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Abstract—The class of trees in which the degree of each vertex does not exceed an integer d is
considered. It is shown that, for d = 4, each n-vertex tree in this class contains at most (

√
2)n

minimum dominating sets (MDS), and the structure of trees containing precisely (
√
2)n MDS is

described. On the other hand, for d = 5, an n-vertex tree containing more than (1/3) · 1.415n MDS
is constructed for each n ≥ 1. It is shown that each n-vertex tree contains fewer than 1.4205n MDS.
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1. INTRODUCTION

A dominating set in a graph is a subset D of its vertices such that any vertex not belonging to D
is adjacent to at least one vertex in D. A dominating set is said to be minimum if it is of minimum
cardinality. The domination number γ(G) of a graph G is defined to be the cardinality of its minimum
dominating set. We use the abbreviations “DS” and “MDS” for “dominating set” and “minimum
dominating set,” respectively.

It is known that any graph contains an odd number of DS [1]. In 2006, Bród and Skupień [2] described
trees containing the maximum and the minimum number of DS in the class of all n-vertex trees. The
star Sn is the unique n-vertex tree containing the maximum possible number of DS. However, there exist
exponentially many n-vertex trees containing the minimum possible number of DS. Later, Wagner [3]
generalized this result to some other classes of graphs. In the 2022 paper [4], for all k ≥ 2, the structure
of trees containing the maximum and the minimum number of k-DS (that is, subsets Dk of tree vertices
such that each vertex not belonging to Dk is adjacent to at least k vertices in Dk) was described.

To date, relatively few estimates of the number of MDS in trees and forests are known. In [5], three
equivalent conditions under which a tree contains a unique MDS were given. The question of whether
a tree with domination number γ can contain more than 2γ MDS remained open until 2017, when Bień
gave an example of such a tree in [6]. On the other hand, in [7], Alvarado et al. proved that a forest with
domination number γ contains at most 2.4606γ MDS.

In this paper, we obtain new bounds for the maximum possible number of MDS in an n-vertex tree.
We show that if the maximum degree d of a vertex in a tree is at most 4, then the tree contains at most
(
√
2)n MDS. Interestingly, this is false already for d = 5. For any n ≥ 1, we give an example of a tree Tn

containing more than (1/3) · 1.415n MDS. Moreover, we prove that each n-vertex tree contains fewer
than 1.4205n MDS.
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2. DEFINITIONS AND NOTATION

As usual, we denote the vertex and edge sets of a simple undirected graph G by V (G) and E(G),
respectively. Given a vertex v ∈ V (G), by degG(v) we denote its degree and by NG[v], its closed
neighborhood, i.e., the set consisting of this vertex and all vertices adjacent to it. In the case where
the choice of a graph G is clear from the context, we denote the degree and the closed neighborhood of a
vertex v by deg(v) and N [v], respectively. We use Δ(G) to denote the maximum degree of a vertex in a
graph G.

A tree is a connected graph without cycles. A vertex of degree 1 in a tree is called a leaf. We refer
to a vertex as a support vertex or a support if it is adjacent to at least one leaf. Attaching a support
of degree 2 to a vertex v in a tree is inserting vertices u1 and u2 and the edges u1u2 and u2v in this
tree. We say that a tree is splittable if it is possible to delete an edge from this tree so that the number
of MDS in the resulting forest remains the same; otherwise, the tree is said to be unsplittable. The
diameter diam(T ) of a tree T equals the longest possible distance between its vertices. A simple path
X = x1x2x3 . . . in a tree T is said to be diametrical if it consists of diam(T ) + 1 pairwise distinct
vertices. Obviously, the end vertices of each diametrical path in a tree are leaves.

Let ∂M (G) denote the number of MDS in a graph G. By ∂+
M (G, v) (by ∂−

M (G, v)) we denote the
number of those MDS in G which contain (respectively, do not contain) the vertex v. We say that a
vertex v in a graph G is universal if ∂+

M (G, v) = ∂M (G) and idle if ∂−
M (G, v) = ∂M (G).

Let D be an MDS in a tree T . By φ(D) we denote the set obtained by replacing all leaves of T in D
by supports adjacent to them. It is easy to see that the set φ(D) is determined uniquely and is an MDS
as well.

We use Wa,b to denote the tree obtained from a path (v1, v2, v3) by attaching a ≥ 0 supports of
degree 2 to the vertex v1 and b ≥ 0 supports of degree 2 to the vertex v3. It is easy to check that

∂M (Wa,b) = ∂+
M (Wa,b, v1) + ∂+

M (Wa,b, v2) + ∂+
M (Wa,b, v3) = 2a(2b − 1) + 2a+b + 2b(2a − 1).

Suppose that a tree T contains a subtree Wa,b, where a ≥ 1 and b ≥ 0. We say that this subtree is
extreme if its vertex adjacent to b supports of degree 2 is the only vertex adjacent to other vertices of T
(an example is shown in Fig. 1). We refer to this vertex as the contact vertex of the extreme subtree.

Fig. 1. An example of a tree with two extreme subtrees W3,2 and W2,0.

We say that a set D dominates a vertex v in a tree T if

N [v] ∩D �= ∅.

By ̂∂M (Wa,b) we denote the number of sets of cardinality γ(Wa,b) in a subtree Wa,b which dominate all
vertices of this subtree, except, possibly, a contact vertex. It is easy to see that

̂∂M (Wa,b) = ∂M (Wa,b) + 2a.

Obviously,

∂M (W3,b)

̂∂M (W3,b)
≥ ∂M (W3,0)

̂∂M (W3,0)
=

15

23
.

We say that an n-vertex tree is maximal if it contains the maximum possible number of MDS among
all n-vertex trees. Similarly, we say that an n-vertex tree is k-maximal (where k ≥ 2) if it contains the
maximum possible number of MDS among all trees in which the degrees of all vertices are at most k.
Note that if a tree T is not Δ(T )-maximal then it is not maximal, but the converse is generally false.
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3. PRELIMINARY RESULTS

3.1. Universal, Idle, and Support Vertices

Lemma 1. If a tree T contains a vertex v adjacent to at least two leaves u1 and u2, then the
vertex v is universal and the leaves u1 and u2 are idle.

Proof. Suppose that the vertex v is not universal. Then there exists a MDS D not containing v.
Therefore, u1, u2 ∈ D. Consider the set D′ = (D ∪ {v}) \ {u1, u2}. Obviously, if D is dominating in T ,
then so is D′; therefore, D is not a minimum dominating set. This contradiction shows that the vertex v
is universal, and hence the leaves u1 and u2 are idle.

Lemma 2. For any tree T and any vertex v of T which is not a leaf or a support, the following
assertions hold:

(1) If all neighbors of v are supports, then the vertex v is idle.
(2) If all neighbors of v except w are supports and the vertex w is adjacent to at least one

support, then the vertex v is idle.

