On the Number of Minimum Dominating Sets in Trees

D. S. Taletskii ${ }^{1 *}$
${ }^{1}$ National Research University Higher School of Economics in Nizhny Novgorod, Nizhny Novgorod, 603155 Russia
Received April 30, 2022; in final form, April 30, 2022; accepted September 10, 2022

Abstract

The class of trees in which the degree of each vertex does not exceed an integer d is considered. It is shown that, for $d=4$, each n-vertex tree in this class contains at most $(\sqrt{2})^{n}$ minimum dominating sets (MDS), and the structure of trees containing precisely $(\sqrt{2})^{n}$ MDS is described. On the other hand, for $d=5$, an n-vertex tree containing more than $(1 / 3) \cdot 1.415^{n}$ MDS is constructed for each $n \geq 1$. It is shown that each n-vertex tree contains fewer than 1.4205^{n} MDS.

DOI: 10.1134/S0001434623030264
Keywords: dominating set, minimum dominating set, tree.

1. INTRODUCTION

A dominating set in a graph is a subset D of its vertices such that any vertex not belonging to D is adjacent to at least one vertex in D. A dominating set is said to be minimum if it is of minimum cardinality. The domination number $\gamma(G)$ of a graph G is defined to be the cardinality of its minimum dominating set. We use the abbreviations "DS" and "MDS" for "dominating set" and "minimum dominating set," respectively.

It is known that any graph contains an odd number of DS [1]. In 2006, Bród and Skupien [2] described trees containing the maximum and the minimum number of DS in the class of all n-vertex trees. The star S_{n} is the unique n-vertex tree containing the maximum possible number of DS . However, there exist exponentially many n-vertex trees containing the minimum possible number of DS. Later, Wagner [3] generalized this result to some other classes of graphs. In the 2022 paper [4], for all $k \geq 2$, the structure of trees containing the maximum and the minimum number of k-DS (that is, subsets D_{k} of tree vertices such that each vertex not belonging to D_{k} is adjacent to at least k vertices in D_{k}) was described.

To date, relatively few estimates of the number of MDS in trees and forests are known. In [5], three equivalent conditions under which a tree contains a unique MDS were given. The question of whether a tree with domination number γ can contain more than 2^{γ} MDS remained open until 2017 , when Bień gave an example of such a tree in [6]. On the other hand, in [7], Alvarado et al. proved that a forest with domination number γ contains at most 2.4606^{γ} MDS.

In this paper, we obtain new bounds for the maximum possible number of MDS in an n-vertex tree. We show that if the maximum degree d of a vertex in a tree is at most 4, then the tree contains at most $(\sqrt{2})^{n}$ MDS. Interestingly, this is false already for $d=5$. For any $n \geq 1$, we give an example of a tree T_{n} containing more than $(1 / 3) \cdot 1.415^{n}$ MDS. Moreover, we prove that each n-vertex tree contains fewer than 1.4205^{n} MDS.

[^0]
2. DEFINITIONS AND NOTATION

As usual, we denote the vertex and edge sets of a simple undirected graph G by $V(G)$ and $E(G)$, respectively. Given a vertex $v \in V(G)$, by $\operatorname{deg}_{G}(v)$ we denote its degree and by $N_{G}[v]$, its closed neighborhood, i.e., the set consisting of this vertex and all vertices adjacent to it. In the case where the choice of a graph G is clear from the context, we denote the degree and the closed neighborhood of a vertex v by $\operatorname{deg}(v)$ and $N[v]$, respectively. We use $\Delta(G)$ to denote the maximum degree of a vertex in a graph G.

A tree is a connected graph without cycles. A vertex of degree 1 in a tree is called a leaf. We refer to a vertex as a support vertex or a support if it is adjacent to at least one leaf. Attaching a support of degree 2 to a vertex v in a tree is inserting vertices u_{1} and u_{2} and the edges $u_{1} u_{2}$ and $u_{2} v$ in this tree. We say that a tree is splittable if it is possible to delete an edge from this tree so that the number of MDS in the resulting forest remains the same; otherwise, the tree is said to be unsplittable. The diameter $\operatorname{diam}(T)$ of a tree T equals the longest possible distance between its vertices. A simple path $X=x_{1} x_{2} x_{3} \ldots$ in a tree T is said to be diametrical if it consists of $\operatorname{diam}(T)+1$ pairwise distinct vertices. Obviously, the end vertices of each diametrical path in a tree are leaves.

Let $\partial_{M}(G)$ denote the number of MDS in a graph G. By $\partial_{M}^{+}(G, v)$ (by $\partial_{M}^{-}(G, v)$) we denote the number of those MDS in G which contain (respectively, do not contain) the vertex v. We say that a vertex v in a graph G is universal if $\partial_{M}^{+}(G, v)=\partial_{M}(G)$ and idle if $\partial_{M}^{-}(G, v)=\partial_{M}(G)$.

Let D be an MDS in a tree T. By $\phi(D)$ we denote the set obtained by replacing all leaves of T in D by supports adjacent to them. It is easy to see that the set $\phi(D)$ is determined uniquely and is an MDS as well.

We use $W_{a, b}$ to denote the tree obtained from a path $\left(v_{1}, v_{2}, v_{3}\right)$ by attaching $a \geq 0$ supports of degree 2 to the vertex v_{1} and $b \geq 0$ supports of degree 2 to the vertex v_{3}. It is easy to check that

$$
\partial_{M}\left(W_{a, b}\right)=\partial_{M}^{+}\left(W_{a, b}, v_{1}\right)+\partial_{M}^{+}\left(W_{a, b}, v_{2}\right)+\partial_{M}^{+}\left(W_{a, b}, v_{3}\right)=2^{a}\left(2^{b}-1\right)+2^{a+b}+2^{b}\left(2^{a}-1\right)
$$

Suppose that a tree T contains a subtree $W_{a, b}$, where $a \geq 1$ and $b \geq 0$. We say that this subtree is extreme if its vertex adjacent to b supports of degree 2 is the only vertex adjacent to other vertices of T (an example is shown in Fig. 1). We refer to this vertex as the contact vertex of the extreme subtree.

Fig. 1. An example of a tree with two extreme subtrees $W_{3,2}$ and $W_{2,0}$.

We say that a set D dominates a vertex v in a tree T if

$$
N[v] \cap D \neq \varnothing
$$

By $\widehat{\partial}_{M}\left(W_{a, b}\right)$ we denote the number of sets of cardinality $\gamma\left(W_{a, b}\right)$ in a subtree $W_{a, b}$ which dominate all vertices of this subtree, except, possibly, a contact vertex. It is easy to see that

$$
\widehat{\partial}_{M}\left(W_{a, b}\right)=\partial_{M}\left(W_{a, b}\right)+2^{a} .
$$

Obviously,

$$
\frac{\partial_{M}\left(W_{3, b}\right)}{\widehat{\partial}_{M}\left(W_{3, b}\right)} \geq \frac{\partial_{M}\left(W_{3,0}\right)}{\widehat{\partial}_{M}\left(W_{3,0}\right)}=\frac{15}{23}
$$

We say that an n-vertex tree is maximal if it contains the maximum possible number of MDS among all n-vertex trees. Similarly, we say that an n-vertex tree is k-maximal (where $k \geq 2$) if it contains the maximum possible number of MDS among all trees in which the degrees of all vertices are at most k. Note that if a tree T is not $\Delta(T)$-maximal then it is not maximal, but the converse is generally false.

3. PRELIMINARY RESULTS

3.1. Universal, Idle, and Support Vertices

Lemma 1. If a tree T contains a vertex v adjacent to at least two leaves u_{1} and u_{2}, then the vertex v is universal and the leaves u_{1} and u_{2} are idle.

Proof. Suppose that the vertex v is not universal. Then there exists a MDS D not containing v. Therefore, $u_{1}, u_{2} \in D$. Consider the set $D^{\prime}=(D \cup\{v\}) \backslash\left\{u_{1}, u_{2}\right\}$. Obviously, if D is dominating in T, then so is D^{\prime}; therefore, D is not a minimum dominating set. This contradiction shows that the vertex v is universal, and hence the leaves u_{1} and u_{2} are idle.

Lemma 2. For any tree T and any vertex v of T which is not a leaf or a support, the following assertions hold:
(1) If all neighbors of v are supports, then the vertex v is idle.
(2) If all neighbors of v except w are supports and the vertex w is adjacent to at least one support, then the vertex v is idle.

Proof. Let us prove the first assertion of the lemma; the proof of the second is similar. Suppose that the vertex v is not idle; then there exists an MDS D containing v. Consider the set $\phi(D)$, which is also an MDS in T. This set contains the vertex v and all vertices adjacent to it. Obviously, the set $\phi(D) \backslash\{v\}$ is dominating in T and its cardinality is smaller than that of D. This contradiction shows that the vertex v is idle, as required.

Lemma 3. If a tree T contains at least one universal or idle vertex, then there exists a forest F such that

$$
|V(F)| \leq|V(T)|, \quad \Delta(F) \leq \Delta(T), \quad \partial_{M}(F)>\partial_{M}(T)
$$

Proof. Suppose that a tree T contains a universal vertex v. Obviously, $\operatorname{deg}(v) \geq 2$. Let us show that, in this case, v is adjacent to at least two idle vertices. Suppose that this is not the case. Let $w_{1}, w_{2}, \ldots, w_{k}$ be the neighbors of v. Suppose that all of them, except possibly w_{1}, are not idle. Then there exists at least one MDS D containing the vertex v and the vertices w_{2}, \ldots, w_{k}. Obviously, $D^{\prime}=(D \backslash\{v\}) \cup\left\{w_{1}\right\}$ is also an MDS, so that the vertex w_{1} is not idle. This contradiction proves that the vertex v is adjacent to at least two idle vertices $w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{m}^{\prime}$. Let us delete the vertices $w_{2}^{\prime}, \ldots, w_{m}^{\prime}$ and all edges incident to them from T and denote the forest thus obtained by F. Obviously,

$$
|V(F)|<|V(T)|, \quad \Delta(F) \leq \Delta(T)
$$

Moreover, each MDS of the tree T is an MDS of the forest F, whence $\partial_{M}(T) \leq \partial_{M}(F)$. Consider an MDS D^{\prime} of the forest T containing all vertices of the set $N[v] \backslash\left\{w_{1}^{\prime}, \ldots, w_{k}^{\prime}\right\}$. It is easy to see that the set $\left(D^{\prime} \backslash\{v\}\right) \cup\left\{w_{1}^{\prime}\right\}$ is an MDS for F, which implies $\partial_{M}(F)>\partial_{M}(T)$, as required.

