggy, (u) = 3, then 3 - D3, > D§,. Moreover, if degcy, (u) > 4, then 2 - D3, > D§;.

Proof. Statement 1. We show that for all k& > 0 the inequality D11 > Dfo holds. Consider the
function

F: @4(GR\’U) — 534(GR)7

which maps a 4-DS D of G \ v into a 4-DS D U {v} of Gg. Clearly, F is injective, therefore
04(GRr\v) < 94(G), this implies the inequality. The inequalities D11 > D§; and min(D¥,, DE,) > D&
are easy to prove using the same approach.



Statement 2. The inequality degq,, (v) > 2 means that the subgraph G has at least 3 vertices,
thus degq,, (v) > 2. We denote by w the common neighbor of  and v, such that w € V(GR) (since
wv is an outer edge of G € MOP, there is exactly one such vertex). Our goal is to show that
D{, — D}, < D3,. The left hand side equals to the number of 4-DS of the graph G \ v such that
they don’t have vertices from Ng,[u] \ v. The right hand side equals the number of 4-DS of the
same graph which contain at least 1 vertex from the set Ng,[u] \ v, therefore the inequality holds.
It is easy to prove that 2Di1)’0 > Df‘o, using the same approach.

Statement 3. By the definition, DZ, is the number of 4-DS of G \ u with at least two vertices
from the set N, [u] \ v. Therefore, the difference D§; — D2, equals to the number of 4-DS of the
graph Gr \ u, with exactly one vertex from the set Ng,[u]\v. Let Ng,[u]\v = {wi,...ws}, where
s > 2. If s = 2, then the number of 4-DS with both vertices w; and ws is at least half of the number
of 4-DS with one fixed vertex, this yields the inequality D3, — D3, > 2-D2,. If s > 3, then it is easy
to see that the number of 4-DS with exactly one vertex from the set Ng,[u] \ v is less than then
the number of 4-DS with at least two vertices, therefore Dg; — D3, > DZ, as required. O

3 Proof of Theorem 1

We call a graph G € MOP critical, if i(G) < 04(G) and for every outerplanar graph G’ such that
V(G| < |[V(G)| we have i(G") > 94(G"). In this section we show that there are no critical graphs,
therefore Theorem [1 holds. It suffices to consider only maximal outerplanar graphs, since for every
graph Gy € OP there exists a graph G € MOP such that Gy is a spanning subgraph of G and the
inequalities i(Gp) > i(G) and 04(Go) < 04(G) hold.

Therefore, we consider a graph G € MOP and its weak dual graph T(G) (remind that T'(G)
is a subcubic tree). Let x1xo ...z be some diametral path in 7(G). If k& < 3, then there are only
3 possible MOPs up to isomorphism and it is easy to check that they are not critical. Thus we
assume that & > 4.

Lemma 2. If a graph G € MOP has an edge uv such that deg(u) = 2 and deg(v) = 3, then G is
not critical.

Proof. Since G € MOP, the vertices u and v have the unique common neighbor a and the vertices
v and a have the unique common neighbor b, other then u. Let G; = G\ v and G3 = G \ {u,a,v}.
Then
i(G) =i(G,u”) +i(G,ut) =i(G1) +i(G3).
We now show that
04(G) — 04(G1) < 04(G3).

The difference 04(G) — 04(G1) equals to the number of 4-DS D of the graph G such that D\ u
is not a 4-DS for the graph G;. Since v belongs to every 4-DS in both G and (7, this is possible if
and only if a ¢ D and exactly two vertices from the set N(a) \ {u,v} belong to D. Let D)(G1) be
the family of 4-DS D’ of G such that D'\ u is a 4-DS of G;. Consider the function

F: (94(G) \ D4(G1)) — D4(G3),

such that F(D) = (D U {b}) \ {u,v}. Tt is easy to see that F is injective, because if D', D" €
D4(G) \ D)(G1) are two distinct 4-DS of D4(G), then the sets D'\ {u,v,b} and D"\ {u,v,b} are
also distinct. Therefore,

04(G) < 04(G1) + 04(G3) < i(Gr) +i(G3) = i(G)

and G is not critical. O



Lemma [2] implies that every support vertex of T(G) has degree 3. In partucular, deg(xs) = 3
and f is adjacent to some end faces f; and f]. In the rest of the chapter we denote the faces f,
f1, f2 and f3 by ajasgb1, azasba, bibsas and bibacy respectively.