Proof. Let us prove the first assertion of the lemma; the proof of the second is similar. Suppose that the
vertex v is not idle; then there exists an MDS D containing v. Consider the set φ(D), which is also an
MDS in T . This set contains the vertex v and all vertices adjacent to it. Obviously, the set φ(D) \ {v} is
dominating in T and its cardinality is smaller than that of D. This contradiction shows that the vertex v
is idle, as required.

Lemma 3. If a tree T contains at least one universal or idle vertex, then there exists a forest F
such that

|V (F )| ≤ |V (T )|, Δ(F ) ≤ Δ(T ), ∂M (F ) > ∂M (T ).

Proof. Suppose that a tree T contains a universal vertex v. Obviously, deg(v) ≥ 2. Let us show that, in
this case, v is adjacent to at least two idle vertices. Suppose that this is not the case. Let w1, w2, . . . , wk
be the neighbors of v. Suppose that all of them, except possibly w1, are not idle. Then there exists at least
one MDS D containing the vertex v and the vertices w2, . . . , wk. Obviously, D′ = (D \ {v}) ∪ {w1} is
also an MDS, so that the vertex w1 is not idle. This contradiction proves that the vertex v is adjacent to
at least two idle vertices w′

1, w
′
2, . . . , w

′
m. Let us delete the vertices w′

2, . . . , w
′
m and all edges incident to

them from T and denote the forest thus obtained by F . Obviously,

|V (F )| < |V (T )|, Δ(F ) ≤ Δ(T ).

Moreover, each MDS of the tree T is an MDS of the forest F , whence ∂M (T ) ≤ ∂M (F ). Consider an
MDS D′ of the forest T containing all vertices of the set N [v] \ {w′

1, . . . , w
′
k}. It is easy to see that the

set (D′ \ {v}) ∪ {w′
1} is an MDS for F , which implies ∂M (F ) > ∂M (T ), as required.

Now suppose that a tree T having no universal vertices contains an idle vertex u. Since T has no
universal vertices, it follows that u is adjacent to at least two vertices u1, . . . , uk that are not idle. For
each 1 ≤ i ≤ k, let Ti denote the maximal (by inclusion) subtree containing ui and not containing u,
and let F0 denote the maximal (by inclusion) forest not containing u and the vertices of the subtrees
T1, . . . , Tk . Note that if the forest F0 is nonempty, then each of its connected components contains
precisely one idle vertex adjacent to u in the tree T . Let F denote the three T from which the vertex u
is deleted. Obviously, Δ(F ) ≤ Δ(T ). It is easy to see that γ(T ) = γ(F ). Indeed, since the vertex u is
idle in T , it follows that γ(T ) ≥ γ(F ). But if γ(T ) > γ(F ), then, for any MDS D of the forest F , the set
D ∪ {u} is an MDS in T , so that the vertex u is not idle. This contradiction shows that

∂M (F ) = ∂M (F0) ·
k
∏

i=1

∂M (Ti), ∂M (T ) = ∂M (F0) ·
( k
∏

i=1

∂M (Ti)−
k
∏

i=1

∂−
M (Ti, ui)

)

.

Note that, for any 1 ≤ i ≤ k, the vertex ui is not universal in Ti (otherwise, it would be universal in T ,
which contradicts the assumption). Thus,

∏k
i=1 ∂

−
M (Ti, ui) > 0, whence ∂M (F ) > ∂M (T ), as required.
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Lemma 4. If a tree T contains adjacent support vertices v1 and v2, then ∂M (T ) = ∂M (T − v1v2).

Proof. Let us denote by Nl[v1] (by Nl[v2]) the set consisting of the vertex v1 (respectively, v2) and all
leaves adjacent to it, and let F denote the forest obtained from T by deleting the edge v1v2. It is easy
to see that, both in the tree T and in the forest F , each MDS contains precisely one vertex from each
of the sets Nl[v1] and Nl[v2]; thus, each MDS of the tree T is an MDS of the forest F , and vice versa.
Therefore, ∂M (F ) = ∂M (T ), as required.

Lemma 5. Let T be an n-vertex tree. If there exists an n-vertex forest F without isolated vertices
such that

∂M (F ) > ∂M (T ), Δ(F ) ≤ Δ(T ),

then the tree T is not Δ(T )-maximal.

Proof. Let us show that if such a forest F exists, then there exists an n-vertex tree T ′ such that
Δ(T ′) ≤ max(3,Δ(F )) and ∂M (T ′) > ∂M (T ). If F is a tree, then we set T ′ = F . Suppose that F
contains at least two connected components T1 and T2 each of which contains at least two vertices. Note
that each tree with at least two vertices contains either a support vertex of degree at most 2 or a support
vertex adjacent to at least two leaves (for example, such are the penultimate vertices of a diametrical path
in the tree). Let us show that, in each of the following three cases, the connected components T1 and T2

can be joined in such a way that the number of MDS in the resulting tree T1,2 is not smaller than in the
initial forest T1 ∪ T2.

Case 1. Each of the components T1 and T2 contains at least one support vertex of degree at most 2
(we assume that the path P2 consists of two support vertices of degree 1). We choose such support
vertices u ∈ V (T1) and v ∈ V (T2) and draw an edge uv. By the preceding lemma, adding this edge does
not affect the number of MDS. Moreover, as is easy to see, we have

Δ(T1,2) ≤ max(3,Δ(T1),Δ(T2)).

Case 2. The trees T1 and T2 contain vertices u and v each of which is adjacent to at least two
leaves. We choose leaves u′ and v′ adjacent to the vertices u and v, respectively, and draw an edge u′v′.
Obviously, Δ(T1,2) = max(Δ(T1),Δ(T2)). By Lemma 2, the vertices u′ and v′ are idle in the tree T1,2.
Thus,

∂M (T1,2) = ∂M (T1 ∪ T2),

as desired.
Case 3. One of the subtrees (let it be T1) contains a support u of degree at most 2, and the other

subtree contains a support v adjacent to at least two leaves v′ and v′′. Let us draw an edge uv′ and
show that ∂M (T1,2) ≥ ∂M (T1 ∪ T2). By Lemma 2, the vertex v′ is idle in the tree T1,2. By Lemma 1, the
vertex v is universal in the forest T1 ∪ T2. Therefore, ∂M (T1,2) ≥ ∂+

M (T1,2, v) = ∂M (T1 ∪ T2), as desired.

Thus, replacing the forest T1 ∪ T2 by the tree T1,2, we have turned the forest F into a forest F1

containing one connected component fewer than F ; moreover, ∂M (F1) ≥ ∂M (F ). If F1 is a tree, then
we set T ′ = F1. Otherwise, we will repeat the procedute until we obtain a tree Fk; then we set T ′ = Fk.
Since Δ(Fk) ≤ Δ(T ) and ∂M (Fk) > ∂M (T ), it follows that the condition in the lemma is satisfied.

Corollary 1. For any n-vertex tree T , the following assertions hold:

(1) If T contains at least one universal or idle vertex, then there exists an n′-vertex tree T ′ such
that n′ < n, Δ(T ′) ≤ Δ(T ), and ∂M (T ′)1/n

′
> ∂M (T )1/n.