Now suppose that a tree T having no universal vertices contains an idle vertex u. Since T has no universal vertices, it follows that u is adjacent to at least two vertices u_{1}, \ldots, u_{k} that are not idle. For each $1 \leq i \leq k$, let T_{i} denote the maximal (by inclusion) subtree containing u_{i} and not containing u, and let F_{0} denote the maximal (by inclusion) forest not containing u and the vertices of the subtrees T_{1}, \ldots, T_{k}. Note that if the forest F_{0} is nonempty, then each of its connected components contains precisely one idle vertex adjacent to u in the tree T. Let F denote the three T from which the vertex u is deleted. Obviously, $\Delta(F) \leq \Delta(T)$. It is easy to see that $\gamma(T)=\gamma(F)$. Indeed, since the vertex u is idle in T, it follows that $\gamma(T) \geq \gamma(F)$. But if $\gamma(T)>\gamma(F)$, then, for any MDS D of the forest F, the set $D \cup\{u\}$ is an MDS in T, so that the vertex u is not idle. This contradiction shows that

$$
\partial_{M}(F)=\partial_{M}\left(F_{0}\right) \cdot \prod_{i=1}^{k} \partial_{M}\left(T_{i}\right), \partial_{M}(T)=\partial_{M}\left(F_{0}\right) \cdot\left(\prod_{i=1}^{k} \partial_{M}\left(T_{i}\right)-\prod_{i=1}^{k} \partial_{M}^{-}\left(T_{i}, u_{i}\right)\right)
$$

Note that, for any $1 \leq i \leq k$, the vertex u_{i} is not universal in T_{i} (otherwise, it would be universal in T, which contradicts the assumption). Thus, $\prod_{i=1}^{k} \partial_{M}^{-}\left(T_{i}, u_{i}\right)>0$, whence $\partial_{M}(F)>\partial_{M}(T)$, as required.

Lemma 4. If a tree T contains adjacent support vertices v_{1} and v_{2}, then $\partial_{M}(T)=\partial_{M}\left(T-v_{1} v_{2}\right)$.
Proof. Let us denote by $N_{l}\left[v_{1}\right]$ (by $N_{l}\left[v_{2}\right]$) the set consisting of the vertex v_{1} (respectively, v_{2}) and all leaves adjacent to it, and let F denote the forest obtained from T by deleting the edge $v_{1} v_{2}$. It is easy to see that, both in the tree T and in the forest F, each MDS contains precisely one vertex from each of the sets $N_{l}\left[v_{1}\right]$ and $N_{l}\left[v_{2}\right]$; thus, each MDS of the tree T is an MDS of the forest F, and vice versa. Therefore, $\partial_{M}(F)=\partial_{M}(T)$, as required.

Lemma 5. Let T be an n-vertex tree. If there exists an n-vertex forest F without isolated vertices such that

$$
\partial_{M}(F)>\partial_{M}(T), \quad \Delta(F) \leq \Delta(T),
$$

then the tree T is not $\Delta(T)$-maximal.
Proof. Let us show that if such a forest F exists, then there exists an n-vertex tree T^{\prime} such that $\Delta\left(T^{\prime}\right) \leq \max (3, \Delta(F))$ and $\partial_{M}\left(T^{\prime}\right)>\partial_{M}(T)$. If F is a tree, then we set $T^{\prime}=F$. Suppose that F contains at least two connected components T_{1} and T_{2} each of which contains at least two vertices. Note that each tree with at least two vertices contains either a support vertex of degree at most 2 or a support vertex adjacent to at least two leaves (for example, such are the penultimate vertices of a diametrical path in the tree). Let us show that, in each of the following three cases, the connected components T_{1} and T_{2} can be joined in such a way that the number of MDS in the resulting tree $T_{1,2}$ is not smaller than in the initial forest $T_{1} \cup T_{2}$.

Case 1. Each of the components T_{1} and T_{2} contains at least one support vertex of degree at most 2 (we assume that the path P_{2} consists of two support vertices of degree 1). We choose such support vertices $u \in V\left(T_{1}\right)$ and $v \in V\left(T_{2}\right)$ and draw an edge $u v$. By the preceding lemma, adding this edge does not affect the number of MDS. Moreover, as is easy to see, we have

$$
\Delta\left(T_{1,2}\right) \leq \max \left(3, \Delta\left(T_{1}\right), \Delta\left(T_{2}\right)\right) .
$$

Case 2. The trees T_{1} and T_{2} contain vertices u and v each of which is adjacent to at least two leaves. We choose leaves u^{\prime} and v^{\prime} adjacent to the vertices u and v, respectively, and draw an edge $u^{\prime} v^{\prime}$. Obviously, $\Delta\left(T_{1,2}\right)=\max \left(\Delta\left(T_{1}\right), \Delta\left(T_{2}\right)\right)$. By Lemma 2, the vertices u^{\prime} and v^{\prime} are idle in the tree $T_{1,2}$. Thus,

$$
\partial_{M}\left(T_{1,2}\right)=\partial_{M}\left(T_{1} \cup T_{2}\right),
$$

as desired.
Case 3. One of the subtrees (let it be T_{1}) contains a support u of degree at most 2 , and the other subtree contains a support v adjacent to at least two leaves v^{\prime} and $v^{\prime \prime}$. Let us draw an edge $u v^{\prime}$ and show that $\partial_{M}\left(T_{1,2}\right) \geq \partial_{M}\left(T_{1} \cup T_{2}\right)$. By Lemma 2 , the vertex v^{\prime} is idle in the tree $T_{1,2}$. By Lemma 1 , the vertex v is universal in the forest $T_{1} \cup T_{2}$. Therefore, $\partial_{M}\left(T_{1,2}\right) \geq \partial_{M}^{+}\left(T_{1,2}, v\right)=\partial_{M}\left(T_{1} \cup T_{2}\right)$, as desired.

Thus, replacing the forest $T_{1} \cup T_{2}$ by the tree $T_{1,2}$, we have turned the forest F into a forest F_{1} containing one connected component fewer than F; moreover, $\partial_{M}\left(F_{1}\right) \geq \partial_{M}(F)$. If F_{1} is a tree, then we set $T^{\prime}=F_{1}$. Otherwise, we will repeat the procedute until we obtain a tree F_{k}; then we set $T^{\prime}=F_{k}$. Since $\Delta\left(F_{k}\right) \leq \Delta(T)$ and $\partial_{M}\left(F_{k}\right)>\partial_{M}(T)$, it follows that the condition in the lemma is satisfied.

Corollary 1. For any n-vertex tree T, the following assertions hold:
(1) If T contains at least one universal or idle vertex, then there exists an n^{\prime}-vertex tree T^{\prime} such that $n^{\prime}<n, \Delta\left(T^{\prime}\right) \leq \Delta(T)$, and $\partial_{M}\left(T^{\prime}\right)^{1 / n^{\prime}}>\partial_{M}(T)^{1 / n}$.
(2) If T is splittable, then there exists an n^{\prime}-vertex tree T^{\prime} such that $n^{\prime}<n, \Delta\left(T^{\prime}\right) \leq \Delta(T)$, and $\partial_{M}\left(T^{\prime}\right)^{1 / n^{\prime}} \geq \partial_{M}(T)^{1 / n}$.

Proof. The first assertion readily follows from Lemmas 3 and 5. The second one is an obvious consequence of the definition of a splittable tree.

3.2. An \mathcal{S}-Partition of a Tree

The following structural lemma plays the key role in obtaining upper bounds for the number of MDS in 4-maximal and maximal trees.

Lemma 6. If a tree T contains no idle vertices, then there exists a unique partition $\mathcal{S}(T)$ of the set $V(T)$ into disjoint subsets with the following properties:
(1) $\gamma(T)=|\mathcal{S}(T)|$, and any MDS of the tree T contains precisely one vertex in each element of the partition $\mathcal{S}(T)$;
(2) for any element $S^{\prime} \in \mathcal{S}(T)$, there exists a vertex $v^{\prime} \in V(T)$ such that $N\left[v^{\prime}\right]=S^{\prime}$.

Proof. We prove the lemma by induction on the number n of vertices. The base case $n \leq 5$ is obvious Let us show that the lemma is true for $n \geq 6$ and $\operatorname{diam}(T) \leq 4$. If all nonleaf vertices of T are supports, then each support is adjacent to precisely one leaf (otherwise, the tree contains idle leaves) and each element of $\mathcal{S}(T)$ consists of a support and a leaf adjacent to it. It is easy to see that such a partition satisfies the assumptions of the lemma and is unique. If T contains a vertex v which is not a leaf or a support, then, as is easy to see, such a vertex is unique and all of its neighbors are supports. Thus, by Lemma 2, the vertex v is idle, which contradicts the assumption.

Now suppose that $n \geq 6$ and $\operatorname{diam}(T) \geq 5$. Let $X=x_{1} x_{2} x_{3} x_{4} x_{5} \ldots$ be a diametrical path in T. Note that $\operatorname{deg}\left(x_{2}\right)=2$. Indeed, otherwise the vertex x_{2} is adjacent to at least two leaf vertices; they are idle by Lemma 1, which contradicts the assumption. Depending on $\operatorname{deg}\left(x_{3}\right), \operatorname{deg}\left(x_{4}\right)$, and $\operatorname{deg}\left(x_{5}\right)$, there are the following possible cases.

Case 1: $\operatorname{deg}\left(x_{3}\right) \geq 3$. In this case, the vertex x_{3} is either support or adjacent to at least one support vertex x_{2}^{\prime} different from x_{2} and x_{4}. Let us delete the vertices x_{1} and x_{2} from T, denote the resulting tree by T_{1}, and show that if T does not contain idle vertices, then neither does T_{1}.

Subcase 1, a: the vertex x_{3} is a support in T_{1}. In this case, for any MDS D of the tree T, the set $D \backslash\left\{x_{1}, x_{2}\right\}$ is an MDS of the tree T_{1}. Therefore, T_{1} contains no idle vertices.

