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Abstract—The minimum total dominating set (MTDS) of a graph is a vertex subset D of
minimum cardinality such that every vertex of the graph is adjacent to at least one vertex of D.
In this paper we obtain a sharp upper bound for the number of MTDSs in the class of n-vertex
2-caterpillars. We also show that for all n ≥ 1 every n-vertex tree has less than (

√
2)n MTDSs.
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INTRODUCTION

The dominating set of a graph is a vertex subset D such that any vertex not in D is adjacent
to at least one vertex in D. The total dominating set of a graph is a vertex subset D′ such that
any vertex of the graph is adjacent to at least one vertex in D′. The dominating set is called
minimum if it is of the least cardinality. We use the abbreviations DS, MDS, TDS, and MTDS for
the terms “dominating set,” “minimum dominating set,” “total dominating set,” and “minimum total
dominating set,” respectively. The total dominance number γt(G) of a graph G is the cardinality of
each of its MTDSs. Let ϑ(G) denote the number of all MTDSs in the graph G.

In 2006, Bród and Skupień [1] described trees containing the maximum and minimum number of
DMs among all n-vertex trees. Later, Krzywkowski and Wagner[2] described trees and connected
graphs containing the minimum number of TDSs. The question of whether a tree with dominance
number γ can contain more than 2γ MDSs remained open until 2017, when an example of such a tree
was given in [3]. On the other hand, Alvarado et al. [4] showed that every tree with dominance
number γ contains at most 2.4606γ MDSs. For all k ≥ 2, the paper [5] describes trees that contain
the maximum and minimum number of k-DSs (i.e., sets Dk such that each vertex of a tree not in Dk

is adjacent to at least k vertices in Dk).
To date, the question of the structure of trees containing the maximum possible number of

MDSs and MTDSs remains open. It was shown in [6] in 2019 that each n-vertex tree contains
less than 95n/13 minimal (i.e., inclusion-minimal) DSs. In addition, an example of an n-vertex tree
containing more than 0.649 × 95n/13 minimal DSs is given for any n ≥ 1. The methods proposed
in [6] can also be applied to other classes of graphs, but using them to enumerate sets of fixed
cardinality (including MDSs and MTDSs) is not possible in the opinion of the present author.

In 2019, Henning et al. [7] obtained three upper bounds for the number of MTDSs in trees
and forests. Namely, for an n-vertex forest F with total dominance number γt, they proved the
inequality

ϑ(F ) ≤ min

((
8
√
e
)γt

(
n− γt/2

γt/2

)γt/2

,
(
1 +

√
2
)n−γt

, 1.4865n

)
.

In the present paper, we prove the strict inequality ϑ(T ) < (
√
2)n for all n-vertex trees. In

addition, a sharp upper bound for the number of MTDSs for the class of n-vertex 2-caterpillars is
obtained.
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1. SOME DEFINITIONS AND NOTATION

As usual, the vertex and edge sets of a simple undirected graph G are denoted by V (G) and E(G),
respectively. The open neighborhood N(v) of a vertex v is the set consisting of all adjacent vertices,
and the the closed neighborhood N [v] is the set N(v) ∪ {v}.

Let G \ V0 denote the subgraph of G induced by the vertices of the set V (G) \ V0. In the case
of V0 = {v}, we will use the notation G \ v instead of G \ {v}. Let G− e denote the graph obtained
by removing the edge e ∈ E(G) from the graph G.

A tree vertex is called a preleaf if it is adjacent to at least one leaf. Let us say that a tree
vertex is preterminal if all but one of its neighbors are leaves. The diameter diam(T ) of a tree T
is the maximum possible distance between its vertices. A simple path P = v1v2 . . . vm of a tree T
is said to be diametrical if it consists of diam(T ) + 1 pairwise distinct vertices. A tree is called
a k-caterpillar if the distance from each of its vertices to some simple path, called the backbone, is
at most k. We assume that the backbone of a k-caterpillar is a diametrical path. The star graph Sm

is the (m+ 1)-vertex tree containing a vertex of degree m (here m ≥ 0).
By a, b we denote the set of all integers in the interval [a; b]. Let P = v1v2 . . . vm be chosen in

the tree T . For each i ∈ 2, . . . ,m, denote by Ti the inclusion-maximal subtree T that contains vi
and does not contain vi−1. We assume that the subtree T1 coincides with T . We set T̂i = Ti \ Ti+1.
By DT,P (vi) we denote the distance in the tree T̂i from the vertex vi to the nearest leaf other than vi.
If T̂i consists of one vertex, then we set DT,P (vi) = 0. Note that if the vertex v lies on the backbone
of a k-caterpillar, then DT,P (v) ≤ k. In the case where the choice of the tree T and the path P is
clear from the context, we use the notation D(v) instead of DT,P (v).

Recall that ϑ(G) denotes the number of MTDSs in a graph G. We assume that ϑ(K1) = 0.
The numbers of MTDSs in G containing and not containing a vertex v will be denoted by ϑ+(G, v)
and ϑ−(G, v), respectively. A vertex v of the graph G is said to be universal if ϑ+(G, v) = ϑ(G)
and idle if ϑ−(G, v) = ϑ(G). As usual, G1 ∪G2 denotes the graph with vertex set V (G1) ∪ V (G2)
and edge set E(G1)∪E(G2). It is easy to see that ϑ(G1 ∪G2) = ϑ(G1)ϑ(G2) for disjoint graphs G1

and G2.
We say that a tree T separable if it is possible to remove an edge from it in such a way that the

number of MTDSs in the resulting forest remains the same and inseparable otherwise. We say that
an n-vertex tree (2-caterpillar) is maximal if it contains the maximum possible number of MTDSs
among all n-vertex trees (n-vertex 2-caterpillars, respectively).