Lemma 3. If deg(z2) = deg(x3) = deg(xhy) = 3, then G is not critical.

Proof. Suppose that bacy is the common edge of the faces f3 and fy. Let G, = G[fs; fs]. Consider
the (G, GR, bacy)-partition of G. Since G is critical, we have i(Gr) > 04(GR). Our goal is to find
a constant ¢ > 0 such that i(G) > c¢-i(Ggr) and 04(G) < ¢ - 04(Gr). It is easy to check that the
following holds:

’L(G) = Z(GL) Too + Z(GL,CI ) To1 + Z(GL,b ) Ti0=29 - Zoyo + 10 - Zy1 + 10 - 9.

Since Zgp > max(Zo1,Z10), we have

Z(G) > 16 - (I()o + Zo1 +Ilo) =16 Z(GR)

Moreover,
04(GQ) = 04(G, b+, Cii_) + 04(G, b+, Cl_) + 04(G, by, Cii_) + 04(G, by, Cl_)
=5-Di +(2- Dy + Dio) + (2- Dy + Diyy) + (Doo + Do)
By Lemmal[ll we have 04(G) < 13- D11 < 16 - 94(GR). Therefore, G is not critical. O

Lemma 4. If deg(xs3) = 3 and f3 is adjacent to some end face f5, then G is not critical.

Proof. Denote the face fy by c1baco and let G, = G[fs3; fa]. Consider the (Gr, Gg, bacy)-partition of
graph G and the (G, Gg, bac1)-partition of graph Go = {a1, a3}, where G}, = G\ {a1,a3}. Again,
our goal is to find a constant ¢ > 0 such that i(G) > ¢-i(G2) and 04(G) < ¢ - 04(G2). We have

Z(G) = Z(GL) - Too + Z(GL,Cl ) -Tor + Z(GL, b+) Tio=12-Zogo + 5 - Zo1 + 4 - Zyp;

Z(Gg) = Z(G/L) - Too + Z( chl ) -To1 + Z(GL,b+) Tio=5"Zoo+ 2 Loy + 2 - T1p.

Since Zyy > max(Zp1,Z10), we have i(G) > 7 6. §(Gy). Moreover,
04(G) =3-Du + (2 DYy + Diy) + (Dg; + Diy) + Dig;

84(G2) =2-D11 + ID%O + Dgl + ’Dgg
‘We now show that
16
3-Di1 4 (2- Dy + Diy) + (Dgy + Diyy) + Dy < - (2- D1 + Diy + D§y + Dp)-

It is sufficient to prove the inequality

11 9
D10+D01+D00_ 7 D11+7 D10+7

If [V(Ggr)| = 2, then D, = D32 = 0 and we are done. Otherwise by Lemma 1 we have
2-D3, > D4, and D3, > D32, therefore
6 11

DlO + 7 Dél 7 Dll + 7 DlO

3
Dol.

This completes the proof. [l



In the rest of the chapter we assume that deg(x3) = 2 and denote the face f4 by bacycs.
Lemma 5. If deg(x4) = 3, then G is not critical.

Proof. Let G, = G[fs; f5]. and f3 be the face adjacent to f4, other than f3 and f5. We have two
cases depending on the location of fj5.

Case 1. f4 contains the edge baca. We consider the (G, G, cica)-partition of G.

Subcase 1. deg(z}) = 1. Let G3 = G \ {a1,ag,a3}. Consider the (G, GR, c1c2)-partition of
G3, where G = G, \ {a1,a2,a3}. We have

i(G)=16 -Zoo+7-Zo1 +10-Z19 >3- (5-Zoo + 2 - Zp1 + 2 - Z10) = 3 - i(G3);

81(G) =4-Di1 + (2- Dy + D3y) + (3- Diy + Dgy) + (2 Do + Doo);
84(G3) =2-D11 + ID%O + D31 + ’Dgg

Clearly, 04(G) < 3-04(G3) < 3-i(G3) <i(G), as required.
Subcase 2. deg(x%) = 3. By the previous lemma, f} is adjacent to some end faces f5 and f7.
We have
i(G) =39 -Too+ 14 - Loy + 25 - Z19 > 26 - (Zoo + Zo1 + Z10) = 26 - i(GR);