Subcase 1 b : the vertex x_{3} is not a support. Then it is adjacent to at least one support vertex x_{2}^{\prime} different from x_{2} and x_{4}. Since T contains no idle vertices and the path X is diametrical, it follows that $\operatorname{deg}\left(x_{2}^{\prime}\right)=2$. Suppose that a vertex $x^{\prime} \in V\left(T_{1}\right)$ different from x_{1}^{\prime} and x_{2}^{\prime} is idle in T_{1} (note at once that the vertex x_{2}^{\prime} is a support in T_{1} and therefore cannot be idle). Then there exists an MDS D in T which contains the vertices x_{2}, x_{2}^{\prime}, and x^{\prime}. Thus, the set $D \backslash\left\{x_{2}\right\}$ is an MDS for the tree T_{1}, and the vertex x^{\prime} is not idle in T_{1}. We have obtained a contradiction. Now suppose that the vertex x_{1}^{\prime} is idle in T_{1}. Since the tree T contains no idle vertices, it follows that the vertex x_{3} is contained in some MDS D_{3} of T. Obviously, the set $D_{3} \backslash\left\{x_{1}, x_{2}\right\}$ is an MDS for the tree T_{1}. If D_{3} contains x_{1}^{\prime}, then x_{1}^{\prime} is not idle in T_{1}, which contradicts the assumption. If D_{3} does not contain x_{1}^{\prime}, then the set $\left(D_{3} \cup\left\{x_{1}^{\prime}\right\}\right) \backslash\left\{x_{2}^{\prime}\right\}$ contains x_{1}^{\prime} and is an MDS for T_{1}, and hence the vertex x_{1}^{\prime} is not idle in T_{1}. We have again obtained a contradiction.

Thus, the tree T_{1} contains no idle vertices, and, by the induction hypothesis, there exists a unique partition $\mathcal{S}\left(T_{1}\right)$ of T_{1} satisfying the conditions in the lemma. It is easy to see that the partition $\mathcal{S}(T)=\mathcal{S}\left(T_{1}\right) \cup\left\{\left\{x_{1}, x_{2}\right\}\right\}$ satisfies these conditions as well and is unique for T, as required.

Case 2: $\operatorname{deg}\left(x_{3}\right)=2$ and $\operatorname{deg}\left(x_{4}\right) \geq 3$. The following subcases are possible.
Subcase 2, a: the vertex x_{4} is a support. By Lemma 2, the vertex x_{3} is idle, which contradicts the assumption.

Subcase 2, b: the vertex x_{4} is adjacent to at least one support x_{3}^{\prime} different from the vertices x_{3} and x_{5}. By Lemma 2 , the vertex x_{3} is idle, which contradicts the assumption.

Subcase 2, c: the vertex x_{4} is adjacent to some vertices $w_{1}, w_{2}, \ldots, w_{s}$ different from x_{3} and x_{5} and not being supports (here $s \geq 1$). Since the path X is diametrical and T contains no idle vertices, it follows that all neighbors of the vertices $w_{1}, w_{2}, \ldots, w_{s}$ different from x_{4} are supports of degree 2 . We delete the vertices x_{1}, x_{2}, and x_{3} from T and denote the resulting tree by T_{2}. Let us show that if T does not contain idle vertices, then neither does T_{2}. Suppose that, on the contrary, T_{2} contains an idle vertex x^{\prime}. Then there exists an MDS D of T containing x^{\prime}. Obviously, the set $D^{\prime}=\left(D \backslash\left\{x_{1}\right\}\right) \cup\left\{x_{2}\right\}$ is an MDS of T as well. Moreover, D^{\prime} cannot contain both vertices x_{3} and x_{4}. If D^{\prime} contains x_{3}, then we
consider the set $D^{\prime \prime}=\left(D^{\prime} \backslash\left\{x_{3}\right\}\right) \cup\left\{x_{4}\right\}$; otherwise, we set $D^{\prime \prime}=D^{\prime}$. Obviously, $D^{\prime \prime}$ is an MDS for T. Therefore, $D^{\prime \prime} \backslash\left\{x_{2}\right\}$ is an MDS for T_{2} and contains x^{\prime}. We have obtained a contradiction.

Thus, the tree T_{2} contains no idle vertices. Therefore, by the induction hypothesis, there exists a unique partition $\mathcal{S}\left(T_{2}\right)$ of T_{2} satisfying the conditions in the lemma. Let us show that

$$
N_{T_{2}}\left[x_{4}\right]=\left\{x_{4}, x_{5}, w_{1}, \ldots, w_{s}\right\} \in \mathcal{S}\left(T_{2}\right) .
$$

Recall that all neighbors of the vertices $w_{1}, w_{2}, \ldots, w_{s}$ different from x_{4} are supports of degree 2 . It is easy to see that each MDS of T_{2} contains at most one vertex in the set $N_{T_{2}}\left[x_{4}\right]$. Indeed, suppose that there exists an MDS D containing at least two vertices in $N_{T_{2}}\left[x_{4}\right]$. Then the set $\left(\phi(D) \backslash N_{T_{2}}\left[x_{4}\right]\right) \cup\left\{x_{5}\right\}$ is dominating in T_{2}, which contradicts the minimality of D. Therefore, each MDS of T_{2} contains precisely one vertex from the set $N_{T_{2}}\left[x_{4}\right]$, and, by assumption, each vertex in $N_{T_{2}}\left[x_{4}\right]$ is not idle, as required.

Consider the partition

$$
\mathcal{S}(T)=\left(\mathcal{S}\left(T_{2}\right) \backslash\left\{N_{T_{2}}\left[x_{4}\right]\right\}\right) \cup\left\{\left\{x_{1}, x_{2}\right\}, N_{T}\left[x_{4}\right]\right\} .
$$

Obviously, this is a unique partition satisfying the conditions in the lemma for the tree T, as required.
Case 3: $\operatorname{deg}\left(x_{3}\right)=\operatorname{deg}\left(x_{4}\right)=2, \operatorname{deg}\left(x_{5}\right) \geq 3$. The following subcases are possible.
Subcase 3, a: the vertex x_{5} is a support. By Lemma 2, the vertices x_{3} and x_{4} are idle, which contradicts the assumption.

Subcase 3, b: there exists a vertex u adjacent to x_{5} and to $\operatorname{deg}(u)-1$ leaves. In this case, $\operatorname{deg}(u)=2$, because the tree has no idle vertices. Consider the tree T_{3} obtained from T by deleting the vertex u and a leaf u^{\prime} adjacent to it. Let us show that if T does not contain idle vertices, then neither does T_{3}. Suppose that, on the contrary, there exists a vertex v^{\prime} which is idle in T_{3} and not idle in T. It is easy to see that, both in T_{3} and in T, each MDS contains precisely two vertices from the set $\mathcal{X}_{5}=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$. Suppose that $x^{\prime} \notin \mathcal{X}_{5}$. Then there exists an MDS D^{\prime} in the tree T which contains the vertices x_{2}, x_{5}, and x^{\prime}. It is easy to see that the set $D^{\prime} \backslash\left\{u, u^{\prime}\right\}$ contains the vertex x^{\prime} and is an MDS for the tree T_{3}. We have obtained a contradiction. Now suppose that there exists a vertex $x^{\prime} \in \mathcal{X}_{5}$ which is idle in T_{3}. Then there exists an MDS $D^{\prime \prime}$ in T which contains the vertices x_{6} and x^{\prime} (indeed, if each MDS of T containing x_{6} does not contain x^{\prime}, then the vertex x^{\prime} is idle, which is impossible). It is easy to see that the set $D^{\prime \prime} \backslash\left\{u, u^{\prime}\right\}$ contains x^{\prime} and is an MDS in T_{3}. We have again obtained a contradiction.

Thus, T_{3} contains no idle vertices and, by the induction hypothesis, there exists a unique partition $\mathcal{S}\left(T_{3}\right)$. The partition $\mathcal{S}\left(T_{3}\right) \cup\left\{\left\{u, u^{\prime}\right\}\right\}$ is unique in T, as required.

Subcase 3, c: there exists a path $\left(u_{1}, u_{2}, u_{3}, x_{5}\right)$ such that the vertex u_{1} is a leaf, the vertex u_{2} is adjacent to $\operatorname{deg}\left(u_{2}\right)-1$ leaves, and the vertex u_{3} is different from x_{4} and x_{6} and all of its neighbors different from x_{5} are either leaves or supports. If u_{3} is a support, then we argue as in Subcase 1, a. Let us prove that if u_{3} is not a support, then it is idle in T. It suffices to show that each MDS in the tree contains at most one vertex in the set $\left\{x_{3}, x_{4}, x_{5}, u_{3}\right\}$. Suppose that there exists an MDS D containing at least two vertices in this set. It is easy to see that $D^{\prime}=\left(\phi(D) \backslash\left\{x_{3}, x_{4}, x_{5}, u_{3}\right\}\right) \cup\left\{x_{5}\right\}$ is an MDS and $\left|D^{\prime}\right|<|\phi(D)|=|D|$; this is a contradiction. On the other hand, each MDS of the tree T must contain at least one vertex in the closed neighborhood $N\left[x_{4}\right]$, which does not contain u_{3}. Thus, the vertex u_{3} is idle, which contradicts the assumption of the lemma.

Subcase 3 , d: there exists a path $\left(w_{1}, w_{2}, w_{3}, w_{4}, x_{5}\right)$ such that the vertex w_{4} is different from the vertices x_{4} and x_{6}. If, moreover, $\max \left(\operatorname{deg}\left(w_{2}\right), \operatorname{deg}\left(w_{3}\right), \operatorname{deg}\left(w_{4}\right)\right)>2$, then we rename the vertices and argue as in Cases 1 and 2. If $\operatorname{deg}\left(w_{2}\right)=\operatorname{deg}\left(w_{3}\right)=\operatorname{deg}\left(w_{4}\right)=2$, then, clearly, the vertices in the set $\left\{x_{3}, x_{4}, w_{3}, w_{4}\right\}$ are idle in T. Indeed, each MDS of T must contain at least one vertex from the neighborhoods $N\left[x_{4}\right]$ and $N\left[u_{4}\right]$. On the other hand, according to the considerations in the previous subcase, each MDS contains at most one vertex in the set $\left\{x_{3}, x_{4}, x_{5}, w_{3}, w_{4}\right\}$. Thus, T contains an idle vertex, which contradicts the assumption of the lemma.