Let a vertex v ∈ V (T ) be chosen in a tree T . Denote by γ̂t(T, v) the cardinality of the smallest
vertex subset D ⊆ V (T ) such that every vertex in V (T ), except possibly v, is adjacent to at least
one vertex in D. It is easily seen that the inequality γt(T ) − 1 ≤ γ̂t(T, v) ≤ γt(T ) holds. Denote
by ϑ̂(T, v) the number of subsets D ⊆ V (T ) of cardinality γ̂t(T, v) such that each vertex V (T ),
possibly except for the vertex v, is adjacent to at least one vertex in D. Note that if γ̂t(T, v) = γt(T ),
then ϑ̂(T, v) ≥ ϑ(T ), because in this case each MTDS T has cardinality γ̂t(T, v). We define the
quantities ϑ̂+(T, v) and ϑ̂−(T, v) by analogy with ϑ+(T, v) and ϑ−(T, v).

Let a set D be a TDS of a tree T , and let diam(T ) ≥ 3. Denote by L(T ) the set of leaves
of T whose neighbors are preterminal vertices. Consider the mapping ϕ : L(T ) → V (T ) taking each
leaf l ∈ L(T ) to the only nonleaf vertex at distance 2 from it. Denote by ϕ(D) the set obtained
by replacing each leaf l ∈ L(T ) in D by the vertex ϕ(l). Since D contains all preleaves of T , it
follows that ϕ(D) is a TDS, while |ϕ(D)| ≤ |D|. Thus, for any MTDS D the set ϕ(D) is an MTDS
as well.

We say that a vertex v of a tree T is ϕ-universal if v ∈ ϕ(D) for any MTDS D ⊆ V (T ). Note that
every universal vertex is ϕ-universal, and every nonleaf vertex adjacent to at least one preterminal
vertex is ϕ-universal.

Figure 1 shows a tree that is a 2-caterpillar and its diametrical path v1v2 . . . v9 is the back-
bone of the caterpillar. Note that D(v4) = 0, D(v2) = 1, and D(v5) = 2. In addition, the
nonleaf vertices v3, v5, v6, and v7 (and only they) are adjacent to preterminal vertices, and so they
are ϕ-universal.
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Fig. 1. Example of 2-caterpillar with backbone v1v2 . . . v9.

2. PRELIMINARIES

2.1. Class of Elementary Forests

We say that a forest F is elementary if each of its connected components is a star graph. We
say that an elementary n-vertex forest is maximal if it contains the maximum possible number of
MTDSs among all such forests. It is clear that ϑ(Sk) = k for all k ≥ 0.

Lemma 1. For n = 4k + r ≥ 12, r ∈ {0, 1, 2, 3}, the n-vertex maximal elementary forest is
unique, is isomorphic to the forest Fn = (k − r)S3 ∪ rS4 , and contains f(n) = 4r · 3k−r MTDSs.

Proof. Let a star Sk be the least connected component of a forest F . If F contains a star Sm

such that k + 1 < m, then the subgraph Sk ∪ Sm can be replaced by the subgraph Sk+1 ∪ Sm−1

and the number of MTDSs of the forest F will increase, which contradicts its maximality. Then for
some integers a ≥ 1 and b ≥ 0 the equality F = aSk∪bSk+1 holds. Let us show that for any n-vertex
forest F not isomorphic to Fn, there exists a replacement of some of its subgraphs by a forest with
the same number of vertices and a larger number of MTDSs.
Case of k = 0. Replace the entire forest F with the tree Sn−1.
Case k = 1. Replace the entire forest F with the forest (b− 1)Sk+1 ∪ S(a+1)(k+1).
Case of k = 2. If F contains the forest 2S2, then replace it with the tree S5. Otherwise, F contains

the forest S2 ∪ 2S3; replace it with the forest S4 ∪ S5.
Case of k = 3. If b ≤ 4, then the condition of the lemma is satisfied; otherwise, replace the

forest 4S4 with the forest 5S3.
Case of k = 4. If a ≤ 3 and b = 0, then the condition of the lemma is satisfied. Otherwise, F con-

tains one of the forests 4S4, 2S4 ∪ S5, or 2S5; replace them with the forests 5S3, 4S3, or 3S3,
respectively.

Case of k = 5. If F contains the forest 2S5, then replace it with the forest 3S3. Otherwise, F con-
tains the forest S5 ∪ S6; replace it with the forest 2S3 ∪ S4.

Case of k = 6. If F contains the forest 2S6, then replace it with the forest S3 ∪ 2S4. Other-
wise, F contains the tree S7; replace it with the forest S2 ∪ S4.

Case of k ≥ 7. Replace the tree Sk with the forest S2 ∪ Sk−3.
Thus, for any n ≥ 12 and any n-vertex forest F other than Fn, there exists at least one replace-

ment that increases the number of MTDSs in it. The proof of Lemma 1 is complete. �
Note that for n ∈ {4, 5, 8, 9, 10} the maximal forest is unique and isomorphic to Fn, for n = 11

the only maximal forest is S4 ∪ S5 , and for n ∈ {1, 2, 3, 6, 7} the tree Sn−1 is a maximal forest
(possibly not the only one). Thus, for all positive integers n, the inequality ϑ(Fn) ≤ f(n) holds,
which is strict for n ∈ {1, 2, 3, 6, 7, 11}.

2.2. Universal and Idle Vertices

Lemma 2. If a tree T contains two adjacent nonleaf vertices u and v such that u is idle and v
is either idle or universal, then T is separable.

Proof. If the vertex v is idle, then remove the edge uv and denote the resulting forest by F1.
Obviously, γt(F1) ≥ γt(T ). On the other hand, each MTDS of the tree T does not contain the
vertices u and v, and so it is a TDS in the forest F1, whence γt(F1) ≤ γt(T ). Then γt(F1) = γt(T ),
with each MTDS of the tree T being an MTDS of the forest F and vice versa, whence ϑ(F1) = ϑ(T ).
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If, however, the vertex v is universal, then we remove all the edges incident to the vertex u except
for the edge uv, and denote the resulting forest by F2. As in the previous case, it is easy to check
that the equalities γt(F2) = γt(T ) and ϑ(F2) = ϑ(T ) hold. The proof of Lemma 2 is complete. �

Lemma 3. If a tree T contains universal vertices u and v such that dist(u, v) = 3, then T is
separable.