(2) If T is splittable, then there exists an n′-vertex tree T ′ such that n′ < n, Δ(T ′) ≤ Δ(T ), and
∂M (T ′)1/n

′ ≥ ∂M (T )1/n.

Proof. The first assertion readily follows from Lemmas 3 and 5. The second one is an obvious
consequence of the definition of a splittable tree.
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3.2. An S-Partition of a Tree

The following structural lemma plays the key role in obtaining upper bounds for the number of MDS
in 4-maximal and maximal trees.

Lemma 6. If a tree T contains no idle vertices, then there exists a unique partition S(T ) of the set
V (T ) into disjoint subsets with the following properties:

(1) γ(T ) = |S(T )|, and any MDS of the tree T contains precisely one vertex in each element of
the partition S(T );

(2) for any element S′ ∈ S(T ), there exists a vertex v′ ∈ V (T ) such that N [v′] = S′.

Proof. We prove the lemma by induction on the number n of vertices. The base case n ≤ 5 is obvious.
Let us show that the lemma is true for n ≥ 6 and diam(T ) ≤ 4. If all nonleaf vertices of T are supports,
then each support is adjacent to precisely one leaf (otherwise, the tree contains idle leaves) and each
element of S(T ) consists of a support and a leaf adjacent to it. It is easy to see that such a partition
satisfies the assumptions of the lemma and is unique. If T contains a vertex v which is not a leaf or a
support, then, as is easy to see, such a vertex is unique and all of its neighbors are supports. Thus, by
Lemma 2, the vertex v is idle, which contradicts the assumption.

Now suppose that n ≥ 6 and diam(T ) ≥ 5. Let X = x1x2x3x4x5 . . . be a diametrical path in T . Note
that deg(x2) = 2. Indeed, otherwise the vertex x2 is adjacent to at least two leaf vertices; they are idle by
Lemma 1, which contradicts the assumption. Depending on deg(x3), deg(x4), and deg(x5), there are
the following possible cases.

Case 1: deg(x3) ≥ 3. In this case, the vertex x3 is either support or adjacent to at least one support
vertex x′2 different from x2 and x4. Let us delete the vertices x1 and x2 from T , denote the resulting tree
by T1, and show that if T does not contain idle vertices, then neither does T1.

Subcase 1, a: the vertex x3 is a support in T1. In this case, for any MDS D of the tree T , the set
D \ {x1, x2} is an MDS of the tree T1. Therefore, T1 contains no idle vertices.

Subcase 1 b: the vertex x3 is not a support. Then it is adjacent to at least one support vertex x′2
different from x2 and x4. Since T contains no idle vertices and the path X is diametrical, it follows
that deg(x′2) = 2. Suppose that a vertex x′ ∈ V (T1) different from x′1 and x′2 is idle in T1 (note at once
that the vertex x′2 is a support in T1 and therefore cannot be idle). Then there exists an MDS D in T
which contains the vertices x2, x′2, and x′. Thus, the set D \ {x2} is an MDS for the tree T1, and the
vertex x′ is not idle in T1. We have obtained a contradiction. Now suppose that the vertex x′1 is idle in T1.
Since the tree T contains no idle vertices, it follows that the vertex x3 is contained in some MDS D3

of T . Obviously, the set D3 \ {x1, x2} is an MDS for the tree T1. If D3 contains x′1, then x′1 is not idle
in T1, which contradicts the assumption. If D3 does not contain x′1, then the set (D3 ∪ {x′1}) \ {x′2}
contains x′1 and is an MDS for T1, and hence the vertex x′1 is not idle in T1. We have again obtained a
contradiction.

Thus, the tree T1 contains no idle vertices, and, by the induction hypothesis, there exists a unique
partition S(T1) of T1 satisfying the conditions in the lemma. It is easy to see that the partition
S(T ) = S(T1) ∪ {{x1, x2}} satisfies these conditions as well and is unique for T , as required.

Case 2: deg(x3) = 2 and deg(x4) ≥ 3. The following subcases are possible.
Subcase 2, a: the vertex x4 is a support. By Lemma 2, the vertex x3 is idle, which contradicts the

assumption.
Subcase 2, b: the vertex x4 is adjacent to at least one support x′3 different from the vertices x3 and

x5. By Lemma 2, the vertex x3 is idle, which contradicts the assumption.
Subcase 2, c: the vertex x4 is adjacent to some vertices w1, w2, . . . , ws different from x3 and x5 and

not being supports (here s ≥ 1). Since the path X is diametrical and T contains no idle vertices, it
follows that all neighbors of the vertices w1, w2, . . . , ws different from x4 are supports of degree 2. We
delete the vertices x1, x2, and x3 from T and denote the resulting tree by T2. Let us show that if T
does not contain idle vertices, then neither does T2. Suppose that, on the contrary, T2 contains an idle
vertex x′. Then there exists an MDS D of T containing x′. Obviously, the set D′ = (D \ {x1}) ∪ {x2} is
an MDS of T as well. Moreover, D′ cannot contain both vertices x3 and x4. If D′ contains x3, then we
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consider the set D′′ = (D′ \ {x3}) ∪ {x4}; otherwise, we set D′′ = D′. Obviously, D′′ is an MDS for T .
Therefore, D′′ \ {x2} is an MDS for T2 and contains x′. We have obtained a contradiction.

Thus, the tree T2 contains no idle vertices. Therefore, by the induction hypothesis, there exists a
unique partition S(T2) of T2 satisfying the conditions in the lemma. Let us show that

NT2 [x4] = {x4, x5, w1, . . . , ws} ∈ S(T2).

Recall that all neighbors of the vertices w1, w2, . . . , ws different from x4 are supports of degree 2. It is
easy to see that each MDS of T2 contains at most one vertex in the set NT2 [x4]. Indeed, suppose that
there exists an MDS D containing at least two vertices inNT2 [x4]. Then the set (φ(D) \NT2 [x4])∪{x5}
is dominating in T2, which contradicts the minimality of D. Therefore, each MDS of T2 contains
precisely one vertex from the set NT2 [x4], and, by assumption, each vertex in NT2 [x4] is not idle, as
required.

Consider the partition

S(T ) = (S(T2) \ {NT2 [x4]}) ∪ {{x1, x2}, NT [x4]}.