Case 4: $\operatorname{deg}\left(x_{2}\right)=\operatorname{deg}\left(x_{3}\right)=\operatorname{deg}\left(x_{4}\right)=\operatorname{deg}\left(x_{5}\right)=2$. Consider the tree T_{4} obtained from T by deleting the vertices x_{1}, x_{2}, and x_{3}. Let us prove that if T does not contain idle vertices, then neither does T_{4}. First, we show that $\gamma(T)=\gamma\left(T_{4}\right)+1$. On the one hand, each MDS of T contains a vertex in the set $\left\{x_{1}, x_{2}\right\}$, whence $\gamma(T) \geq \gamma\left(T_{4}\right)+1$. On the other hand, given any MDS D^{\prime} of T_{4}, the set $D^{\prime} \cup\left\{x_{2}\right\}$ is an MDS of T, whence $\gamma(T) \leq \gamma\left(T_{4}\right)+1$.

Suppose that some vertex x^{\prime} is idle in T_{4} but not idle in T. Then there exists an MDS D of T which contains x^{\prime}. Consider the set $D^{\prime}=D \backslash\left\{x_{1}, x_{2}\right\}$. Obviously, D^{\prime} contains at most one vertex in the set $\left\{x_{3}, x_{4}\right\}$. If D^{\prime} contains the vertex x_{3}, then we consider the set $D^{\prime \prime}=\left(D^{\prime} \backslash\left\{x_{3}\right\}\right) \cup\left\{x_{4}\right\}$; otherwise, we set $D^{\prime \prime}=D^{\prime}$. In any case, $D^{\prime \prime}$ is an MDS of T_{4} and hence contains the vertex x^{\prime}. This contradiction shows that the tree T_{4} contains no idle vertices.

By the induction hypothesis, there exists a unique partition $\mathcal{S}\left(T_{4}\right)$ of T_{4}. Obviously, it includes the set $\left\{x_{4}, x_{5}\right\}$. It is easy to see that the partition

$$
\mathcal{S}(T)=\left(\mathcal{S}\left(T_{4}\right) \backslash\left\{\left\{x_{4}, x_{5}\right\}\right\}\right) \cup\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}, x_{5}\right\}\right\}
$$

is a unique appropriate partition of the tree T. This completes the proof of the lemma.
Corollary 2. For any tree T without idle vertices, the following assertions hold:
(1) If an element S^{\prime} of the partition $\mathcal{S}(T)$ contains at least three vertices, then none of them is a leaf or a support in T.
(2) If $S^{\prime \prime} \in \mathcal{S}(T)$ contains two vertices, then one of them is a leaf and the other is a support adjacent to it.
(3) If the tree T contains at least two vertices, then so does each element of the partition $\mathcal{S}(T)$.

Proof. Let us prove the first assertion. Suppose that some element S^{\prime} with $\left|S^{\prime}\right| \geq 3$ contains a leaf u^{\prime}. In this case, S^{\prime} also contains the vertex u adjacent to it. Since $\partial_{M}^{+}\left(T, u^{\prime}\right)+\partial_{M}^{+}(T, u)=\partial_{M}(T)$, it follows that all vertices in $S^{\prime} \backslash\left\{u, u^{\prime}\right\}$ are idle in T, which is impossible. If S^{\prime} contains a support w but does not contain a leaf w^{\prime} adjacent to w, then the vertex w^{\prime} does not belong to any element of the partition $\mathcal{S}(T)$, because it is not universal. This contradiction shows that all elements of S^{\prime} are neither leaves nor supports, as required.

The second and third assertions readily follow from assertion (2) of Lemma 6.

4. THE CASE OF 4-MAXIMAL TREES

Lemma 7. Given any $n \geq 3$, if an n-vertex tree T without idle vertices is 4-maximal, then each element of the partition $\mathcal{S}(T)$ contains at most three vertices.

Proof. Suppose that the lemma is false for some 4-maximal tree T. Since $\Delta(T) \leq 4$, it follows that each element of $\mathcal{S}(T)$ contains at most five vertices. There are two possible cases.

Case 1: there exist vertices $w, w_{1}, w_{2}, w_{3} \in V(T)$ such that

$$
\left\{w, w_{1}, w_{2}, w_{3}\right\}=N[w] \in \mathcal{S}(T)
$$

For each $1 \leq i \leq 3$, let T_{i} denote the maximal (by inclusion) subtree of T containing the vertices w and w_{i} and not containing the other neighbors of w, and let T_{i}^{\prime} be the tree obtained by attaching a leaf w_{0} to the vertex w of the tree T_{i}. Finally, let F_{i} denote the forest obtained from T_{i} by deleting the vertices w and w_{i} and all edges incident to them. For any $1 \leq i \leq 3$, the forest F_{i} is nonempty and contains no isolated vertices, because, by Corollary 2 , none of the vertices in the neighborhood $N[w]$ is a leaf or a support.

Let us introduce the notation

$$
A_{i}^{+}=\partial_{+}\left(T_{i}, w_{i}\right), \quad A_{i}=\partial\left(F_{i}\right), \quad A_{i}^{-}=\partial_{+}\left(T_{i}^{\prime}, w_{0}\right)
$$

We have

$$
\begin{aligned}
\partial_{M}(T) & =\partial_{M}^{+}(T, w)+\partial_{M}^{+}\left(T, w_{1}\right)+\partial_{M}^{+}\left(T, w_{2}\right)+\partial_{M}^{+}\left(T, w_{3}\right) \\
& =A_{1} A_{2} A_{3}+A_{1}^{+} A_{2}^{-} A_{3}^{-}+A_{1}^{-} A_{2}^{+} A_{3}^{-}+A_{1}^{-} A_{2}^{-} A_{3}^{+} .
\end{aligned}
$$

We delete the vertices w and w_{3} from the tree T and attach leaves w_{1}^{\prime} and w_{2}^{\prime} to the vertices w_{1} and w_{2}, respectively (see Fig. 2). Let us denote the resulting forest by F, and let $T_{1}^{\prime \prime}\left(T_{2}^{\prime \prime}\right)$ be the connected component of F containing the vertex w_{1} (respectively, w_{2}).

Fig. 2. The transformation in Case 1.
Then $F=T_{1}^{\prime \prime} \cup T_{2}^{\prime \prime} \cup F_{3}$. We have

$$
\begin{aligned}
\partial_{M}(F) & =\left(\partial_{M}^{+}\left(T_{1}^{\prime \prime}, w_{1}\right)+\partial_{M}^{+}\left(T_{1}^{\prime \prime}, w_{1}^{\prime}\right)\right) \cdot\left(\partial_{M}^{+}\left(T_{2}^{\prime \prime}, w_{2}\right)+\partial_{M}^{+}\left(T_{2}^{\prime \prime}, w_{2}^{\prime}\right)\right) \cdot \partial_{M}\left(F_{3}\right) \\
& =\left(A_{1}^{+}+A_{1}\right) \cdot\left(A_{2}^{+}+A_{2}\right) \cdot A_{3}=A_{1}^{+} A_{2}^{+} A_{3}+A_{1}^{+} A_{2} A_{3}+A_{1} A_{2}^{+} A_{3}+A_{1} A_{2} A_{3}
\end{aligned}
$$

Since the tree T contains no universal vertices, it follows that, for each $1 \leq i \leq 3$, there exists an MDS of F_{i} which contains none of the vertices adjacent to w_{i} in the tree T. Thus, for each $1 \leq i \leq 3$, the strict inequality $A_{i}>A_{i}^{-}$holds. Moreover, we have $A_{i}^{+} \geq A_{i}$. We can assume that $A_{1}^{+} / A_{1} \geq A_{2}^{+} / A_{2} \geq A_{3}^{+} / A_{3}$. Then $A_{1}^{+} A_{2}^{+} A_{3} \geq A_{1} A_{2} A_{3}^{+}>A_{1}^{-} A_{2}^{-} A_{3}^{+}$, whence $\partial_{M}(F)>\partial_{M}(T)$. Therefore, by Lemma 5, the tree T is not 4-maximal. We have arrived at a contradiction.

Case 2: there exist vertices $w, w_{1}, w_{2}, w_{3}, w_{4} \in V(T)$ such that

$$
\left\{w, w_{1}, w_{2}, w_{3}, w_{4}\right\}=N[w] \in \mathcal{S}(T)
$$

For each $1 \leq i \leq 4$, we define subgraphs T_{i}, T_{i}^{\prime}, and F_{i} and introduce the notation A_{i}^{+}, A_{i}, and A_{i}^{-}as in the preceding case. We have

$$
\partial_{M}(T)=A_{1} A_{2} A_{3} A_{4}+A_{1}^{+} A_{2}^{-} A_{3}^{-} A_{4}^{-}+A_{1}^{-} A_{2}^{+} A_{3}^{-} A_{4}^{-}+A_{1}^{-} A_{2}^{-} A_{3}^{+} A_{4}^{-}+A_{1}^{-} A_{2}^{-} A_{3}^{-} A_{4}^{+}
$$

From the tree T we delete the vertex w_{4}, all edges incident to it, and the edge $w w_{3}$; after that, we attach a leaf w_{3}^{\prime} to the vertex w_{3}. In the resulting forest F, by T^{\prime} we denote the connected component containing the vertices w, w_{1}, and w_{2} and by $T^{\prime \prime}$, the connected component containing the vertices w_{3} and w_{3}^{\prime}. Note that $F=T^{\prime} \cup T^{\prime \prime} \cup F_{4}$. We have

$$
\begin{aligned}
\partial_{M}(F)= & \left(\partial_{M}^{+}\left(T^{\prime}, w\right)+\partial_{M}^{+}\left(T^{\prime}, w_{1}\right)+\partial_{M}^{+}\left(T^{\prime}, w_{2}\right)\right) \\
& \times\left(\partial_{M}^{+}\left(T^{\prime \prime}, w_{3}\right)+\partial_{M}^{+}\left(T^{\prime \prime}, w_{3}^{\prime}\right)\right) \cdot \partial_{M}\left(F_{4}\right) \\
= & \left(A_{1} A_{2}+A_{1}^{+} A_{2}^{-}+A_{1}^{-} A_{2}^{+}\right) \cdot\left(A_{3}^{+}+A_{3}\right) \cdot A_{4} .
\end{aligned}
$$

We can assume that $A_{1}^{+} / A_{1}^{-} \geq A_{3}^{+} / A_{3}^{-} \geq A_{4}^{+} / A_{4}^{-}>A_{4}^{+} / A_{4}$, in which case the strict inequality $A_{1}^{+} A_{2}^{-} A_{3}^{+} A_{4}>A_{1}^{-} A_{2}^{-} A_{3}^{-} A_{4}^{+}$holds. Therefore, $\partial_{M}(F)>\partial_{M}(T)$ and the tree T is not 4-maximal by Lemma 5 . This contradiction proves Lemma 7.