Proof. By assumption, there exist vertices u′ and v′ in T such that there exists a path uu′v′v.
Let us denote by F the forest obtained by removing the edge u′v′ from T and show that ϑ(T ) = ϑ(F ).
Obviously, γt(F ) ≥ γt(T ). Let us prove that if D′ is an MTDS T , then it is an MTDS of F . Since
the vertices u and v are in D′, it follows that each of the vertices u′ and v′ in the forest F has
a neighbor in D′. Thus, D′ is a TDS in the forest F , whence γt(F ) = γt(T ) and ϑ(F ) ≥ ϑ(T ). On
the other hand, since γt(F ) = γt(T ), it follows that each MTDS of the forest F is an MTDS for the
tree T , whence ϑ(F ) = ϑ(T ), as desired. The proof of Lemma 3 is complete. �

Lemma 4. The following statements are true for any tree T .

1. If T contains a vertex v adjacent to a leaf v′ and also to a preterminal vertex u, then
ϑ(T1) ≥ ϑ(T ), where T1 is the tree obtained by removing the leaf v′ from T .

2. If T contains a vertex v adjacent to at least two preterminal vertices u1 and u2 , then
ϑ(T2) ≥ ϑ(T ), where T2 is the tree obtained by removing the vertex u2 and all leaves adja-
cent to it from T .

Proof. Let us prove the first assertion of the lemma. Since the vertex v′ is a leaf in T , it follows
that γt(T1) ≤ γt(T ). On the other hand, v is ϕ-universal in T1. Then there exists an MTDS D 	 v
of the tree T1. It is obvious that D is also a TDS for T , whence γt(T1) = γt(T ), and each MTDS
of T is also an MTDS for T1, whence ϑ(T1) ≥ ϑ(T ), as desired.

The second assertion can be proved in a similar way. The proof of Lemma 4 is complete. �

Lemma 5. Let a tree T contain a vertex u that is not a preleaf. If all neighbors of u are adjacent
to at least one ϕ-universal vertex, then u is idle.

Proof. Assume, on the contrary, that there exists an MTDS D containing u. Consider the
set ϕ(D). By assumption, all vertices of the open neighborhood N(u) have at least one neighbor
in ϕ(D) distinct from u, and at least one of these vertices is itself included in ϕ(D). Then the
set ϕ(D) \ {u} is also a TDS, which contradicts the minimality of D. The proof of Lemma 5 is
complete. �

Lemma 6. If a tree T contains an idle nonleaf vertex u not adjacent to universal vertices
and γt(T \ u) = γt(T ), then ϑ(T \ u) > ϑ(T ).

Proof. Let u1, u2, . . . , uk be the neighbors of the vertex u in T . Denote by T ∗
i the inclusion-

maximal subtree of T containing vertex ui and not containing u. Since the vertex u is idle and
γt(T \ u) = γt(T ), for any MTDS D of the tree T the set D capV (T ∗

i ) is an MTDS of the tree T ∗
i .

Since for any i ∈ 1, . . . , k there exists an MTDS Di of the tree T that does not contain vi, it follows
that the set Di ∩ V (Ti) is an MTDS of the tree Ti and does not contain vi, whence ϑ−(Ti, vi) > 0.
Thus, we have the inequality

ϑ(T ) =

k∏
i=1

ϑ(T ∗
i )−

k∏
i=1

ϑ−(T
∗
i , vi) <

k∏
i=1

ϑ(T ∗
i ) = ϑ(T \ u).

The proof of Lemma 6 is complete. �
Lemmas 2 and 6 imply the following assertion.

Corollary 1. For any n, k ≥ 1, if an n-vertex tree T is a k-caterpillar and contains an idle
nonleaf vertex u such that γt(T \ u) = γt(T ), then either T is separable or it is neither a maximal
tree nor a maximal k-caterpillar.
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This assertion will apply both to 2-caterpillars and to arbitrary trees.

3. CLASS OF 2-CATERPILLARS

Lemma 7. For n ≥ 3, for any n-vertex 2-caterpillar T there exists an (n+ 1)-vertex 2-caterpil-
lar T ′ such that ϑ(T ) < ϑ(T ′).

Proof. The proof is carried out by induction on the number n of vertices. One can readily
verify that the assertion of the lemma is true for n ∈ 3, . . . , 6. Assume that for n ≥ 7 there exists
some maximal n-vertex 2-caterpillar T for which the assertion is false but for any 2-caterpillar T ′′

with fewer vertices the strict inequality ϑ(T ′′) < ϑ(T ) holds.
Assume that diam(T ) ≤ 4. If diam(T ) = 2, then T is isomorphic to Sn−1. If diam(T ) = 3, then T

contains exactly two nonleaf vertices, with γt(T ) = 2 and ϑ(T ) = 1. However, if diam(T ) = 4, then
the central vertex T is universal, whence ϑ(T ) = 1. Thus, the inequality ϑ(T ) ≤ ϑ(Sn−1) < ϑ(Sn)
holds; this is impossible by assumption.

Assume that diam(T ) ≥ 5. Denote by v1v2 . . . vk the backbone of T . The following cases are
possible.
Case 1. In T there exists at least one nonidle leaf l adjacent to some vertex u. We attach a new

leaf l′ to u and denote the resulting tree by T ′. Then ϑ(T ′) = ϑ−(T, l) + 2ϑ+(T, l) > ϑ(T );
this is a contradiction.