Obviously, this is a unique partition satisfying the conditions in the lemma for the tree T , as required.
Case 3: deg(x3) = deg(x4) = 2, deg(x5) ≥ 3. The following subcases are possible.
Subcase 3, a: the vertex x5 is a support. By Lemma 2, the vertices x3 and x4 are idle, which

contradicts the assumption.
Subcase 3, b: there exists a vertex u adjacent to x5 and to deg(u)− 1 leaves. In this case, deg(u) = 2,

because the tree has no idle vertices. Consider the tree T3 obtained from T by deleting the vertex u and a
leaf u′ adjacent to it. Let us show that if T does not contain idle vertices, then neither does T3. Suppose
that, on the contrary, there exists a vertex v′ which is idle in T3 and not idle in T . It is easy to see that,
both in T3 and in T , each MDS contains precisely two vertices from the set X5 = {x1, x2, x3, x4, x5}.
Suppose that x′ /∈ X5. Then there exists an MDS D′ in the tree T which contains the vertices x2, x5,
and x′. It is easy to see that the set D′ \ {u, u′} contains the vertex x′ and is an MDS for the tree T3.
We have obtained a contradiction. Now suppose that there exists a vertex x′ ∈ X5 which is idle in T3.
Then there exists an MDS D′′ in T which contains the vertices x6 and x′ (indeed, if each MDS of T
containing x6 does not contain x′, then the vertex x′ is idle, which is impossible). It is easy to see that
the set D′′ \ {u, u′} contains x′ and is an MDS in T3. We have again obtained a contradiction.

Thus, T3 contains no idle vertices and, by the induction hypothesis, there exists a unique partition
S(T3). The partition S(T3) ∪ {{u, u′}} is unique in T , as required.

Subcase 3, c: there exists a path (u1, u2, u3, x5) such that the vertex u1 is a leaf, the vertex u2 is
adjacent to deg(u2)− 1 leaves, and the vertex u3 is different from x4 and x6 and all of its neighbors
different from x5 are either leaves or supports. If u3 is a support, then we argue as in Subcase 1, a. Let
us prove that if u3 is not a support, then it is idle in T . It suffices to show that each MDS in the tree
contains at most one vertex in the set {x3, x4, x5, u3}. Suppose that there exists an MDS D containing
at least two vertices in this set. It is easy to see that D′ = (φ(D) \ {x3, x4, x5, u3}) ∪ {x5} is an MDS
and |D′| < |φ(D)| = |D|; this is a contradiction. On the other hand, each MDS of the tree T must
contain at least one vertex in the closed neighborhood N [x4], which does not contain u3. Thus, the
vertex u3 is idle, which contradicts the assumption of the lemma.

Subcase 3, d: there exists a path (w1, w2, w3, w4, x5) such that the vertex w4 is different from the
vertices x4 and x6. If, moreover, max(deg(w2),deg(w3),deg(w4)) > 2, then we rename the vertices
and argue as in Cases 1 and 2. If deg(w2) = deg(w3) = deg(w4) = 2, then, clearly, the vertices in the
set {x3, x4, w3, w4} are idle in T . Indeed, each MDS of T must contain at least one vertex from the
neighborhoods N [x4] and N [u4]. On the other hand, according to the considerations in the previous
subcase, each MDS contains at most one vertex in the set {x3, x4, x5, w3, w4}. Thus, T contains an idle
vertex, which contradicts the assumption of the lemma.

Case 4: deg(x2) = deg(x3) = deg(x4) = deg(x5) = 2. Consider the tree T4 obtained from T by
deleting the vertices x1, x2, and x3. Let us prove that if T does not contain idle vertices, then neither does
T4. First, we show that γ(T ) = γ(T4) + 1. On the one hand, each MDS of T contains a vertex in the set
{x1, x2}, whence γ(T ) ≥ γ(T4) + 1. On the other hand, given any MDS D′ of T4, the set D′ ∪ {x2} is
an MDS of T , whence γ(T ) ≤ γ(T4) + 1.
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Suppose that some vertex x′ is idle in T4 but not idle in T . Then there exists an MDS D of T which
contains x′. Consider the set D′ = D \ {x1, x2}. Obviously, D′ contains at most one vertex in the set
{x3, x4}. If D′ contains the vertex x3, then we consider the set D′′ = (D′ \ {x3}) ∪ {x4}; otherwise, we
set D′′ = D′. In any case, D′′ is an MDS of T4 and hence contains the vertex x′. This contradiction
shows that the tree T4 contains no idle vertices.

By the induction hypothesis, there exists a unique partition S(T4) of T4. Obviously, it includes the set
{x4, x5}. It is easy to see that the partition

S(T ) =
(

S(T4) \ {{x4, x5}}
)

∪
{

{x1, x2}, {x3, x4, x5}
}

is a unique appropriate partition of the tree T . This completes the proof of the lemma.

Corollary 2. For any tree T without idle vertices, the following assertions hold:

(1) If an element S′ of the partition S(T ) contains at least three vertices, then none of them is
a leaf or a support in T .

(2) If S′′ ∈ S(T ) contains two vertices, then one of them is a leaf and the other is a support
adjacent to it.

(3) If the tree T contains at least two vertices, then so does each element of the partition S(T ).

Proof. Let us prove the first assertion. Suppose that some element S′ with |S′| ≥ 3 contains a leaf u′. In
this case, S′ also contains the vertex u adjacent to it. Since ∂+

M (T, u′) + ∂+
M (T, u) = ∂M (T ), it follows

that all vertices in S′ \ {u, u′} are idle in T , which is impossible. If S′ contains a support w but does
not contain a leaf w′ adjacent to w, then the vertex w′ does not belong to any element of the partition
S(T ), because it is not universal. This contradiction shows that all elements of S′ are neither leaves nor
supports, as required.

The second and third assertions readily follow from assertion (2) of Lemma 6.

4. THE CASE OF 4-MAXIMAL TREES

Lemma 7. Given any n ≥ 3, if an n-vertex tree T without idle vertices is 4-maximal, then each
element of the partition S(T ) contains at most three vertices.

Proof. Suppose that the lemma is false for some 4-maximal tree T . Since Δ(T ) ≤ 4, it follows that
each element of S(T ) contains at most five vertices. There are two possible cases.

Case 1: there exist vertices w,w1, w2, w3 ∈ V (T ) such that

{w,w1, w2, w3} = N [w] ∈ S(T ).
For each 1 ≤ i ≤ 3, let Ti denote the maximal (by inclusion) subtree of T containing the vertices w and
wi and not containing the other neighbors of w, and let T ′

i be the tree obtained by attaching a leaf w0 to
the vertex w of the tree Ti. Finally, let Fi denote the forest obtained from Ti by deleting the vertices w and
wi and all edges incident to them. For any 1 ≤ i ≤ 3, the forest Fi is nonempty and contains no isolated
vertices, because, by Corollary 2, none of the vertices in the neighborhood N [w] is a leaf or a support.

Let us introduce the notation

A+
i = ∂+(Ti, wi), Ai = ∂(Fi), A−

i = ∂+(T
′
i , w0).

We have

∂M (T ) = ∂+
M (T,w) + ∂+

M (T,w1) + ∂+
M (T,w2) + ∂+

M (T,w3)

= A1A2A3 +A+
1 A

−
2 A

−
3 +A−

1 A
+
2 A

−
3 +A−

1 A
−
2 A

+
3 .

We delete the vertices w and w3 from the tree T and attach leaves w′
1 and w′

2 to the vertices w1 and
w2, respectively (see Fig. 2). Let us denote the resulting forest by F , and let T ′′

1 (T ′′
2 ) be the connected

component of F containing the vertex w1 (respectively, w2).
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Fig. 2. The transformation in Case 1.