Theorem 1. For any $n \geq 4$, each 4-maximal n-vertex tree T contains at most $(\sqrt{2})^{n} \operatorname{MDS}$. The equality $\partial_{M}(T)=(\sqrt{2})^{n}$ is attained if and only if $n=2 l$ and T contains precisely l support vertices each of which is adjacent to a unique leaf.

Proof. It is easy to check that the theorem is true for $n<6$. Suppose that $n \geq 6$ and there exist trees for which it is false; let T be such a tree with the least number of vertices. By Corollary 1, if T contains a universal or an idle vertex, then it contains fewer that $(\sqrt{2})^{n}$ MDS. Similarly, it is easy to check that if T is splittable, then, by Corollary 1 , it satisfies the condition in the theorem, which contradicts the assumption. Thus, by Lemma 6 , there exists a unique \mathcal{S}-partition $\mathcal{S}(T)$. Since the tree T is unsplittable, it contains no adjacent support vertices, and the partition $\mathcal{S}(T)$ contains at least one element S^{\prime} comprising precisely three vertices (the case $\left|S^{\prime}\right|>3$ is impossible by the previous lemma). According to Corollary 1, all vertices in S^{\prime} are neither leaves nor supports, whence $\operatorname{diam}(T) \geq 6$.

Let $X=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} \ldots$ be a diametrical path in T (an example is shown in Fig. 3). If the vertex x_{3} is a support, then T contains a pair of adjacent supports x_{2} and x_{3} and the tree T is splittable by Lemma 4, which contradicts the assumption. Since T has no idle vertices, it follows that each support in T is adjacent to a unique leaf. Thus, all neighbors of x_{3} different from x_{4} are supports of degree 2. In view of Lemmas 6 and 7, we have $x_{3} \in N\left[x_{4}\right]=\left\{x_{3}, x_{4}, x_{5}\right\} \in \mathcal{S}(T)$.

Fig. 3. The form of the tree T for $a=3$ and $b=2$.

Let us prove that if $\operatorname{deg}\left(x_{5}\right) \geq 3$, then all vertices in the set $N\left[x_{5}\right] \backslash\left\{x_{4}, x_{5}, x_{6}\right\}$ are supports of degree 2. Suppose that this set is nonempty, and let w denote one of the vertices contained in it. If w is not a support, then there exist vertices w_{0} and w_{1} such that

$$
\left\{w, w_{0}, w_{1}\right\}=N\left[w_{0}\right] \in \mathcal{S}(T)
$$

By Corollary 1 , the vertex w_{1} is neither a leaf nor a support; hence there exists a path ($w_{1}, u^{\prime}, u^{\prime \prime}$) in T in which the vertex u^{\prime} is different from w_{0}. It follows that the path $u^{\prime \prime} u^{\prime} w_{1} w_{0} w x_{5} x_{6} \ldots$ is longer than X. We have obtained a contradiction. Suppose that the vertex w is adjacent to the leaf w^{\prime} and $\operatorname{deg}(w) \geq 3$. Let u denote a neighbor of w different from x_{5} and w^{\prime}. If u is a support, then the tree T is splittable by Lemma 4. If u is not a support, then there exist vertices u_{0} and u_{1} such that $\left\{u, u_{0}, u_{1}\right\}=N\left[u_{0}\right] \in \mathcal{S}(T)$. The path $u_{1} u_{0} u w x_{5} \ldots$ is of the same length as X, but the vertex u_{1} is not a leaf by Corollary 2 . We have again obtained a contradiction.

Thus, the vertices x_{3} and x_{5} are adjacent to $a=\operatorname{deg}\left(x_{3}\right)-1$ and $b=\operatorname{deg}\left(x_{5}\right)-2$ supports of degree 2 , respectively. Let T^{\prime} be the tree obtained from T by deleting these supports, the leaves adjacent to them, and the vertex x_{3}, and let T_{6} denote the tree obtained from T^{\prime} by deleting the vertices x_{4} and x_{5}. By the induction hypothesis,

$$
\partial_{M}\left(T^{\prime}\right) \leq 2^{\left|V\left(T^{\prime}\right)\right| / 2}=2^{(n-2 a-2 b-1) / 2}
$$

We have

$$
\begin{gathered}
\partial_{M}\left(T^{\prime}\right)=\partial_{M}^{+}\left(T^{\prime}, x_{4}\right)+\partial_{M}^{+}\left(T^{\prime}, x_{5}\right), \\
\partial_{M}^{+}\left(T, x_{4}\right)=2^{a+b} \cdot \partial_{M}^{+}\left(T^{\prime}, x_{4}\right), \\
\left.\partial_{M}^{+}\left(T, x_{3}\right)=2^{a} \cdot\left(2^{b}-1\right) \cdot \partial_{M}^{+}\left(T, x_{3}\right)+\partial_{M}^{+}\left(T, x_{6}\right)+2^{a}\right)+\partial_{M}^{+}\left(T, x_{5}\right) \\
\left.\left.\partial^{a}-1\right) \cdot 2^{b} \cdot \partial_{M}^{+}\left(T_{6}^{\prime}\right), x_{5}\right)
\end{gathered}
$$

It is easy to show that if $a, b \in\{1,2\}$, then the relations $\partial_{M}^{+}\left(T_{6}, x_{6}\right) \leq \partial_{M}\left(T_{6}\right), \partial_{M}\left(T_{6}\right)=\partial_{M}^{+}\left(T^{\prime}, x_{4}\right)$, and $\partial_{M}^{+}\left(T^{\prime}, x_{4}\right) \leq \partial_{M}^{+}\left(T^{\prime}, x_{5}\right)$ imply the inequality

$$
2^{a+b+1 / 2} \cdot\left(\partial_{M}^{+}\left(T^{\prime}, x_{4}\right)+\partial_{M}^{+}\left(T^{\prime}, x_{5}\right)\right)>\partial_{M}^{+}\left(T, x_{3}\right)+\partial_{M}^{+}\left(T, x_{4}\right)+\partial_{M}^{+}\left(T, x_{5}\right)
$$

If $a=3$, then, for this inequality to hold, it is also required that $\partial_{M}^{+}\left(T_{6}, x_{6}\right) / \partial_{M}\left(T_{6}\right) \leq 3 / 4$. The purpose of the further considerations is to prove this relation. We consider four cases, depending on whether the vertices x_{6} and x_{7} or their neighbors are supports in the tree T.

Case 1: there exist vertices w and w^{\prime} such that $\left\{x_{6}, w, w^{\prime}\right\}=N[w] \in \mathcal{S}(T)$. Note that the vertex w may or may not coincide with the vertex x_{7}.

Subcase 1, a: all neighbors of x_{6} different from x_{5} and w are supports of degree 2 (in particular, it is possible that $\left.\operatorname{deg}_{T}\left(x_{6}\right)=2\right)$. Obviously, we have $\partial_{M}^{+}\left(T_{6}, x_{6}\right) \leq \partial_{M}^{+}\left(T_{6}, w\right)$, whence $\partial_{M}^{+}\left(T_{6}, x_{6}\right) / \partial_{M}\left(T_{6}\right) \leq 1 / 2$.

Subcase 1, b: the vertex x_{6} is adjacent to some vertex x_{5}^{\prime} different from x_{5} and w and not being a support and, possibly, to a support $x_{5}^{\prime \prime}$ of degree 2 . Then there exist vertices x_{3}^{\prime} and x_{4}^{\prime} such that $\left\{x_{3}^{\prime}, x_{4}^{\prime}, x_{5}^{\prime}\right\}=N_{T}\left[x_{4}^{\prime}\right] \in \mathcal{S}(T)$. Let T_{5}^{\prime} be the maximal (by inclusion) subtree of T containing x_{5}^{\prime} and not containing x_{6}. It is easy to see that the tree T_{5}^{\prime} is the extreme subgraph $W_{a^{\prime}, b^{\prime}}$ of T_{6} with contact vertex x_{5}^{\prime}, where $a^{\prime}=\operatorname{deg}\left(x_{3}^{\prime}\right)-1$ and $b^{\prime}=\operatorname{deg}\left(x_{5}^{\prime}\right)-2$. We can assume that $a^{\prime}=3$ (otherwise, we consider the diametrical path passing through the vertices x_{5}^{\prime} and x_{6}, rename the tree vertices, and apply
the above argument to this path). Let T_{6}^{\prime} be the maximal (by inclusion) subtree of T_{6} containing the vertex x_{6} and not containing the vertex x_{5}^{\prime}. Then

$$
\partial_{M}^{+}\left(T_{6}, x_{6}\right)=\partial_{M}^{+}\left(T_{6}^{\prime}, x_{6}\right) \cdot \widehat{\partial}_{M}\left(W_{a^{\prime}, b^{\prime}}\right), \quad \partial_{M}^{+}\left(T_{6}, w\right)=\partial_{M}^{+}\left(T_{6}^{\prime}, w\right) \cdot \partial_{M}\left(W_{a^{\prime}, b^{\prime}}\right)
$$

As in the preceding subcase, we have $\partial_{M}^{+}\left(T_{6}^{\prime}, x_{6}\right) \leq \partial_{M}^{+}\left(T_{6}^{\prime}, w\right)$. Since

$$
\partial_{M}\left(W_{3, b^{\prime}}\right) / \widehat{\partial}_{M}\left(W_{3, b^{\prime}}\right) \geq 15 / 23,
$$

it follows that $\partial_{M}^{+}\left(T^{\prime}, x_{6}\right) / \partial_{M}\left(T_{6}\right) \leq 3 / 4$.
Note that, in the subcases considered above, the argument remains valid in the cases where the supports adjacent to x_{6} are of degree greated than 2 . We will use this observation in considering Subcase 3, b.