(G) =7-D11 + (3- Dy + Diy) + (4- Dy, + Diyy) + (2 - Dy + DY)

By Lemma 1, we have 04(G) < 19- D11 < 26 - 04(GR).
Subcase 3. deg(zs) = 2 and deg(bs) = 6. In this case f} is adjacent to a face f5 which is
adjacent to end faces f] and f]. Therefore,

Z(G) =59 'IOO + 14 -101 + 35 'Il(] > 36 - (I(]o —|—IOl +I10) =36 - ’i(GR);

O4(G) =11-Dy1 + (6D, +2-Dgy) + (3-Diy +Dy) + 2 - (Dgs + D)
<26-Diy = 26-84(Gr).

Subcase 4. deg(x%) = 2 and deg(by) = 8. Again, f} is adjacent to a face f} which is adjacent
to end faces f] and f{'. Therefore,

i(G) =53 -Too+35-Zo1 + 35 - Z19 > 41 - (Zoo + Zo1 + Z1o) = 41 - i(GR);

84(G) S 4. 64(G, b;’,c;) =4-10- DH S 40 - Z(GR)

Case 2. The face f} contains the edge cicy. Consider the (Gr,, G, bacs)-partition of G.
Subcase 1. deg(z}) = 1. Let G3 = G \ {a1,a2,a3}. Consider the (G7,GRg,bacy)-partition of
G3, where G = G, \ {a1,a2,a3}. We have

Z(G) 219’1004-7-1014-4'110>3'(5-Io()+2-101+2'110):3-i(G3);

04(G) =5-Dyy +3"D%0 +D§l +D§§ <3-(2-Dn _|_’Di1)>0 —l—’Dgl +’DS§) = 3 04(G3).

By Lemmal[ll we have Dy1 + 3 - D3, > D§2 + Dy, as required.
Subcase 2. deg(z%) = 3. By the previous lemma, f} is adjacent to end faces f5 and f5. We
have

Z(G) =45-Too+14 - Ty + 10 - Z19 > 23 - (Io() + Zo1 —l—Ilo) =23 i(GR);
04(G) =8 -Dy1 + (3-Dfy+2-D3)) +3- Dy + D < 17- D1y < 23 - 94(GR).



Subcase 3. deg(z%) = 2 and deg(c1) = 4. f4 is adjacent to a face f which is adjacent to end
faces f{ and f;. We have

Z(G) =74 -Too+14 - Ty + 14 - T19 > 34 - (Io() + Zo1 —l—Ilo) =34- i(GR);

04(G) =13-Dy; +3-Diy+3- Dy + Dgg < 20-Dyy < 34-94(Gr).

Subcase 4. deg(z%) = 2 and deg(c;) = 6. f4 is adjacent to a face f5 which is adjacent to end
faces f{ and f]. We have

i(G) =59 -Too+35-Zo1 + 14 - T1g > 36 - (Zoo + Zo1 + Z1o) = 36 - i(GR);
01(G) < 3-04(G, b5, cF) + 04(G, by ,cy) =3-11-Dyy + (2- Dga + D)
By Lemma 1, we have 04(G) < 36 - D11 < 36 - 04(GRr). O
Lemma 6. If deg(z3) = deg(x4) = 2 and deg(c1) = 3, then G is not critical.

Proof. 1f deg(x3) = deg(x4) = 2 and deg(c1) = 3, then f5 contains bocy. Let G = G|[fs; fs]. For
the (G, GR, bacy)-partition of G we have

i(G) =T7-Zoo+5Zor +2-T1o > 4 (Zoo + Zo1 + Z10) = 4 - i(GR);
64(G) = 84(G, b;_, Cii_) + 84(G, b2_7 Cii_) =3- Du + ,Dél S 4. Dn S 64(GR)
Therefore, G is not critical. O
Lemma 7. If deg(z3) = deg(x4) = 2 and deg(xs) = 3, then G is not critical.

Proof. We denote the faces fo, f3, f4 by asbibs, bibacy, bacicy respectively. By the previous lemma,
deg(c1) > 4 and the face f5 corresponds to the triangle cicod;. Let f) be the face adjacent to fs,
other than f; and fs. Let G = G[f5; f¢]. There are two possible cases depending on the location
of f} in G.