Then F = T ′′
1 ∪ T ′′

2 ∪ F3. We have

∂M (F ) =
(

∂+
M (T ′′

1 , w1) + ∂+
M (T ′′

1 , w
′
1)
)

·
(

∂+
M (T ′′

2 , w2) + ∂+
M (T ′′

2 , w
′
2)
)

· ∂M (F3)

= (A+
1 +A1) · (A+

2 +A2) · A3 = A+
1 A

+
2 A3 +A+

1 A2A3 +A1A
+
2 A3 +A1A2A3.

Since the tree T contains no universal vertices, it follows that, for each 1 ≤ i ≤ 3, there exists
an MDS of Fi which contains none of the vertices adjacent to wi in the tree T . Thus, for each
1 ≤ i ≤ 3, the strict inequality Ai > A−

i holds. Moreover, we have A+
i ≥ Ai. We can assume

that A+
1 /A1 ≥ A+

2 /A2 ≥ A+
3 /A3. Then A+

1 A
+
2 A3 ≥ A1A2A

+
3 > A−

1 A
−
2 A

+
3 , whence ∂M (F ) > ∂M (T ).

Therefore, by Lemma 5, the tree T is not 4-maximal. We have arrived at a contradiction.
Case 2: there exist vertices w,w1, w2, w3, w4 ∈ V (T ) such that

{w,w1, w2, w3, w4} = N [w] ∈ S(T ).
For each 1 ≤ i ≤ 4, we define subgraphs Ti, T ′

i , and Fi and introduce the notation A+
i , Ai, and A−

i as in
the preceding case. We have

∂M (T ) = A1A2A3A4 +A+
1 A

−
2 A

−
3 A

−
4 +A−

1 A
+
2 A

−
3 A

−
4 +A−

1 A
−
2 A

+
3 A

−
4 +A−

1 A
−
2 A

−
3 A

+
4 .

From the tree T we delete the vertex w4, all edges incident to it, and the edge ww3; after that, we
attach a leaf w′

3 to the vertex w3. In the resulting forest F , by T ′ we denote the connected component
containing the vertices w, w1, and w2 and by T ′′, the connected component containing the vertices w3

and w′
3. Note that F = T ′ ∪ T ′′ ∪ F4. We have

∂M (F ) =
(

∂+
M (T ′, w) + ∂+

M (T ′, w1) + ∂+
M (T ′, w2)

)

×
(

∂+
M (T ′′, w3) + ∂+

M (T ′′, w′
3)
)

· ∂M (F4)

= (A1A2 +A+
1 A

−
2 +A−

1 A
+
2 ) · (A+

3 +A3) ·A4.

We can assume that A+
1 /A

−
1 ≥ A+

3 /A
−
3 ≥ A+

4 /A
−
4 > A+

4 /A4, in which case the strict inequality
A+

1 A
−
2 A

+
3 A4 > A−

1 A
−
2 A

−
3 A

+
4 holds. Therefore, ∂M (F ) > ∂M (T ) and the tree T is not 4-maximal by

Lemma 5. This contradiction proves Lemma 7.

Theorem 1. For any n ≥ 4, each 4-maximal n-vertex tree T contains at most (
√
2)n MDS. The

equality ∂M (T ) = (
√
2)n is attained if and only if n = 2l and T contains precisely l support

vertices each of which is adjacent to a unique leaf.

Proof. It is easy to check that the theorem is true for n < 6. Suppose that n ≥ 6 and there exist
trees for which it is false; let T be such a tree with the least number of vertices. By Corollary 1, if T
contains a universal or an idle vertex, then it contains fewer that (

√
2)n MDS. Similarly, it is easy

to check that if T is splittable, then, by Corollary 1, it satisfies the condition in the theorem, which
contradicts the assumption. Thus, by Lemma 6, there exists a unique S-partition S(T ). Since the tree T
is unsplittable, it contains no adjacent support vertices, and the partition S(T ) contains at least one
element S′ comprising precisely three vertices (the case |S′| > 3 is impossible by the previous lemma).
According to Corollary 1, all vertices in S′ are neither leaves nor supports, whence diam(T ) ≥ 6.

Let X = x1x2x3x4x5x6 . . . be a diametrical path in T (an example is shown in Fig. 3). If the vertex x3
is a support, then T contains a pair of adjacent supports x2 and x3 and the tree T is splittable by
Lemma 4, which contradicts the assumption. Since T has no idle vertices, it follows that each support
in T is adjacent to a unique leaf. Thus, all neighbors of x3 different from x4 are supports of degree 2. In
view of Lemmas 6 and 7, we have x3 ∈ N [x4] = {x3, x4, x5} ∈ S(T ).
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Fig. 3. The form of the tree T for a = 3 and b = 2.

Let us prove that if deg(x5) ≥ 3, then all vertices in the set N [x5] \ {x4, x5, x6} are supports of
degree 2. Suppose that this set is nonempty, and let w denote one of the vertices contained in it. If
w is not a support, then there exist vertices w0 and w1 such that

{w,w0, w1} = N [w0] ∈ S(T ).

By Corollary 1, the vertex w1 is neither a leaf nor a support; hence there exists a path (w1, u
′, u′′) in T in

which the vertex u′ is different from w0. It follows that the path u′′u′w1w0wx5x6 . . . is longer than X.
We have obtained a contradiction. Suppose that the vertex w is adjacent to the leaf w′ and deg(w) ≥ 3.
Let u denote a neighbor of w different from x5 and w′. If u is a support, then the tree T is splittable by
Lemma 4. If u is not a support, then there exist vertices u0 and u1 such that {u, u0, u1} = N [u0] ∈ S(T ).
The path u1u0uwx5 . . . is of the same length as X, but the vertex u1 is not a leaf by Corollary 2. We have
again obtained a contradiction.

Thus, the vertices x3 and x5 are adjacent to a = deg(x3)− 1 and b = deg(x5)− 2 supports of
degree 2, respectively. Let T ′ be the tree obtained from T by deleting these supports, the leaves adjacent
to them, and the vertex x3, and let T6 denote the tree obtained from T ′ by deleting the vertices x4 and x5.
By the induction hypothesis,

∂M (T ′) ≤ 2|V (T ′)|/2 = 2(n−2a−2b−1)/2.

We have

∂M (T ′) = ∂+
M (T ′, x4) + ∂+

M (T ′, x5), ∂M (T ) = ∂+
M (T, x3) + ∂+

M (T, x4) + ∂+
M (T, x5),

∂+
M (T, x4) = 2a+b · ∂+

M (T ′, x4), ∂+
M (T, x5) = (2a − 1) · 2b · ∂+

M (T ′, x5),

∂+
M (T, x3) = 2a · (2b − 1) · ∂M (T6) + 2a · ∂+

M (T6, x6).