When considering cases 2–4, we will assume that all leaves T are idle and the vertex v3 is universal
(since all neighbors of v2 except for v3 are idle leaves).
Case 2. The inequality deg(v3) ≥ 3 holds. By Lemma 4, in the tree T there exists a subtree T ′

such that ϑ(T ′) ≥ ϑ(T ); a contradiction.
When considering cases 3 and 4, we assume that deg(v3) = 2.

Case 3. The vertex v4 is universal or idle. If v4 is universal, then for any MTDS D of the tree T the
set D \{v2} is an MTDS of the tree T2, whence ϑ(T ) ≤ ϑ(T2); a contradiction. If, however, v4
is idle, then deg(v4) = 2, because otherwise v4 would be ϕ-universal. Then for any MTDS D
of the tree T the set D \ {v2, v3} is an MTDS in T5, whence ϑ(T ) ≤ ϑ(T5); a contradiction.

Case 4. The vertex v4 is not universal and not idle. Assume that deg(v4) ≥ 3. Then v4 is not
a preleaf and is adjacent to at least one preterminal vertex all whose other neighbors are idle
leaves. However, v4 is universal, which is impossible; therefore, deg(v4) = 2. Assume that
the vertex v5 is not idle. Then for any MTDS D 	 v5 the set (D \ {v3}) ∪ {v1} is also an
MTDS; this contradicts the universality of v3. Thus, v5 is idle and deg(v5) = 2. Let us show
that deg(v6) = 2. Let deg(v6) > 2. Then the vertex v6 is ϕ-universal and by Lemma 5 the
vertex v4 is idle, which is impossible. Since v5 is idle and deg(v6) = 2, it follows that v7 is
universal.
Note that the inequality ϑ+(T, v4) ≤ ϑ+(T, v6) holds, because each MTDS of T contains
exactly one of the vertices v4 or v6; moreover, if the MTDS D contains v4, then the
set (D \ {v4}) ∪ {v6} is an MTDS as well. Consider an n-vertex forest S3 ∪ T5 and de-
note by T ′ the tree obtained by adding a leaf of the tree S3 to the vertex v7 of the tree T5.
Obviously, T ′ is a separable 2-caterpillar. Then

ϑ(T ′) = 3ϑ(T5) ≥ 3ϑ+(T, v6) > ϑ+(T, v4) + ϑ+(T, v6) = ϑ(T ).

Thus, T is not a maximal 2-caterpillar; this contradicts the assumption.
The proof of Lemma 7 is complete. �

Theorem 1. For n ≥ 12, every maximal n-vertex 2-caterpillar T contains a maximal elementary
forest Fn as a spanning subgraph. The equality ϑ(T ) = f(n) holds.

Proof. It follows from the reasoning in the previous lemma that if diam(T ) ≤ 4, then
ϑ(T ) ≤ ϑ(Sn−1) ≤ f(n). The equality ϑ(T ) = f(n) is possible only if T is isomorphic to S3

or S4. Thus, we will assume that n ≥ 6 and diam(T ) ≥ 5.
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By v1, . . . , vk we denote the backbone of T and by p, the index of the leftmost vertex of the
backbone that is different from v2 and has degree greater than 2 (if T = Pn, then we set p = k+1).
Denote by q the number of the second vertex on the left of the backbone with this property (if there
is no such vertex, then we set q = k+1). We assume that if T is different from Pn, then p ≤ �k+1

2
�

(otherwise, we will rename the vertices of the backbone in reverse order).
Assume that there exists a maximal 2-caterpillar T that either contains more than f(n) MTDSs

or contains exactly f(n) MTDSs and does not contain the forest Fn as a spanning subgraph. We
can assume that T is inseparable, because there are no 2-caterpillars with fewer vertices that have
this property. Denote by a the number of leaves adjacent to v2 (that is, a = deg(v2) + 1). Let us
consider several cases depending on the value of p.
Case p = 3. By Lemmas 4 and 7, the tree T is not a maximal 2-caterpillar; a contradiction.
Case p = 4. If D(v4) = 2, then the vertex v4 is adjacent to some preleaf u4 that does not lie on

the backbone T . Then dist(v2, u4) = 3 and T is separable by Lemma 3; a contradiction. Now
let D(v4) = 1. Let us show that in this case all leaves adjacent to v4 are idle. Assume that
this is not true and there exists some MTDS D containing a leaf v′4 adjacent to v4. Then the
set ϕ(D) \ {v′4} is also a TDS and is less than D in cardinality; a contradiction. Since T is
maximal, by Lemma 7 the vertex v4 is adjacent to the only idle leaf v′4. Consider several cases
depending on the value of the quantity q.

Case of p = 4 and q = 5. If D(v5) = 1, then v5 is universal and T is separable, because
dist(v2, v5) = 3. If D(v5) = 2, then we remove the vertices v4 and v′4 from the tree and
denote the resulting forest by F . The equality γt(F ) + 1 = γt(T ) holds, and for any
MTDS D of the tree T , the set D \ {v4} is an MTDS of the forest F . Moreover, each
connected component of F is a 2-caterpillar. Then

f(n) > f(a+ 2)f(n− a− 4) ≥ ϑ(F ) ≥ ϑ(T );

this contradicts the assumption about the maximality of T .
Case of p = 4 and q = 6. If D(v6) = 2 and v6 is adjacent to some preleaf u6, then

dist(v4, u6) = 3 and T is separable. If D(v6) = 1, then we act by analogy with the
previous case. Let us remove the vertices v4 and v′4 from the tree and denote the result-
ing forest by F . Then for any MTDS D of the tree T the set D \ {v4} is an MTDS of
the forest F , whence f(n) > ϑ(F ) ≥ ϑ(T ); a contradiction.