Case 1. The face f; contains the edge ¢1d;. Let dy be the third vertex of fj. Consider the
(Gr,GR, cady)-partition of G.

Subcase la. deg(z)) = 1 and min(degg(c2),dega(dr)) > 5. Consider the graph Gg = G\
{a1,a2,a3,b1,be,dp} and the (G, NV (Gs), Gr, cady)-partition of Gg. We have

i(G)=23-Zoo+9-Zo1 +14-Z19p > 10 - (2 - Zpo + Zo1 + Z10) = 10 - i(Gé).
We now prove that
04(G) =7-Di1 + (4-D}y +2-D%) + (3D +3-D3) + (3- D22 + D) <
10 - (D11 + Diy + Djy + Dyg) = 10 - 94(Gs).-
It remains to show that
3-D1y +8-Diy+7-D3, >4-D3,+3-D3, +3-DE +DE.

Since min(deg(a), deg(c)) > 5, we have 3- D3, > D3, and 3-DZ; > D3, by Lemma[ll Moreover,
min(D3,,D?,) > D32. If deg(a) = 5, then D2 = 0 and we are done. If deg(a) > 6, then 2-D3, > D§,
and we are done.



Subcase 1b. deg(z)) = 1 and min(deg(a),deg(c)) = 4. Consider the graph G4 = G\
{a1,a2,a3,b1} and the (G NV (G4), GRr, cady)-partition of G4. We have

. 9 .
i(G)=23-Zoo+9 -Zo1 + 14 -T19 > 5-(5-1004—2-101—1-2-110): -i(Gy).

N ©

We now prove that
O(G) =T D1+ (4 -Djy+2-Diy) + (3-Dgy +3-Dgy) + (3-Dig + Djp) <

9 9

It suffices to show that
1 3
2'7911+§ ’,Dil)’0+§ -Dgy > 2-Diy+ 3D

Since min(deg(a), deg(c)) = 4, we have min(D?%,, D3;) = 0, therefore the inequality holds.
Subcase 2. deg(z)) = 3. The face f} is adjacent to some faces f5 and fi. By the previous
lemmas, both f; and f{ are end faces. Therefore,

i(G) =55-Too + 18 - Zpy + 35 - Z19 > 36 - (Zoo + Zo1 + Z10) = 36 - i(GR);

04(G) <2-04(G,cf,df) +2-04(G,cf,dy) =2-(11-Dyy +4-Diy +2- D)
<34-D11 < 36 84(GR)

In the remaining subcases we consider the induced subgraph G’ of G with the vertex set (V(G)\
V(GL))U{b2, c2,d2} and the (G, Gg, c1dy)-partition of G, where G’ is an induced subgraph of Gy,
with the vertex set {ba,c1, co, do, d; }.

Subcase 3. deg(z))) = deg(zs) = 2. The face f} is adjacent to some face f5. By Lemma 3 f}
is adjacent to end faces f] and f;. Moreover, by the previous lemmas, the faces f and fj does not
contain any vertices of degree 3.

Subcase 3a. deg(ci) > 6. If deg(c1) > 7, then deg(dy) = 3, a contradiction. Suppose that
deg(c1) = 6.

Z(G) =106 - Zpg + 63 - Zp1 + 63 - Z19 > 20 - (5'1004-2-101 + 2 'I1(]) = 20'i(G/);
04(G) < 25-Dyy + (12- D3y +10 - DY) + (12 - D, + 10 - D)
+9- D35 + 3 - Dgp + 3 - Dyg + 4 - Dy
<25-Dyy +22-Diy+22- D +19-Dg;
<20-(2-D11 + Dy + Diy + D33) =20 - 94(G").

Subcase 3b. deg(c;) = 5. If degg, (d1) > 5, then deg(dp) = 3 and we use Lemma [6l Suppose
that degq, (d1) = 4 and degg, (dy) = 5. We have

Z(G) :116’Ioo+45-101+63'110>23'(5’Ioo+2-101+2'110):23’i(Gl);

04(G) =28 -Dyy + (8- Dy +14- D}, +2-D¥) + (12 - D3, + 10 - D))
+(6- D33 +3- D3 +2-Dis +1-Dig) <
<28-Dy; +8-Dyy + 16D}y +22- D}, +8-Dyy +4- D



<23-(2-Du + Diy + Dy + Dgp) < 23-9u(G).