It is easy to show that if a, b ∈ {1, 2}, then the relations ∂+
M (T6, x6) ≤ ∂M (T6), ∂M (T6) = ∂+

M (T ′, x4),
and ∂+

M (T ′, x4) ≤ ∂+
M (T ′, x5) imply the inequality

2a+b+1/2 · (∂+
M (T ′, x4) + ∂+

M (T ′, x5)) > ∂+
M (T, x3) + ∂+

M (T, x4) + ∂+
M (T, x5).

If a = 3, then, for this inequality to hold, it is also required that ∂+
M (T6, x6)/∂M (T6) ≤ 3/4. The

purpose of the further considerations is to prove this relation. We consider four cases, depending on
whether the vertices x6 and x7 or their neighbors are supports in the tree T .

Case 1: there exist vertices w and w′ such that {x6, w,w′} = N [w] ∈ S(T ). Note that the vertex w
may or may not coincide with the vertex x7.

Subcase 1, a: all neighbors of x6 different from x5 and w are supports of degree 2 (in par-
ticular, it is possible that degT (x6) = 2). Obviously, we have ∂+

M (T6, x6) ≤ ∂+
M (T6, w), whence

∂+
M (T6, x6)/∂M (T6) ≤ 1/2.

Subcase 1, b: the vertex x6 is adjacent to some vertex x′5 different from x5 and w and not being
a support and, possibly, to a support x′′5 of degree 2. Then there exist vertices x′3 and x′4 such that
{x′3, x′4, x′5} = NT [x

′
4] ∈ S(T ). Let T ′

5 be the maximal (by inclusion) subtree of T containing x′5 and
not containing x6. It is easy to see that the tree T ′

5 is the extreme subgraph Wa′,b′ of T6 with contact
vertex x′5, where a′ = deg(x′3)− 1 and b′ = deg(x′5)− 2. We can assume that a′ = 3 (otherwise, we
consider the diametrical path passing through the vertices x′5 and x6, rename the tree vertices, and apply
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the above argument to this path). Let T ′
6 be the maximal (by inclusion) subtree of T6 containing the

vertex x6 and not containing the vertex x′5. Then

∂+
M (T6, x6) = ∂+

M (T ′
6, x6) · ̂∂M (Wa′,b′), ∂+

M (T6, w) = ∂+
M (T ′

6, w) · ∂M (Wa′,b′).

As in the preceding subcase, we have ∂+
M (T ′

6, x6) ≤ ∂+
M (T ′

6, w). Since

∂M (W3,b′)/̂∂M (W3,b′) ≥ 15/23,

it follows that ∂+
M (T ′, x6)/∂M (T6) ≤ 3/4.

Note that, in the subcases considered above, the argument remains valid in the cases where the
supports adjacent to x6 are of degree greated than 2. We will use this observation in considering
Subcase 3, b.

Subcase 1, c: the vertex x6 is adjacent to two vertices x′5 and x′′5 different from x5 and w and not
being supports. It follows from considerations in Subcase 1, b that x′5 and x′′5 are the contact vertices of
extreme subgraphs W3,b′ and W3,b′′ of T6, where b′ = deg(x′5)− 2 and b′′ = deg(x′′5)− 2. Let T ′′

6 denote
the maximal (by inclusion) subtree of T containing the vertex x6 and not containing the vertices x′5 and
x′′5 . Then

∂M (T6, x6) = ̂∂M (W3,b′) · ̂∂M (W3,b′′) · ∂M (T ′′
6 , x6),

∂M (T6, w) = ∂M (W3,b′) · ∂M (W3,b′′) · ∂M (T ′′
6 , w),

∂+
M (T6, w) ≥

∂M (W3,b′)

̂∂M (W3,b′)
· ∂M (W3,b′′)

̂∂M (W3,b′′)
· ∂+

M (T6, x6) >
1

3
· ∂+

M (T6, x6).

Therefore, we have ∂+
M (T6, x6)/∂M (T6) ≤ 3/4. This completes the consideration of Case 1.

In Cases 2–4, we assume that the vertex x6 is a support and adjacent to a leaf vertex l6, to the
vertices x5 and x7, and possibly to a vertex x′5 different from x5, l6, and x7. If the vertex x′5 is
present, then it is the contact vertex of some extreme subgraph W3,b′ , where b′ = deg(x′5)− 2. Since
∂M (T6) = ∂+

M (T6, x6) + ∂+
M (T6, l6), it suffices to prove that either ∂+

M (T6, x6) ≤ 3∂+
M (T6, l6) or the

tree T is not 4-maximal.
Case 2: the vertices x7 and x8 belong to distinct elements of the partition S(T ). The vertex x7

is not a support, because the tree T is unsplittable. Thus, there exist vertices u and u′ such that
{x7, u, u′} = N [u] ∈ S(T ). Since the path X is diametrical and T contains no idle vertices, it follows
that all neighbors of u′ different from u are support vertices of degree 2. Depending on degT (x6), two
subcases are possible.

Subcase 2, a: degT (x6) = 3. Let us show that ∂+
M (T6, x6) < 3∂+

M (T6, l6). We denote by T7 the
maximal (by inclusion) subtree of T6 containing the vertex x7 and not containing the vertex x6. Let F7

be the forest obtained from T7 by deleting the vertex x7 and all edges incident to it. We have

∂+
M (T6, l6) = ∂M (T7) = ∂+

M (T7, x7) + ∂+
M (T7, u) + ∂+

M (T7, u
′),

∂+
M (T6, x6) = ∂+

M (T7, x7) + ∂+
M (F7, u) + ∂+

M (F7, u
′).

Note that ∂+
M (F7, u

′) = ∂+
M (F7, u), because all neighbors of the vertex u′ except u are supports of

degree 2. It is easy to see that

∂+
M (F7, u) = ∂+

M (T7, u) = ∂M (T7 \N [u]).

Therefore,

∂+
M (T6, x6) = ∂+

M (T7, x7) + 2∂+
M (T7, u) < 2∂+

M (T6, l6).

Subcase 2, b: degT (x6) = 4. The tree T6 contains a vertex x′5 adjacent to x6 and contact for an
extreme subgraph W3,b′ , where b′ = deg(x′5)− 2. The same argument as in Subcase 2, a yields

∂+
M (T6, l6) = ∂M (W3,b′) · (∂+

M (T7, x7) + ∂+
M (T7, u) + ∂+

M (T7, u
′)),

∂+
M (T6, x6) = ̂∂M (W3,b′) · (∂+

M (T7, x7) + 2∂+
M (T7, u)).
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It is easy to check that ∂+
M (T7, u) ≤ 2∂+

M (T7, x7) (this inequality may turn into an equality only

if deg(u′) = 2). The inequality ∂M (W3,b′)/̂∂M (W3,b′) ≥ 15/23 implies ∂+
M (T6, x6) < 3∂+

M (T6, l6), as
required.

Case 3: the vertices x7 and x8 belong to the same element of the partition, and deg(x7) > 2. In this
case, N [x8] = {x7, x8, x9} ∈ S(T ).