Case of p = 4 and q = 7. If D(v7) = 1, then v7 is universal and T is separable, because
dist(v4, v7) = 3. Let D(v7) = 2 and v7 be adjacent to some preterminal vertex u7 not
lying on the backbone T . The vertices v4 and u7 are universal, while vertices v3 and v7
are ϕ-universal. Then by Lemma 5 the vertices v5 and v6 are idle and T is separable by
Lemma 2; a contradiction.

Case of p = 4 and q = 8. Since the vertex v8 is either universal or ϕ-universal, it follows
by Lemma 5 that the vertex v6 is idle. One can readily verify that γt(T ) = γt(T6) + 3.
Then each MTDS of T containing the vertex v7 contains v3 and does not contain v5,
whence ϑ(T ) = ϑ+(T, v5) + ϑ+(T, v7) and ϑ+(T, v7) ≤ ϑ(T6). If the vertex v5 is idle,
then T is separable by Lemma 2; a contradiction. However, if v5 is not idle, then
ϑ+(T, v5) = (a + 1)ϑ−(T7, v7), because if some MTDS of T contains the vertex v5, then
it also contains exactly one vertex from the open neighborhood N(v2). Thus,

ϑ(T ) = ϑ+(T, v7) + ϑ+(T, v5) ≤ ϑ(T6) + (a+ 1)ϑ−(T7, v7).

Since f(n− a− 5) ≥ ϑ(T6) and f(n− a− 6) ≥ ϑ−(T7, v7) ≥ ϑ(T7), we have

f(n) > f(n− a− 5) + (a+ 1)f(n− a− 6) ≥ ϑ(T );

this contradicts the assumption about the maximality of T .
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Fig. 2. Structure of the 2-caterpillar T for p = 4, q ≥ 9, and a = 2.

Case of p = 4 and q ≥ 9. In this case, T has the structure shown in Fig. 2. Suppose that
γt(T9) > γ̂t(T9, v9). Then v8 is universal and v6 is idle by Lemma 5. If the MTDS D
contains the vertex v5, then it does not contain v7; otherwise the set ϕ(D) \ {v5} would
be a TDS as well, which is impossible. If D contains v7, then it does not contain v5 and
hence contains v3. Then

ϑ(T ) = ϑ+(T, v5) + ϑ+(T, v7) = (a+ 1)ϑ−(T7, v7) + ϑ+(T6, v8)

≤ (a+ 1)ϑ(T7) + ϑ(T6) ≤ (a+ 1)f(n− a− 6) + f(n− a− 5) < f(n).

Assume that γt(T9) = γ̂t(T9, v9). We introduce the notation

A1 = ϑ+(T9, v9), A2 = ϑ(T9), B1 = ϑ̂+(T9, v9), B2 = ϑ̂(T9, v9).

Note that A1 ≤ A2 and B1 ≤ B2. Moreover, since γt(T9) = γ̂t(T9, v9), it follows that A2 ≤ B2.
Assume that there exists an MTDS D containing at least three vertices in the set {v5, v6, v7, v8}.
Then the set (

ϕ(D) \ {v5, v6, v7, v8}
) ∪ {v7, v8}

is an MTDS as well and is less than D in terms of cardinality; a contradiction. Thus, for any
MTDS D the intersection D ∩ {v5, v6, v7, v8} coincides with one of the sets {v5, v6}, {v6, v7},
{v5, v8}, or {v7, v8}. Then

ϑ(T ) = (a+ 1)A1 +A2 + (a+ 1)B1 +B2.

Denote by T ′
6 the tree obtained from T6 by adding the leaf v′7 to the vertex v7. Then the forest

F = Sa+3 ∪ T ′
6 satisfies the relation

f(n) ≥ ϑ(F ) = (a+ 3)
(
ϑ+(T

′
6, v6) + ϑ+(T

′
6, v

′
7) + ϑ+(T

′
6, v8)

)
= (a+ 3)

(
2ϑ+(T

′
6, v6) + ϑ+(T

′
6, v8)

)
= (a+ 3)(2A2 +B2) > ϑ(T );

this contradicts the assumption about the maximality of T .
Case of p = 5. If D(v5) = 1, then the vertex v5 is universal and T is separable, because

dist(v2, v5) = 3. However, if D(v5) = 2, then v5 is adjacent to some preterminal vertex u5

that does not lie on the backbone of T . By Lemma 5, the vertex v4 is idle in T , and by
Corollary 1, T is either separable or nonmaximal; a contradiction.

Case of p = 6. The vertex v6 is ϕ-universal. Then the vertex v4 is idle by Lemma 5, and by
Corollary 1, T is either separable or nonmaximal; a contradiction.

Case of p = 7. It is clear that the vertices v3 and v7 are ϕ-universal. Then by Lemma 5 the
vertex v5 is idle. Therefore, v3 and v7 are universal. Each MTDS T contains exactly one vertex
from the set {v4, v6} (because if the TDS D contains both vertices, then the set D\{v4} is also
a TDS). Moreover, ϑ+(T, v4) ≤ ϑ+(T, v6), because for any MTDS D′ the set (D′ \{v4})∪{v6}
is an MTDS as well. Then

ϑ(T ) = ϑ+(T, v4) + ϑ+(T, v6) ≤ 2ϑ(T5) ≤ 2f(n− a− 3) < f(n).

Case p ≥ 8. We argue by analogy with the case of p = 4 and q ≥ 9. If γt(T8) > γ̂t(T8, v8),
then v5 is idle, while v3 and v7 are universal. If the MTDS D contains the vertex v4, then it
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Fig. 3. Caterpillar T ∗
36.

does not contain v6; otherwise, the set ϕ(D) \ {v4} would also be a TDS, which is impossible.
If v4 is idle, then T is separable by Lemma 2; otherwise,

ϑ(T ) = ϑ+(T, v4) + ϑ+(T, v6) = ϑ−(T6, v6) + ϑ+(T5, v7)

≤ ϑ(T6) + ϑ(T5) ≤ f(n− a− 4) + f(n− a− 3) < f(n).