Subcase 4. deg(z)y) = 2, deg(xs) = 3. This is possible only if f} is adjacent to end faces,
otherwise we use Lemma [5l
Subcase 4a. deg(c;) = 7. The face f} is adjacent to two end faces by Lemmas Bl and [(l We
have
Z(G) =T73-Too +45-Zo1 + 49 - T19 > 14'(5 oo+ 2 Iyt +2-Ilo) = 14'i(G,);
04(G) <15-Dyy +15- D3y +15- D3, + 15 - D32
<14-(2-Dy1 + D3y + D3, +D32) < 14-94(G").
Subcase 4b. deg(c1) = 5, deg(z)y) = 2, deg(x%) = 2. The face f} is adjacent to two end faces
by Lemmas Bl and [0 We have

’L(G) =88 -Zyo + 18 - Zp1 + 49 - T19 > 15'(5'100+2-101+2-110) = 15Z(G,)7

04(G) < 18-D11 +6-Diy+ (9-Djy +9-Dgy) + (3- Dgiy + D)
<15-(2-Dy1 + D3y + D3y +D32) < 14-04(G).
Case 2. The face f; corresponds to the triangle cadidy. We consider the (G, Gr,ci1dr)-
partition of G.

Subcase 1. deg(z)) = 1. Consider the graph G4 = G \ {a1,a2,a3,b1} and the (Gr N
V(Gy4), GR, cody)-partition of G4. We have

. 34 34 .
i(G)=25-Too+9-Zo1 + 10 - Z19 > 7-(5-1004—2-101—1-2-110):7'2(G4).

Moreover,
04(G) =7-Di1+4-Diy+ (2- Dy + Diy) + (2 Doy + Diig) <

34 34
It suffices to show that
19 6 27

By Lemma 1, we have Dy; > D¢, and D3, > Di2, thus the inequality holds.
Subcase 2. deg(z)) = 3. We assume that f is adjacent to end faces f; and f (it was shown
in the previous case that the other configurations are not possible). Therefore,

Z(G) =59 -Too+ 18Ty +25-Z19 > 34 - (Io() + Zo1 —l—Ilo) =34- i(GR);

04(G)=12-Dy1 + (4-Dfy+3-D3y) + (4-Dj, +4-Dgy) +2-Das + D&
<30-D11 < 34 84(GR)

In the remaining subcases we consider the induced subgraph G” of G with the vertex set (V(G)\
V(GL))U{b2,c2,ds} and the (G, GR, c1dy)-partition of G, where G’ is an induced subgraph of G,
with the vertex set {by, co,d2,c1,d;}.

Subcase 3. deg(z)) = deg(zs) = 2. As in the previous case, f5 is adjacent to some face f;
which is adjacent to end faces f{ and f;. Again, we assume that the faces f§ and f; does not
contain vertices of degree 3.



Subcase 3a. deg(ca) > 5. If deg(ca) = 7, then deg(d2) = 3, a contradiction. Thus we assume
that deg(ce) =5 and ds belongs to f} and fi. Therefore,

Z(G) =116 - Zopo + 63 - Zp1 + 45 - T19 > 23-(5’100—1-2'101—1-2'110) :20'i(G//);
04(G) < 24-Dyy +12- (D}y + D3y) + 8- (Do, + D) + 12 - D33
<20-(2-Dy1 + D3y + D3 +D32) =20-04(G").

Subcase 3b. deg(c2) = 4. If deg(d2) = 3, the we apply Lemma. We assume that deg(d2) = 5.
Therefore,

’L(G) =130 -Zpg 4+ 45 - Zp1 + 45 - I1p >24-(5-I()0—|-2'I()1—|-2'110) :24Z(G//),
04(G)=25-Dy1 + (8-Diy+4-D3y) +(8-Dg; +4-D3y) + (4-DE +2-D32+2- D23 + D22);
04(G) < 24-(2-Dyy + D3y + D3, + D32) = 24 - 9,(G").