Subcase 3, a: the vertex x7 is adjacent to at least one support vertex x′7 (possibly, deg(x′7) > 2). We
denote the unique leaf adjacent to x′7 by l′7. Let us show that ∂+

M (T6, x6) < 3∂+
M (T6, l6) in this case. We

denote by T7 the maximal (by inclusion) subtree of T containing x7 and not containing x6 and by F7 the
forest obtained from T7 by removing the vertex x7 and all edges incident to it. We have

∂+
M (T6, l6) = ∂+

M (T7, x7) + ∂+
M (T7, x8) + ∂+

M (T7, x9).

On the other hand,

∂+
M (T6, x6) = ∂+

M (T7, x7) + ∂+
M (T7, x8) + ∂+

M (F7, x9).

Since ∂+
M (T7, x

′
7) ≥ ∂+

M (T7, l
′
7), it follows that ∂+

M (F7, x9) ≤ 2∂+
M (T7, x9), whence

∂+
M (T6, x6) < 2∂+

M (T6, l6),

as required.
Subcase 3, b: the vertex x7 is adjacent to a vertex x′6 different from x8 and not being a support.

Suppose that there exists a diametrical path X ′′ = x′′1x
′′
2x

′′
3x

′′
4x

′′
5x

′
6x7 . . . . Since x′6 is not a support, we

can consider the path X ′′ instead of x and apply the argument of Case 1. If such a path does not exist,
then, as is easy to see, the vertex x′6 itself is the contact vertex of some extreme subgraph Wa′,b′ . Hence
there exists a path X ′′′ = x′′′2 x

′′′
3 x

′′′
4 x

′′′
5 x

′
6x7 . . . containing diam(T ) vertices. It is easy to check that the

argument of Case 1 applies to the path X ′′′ (the role of x6 is played by the vertex x7, which is not a
support).

Case 4: the vertices x7 and x8 belong to the same element of the partition and deg(x7) = 2. In this
case, N [x8] = {x7, x8, x9} ∈ S(T ). Let T ′

6 denote the maximal (by inclusion) subtree of T containing
the vertex x6 and not containing the vertex x7. For m ∈ {7, 8, 9}, we denote by Tm the maximal (by
inclusion) subtree of T containing the vertex xm and not containing xm−1.

Subcase 4, a: deg(x6) = 3. The structure of the tree T is shown in Fig. 4.

Fig. 4. The structure of the tree T in Subcase 4, a.

We have
∂M (T ) = ∂+

M (T, x7) + ∂+
M (T, x8) + ∂+

M (T, x9),

∂+
M (T, x7) = ∂+

M (T7, x7) · ∂M (T ′
6) = ∂+

M (T7, x7) · ∂M (W3,b+1),

∂+
M (T, x8) = ∂+

M (T7, x8) · ∂M (T ′
6) = ∂+

M (T7, x8) · ∂M (W3,b+1),

∂+
M (T, x9) = ∂+

M (T8, x9) · ∂+
M (T ′

6, x6) = ∂+
M (T8, x9) · ̂∂M (W3,b).

Recall that

∂M (W3,b) = 23+b + (23 − 1)2b + 23(2b − 1), ̂∂M (W3,b) = ∂M (W3,b) + 2b.

We remove the edge x7x8 from the tree T and replace the connected component containing x7 by the
forest (6 + b)P2. Let us denote the forest thus obtained by F . We have

∂M (F ) = 26+b(∂+
M (T8, x8) + ∂+

M (T8, x9)).
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Moreover,

∂+
M (T7, x7) ≤ ∂+

M (T7, x8) = ∂+
M (T8, x8) ≤ ∂+

M (T8, x9).

It is easy to check that the strict inequality ∂M (F ) > ∂M (T ) holds. Thus, by Lemma 5, the tree T is
not 4-maximal. We have arrived at a contradiction.

Subcase 4, b: deg(x6) = 4. In this case, the vertex x6 is adjacent to a vertex x′5 different from x5, x6,
and l6. Since the tree T is unsplittable, it follows that x′5 is the contact vertex of a subgraph W3,b′ , where
b′ = deg(x′5)− 2. Therefore,

∂M (T ) = ∂+
M (T, x7) + ∂+

M (T, x8) + ∂+
M (T, x9),

∂+
M (T, x7) = ∂+

M (T7, x7) · ∂M (T6) = ∂+
M (T7, x7) ·

(

∂+
M (T6, l6) + ∂+

M (T6, x6)
)

= ∂+
M (T7, x7) ·

(

∂M (W3,b) · ∂M (W3,b′) + ̂∂M (W3,b) · ̂∂M (W3,b′)
)

,

∂+
M (T, x8) = ∂+

M (T7, x8) ·
(

∂M (W3,b) · ∂M (W3,b′) + ̂∂M (W3,b) · ̂∂M (W3,b′)
)

,

∂+
M (T, x9) = ∂+

M (T8, x9) · ∂+
M (T6, x6) = ∂+

M (T8, x9) · ̂∂M (W3,b) · ̂∂M (W3,b′).

Let us delete the vertices x6 and l6 from the tree. In the forest thus obtained, we replace the connected
components containing the vertices x5 and x′5 by the forest (7 + b+ b′)P2. Moreover, to the vertex x7 we
attach three supports of degree 2. We denote the connected component containing x7 in the resulting
n-vertex forest F by T ′.

We have

∂M (F ) = 27+b+b′(∂+
M (T ′, x7) + ∂+

M (T ′, x8) + ∂+
M (T ′, x9)),

∂M (T ′, x7) = 8 · ∂+
M (T7, x7), ∂M (T ′, x8) = 8 · ∂+

M (T7, x8), ∂M (T ′, x9) = 7 · ∂+
M (T8, x9).

It is easy to check that ∂M (F ) > ∂M (T ) for any b, b′ ∈ {0, 1, 2}. By Lemma 5, the tree T is not
4-maximal. This contradiction proves the theorem.

5. BOUNDS FOR THE MAXIMUM POSSIBLE NUMBER OF MDS IN n-VERTEX TREES

5.1. A Lower Bound

Recall that the 19-vertex tree W4,4 is obtained by attaching four supports of degree 2 to each
endvertex of the path P3 (see Fig. 5). For this tree, the inequality ∂M (W4,4) = 736 > (

√
2)19 holds.

We set θ = 7361/19 = 1.415 . . . .

Fig. 5. The tree W4,4.

Theorem 2. For any n ≥ 1, there exists an n-vertex tree Tn such that

Δ(T ) ≤ 5, ∂(Tn) >
1

3
· 1.415n.
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Proof. First, we show that the theorem is true for n = 19k. Let us arbitrarily join supports of degree 2
from different connected components in the forest kW4,4 until we obtain a tree T19k. It follows from the
proof of Lemma 5 that Δ(Tn) = 5 and

∂M (T19k) = ∂M (kW4,4) = θn >
1

3
· 1.415n.