Assume that γt(T8) = γ̂t(T8, v8). We introduce the notation

A1 = ϑ+(T8, v8), A2 = ϑ(T8), B1 = ϑ̂+(T8, v8), B2 = ϑ̂(T8).

By analogy with the previous case, for any MTDS D the intersection D ∩ {v5, v6, v7, v8}
coincides with one of the sets {v5, v6}, {v6, v7}, {v5, v8}, or {v7, v8}. Recall that deg(v2) = a+1.
Then

ϑ(T ) = (a+ 1)(A1 +A2) +B1 +B2.

Let us remove all leaves adjacent to v2 and add a − 1 new leaves to the vertex v3; then we
attach the leaf v′6 to the vertex v6. The resulting n-vertex 2-caterpillar T ′ satisfies ϑ(T ′) =
(a + 1)(2A2 + B2). Since γt(T8) = γ̂t(T8, v8), it follows that A2 > 0, whence ϑ(T ′) > ϑ(T );
this contradicts the maximality of T .

The proof of Theorem 1 is complete. �
Note that the assertion of the theorem does not hold for the class of 3-caterpillars. Figure 3

shows a 36-vertex 3-caterpillar T ∗
36 with central vertices u and v that is obtained by attaching four

copies of the star S3 to each end of the path P4. Denote by Mk the number of MTDSs of T ∗
36

containing k central vertices. Then

ϑ(T ∗
36) = M2 +M1 +M0 = 38 + 2 · 34 · (34 − 24) + (34 − 24)2 > 39 = f(36).

4. CLASS OF ARBITRARY TREES

It is well known that there exist n-vertex forests containing at least (
√
2)n minimum dominating

sets (for example, the forest n
2
P2 is suitable for even n). However, as will be shown in this section,

each n-vertex tree T contains fewer than (
√
2)n minimum total dominating sets.

Lemma 8. For n, k ≥ 1, if an n-vertex elementary forest F contains at least k connected
components, then (

√
2)n ≥ (4/3)kϑ(F ).

Proof. Consider the function g(m) = (
√
2)m+1/m defined on the set of positive integers.

Since g(m) is monotone increasing as m ≥ 3, the inequality g(m) ≥ 4/3 holds.
Let F = Sm1

∪Sm2
· · · ∪Smk

(we assume that m1,m2, . . . ,mk > 0; otherwise ϑ(F ) = 0 and there
is nothing to prove). Then

(
√
2)n

ϑ(F )
=

k∏
i=1

(
√
2)mi+1

mi

=

k∏
i=1

g(mi) ≥
(
4

3

)k

.

The proof of Lemma 8 is complete. �
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We say that a maximal n-vertex tree is critical if it contains at least (
√
2)n MTDSs and for

any n′ < n every n′-vertex tree contains fewer than (
√
2)n

′
MTDSs. It is clear from the definition

that every critical tree is inseparable. Since all trees of diameter at most 4 are 2-caterpillars, it
follows by Theorem 1 and Lemma 8 that they are noncritical. Thus, we assume that each critical
tree has a diameter of at least 5.

Lemma 9. For any critical tree T and any diametrical path v1v2 . . . vk , one has D(v4) = 3.
Proof. By Lemma 4, we have D(v3) = 0. Let D(v4) ≤ 2. Then three cases are possible.

Case of D(v4) = 0. Recall that deg(v2) = a+ 1. Then

ϑ(T ) = ϑ−(T, v3) + ϑ+(T, v3) ≤ aϑ(T4) + ϑ̂(T4, v4).

Note that equality is achieved if ϑ−(T, v3) > 0; otherwise ϑ(T ) = ϑ̂(T4, v4). Let us show
that γt(T ) = γt(T5) + 2. On the one hand, each MTDS T contains at least two vertices in the
set N [v2], whence γt(T ) ≥ γt(T5) + 2. On the other hand, for any MTDS D5 of tree T5 the
set D5 ∪ {v2, v3} is an MTDS of the tree T , whence γt(T ) ≤ γt(T5) + 2. Further, two cases
are possible.

Case of γt(T4) > γt(T5). We have γt(T ) = γt(T4) + 1. Then the vertex v3 is universal in T
(otherwise there would be an MTDS of T of cardinality γt(T4) + 1 containing the ver-
tices v1 and v2, which is impossible). If there exists an MTDS D of the tree T contain-
ing v5, then the set D \ {v2, v3} is an MTDS for the tree T4, and γt(T ) = γt(T4) + 2;
this is a contradiction. Hence v5 is idle in T . Note that if the MTDS D of the tree T
contains the vertex v4, then it does not contain other vertices of N(v5); otherwise the
set D \ {v4} also would be a TDS. The vertex v6 is not idle in T (otherwise it is sepa-
rable by Lemma 2), and for each MTDS D 	 v6 the set D \ {v2, v3} is an MTDS of T5.
Then v6 is not idle in T5 and ∂+(T, v6) ≤ ∂+(T5, v6). Moreover, for any MTDS D 	 v4
the set (D \ {v4}) ∪ {v6} is also an MTDS, whence ϑ+(T, v4) ≤ ϑ+(T, v6). Consequently,

ϑ(T ) ≤ ϑ+(T, v4) + ϑ+(T, v6) ≤ 2ϑ+(T5, v6) ≤ 2ϑ(T5) < 2(
√
2)n−a−3 < (

√
2)n.

Case of γt(T4) = γt(T5). It can readily be seen that

ϑ(T4) ≤ ϑ(T5), ϑ̂−(T4, v4) = ϑ(T5).

Let us show that ϑ̂+(T4, v4) ≤ ϑ(T5). Since the vertex v4 is a leaf in the tree T4, we
have γt(T5) = γ̂t(T4, v4). Consider a set D ⊆ V (T4) of cardinality γ(T5) such that v4 ∈ D

and each vertex of V (T4)\{v4} has a neighbor in D. By definition, there exist ϑ̂+(T4, v4)
such sets. In this case, v6 /∈ D (otherwise D \ {v4} would be an MTDS of T5, which is
impossible). Then the set (D\{v4})∪{v6} is an MTDS of T5, whence ϑ̂+(T4, v4) ≤ ϑ(T5).