Subcase 4. deg(z)) = 2, deg(x%) = 3. As in the previous case, it is possible only if f} is
adjacent to two end faces.
Subcase 4a. deg(cz) = 6. We have

Z(G) =T77-Too+45-Zo1 + 35 - Z19 > 15'(5-Ioo+2-101 +2-Ilo) = 15’i(GlI);
04(G) <16 -Dy1 + (8-D3y +3-D?)) 4+ (6-Diy +6-Dgy +DZy) + (4- D2 +2-D22 +2-D} + DY)
<16-Dy +11-D3y +13-Dgy +9-D32 < 15-(2-Dyy + D3y + D3y + D32) < 15- 94(G”).
Subcase 4b. deg(cz) = 4. We have
Z(G) =98 -Zoo + 18- Zop1 +35-Z19 > 16 - (5-Ioo+2-101 —|-2-Il(]) = 16Z(G”)7
04(G) <18 -Dyy +4-Diy+ (6-Di; +3-D3)) +2- (D3t + DEY)
<18-Dyy +4-Diy+9-Dg +3-Dg
<16-(2-D11 + D3y + D3 +D32) <16 - 04(G").

Lemma 8. If deg(x3) = deg(x4) = deg(ws) = deg(xs) = 2, then G is not critical.

Proof. We denote the faces fo, f3, fa by agb1ba, bibacy, bacico respectively. By Lemma [6] we have
deg(cy) > 4. There are three possible cases.

Case 1. deg(c1) > 5. In this case deg(cy) = 3, the face f5 contains c¢yco and ¢; belongs to fg.
Let G, = G[f4; f5]. Consider the (G, GRg, c1c2)-partition of G.

Z(G) =9-Zoo+7-Zor +5-T19 > 7-(100 +Zo1 +Zyo) = 7 - i(GR);

04(G) =4-Dy1 + (2 '7331 +D§1) <7Dy < 7-04(GpR).

In the remaining cases we denote the faces f5 and fg by cicod; and codqdy respectively.
Case 2. deg(cz) > 5. In this case deg(dy) = 3. Let G, = G|fs; fe]. Consider the (G, GR,cady)-
partition of G.

Z(G) =14 -Zoo+9-Zo1 +7-Z19 > 10 - (Io() + Zo1 —l—Ilo) =10- i(GR);



04(G) = 04(G, cf ,d) + 04(G, c5 ,df) = 6 - D1y + 3 - D3y + DEy < 94(Gr).

Case 3. deg(c1) = deg(cy) = 4. Let G = G[f4; f5]. Consider the (G, GR, ¢ic2)-partition of G
and the (G, GRr, cic2)-partition of the graph G3 = G \ {a1, a2, a3}, where G = G \ {a1, a2, as}.

First, we show that Zog < Zo1 +Z19. Denote by G, the induced subgraph of G with the vertex
set V(GR) \ {c1,c2}. Clearly,

Too = i(Gr), To = i(Gg,dy), Tor = i(GRr,dy ,dy).

Therefore, Z1g > Zo1 and Zoy — Zip = i(G'y, df’) < Zp;. We have

10 10
i(G)=9-100+7’101+5'1102 3-(3'1004-2'1—014-1-110):?'Z’(Gl).

Moreover,
04(G) =4-Dyy +3-Diy+2- D3y, 94(G') = D1y + D3y + D},.

It remains to show that 04(G) < % - 04(G") or D11 < 2-D3,. Indeed, D13 — D, equals to
the number of 4-DS of Gr which contain ¢; and ¢y and does not contain d; and Dg’l equals to the
number of 4-DS which contain ¢1, ¢y and dy. For every 4-DS D of Gg such that d; ¢ D, the set
D U {d;} is also a 4-DS of Gg, thus the inequality holds. O

Lemma 9. If deg(z3) = deg(z4) = deg(xs) = 2 and deg(x¢) = 3, then G is not critical.

Proof. Denote the faces f5 and fg by ciced; and codidy respectively. Let f be the face adjacent
to fg other than f; and f;. By Lemma [8] deg(c1) = 4 and deg(co) > 5. Let G, = G|fy; f5]. We
assume that G, contains at most one face of degree 3 except fo, which is adjacent to two end faces.
By previous lemmas, (G;, contains no vertices of degree 3. There are two possible cases depending
on the location of ff in G.