Now suppose that n = 19k + r, where k ≥ 0 and 1 ≤ r < 19. If r is even, then we set

Fn = kW5,5 ∪
r

2
P2.

If r is odd and k = 0, then we set

Fn = Pr for r < 7, Fn = P7 ∪
r − 7

2
P2 for r ≥ 7.

Finally, if r is odd and k > 0, then we set

Fn = (k − 1)W5,5 ∪
(

10 +
r − 1

2

)

P2.

Let us arbitrarily join supports of degree at most 2 from different connected components of Fn until we
obtain a tree Tn. It follows from the proof of Lemma 5 that Δ(Tn) ≤ 5 and ∂M (Tn) = ∂M (Fn). It is
easy to check that ∂M (Tn) > (1/3) · θn for all n < 19. Note that (

√
2)p/θp > 1/3 for all integer p in the

interval [1, 36]. Therefore, as is easy to see, for all integer n = 19k + r ≥ 19 we have

∂M (Tn)

θn
≥ θ19(k−1) · (

√
2)19+r

θ19k+r
>

1

3
,

whence

∂M (Tn) >
1

3
· 1.415n.

This completes the proof of the theorem.

5.2. An Upper Bound

Apparently, maximal trees have complex structure, which is hard to describe. Using the notion of an
S-partition, we obtain a nontrivial upper bound for the number of MDS in an n-vertex tree.

Lemma 8. Let T be a maximal n-vertex tree containing no idle vertices. Then each element of the
partition S(T ) contains at most three vertices.

Proof. Suppose that, for some maximal tree T , there exists an element S′ ∈ S(T ) containing k > 3
vertices. If k ∈ {4, 5}, then we apply the argument of Lemma 7. Suppose that k = 2p+ δ, where p ≥ 3
and δ ∈ {0, 1}. In this case, there exist vertices w,w1, . . . , wk−1 such that

{w,w1, . . . , wk−1} = N [w] ∈ S(T ).

For each 1 ≤ i ≤ k − 1, we define subgraphs Ti, T ′
i , and Fi and quantities Ai, A

+
i , and A−

i in the same
way as in Lemma 7. Recall that A−

i < Ai ≤ A+
i .

We introduce the notation

A∗ =
k−1
∏

i=1

Ai, A+
∗ =

k−1
∏

i=1

A+
i , A−

∗ =

k−1
∏

i=1

A−
i ,

A+
I =

p
∏

i=1

A+
i ·

k−1
∏

j=p+1

Aj, A+
II =

p
∏

i=1

Ai ·
k−1
∏

j=p+1

A+
j .
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Note that ∂M (T ) = A∗ +A−
∗ ·

∑k−1
i=1 (A

+
i /A

−
i ). Moreover, for any positive integer s such that s ≤ p we

have A−
∗ ·A+

s /A
−
s < A+

I . If p < s ≤ k − 1, then A−
∗ ·A+

s /A
−
s < A+

II. Finally, for each 1 ≤ s ≤ k − 1 we
have A−

∗ ·A+
s /A

−
s < A+

∗ .
The case of δ = 1. Consider the forest F ′ = (p− 2)P2 ∪ T ′

I ∪ T ′
II, in which the component T ′

I is
obtained by attaching forests F1, . . . , Fp to the end vertex of the path P2 (here and in what follows, we
assume that a vertex wi of the path is joined to those vertices of the forest Fi which were adjacent to wi

in tree T and no other vertices) and the component T ′
II is obtained by attaching forests Fp+1, . . . , F2p to

the end of the path P2. We have

∂M (F ′) = 2p−2(A∗ +A+
I +A+

II +A+
∗ ).

It is easy to check that ∂M (T ) < ∂M (F ′). By Lemma 5, the tree T is not maximal, which contradicts
the assumption.

The case of δ = 0. Consider the forest F ′′ = (p− 3)P2 ∪ T ′′ in which the component T ′′ is obtained
by attaching forests F1, . . . , Fp to one of the supports in the path P7 and forests Fp+1, . . . , F2p−1 to the
other supports in this path. We have

∂M (F ′′) = 2p−3(A∗ + 2A+
I + 2A+

II + 3A+
∗ ), ∂M (T ) < ∂M (F ′′).

By Lemma 5, the tree T is not maximal, which contradicts the assumption.

Theorem 3. For any n-vertex tree T ,

∂M (T ) < 1.4205n.

Proof. Obviously, the theorem is true for n < 6. Suppose that n ≥ 6 and there exist n-vertex trees
containing at least 1.4205n MDS. Choose a tree T with the least number of vertices among them (we
can assume that T is maximal). By Corollary 1, T is unsplittable and contains no idle vertices. Hence,
by Lemma 6, there exists a unique S-partition S(T ), and by Lemma 8, each element of this partition
contains two or three vertices. Consider a diametrical path X = x1x2x3x4x5 . . . in T . Since T is
unsplittable, it follows that {x3, x4, x5} = N [x4] ∈ S(T ), deg(x4) = 2, and the vertices x3 and x5 are
adjacent to a = deg(x3)− 1 and b = deg(x5)− 2 supports of degree 2, respectively. Let T ′ denote the
tree obtained from T by deleting all supports of degree 2 adjacent to vertices x3 and x5, all leaves adjacent
to them, and the vertex x3. By assumption, ∂M (T ′) < 1.4205|V (T ′)|, whence

∂M (T ) > 1.42052a+2b+1 · ∂M (T ′).

Moreover,

∂M (T ) = ∂+
M (T, x3) + ∂+

M (T, x4) + ∂+
M (T, x5) ≤ 2∂+

M (T, x4) + ∂+
M (T, x5)

= 2a+b+1 · ∂+
M (T ′, x4) + (2a − 1) · 2b · ∂+

M (T ′, x5),

∂M (T ′) = ∂+
M (T ′, x4) + ∂+

M (T ′, x5).

Let us show that

2a+b+1 · ∂+
M (T ′, x4) + (2a − 1) · 2b · ∂+

M (T ′, x5) < 1.42052a+2b+1(∂+
M (T ′, x4) + ∂+

M (T ′, x5)).

Obviously, for any a, b ≥ 0 we have 1.42052a+2b+1 > (2a − 1)2b. Moreover, since the vertex x4 of the
tree T ′ is a leaf, it follows that ∂+

M (T ′, x4) ≤ ∂+
M (T ′, x5). Thus, it suffices to consider the case where

∂+
M (T ′, x4) = ∂+

M (T ′, x5). Let us show that

2a+b+1 + 2a+b − 2b < 2 · 1.42052a+2b+1 .

We divide both sides of the inequality by 2 and consider the function

f(x, y) = 1.42052x+2y+1 − 3 · 2x+y−1 + 2y−1.

It is easy to check that minx,y≥0 f(x, y) > 0, whence

∂M (T ) < 1.42052a+2b+1 · ∂M (T ′).

This contradiction shows that there exist no n-vertex trees containing at least 1.4205n MDS, which
completes the proof of the theorem.
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