Subcase 1, c: the vertex x_{6} is adjacent to two vertices x_{5}^{\prime} and $x_{5}^{\prime \prime}$ different from x_{5} and w and not being supports. It follows from considerations in Subcase $1, \mathrm{~b}$ that x_{5}^{\prime} and $x_{5}^{\prime \prime}$ are the contact vertices of extreme subgraphs $W_{3, b^{\prime}}$ and $W_{3, b^{\prime \prime}}$ of T_{6}, where $b^{\prime}=\operatorname{deg}\left(x_{5}^{\prime}\right)-2$ and $b^{\prime \prime}=\operatorname{deg}\left(x_{5}^{\prime \prime}\right)-2$. Let $T_{6}^{\prime \prime}$ denote the maximal (by inclusion) subtree of T containing the vertex x_{6} and not containing the vertices x_{5}^{\prime} and $x_{5}^{\prime \prime}$. Then

$$
\begin{gathered}
\partial_{M}\left(T_{6}, x_{6}\right)=\widehat{\partial}_{M}\left(W_{3, b^{\prime}}\right) \cdot \widehat{\partial}_{M}\left(W_{3, b^{\prime \prime}}\right) \cdot \partial_{M}\left(T_{6}^{\prime \prime}, x_{6}\right), \\
\partial_{M}\left(T_{6}, w\right)=\partial_{M}\left(W_{3, b^{\prime}}\right) \cdot \partial_{M}\left(W_{3, b^{\prime \prime}}\right) \cdot \partial_{M}\left(T_{6}^{\prime \prime}, w\right), \\
\partial_{M}^{+}\left(T_{6}, w\right) \geq \frac{\partial_{M}\left(W_{3, b^{\prime}}\right)}{\widehat{\partial}_{M}\left(W_{3, b^{\prime}}\right)} \cdot \frac{\partial_{M}\left(W_{3, b^{\prime \prime}}\right)}{\widehat{\partial}_{M}\left(W_{3, b^{\prime \prime}}\right)} \cdot \partial_{M}^{+}\left(T_{6}, x_{6}\right)>\frac{1}{3} \cdot \partial_{M}^{+}\left(T_{6}, x_{6}\right) .
\end{gathered}
$$

Therefore, we have $\partial_{M}^{+}\left(T_{6}, x_{6}\right) / \partial_{M}\left(T_{6}\right) \leq 3 / 4$. This completes the consideration of Case 1 .
In Cases 2-4, we assume that the vertex x_{6} is a support and adjacent to a leaf vertex l_{6}, to the vertices x_{5} and x_{7}, and possibly to a vertex x_{5}^{\prime} different from x_{5}, l_{6}, and x_{7}. If the vertex x_{5}^{\prime} is present, then it is the contact vertex of some extreme subgraph $W_{3, b^{\prime}}$, where $b^{\prime}=\operatorname{deg}\left(x_{5}^{\prime}\right)-2$. Since $\partial_{M}\left(T_{6}\right)=\partial_{M}^{+}\left(T_{6}, x_{6}\right)+\partial_{M}^{+}\left(T_{6}, l_{6}\right)$, it suffices to prove that either $\partial_{M}^{+}\left(T_{6}, x_{6}\right) \leq 3 \partial_{M}^{+}\left(T_{6}, l_{6}\right)$ or the tree T is not 4-maximal.

Case 2: the vertices x_{7} and x_{8} belong to distinct elements of the partition $\mathcal{S}(T)$. The vertex x_{7} is not a support, because the tree T is unsplittable. Thus, there exist vertices u and u^{\prime} such that $\left\{x_{7}, u, u^{\prime}\right\}=N[u] \in \mathcal{S}(T)$. Since the path X is diametrical and T contains no idle vertices, it follows that all neighbors of u^{\prime} different from u are support vertices of degree 2 . Depending on $\operatorname{deg}_{T}\left(x_{6}\right)$, two subcases are possible.

Subcase 2, a: $\operatorname{deg}_{T}\left(x_{6}\right)=3$. Let us show that $\partial_{M}^{+}\left(T_{6}, x_{6}\right)<3 \partial_{M}^{+}\left(T_{6}, l_{6}\right)$. We denote by T_{7} the maximal (by inclusion) subtree of T_{6} containing the vertex x_{7} and not containing the vertex x_{6}. Let F_{7} be the forest obtained from T_{7} by deleting the vertex x_{7} and all edges incident to it. We have

$$
\begin{gathered}
\partial_{M}^{+}\left(T_{6}, l_{6}\right)=\partial_{M}\left(T_{7}\right)=\partial_{M}^{+}\left(T_{7}, x_{7}\right)+\partial_{M}^{+}\left(T_{7}, u\right)+\partial_{M}^{+}\left(T_{7}, u^{\prime}\right) \\
\partial_{M}^{+}\left(T_{6}, x_{6}\right)=\partial_{M}^{+}\left(T_{7}, x_{7}\right)+\partial_{M}^{+}\left(F_{7}, u\right)+\partial_{M}^{+}\left(F_{7}, u^{\prime}\right)
\end{gathered}
$$

Note that $\partial_{M}^{+}\left(F_{7}, u^{\prime}\right)=\partial_{M}^{+}\left(F_{7}, u\right)$, because all neighbors of the vertex u^{\prime} except u are supports of degree 2. It is easy to see that

$$
\partial_{M}^{+}\left(F_{7}, u\right)=\partial_{M}^{+}\left(T_{7}, u\right)=\partial_{M}\left(T_{7} \backslash N[u]\right)
$$

Therefore,

$$
\partial_{M}^{+}\left(T_{6}, x_{6}\right)=\partial_{M}^{+}\left(T_{7}, x_{7}\right)+2 \partial_{M}^{+}\left(T_{7}, u\right)<2 \partial_{M}^{+}\left(T_{6}, l_{6}\right) .
$$

Subcase 2, b: $\operatorname{deg}_{T}\left(x_{6}\right)=4$. The tree T_{6} contains a vertex x_{5}^{\prime} adjacent to x_{6} and contact for an extreme subgraph $W_{3, b^{\prime}}$, where $b^{\prime}=\operatorname{deg}\left(x_{5}^{\prime}\right)-2$. The same argument as in Subcase 2, a yields

$$
\begin{gathered}
\partial_{M}^{+}\left(T_{6}, l_{6}\right)=\partial_{M}\left(W_{3, b^{\prime}}\right) \cdot\left(\partial_{M}^{+}\left(T_{7}, x_{7}\right)+\partial_{M}^{+}\left(T_{7}, u\right)+\partial_{M}^{+}\left(T_{7}, u^{\prime}\right)\right), \\
\partial_{M}^{+}\left(T_{6}, x_{6}\right)=\widehat{\partial}_{M}\left(W_{3, b^{\prime}}\right) \cdot\left(\partial_{M}^{+}\left(T_{7}, x_{7}\right)+2 \partial_{M}^{+}\left(T_{7}, u\right)\right) .
\end{gathered}
$$

It is easy to check that $\partial_{M}^{+}\left(T_{7}, u\right) \leq 2 \partial_{M}^{+}\left(T_{7}, x_{7}\right)$ (this inequality may turn into an equality only if $\operatorname{deg}\left(u^{\prime}\right)=2$). The inequality $\partial_{M}\left(W_{3, b^{\prime}}\right) / \widehat{\partial}_{M}\left(W_{3, b^{\prime}}\right) \geq 15 / 23$ implies $\partial_{M}^{+}\left(T_{6}, x_{6}\right)<3 \partial_{M}^{+}\left(T_{6}, l_{6}\right)$, as required.

Case 3: the vertices x_{7} and x_{8} belong to the same element of the partition, and $\operatorname{deg}\left(x_{7}\right)>2$. In this case, $N\left[x_{8}\right]=\left\{x_{7}, x_{8}, x_{9}\right\} \in \mathcal{S}(T)$.

Subcase 3, a: the vertex x_{7} is adjacent to at least one support vertex x_{7}^{\prime} ($\operatorname{possibly} \operatorname{deg}\left(x_{7}^{\prime}\right)>2$). We denote the unique leaf adjacent to x_{7}^{\prime} by l_{7}^{\prime}. Let us show that $\partial_{M}^{+}\left(T_{6}, x_{6}\right)<3 \partial_{M}^{+}\left(T_{6}, l_{6}\right)$ in this case. We denote by T_{7} the maximal (by inclusion) subtree of T containing x_{7} and not containing x_{6} and by F_{7} the forest obtained from T_{7} by removing the vertex x_{7} and all edges incident to it. We have

$$
\partial_{M}^{+}\left(T_{6}, l_{6}\right)=\partial_{M}^{+}\left(T_{7}, x_{7}\right)+\partial_{M}^{+}\left(T_{7}, x_{8}\right)+\partial_{M}^{+}\left(T_{7}, x_{9}\right)
$$

On the other hand,

$$
\partial_{M}^{+}\left(T_{6}, x_{6}\right)=\partial_{M}^{+}\left(T_{7}, x_{7}\right)+\partial_{M}^{+}\left(T_{7}, x_{8}\right)+\partial_{M}^{+}\left(F_{7}, x_{9}\right)
$$

Since $\partial_{M}^{+}\left(T_{7}, x_{7}^{\prime}\right) \geq \partial_{M}^{+}\left(T_{7}, l_{7}^{\prime}\right)$, it follows that $\partial_{M}^{+}\left(F_{7}, x_{9}\right) \leq 2 \partial_{M}^{+}\left(T_{7}, x_{9}\right)$, whence

$$
\partial_{M}^{+}\left(T_{6}, x_{6}\right)<2 \partial_{M}^{+}\left(T_{6}, l_{6}\right),
$$

as required.
Subcase 3, b: the vertex x_{7} is adjacent to a vertex x_{6}^{\prime} different from x_{8} and not being a support. Suppose that there exists a diametrical path $X^{\prime \prime}=x_{1}^{\prime \prime} x_{2}^{\prime \prime} x_{3}^{\prime \prime} x_{4}^{\prime \prime} x_{5}^{\prime \prime} x_{6}^{\prime} x_{7} \ldots$. Since x_{6}^{\prime} is not a support, we can consider the path $X^{\prime \prime}$ instead of x and apply the argument of Case 1. If such a path does not exist, then, as is easy to see, the vertex x_{6}^{\prime} itself is the contact vertex of some extreme subgraph $W_{a^{\prime}, b^{\prime}}$. Hence there exists a path $X^{\prime \prime \prime}=x_{2}^{\prime \prime \prime} x_{3}^{\prime \prime \prime} x_{4}^{\prime \prime \prime} x_{5}^{\prime \prime \prime} x_{6}^{\prime} x_{7} \ldots$ containing $\operatorname{diam}(T)$ vertices. It is easy to check that the argument of Case 1 applies to the path $X^{\prime \prime \prime}$ (the role of x_{6} is played by the vertex x_{7}, which is not a support).