Case 1. f] contains the edge cadz. Denote by c3 the third vertex of f. In each of the following
subcases we consider the partition (G, Gr,d1dz) of the graph G and the partition (G, Gr,d1d2)
of the graph G’, where G’ is a spanning subgraph of G with the vertex set (V(G) \ V(Gp)) U
{c1,¢9,¢3,d1,d2}. Clearly,

04(G") =2 - D11 + DYy + Dy + Do

It is not hard to check using Lemma 1, that in all subcases below we have i(G) > 04(G), therefore
G is not critical.
Subcase 1. deg(zf) = 1.

i(G)235-Ioo+14-101+18’110>7'(5'Ioo+2-101+2-110):7-i(G,);

04(G) =10-D11 + (6 - D3y +3-D%) + (4-D3, +4-D},) +4- D32

Subcase 2. deg(zf) = 3 and f} is adjacent to some faces fj and f;. By the previous lemmas,
both f; and f} are end faces. Therefore,

Z(G) =70 -Zoo +28 -Zoy +45- 119 > 14'(5-100—1-2-1014-2'110):7'i(G/);

04(G)=22-Dy1 + (6-Dfy+4-D3) +(8-D3, +4-D3)) + (4-DE +4-DE2).

Subcase 3. deg(z;) = 2 and f} is adjacent to end faces f5 and f{. Two configurations are
possible:



Subcase 3a. deg(cz) = 7 and ¢z belong to fj.
i(G) =98 -Too + 70 - Zo1 + 63 -Z19 > 19 (5 Zoo + 2 - Zo1 + 2 - Z10) = 19 - i(G');
O1(G) <22 (D11 + Dy + Dy +D33) < 19- (2 D1y + Dy + Dy + D33).
Subcase 3b. deg(cz) =5 and ¢y does not belong to fj.
i(G) =98 -Too+28 - Zo1 + 63 - T10 > 18- (5-Zog + 2 - Zo1 + 2 - T10) = 7 - i(G');

04(G) =26 -Dy; +10-Dy + (12-D3, +8-D3;) + 4 - D

Subcase 4. deg(z}) = deg(z)y) = 2 and f3 is adjacent to end faces fj and f. Since G, has no
vertices of degree 3 in GG, only two configurations are possible:
Subcase 4a. deg(cz) = 6.

Z(G) =161 -Zoo + 98 - Zp1 + 81 - 19 >32'(5’Ioo+2-101+2'110) :32-i(Gl);
94(G) <36+ (D11 + D}y + Dijy + D) < 36 - (2 D11 + Diy + Dy + Dig).
Subcase 4b. deg(ca) = 5.
i(G) =175 - Tog + 70 - Ty + 81 - Z19 > 35- (5 - Too + 2 - Zo1 + 2 - T10) = 35 - i(G');
04(G) =39-Dy1+ (12-Djy + 14 -D3)) + (16 - D3, +16 - D3)) + 8- D33 + 4. D33
84(G/) =2-D11 + ’szo + Dgl + ’Dg%

Subcase 5. deg(xy) = deg(x)) = deg(x%) = 2 and f; is adjacent to end faces f and f]. Again,
since GG, has no vertices of degree 3 in (G, only two configurations are possible:
Subcase 5a. deg(cz) = 6.

i(G) =245 - Too + 126 - Zo1 + 126 - Z19 > 49 - (5-Zoo + 2 - Loy + 2 - T1o) = 49 - i(G');
04(G) < 52 - (D1 + Do + Dfy + Diig) < 52+ (2 Dy + Dy + Djy + D)
Subcase 5b. deg(ca) = 5.
i(G) =259 - Too + 98 - Ty + 126 - Tyo > 51 - (5-Too + 2 - Top + 2 - Tio) = 52 - i(G');
01(G) =52-Dyy + (18 - Dy + 18- D3y +3-D3y) + (24 - D3, +16 - D3y) + 12 - D33 + 4 - D32,

Case 2. f! contains the edge dids. Denote by ds the third vertex of ff. In each of the following
subcases we consider the partition (G, Gr,d1dz) of the graph G and the partition (G, Gr,d1d2)
of the graph G’, where G’ is a spanning subgraph of G with the vertex set (V(G) \ V(Gpr)) U
{c1,c9,d1,da,ds}. Clearly, we have

84(G,) =2-D11 + ’Dil)’o + D31 + ’Dgg

It is not hard to check using Lemma 1, that in all subcases below we have i(G) > 04(G).
Subcase 1. deg(zf) = 1.

’i(G):37'1004-14-1014-14-110>7'(5'100—1—2-101—1—2'110):7"i(G,);

04(G) =10-Dyy +6 - D3y + (3-D§, +D3y) + (3- D32 + D22).