By assumption, ϑ(T5) < (
√
2)n−a−3. Then

ϑ(T ) ≤ aϑ(T4) + ϑ̂(T4, v4) ≤ (a+ 2)ϑ(T5) < (a+ 2)(
√
2)n−a−3 < (

√
2)n.

Case of D(v4) = 2. The vertex v4 is adjacent to some preleaf u4. Then dist(v2, u4) = 3, and the
tree T is separable by Lemma 3.

Case of D(v4) = 1. In this case, v4 is adjacent to some leaf v′4 and is not adjacent to preleaves. We
assume that the vertex v5 is not idle and not universal in T (otherwise T would be separable
by Lemmas 2 and 3). There are two cases.

Case of deg(v4) = 3. Note that if the MTDS of the tree T contains the vertex v5, then it
can contain any vertex of the neighborhood N(v2). If, however, the MTDS does not
contain v5, then it contains the vertex v3. Then

ϑ(T ) = ϑ+(T, v5) + ϑ−(T, v5) = (a+ 1)ϑ+(T4, v5) + ϑ(F5) ≤ (a+ 1)ϑ(T4) + ϑ(F5).
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If ϑ(T4) ≥ 2ϑ(F5), then ϑ(T ) ≤ (a + 3/2)ϑ(T4) < (a + 3/2)(
√
2)n−a−2. If, however,

ϑ(T4) < 2ϑ(F5), then ϑ(T ) < (2a+3)ϑ(F5) < (2a+3)(
√
2)n−a−5. One can readily verify

that in both cases for all integer a ≥ 1 one has the inequality ϑ(T ) < (
√
2)n.

Case of deg(v4) ≥ 4. By F0 we denote the forest T \ (V (T5) ∪ {v4, v′4}). Set Q = ϑ(F0)
and q = |V (F0)|. Note that F0 is an elementary forest that consists of at least
deg(v4) − 2 ≥ 2 connected components. Then by Lemma 8 we have (

√
2)q/Q ≥ 16/9.

Since ϑ(T4) ≤ (
√
2)n−q and ϑ(F5) ≤ (

√
2)n−q−3, we have

ϑ(T ) = ϑ+(T, v5) + ϑ−(T, v5)

≤ Q
(
ϑ(T4) + ϑ(F5)

) ≤ 9

16
(
√
2)q
(
(
√
2)n−q + (

√
2)n−q−3

)
< (

√
2)n.

The proof of Lemma 9 is complete. �

Lemma 10. For any critical tree T and any of its diametrical paths v1v2 . . . vk , one has
D(v5) ∈ {0, 4}.

Proof. By Lemmas 4 and 9, D(v3) = 0 and D(v4) = 3. Suppose that D(v5) /∈ {0, 4}. Three
cases are possible.
Case of D(v5) = 1. The vertex v5 is preleaf. Then T is separable, because dist(v2, v5) = 3; a con-

tradiction.
Case of D(v5) = 2. The vertex v5 is adjacent to some preleaf vertex u5 different from v4 and v6.

Since D(v4) = 3, all neighbors of the vertex v4 are adjacent to preleaves. Then, by Lemma 5,
the vertex v4 is idle. By Corollary 1, the tree T is not critical; a contradiction.

Case of D(v5) = 3. The vertex v5 is adjacent to some vertex u4 whose neighbor u3 is a preleaf.
Note that if u3 is not a preterminal vertex, then it is adjacent to some preterminal vertex u2

as well as to the leaf u′
3. Then the tree T is not critical by Lemma 4; a contradiction. Hence

the vertex u3 is preterminal, and the vertex u4 is ϕ-universal in T . Then the vertex v4 is idle
by Lemma 5, and, by Corollary 1, the tree T is not critical, a contradiction.

The proof of Lemma 10 is complete. �

Theorem 2. For n ≥ 1, the inequality ϑ(T ) < (
√
2)n holds for any n-vertex tree T .

Proof. For n ≤ 9, all n-vertex trees are 2-caterpillars, and so they satisfy the condition of the
theorem. Suppose that for n ≥ 10 there exists an n-vertex critical tree T . Denote by P = v1v2 . . . vk
some diametrical path T . Then by Lemmas 4, 9, and 10 we have D(v3) = 0, D(v4) = 3,
and D(v5) ∈ {0.4}. We assume that the vertex v5 is adjacent to the vertex v6 and also to some
vertices v14, . . . , v

k
4 (here v4 = v14). There are 6 possible cases depending on the value of D(v6).

Case of D(v6) = 1. The vertex v6 is a preleaf. Then, by Lemma 5, the vertex v4 is idle and, by
Corollary 1, the tree T is not critical; a contradiction.

Case of D(v6) = 2. The vertex v6 is adjacent to some preleaf u5. Then, by Lemma 5, the vertex v5
is idle. Denote by F0 an elementary forest T \ (V (T6) ∪ N [v5]). If the vertex v6 is not idle
in T6, then γt(T ) = γt(T6) + γt(F0). Then the vertex v4 is idle in T and T is separable by
Lemma 2; a contradiction. If, however, the vertex v6 is idle in T6, then γt(T ) = γt(T6) +
γt(F0) + 1. For each i ∈ 1, . . . , k, from T we delete all edges incident with the vertex vi4
except for the edge vi4v5. Then the resulting forest F satisfies the equality γt(F ) = γt(T6) +
γt(F0) + 2, and for any MTDS D of the tree T the set D ∪ {v5} is an MTDS of the forest F .
Thus, (

√
2)n > ϑ(F ) ≥ ϑ(T ); a contradiction.