Case 4: the vertices x_{7} and x_{8} belong to the same element of the partition and $\operatorname{deg}\left(x_{7}\right)=2$. In this case, $N\left[x_{8}\right]=\left\{x_{7}, x_{8}, x_{9}\right\} \in \mathcal{S}(T)$. Let T_{6}^{\prime} denote the maximal (by inclusion) subtree of T containing the vertex x_{6} and not containing the vertex x_{7}. For $m \in\{7,8,9\}$, we denote by T_{m} the maximal (by inclusion) subtree of T containing the vertex x_{m} and not containing x_{m-1}.

Subcase 4, a: $\operatorname{deg}\left(x_{6}\right)=3$. The structure of the tree T is shown in Fig. 4.

Fig. 4. The structure of the tree T in Subcase 4, a.
We have

$$
\begin{gathered}
\partial_{M}(T)=\partial_{M}^{+}\left(T, x_{7}\right)+\partial_{M}^{+}\left(T, x_{8}\right)+\partial_{M}^{+}\left(T, x_{9}\right), \\
\partial_{M}^{+}\left(T, x_{7}\right)=\partial_{M}^{+}\left(T_{7}, x_{7}\right) \cdot \partial_{M}\left(T_{6}^{\prime}\right)=\partial_{M}^{+}\left(T_{7}, x_{7}\right) \cdot \partial_{M}\left(W_{3, b+1}\right), \\
\partial_{M}^{+}\left(T, x_{8}\right)=\partial_{M}^{+}\left(T_{7}, x_{8}\right) \cdot \partial_{M}\left(T_{6}^{\prime}\right)=\partial_{M}^{+}\left(T_{7}, x_{8}\right) \cdot \partial_{M}\left(W_{3, b+1}\right), \\
\partial_{M}^{+}\left(T, x_{9}\right)=\partial_{M}^{+}\left(T_{8}, x_{9}\right) \cdot \partial_{M}^{+}\left(T_{6}^{\prime}, x_{6}\right)=\partial_{M}^{+}\left(T_{8}, x_{9}\right) \cdot \widehat{\partial}_{M}\left(W_{3, b}\right) .
\end{gathered}
$$

Recall that

$$
\partial_{M}\left(W_{3, b}\right)=2^{3+b}+\left(2^{3}-1\right) 2^{b}+2^{3}\left(2^{b}-1\right), \quad \widehat{\partial}_{M}\left(W_{3, b}\right)=\partial_{M}\left(W_{3, b}\right)+2^{b}
$$

We remove the edge $x_{7} x_{8}$ from the tree T and replace the connected component containing x_{7} by the forest $(6+b) P_{2}$. Let us denote the forest thus obtained by F. We have

$$
\partial_{M}(F)=2^{6+b}\left(\partial_{M}^{+}\left(T_{8}, x_{8}\right)+\partial_{M}^{+}\left(T_{8}, x_{9}\right)\right)
$$

Moreover,

$$
\partial_{M}^{+}\left(T_{7}, x_{7}\right) \leq \partial_{M}^{+}\left(T_{7}, x_{8}\right)=\partial_{M}^{+}\left(T_{8}, x_{8}\right) \leq \partial_{M}^{+}\left(T_{8}, x_{9}\right)
$$

It is easy to check that the strict inequality $\partial_{M}(F)>\partial_{M}(T)$ holds. Thus, by Lemma 5 , the tree T is not 4-maximal. We have arrived at a contradiction.

Subcase $4, \mathrm{~b}: \operatorname{deg}\left(x_{6}\right)=4$. In this case, the vertex x_{6} is adjacent to a vertex x_{5}^{\prime} different from x_{5}, x_{6}, and l_{6}. Since the tree T is unsplittable, it follows that x_{5}^{\prime} is the contact vertex of a subgraph $W_{3, b^{\prime}}$, where $b^{\prime}=\operatorname{deg}\left(x_{5}^{\prime}\right)-2$. Therefore,

$$
\begin{aligned}
\partial_{M}(T) & =\partial_{M}^{+}\left(T, x_{7}\right)+\partial_{M}^{+}\left(T, x_{8}\right)+\partial_{M}^{+}\left(T, x_{9}\right) \\
\partial_{M}^{+}\left(T, x_{7}\right) & =\partial_{M}^{+}\left(T_{7}, x_{7}\right) \cdot \partial_{M}\left(T_{6}\right)=\partial_{M}^{+}\left(T_{7}, x_{7}\right) \cdot\left(\partial_{M}^{+}\left(T_{6}, l_{6}\right)+\partial_{M}^{+}\left(T_{6}, x_{6}\right)\right) \\
& =\partial_{M}^{+}\left(T_{7}, x_{7}\right) \cdot\left(\partial_{M}\left(W_{3, b}\right) \cdot \partial_{M}\left(W_{3, b^{\prime}}\right)+\widehat{\partial}_{M}\left(W_{3, b}\right) \cdot \widehat{\partial}_{M}\left(W_{3, b^{\prime}}\right)\right) \\
\partial_{M}^{+}\left(T, x_{8}\right) & =\partial_{M}^{+}\left(T_{7}, x_{8}\right) \cdot\left(\partial_{M}\left(W_{3, b}\right) \cdot \partial_{M}\left(W_{3, b^{\prime}}\right)+\widehat{\partial}_{M}\left(W_{3, b}\right) \cdot \widehat{\partial}_{M}\left(W_{3, b^{\prime}}\right)\right) \\
\partial_{M}^{+}\left(T, x_{9}\right) & =\partial_{M}^{+}\left(T_{8}, x_{9}\right) \cdot \partial_{M}^{+}\left(T_{6}, x_{6}\right)=\partial_{M}^{+}\left(T_{8}, x_{9}\right) \cdot \widehat{\partial}_{M}\left(W_{3, b}\right) \cdot \widehat{\partial}_{M}\left(W_{3, b^{\prime}}\right)
\end{aligned}
$$

Let us delete the vertices x_{6} and l_{6} from the tree. In the forest thus obtained, we replace the connected components containing the vertices x_{5} and x_{5}^{\prime} by the forest $\left(7+b+b^{\prime}\right) P_{2}$. Moreover, to the vertex x_{7} we attach three supports of degree 2 . We denote the connected component containing x_{7} in the resulting n-vertex forest F by T^{\prime}.

We have

$$
\begin{gathered}
\partial_{M}(F)=2^{7+b+b^{\prime}}\left(\partial_{M}^{+}\left(T^{\prime}, x_{7}\right)+\partial_{M}^{+}\left(T^{\prime}, x_{8}\right)+\partial_{M}^{+}\left(T^{\prime}, x_{9}\right)\right) \\
\partial_{M}\left(T^{\prime}, x_{7}\right)=8 \cdot \partial_{M}^{+}\left(T_{7}, x_{7}\right), \partial_{M}\left(T^{\prime}, x_{8}\right)=8 \cdot \partial_{M}^{+}\left(T_{7}, x_{8}\right), \partial_{M}\left(T^{\prime}, x_{9}\right)=7 \cdot \partial_{M}^{+}\left(T_{8}, x_{9}\right)
\end{gathered}
$$

It is easy to check that $\partial_{M}(F)>\partial_{M}(T)$ for any $b, b^{\prime} \in\{0,1,2\}$. By Lemma 5 , the tree T is not 4 -maximal. This contradiction proves the theorem.

5. BOUNDS FOR THE MAXIMUM POSSIBLE NUMBER OF MDS IN n-VERTEX TREES

5.1. A Lower Bound

Recall that the 19 -vertex tree $W_{4,4}$ is obtained by attaching four supports of degree 2 to each endvertex of the path P_{3} (see Fig. 5). For this tree, the inequality $\partial_{M}\left(W_{4,4}\right)=736>(\sqrt{2})^{19}$ holds. We set $\theta=736^{1 / 19}=1.415 \ldots$.

Fig. 5. The tree $W_{4,4}$.

Theorem 2. For any $n \geq 1$, there exists an n-vertex tree T_{n} such that

$$
\Delta(T) \leq 5, \quad \partial\left(T_{n}\right)>\frac{1}{3} \cdot 1.415^{n}
$$

Proof. First, we show that the theorem is true for $n=19 k$. Let us arbitrarily join supports of degree 2 from different connected components in the forest $k W_{4,4}$ until we obtain a tree $T_{19 k}$. It follows from the proof of Lemma 5 that $\Delta\left(T_{n}\right)=5$ and

$$
\partial_{M}\left(T_{19 k}\right)=\partial_{M}\left(k W_{4,4}\right)=\theta^{n}>\frac{1}{3} \cdot 1.415^{n}
$$

Now suppose that $n=19 k+r$, where $k \geq 0$ and $1 \leq r<19$. If r is even, then we set

$$
F_{n}=k W_{5,5} \cup \frac{r}{2} P_{2} .
$$

If r is odd and $k=0$, then we set

$$
F_{n}=P_{r} \quad \text { for } r<7, \quad F_{n}=P_{7} \cup \frac{r-7}{2} P_{2} \quad \text { for } r \geq 7
$$

Finally, if r is odd and $k>0$, then we set

$$
F_{n}=(k-1) W_{5,5} \cup\left(10+\frac{r-1}{2}\right) P_{2}
$$

Let us arbitrarily join supports of degree at most 2 from different connected components of F_{n} until we obtain a tree T_{n}. It follows from the proof of Lemma 5 that $\Delta\left(T_{n}\right) \leq 5$ and $\partial_{M}\left(T_{n}\right)=\partial_{M}\left(F_{n}\right)$. It is easy to check that $\partial_{M}\left(T_{n}\right)>(1 / 3) \cdot \theta^{n}$ for all $n<19$. Note that $(\sqrt{2})^{p} / \theta^{p}>1 / 3$ for all integer p in the interval $[1,36]$. Therefore, as is easy to see, for all integer $n=19 k+r \geq 19$ we have

$$
\frac{\partial_{M}\left(T_{n}\right)}{\theta^{n}} \geq \frac{\theta^{19(k-1)} \cdot(\sqrt{2})^{19+r}}{\theta^{19 k+r}}>\frac{1}{3}
$$

whence

$$
\partial_{M}\left(T_{n}\right)>\frac{1}{3} \cdot 1.415^{n}
$$

This completes the proof of the theorem.