Subcase 2. deg(zf) = 3, fL is adjacent to end faces f; and f/.
Z(G) =70 -Zoo+28 Iy +45-119 > 14 - (5'1004-2-101 + 2 'Il()) = 7Z(G/)7

04(G) =16 -Dy1 + (6 -Dfy+4-D3) +(6-Dj, +5- D3, + DE,) + (3- D2 + Di).

Subcase 3. deg(z;) = 2 and f} is adjacent to end faces f5 and f{. Two configurations are

possible:
Subcase 3a. deg(d;) = 6, dy belongs to fj.

i(G) =116 - Tog + 70 - Ty +49 - T19 > 23 - (5 - Too + 2 - Zo1 + 2 - T10) = 23 - i(G');

04(G) =22-D11 +12- Dy +4- D}y + (9-Dyy + 6 - Dy + D) +4 - (6-Dg +2-D33).
Subcase 3b. deg(d;) = 4, d; does not belong to fj.

Z(G) =98 -Zoo+28-Zog1 +49 - 119 > 18'(5-100—1-2-1014-2'110):7'i(G/);

04(G) =26 -D11 +6-Dfy+(3-D3, +2-DFy) +3-Dis +2-Dig.

Subcase 4. deg(z}) = deg(zy) = 2 and f} is adjacent to two end faces f5 and f5 .
Subcase 4a. deg(d;) = 5.

Z(G) :171’Ioo+98’101+63'110>33'(5’Ioo+2-101+2'110):25’i(Gl);

04(G) =36 - D11 + (18- D}y + 14-D})) + (12- Dy + 10 - D, +2-D3;) +9 - D3 + 3 - DE2.
Subcase 4b. deg(d;) = 4.

Z(G) :189’Ioo+70’101+63'110>35'(5’Ioo+2-101+2'110):35’i(Gl);

04(G) =36 -Dyy + (12- D}y +6-D3y) + (12-D§, +4- D) +12- D3

Subcase 5. deg(z}) = deg(z))) = deg(z) = 2 and 24 is adjacent to two end faces | and z/.
Subcase 5a. deg(d;) = 5.

i(G)2259'1004-126-1014-98-110>51’(5'I()0—|-2-1-01—|—2’110):51'i(G/);

01(G) =52-Dyy + (24 - D3y +16-D3y) + (18- DYy +5-Dgy +4-DE) +12- D32 +4-DE.
Subcase 5b. deg(d;) = 4.

Z(G) :277'1004-98'101—1—98'110>52'(5'I@0+2-Io1+2'110):52-i(G/);

04(G) =52 -Dyy + (18- Dy + 6 - D3y + (18 - D§, + 6 - D§;) + 16 - D3,

Lemmas BHI imply the main result of this paper.

Theorem 1. For every outerplanar graph G we have i(G) > 04(G).



4 Concluding remarks

It seems that the following generalization of Theorem 1 is true.

Conjecture 1. For every graph G with the average vertex degree at most k > 1 the inequality
i(G) > 0x(G) holds. Moreover, equality occurs if and only if G is k-regular.

Although we are unable to prove this statement even for k = 4, it is easy to obtain a similar
result for the class of trees.

Theorem 2. For every tree T we have i(T) > 0o(T).

Proof. Clearly, for every tree with at most 3 vertices the inequality holds. Let T" be a n-vertex tree
such that i(7T") < 95(T) and for every tree T” such that |V (T")| < |V(T')| we have i(T") > 0o(T").
Consider a diametral path X = xjzoxs...z; in T. If £ < 3 then 05(T) < 2 and i(G) > 5, thus
we assume that k& > 4. Let T, (resp. T3) be the maximal by inclusion subtree of T' such that
xo,x3 € V(Ts) and deg(x2) = 1 (resp. 3,24 € V(T3) and deg(xzs) = 1). Since all neighbors of z3,
except possibly x3, belong to every 2-DS of T', we have

0 (T) = 09(T, x;) + GQ(T, a:2_) < 82(T2) + 82(T3).

On the other hand,
i(T) = i(T,a7) +i(T,z7) > i(Ty) +i(T3).

Since i(T3) > 02(T») and i(T5) > 02(T3), we have i(T') > 0o(T).
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