Case of D(v6) = 3. The vertex v6 is adjacent to some vertex u5 whose neighbor u4 is a preleaf.
Let us assume that u4 is not a preterminal vertex. If there exists a diametrical path
P ′ = u1u2u3u4u5v6 . . . vk in T , then DT,P ′(u4) = 1; this contradicts Lemma 9. Otherwise,
the vertex u4 is adjacent to at least one leaf u′

4 and at least one preterminal vertex. Then, by
Lemma 4, the tree T is not critical; a contradiction.
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Fig. 4. Structure of tree T in the case of D(v6) = 0.

Thus, the vertex u4 is preterminal in T . Then the vertex u5 is ϕ-universal and by Lemma 5,
the vertex v5 is idle in T . We act by analogy with the previous case. If the vertex v6 is not idle
in T6, then the vertex v4 is idle in T and, by Lemma 2, the tree T is separable; a contradiction.
Otherwise, for each i ∈ 1, . . . , k we remove all edges incident to the vertex vi4 except for the
edge vi4v5. Then for any MTDS D of the tree T the set D ∪ {v5} is an MTDS of the resulting
forest F , whence (

√
2)n > ϑ(F ) ≥ ϑ(T ); a contradiction.

Case of D(v6) = 5. In this case, there exists some diametrical path P ′ = u1u2u3u4u5v6 . . . vk,
where u5 is different from v5 and v7. By Lemmas 9 and 10, DT,P ′(u4) = 3 and
DT,P ′(u5) ∈ {0, 4}. Assume that there exists an MTDS D that does not contain v6. Then
the set (

ϕ(D) \ (N(v5) ∪N(u5)
)) ∪ {v6}

is also a TDS and is less than D in cardinality; a contradiction. Thus, the vertex v6 is universal
in T . Then the vertex v4 is idle by Lemma 5 and, by Corollary 1, the tree T is not critical;
a contradiction.

Case of D(v6) = 0. In this case, T has the structure depicted in Fig. 4. We introduce the notation

A1 = ϑ−(T7, v7), A2 = ϑ(F7), B1 = ϑ+(T7, v7), B2 = ϑ̂+(T7, v7).

Denote by T ′
5 the inclusion-maximal subtree T that contains the vertex v5 but does not contain

the vertices v14, . . . , vk4 . Denote by F0 the elementary forest obtained by deleting all vertices of
the subtree T6 and the neighborhood N [v5] from the tree T . Let Q = ϑ(F0) and q = |V (F0)|.
Obviously, γt(T ) = γt(T

′
5) + γt(F0). Then each MTDS of the tree T contains exactly two

vertices of the set N [v5] ∪ N [v6], which are either adjacent or at a distance of 3 from each
other. Note that if A1 ≥ A2, then the pair

{
vi4, v5

}
cannot be included in the MTDS. Similarly,

if B1 ≥ B2, then the pair {v5, v6} cannot be included in the MTDS. Then

ϑ(T ) ≤ Q
(
k ·min(A1, A2) +A2 + k ·min(B1, B2) +B2

)
.

Since ϑ(T ′
5) = (A2 + B2) < (

√
2)n−q−k, we have (A2 + B2)(

√
2)q+k < (

√
2)n. Then it suffices

to prove that
(A2 +B2)(

√
2)q+k > Q(k + 1)(A2 +B2).

Since D(v4) = 3, it follows that the forest F contains at least two connected components
and (

√
2)q/Q ≥ (4/3)2. On the other hand, (

√
2)k/(k + 1) ≥ 2/3, whence we obtain the

desired inequality.
Case of D(v6) = 4. In this case, T has the structure shown in Fig. 5. If there exists some dia-

metrical path P ′ = u1u2u3u4u5v6v7 . . . vs, where the vertex u5 differs from v5, then we apply
the arguments from the case of D(v6) = 5. Otherwise, the vertex v6 is adjacent to some ver-
tices u1

5, . . . , u
m
5 (where m ≥ 1) all of whose neighbors except for the vertex v6 have degree 2

and are adjacent to some terminal vertices. Let us introduce the notation A1, A2, B1, B2, Q, q
by analogy with the previous case. Denote by F ′

0 the elementary forest obtained by remov-
ing all vertices of the subtree T7 and the neighborhood N [v6] from the tree T6. Let W = ϑ(F ′

0)
and w = |V (F ′

0)|. Each MTDS of the tree T contains exactly two vertices of the
set N [v5] ∪N [v6] that are either adjacent or at a distance of 3 from each other. Then

ϑ(T ) ≤ QW
(
k(m+ 1)min(A1, A2) +mA2 +A2 + k ·min(B1, B2) +B2

)
.
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Fig. 5. Structure of tree T in the case of D(v6) = 4.

Denote by T ′′
5 the inclusion-maximal subtree of the tree T5 that contains the vertices v5 and v6

and does not contain the vertices v14, . . . , v
k
4 and u1

5, . . . , u
m
5 . Then

ϑ(T ′′
5 ) = ϑ+(T

′′
5 , v5) + ϑ+(T

′′
5 , v7) = A2 +B2 < (

√
2)n−q−w−k−m.

Let us show that

(A2 +B2)(
√
2)q+w+k+m > QW

(
(k + 1)mA2 + (m+ 1)A2 + kB2 +B2

)
.

We assume that A2 ≤ B2. Then it suffices to prove the inequality

(
√
2)q+w+k+m > QW (k + 1)(m+ 1).

By Lemma 9, the forest F ∪ F ′ contains at least three connected components. Then

(
√
2)q+w+k+m

QW (k + 1)(l + 1)
=

(
√
2)q+w

QW

(
√
2)k+m

(k + 1)(m+ 1)
≥
(
4

3

)3(
2

3

)2

> 1.

Thus, ϑ(T ) < (
√
2)n.

The proof of Theorem 2 is complete. �
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