5.2. An Upper Bound

Apparently, maximal trees have complex structure, which is hard to describe. Using the notion of an \mathcal{S}-partition, we obtain a nontrivial upper bound for the number of MDS in an n-vertex tree.

Lemma 8. Let T be a maximal n-vertex tree containing no idle vertices. Then each element of the partition $\mathcal{S}(T)$ contains at most three vertices.

Proof. Suppose that, for some maximal tree T, there exists an element $S^{\prime} \in \mathcal{S}(T)$ containing $k>3$ vertices. If $k \in\{4,5\}$, then we apply the argument of Lemma 7 . Suppose that $k=2 p+\delta$, where $p \geq 3$ and $\delta \in\{0,1\}$. In this case, there exist vertices $w, w_{1}, \ldots, w_{k-1}$ such that

$$
\left\{w, w_{1}, \ldots, w_{k-1}\right\}=N[w] \in \mathcal{S}(T)
$$

For each $1 \leq i \leq k-1$, we define subgraphs T_{i}, T_{i}^{\prime}, and F_{i} and quantities A_{i}, A_{i}^{+}, and A_{i}^{-}in the same way as in Lemma 7. Recall that $A_{i}^{-}<A_{i} \leq A_{i}^{+}$.

We introduce the notation

$$
\begin{aligned}
& A_{*}=\prod_{i=1}^{k-1} A_{i}, \quad A_{*}^{+}=\prod_{i=1}^{k-1} A_{i}^{+}, \quad A_{*}^{-}=\prod_{i=1}^{k-1} A_{i}^{-} \\
& A_{\mathrm{I}}^{+}=\prod_{i=1}^{p} A_{i}^{+} \cdot \prod_{j=p+1}^{k-1} A_{j}, \quad A_{\mathrm{II}}^{+}=\prod_{i=1}^{p} A_{i} \cdot \prod_{j=p+1}^{k-1} A_{j}^{+}
\end{aligned}
$$

Note that $\partial_{M}(T)=A_{*}+A_{*}^{-} \cdot \sum_{i=1}^{k-1}\left(A_{i}^{+} / A_{i}^{-}\right)$. Moreover, for any positive integer s such that $s \leq p$ we have $A_{*}^{-} \cdot A_{s}^{+} / A_{s}^{-}<A_{\mathrm{I}}^{+}$. If $p<s \leq k-1$, then $A_{*}^{-} \cdot A_{s}^{+} / A_{s}^{-}<A_{\mathrm{II}}^{+}$. Finally, for each $1 \leq s \leq k-1$ we have $A_{*}^{-} \cdot A_{s}^{+} / A_{s}^{-}<A_{*}^{+}$.

The case of $\delta=1$. Consider the forest $F^{\prime}=(p-2) P_{2} \cup T_{\mathrm{I}}^{\prime} \cup T_{\mathrm{II}}^{\prime}$, in which the component T_{I}^{\prime} is obtained by attaching forests F_{1}, \ldots, F_{p} to the end vertex of the path P_{2} (here and in what follows, we assume that a vertex w_{i} of the path is joined to those vertices of the forest F_{i} which were adjacent to w_{i} in tree T and no other vertices) and the component T_{II}^{\prime} is obtained by attaching forests $F_{p+1}, \ldots, F_{2 p}$ to the end of the path P_{2}. We have

$$
\partial_{M}\left(F^{\prime}\right)=2^{p-2}\left(A_{*}+A_{\mathrm{I}}^{+}+A_{\mathrm{II}}^{+}+A_{*}^{+}\right)
$$

It is easy to check that $\partial_{M}(T)<\partial_{M}\left(F^{\prime}\right)$. By Lemma 5 , the tree T is not maximal, which contradicts the assumption.

The case of $\delta=0$. Consider the forest $F^{\prime \prime}=(p-3) P_{2} \cup T^{\prime \prime}$ in which the component $T^{\prime \prime}$ is obtained by attaching forests F_{1}, \ldots, F_{p} to one of the supports in the path P_{7} and forests $F_{p+1}, \ldots, F_{2 p-1}$ to the other supports in this path. We have

$$
\partial_{M}\left(F^{\prime \prime}\right)=2^{p-3}\left(A_{*}+2 A_{\mathrm{I}}^{+}+2 A_{\mathrm{II}}^{+}+3 A_{*}^{+}\right), \quad \partial_{M}(T)<\partial_{M}\left(F^{\prime \prime}\right)
$$

By Lemma 5 , the tree T is not maximal, which contradicts the assumption.
Theorem 3. For any n-vertex tree T,

$$
\partial_{M}(T)<1.4205^{n}
$$

Proof. Obviously, the theorem is true for $n<6$. Suppose that $n \geq 6$ and there exist n-vertex trees containing at least 1.4205^{n} MDS. Choose a tree T with the least number of vertices among them (we can assume that T is maximal). By Corollary $1, T$ is unsplittable and contains no idle vertices. Hence, by Lemma 6 , there exists a unique \mathcal{S}-partition $\mathcal{S}(T)$, and by Lemma 8 , each element of this partition contains two or three vertices. Consider a diametrical path $X=x_{1} x_{2} x_{3} x_{4} x_{5} \ldots$ in T. Since T is unsplittable, it follows that $\left\{x_{3}, x_{4}, x_{5}\right\}=N\left[x_{4}\right] \in \mathcal{S}(T), \operatorname{deg}\left(x_{4}\right)=2$, and the vertices x_{3} and x_{5} are adjacent to $a=\operatorname{deg}\left(x_{3}\right)-1$ and $b=\operatorname{deg}\left(x_{5}\right)-2$ supports of degree 2 , respectively. Let T^{\prime} denote the tree obtained from T by deleting all supports of degree 2 adjacent to vertices x_{3} and x_{5}, all leaves adjacent to them, and the vertex x_{3}. By assumption, $\partial_{M}\left(T^{\prime}\right)<1.4205^{\left|V\left(T^{\prime}\right)\right|}$, whence

$$
\partial_{M}(T)>1.4205^{2 a+2 b+1} \cdot \partial_{M}\left(T^{\prime}\right)
$$

Moreover,

$$
\begin{aligned}
\partial_{M}(T) & =\partial_{M}^{+}\left(T, x_{3}\right)+\partial_{M}^{+}\left(T, x_{4}\right)+\partial_{M}^{+}\left(T, x_{5}\right) \leq 2 \partial_{M}^{+}\left(T, x_{4}\right)+\partial_{M}^{+}\left(T, x_{5}\right) \\
& =2^{a+b+1} \cdot \partial_{M}^{+}\left(T^{\prime}, x_{4}\right)+\left(2^{a}-1\right) \cdot 2^{b} \cdot \partial_{M}^{+}\left(T^{\prime}, x_{5}\right), \\
\partial_{M}\left(T^{\prime}\right) & =\partial_{M}^{+}\left(T^{\prime}, x_{4}\right)+\partial_{M}^{+}\left(T^{\prime}, x_{5}\right) .
\end{aligned}
$$

Let us show that

$$
2^{a+b+1} \cdot \partial_{M}^{+}\left(T^{\prime}, x_{4}\right)+\left(2^{a}-1\right) \cdot 2^{b} \cdot \partial_{M}^{+}\left(T^{\prime}, x_{5}\right)<1.4205^{2 a+2 b+1}\left(\partial_{M}^{+}\left(T^{\prime}, x_{4}\right)+\partial_{M}^{+}\left(T^{\prime}, x_{5}\right)\right)
$$

Obviously, for any $a, b \geq 0$ we have $1.4205^{2 a+2 b+1}>\left(2^{a}-1\right) 2^{b}$. Moreover, since the vertex x_{4} of the tree T^{\prime} is a leaf, it follows that $\partial_{M}^{+}\left(T^{\prime}, x_{4}\right) \leq \partial_{M}^{+}\left(T^{\prime}, x_{5}\right)$. Thus, it suffices to consider the case where $\partial_{M}^{+}\left(T^{\prime}, x_{4}\right)=\partial_{M}^{+}\left(T^{\prime}, x_{5}\right)$. Let us show that

$$
2^{a+b+1}+2^{a+b}-2^{b}<2 \cdot 1.4205^{2 a+2 b+1}
$$

We divide both sides of the inequality by 2 and consider the function

$$
f(x, y)=1.4205^{2 x+2 y+1}-3 \cdot 2^{x+y-1}+2^{y-1}
$$

It is easy to check that $\min _{x, y \geq 0} f(x, y)>0$, whence

$$
\partial_{M}(T)<1.4205^{2 a+2 b+1} \cdot \partial_{M}\left(T^{\prime}\right)
$$

This contradiction shows that there exist no n-vertex trees containing at least 1.4205^{n} MDS, which completes the proof of the theorem.

FUNDING

This work was supported by the Russian Science Foundation under grant 21-11-00194.

REFERENCES

1. A. E. Brouwer, The Number of Dominating Sets of a Finite Graph is Odd, arXiv:http://www.win. tue.nl/~aeb/Preprints/domin2.pdf (2009).
2. D. Bród and Z. Skupien, "Trees with extremal numbers of dominating sets," Australas. J. Combin. 35, 273-290 (2006).
3. S. Wagner, "A note on the number of dominating sets of a graph," Util. Math. 92, 25-31 (2013).
4. D. S. Taletskii, "Trees with extremal numbers of k-dominating sets," Discrete Math. 345 (1) (2022).
5. G. Gunther, B. Hartnell, L. R. Markus and D. Rall, "Graphs with unique minimum dominating sets," in Proceedings of the Twenty-Fifth Southeastern International Conference on Combinatorics, Graph Theory and Computing, Congr. Numer., Boca Raton, FL, 1994 (1994), Vol. 101, pp. 55-63.
6. A. Bień, "Properties of gamma graphs of trees," in Presentation at the 17th Workshop on Graph Theory Colourings, Independence and Domination (CID 2017) (Piechowice, Poland).
7. J. Alvarado, S. Dantas, E. Mohr and D. Rautenbach, "On the maximum number of minimum dominating sets in forests," Discrete Math. 342 (4), 934-942 (2018).

[^0]: *E-mail: dmitalmail@gmail.com

