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On closed orientable 3-manifolds, we consider a class G of homeomorphisms such that

the nonwandering set of each f ∈ G is the finite union of surfaces such that the re-

striction of some power fk on each of these surfaces is a pseudo-Anosov homeomor-

phism. We prove that homeomorphisms of class G exist only on 3-manifolds of the

form Sg × R/(J(z),r−1), where J : Sg → Sg is either a pseudo-Anosov homeomorphism

of the surface Sg of genus g > 1 or a periodic homeomorphism commuting with some

pseudo-Anosov homeomorphism. On such a manifold, we construct model homeomor-

phisms and find necessary and sufficient conditions for topological conjugacy of model

mappings. Bibliography: 13 titles.

1 Introduction

In this paper, we consider homeomorphisms f : M3 → M3 given on an oriented closed 3-

manifold M3 such that the nonwandering set NW (f) of each f is the disjoint union of closed

surfaces. If f is an A-diffeomorphism, i.e., the set NW (f) is hyperbolic and periodic points are

dense in NW (f), the surfaces are connected components of the basis sets, i.e., closed f -invariant

subsets of NW (f) possessing an everywhere dense orbit [1]. By [2], the basis sets are attractors

or repellers. An f -invariant set B is called an attractor if there exists a closed neighborhood U

of the set B such that f(U) ⊂ int U and
⋂

j�0
f j(U) = B. In this case, the neighborhood U is
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called an isolating neighborhood of the attractor A. An attractor of the homeomorphism f−1

is called a repeller of the homeomorphism f . By the results of [3] and [4], each surface is a

two-dimensional torus cylindrically embedded into M3 and the restriction of some power of the

diffeomorphism f on the torus is the conjugate of an Anosov diffeomorphism.

We say that Σ ⊂ M3 is a cylindrical embedding of an oriented surface S to M3 if there exists

a homeomorphism on the image of h : S × [0, 1] → M3 such that Σ = h(S).

A-diffeomorphisms f : M3 → M3 are considered in [5, 6] under the assumption that their

nontrivial two-dimensional basis sets are surfaces. For such diffeomorphisms the structure of

the underlying manifold was studied. In particular, it was proved that only three-dimensional

manifolds of the form T
2 × R/(J(z),r−1), where J : T2 → T

2 is an algebraic automorphism of a

torus given by a hyperbolic unimodular matrix or the matrix

(±1 0

0 ±1

)

admit these mappings.

The model mappings that are locally direct products of hyperbolic automorphisms of a torus and

rough transformations of a circle were constructed on each admissible manifold. An algebraic

topological conjugacy criterion for two model diffeomorphisms was found and it was proved that

any structurally stable diffeomorphism with basis sets of dimension 2 is topologically conjugate

to some model mapping.

This paper continues ideas of the above results to the case of homeomorphisms whose non-

wandering set is the union of two-dimensional surfaces. We describe the results in more detail.

We first recall that an orientation-preserving homeomorphism P : Sg → Sg of a closed ori-

ented surface of genus g > 1 is called a pseudo-Anosov mapping (a pA-homeomorphism) with

dilatation λ > 1 if on Sg there exists a pair of P -invariant transversal foliations F s
P and F u

P

with the set S of saddles and transversal measures μs and μu such that

• each saddle in S has at least three separatrices,

• μs(P (α)) = λμs(α) (μu(P (α)) = λ−1μu(α)) for any arc α traversal to F s
P (F u

P ).

From the results of [7] it follows that there exists a pseudo-Anosov homeomorphism in each

homotopy class of homeomorphisms of the surface Sg that contains no reducible or periodic

homeomorphisms. We recall that a homeomorphism h : Sg → Sg is reducible by a system C

of disjoint simple closed curves Ci, i = 1, . . . , l, that are nonhomotopic to zero and pairwise

nonhomotopic to each other if C is invariant under the homomorphism h. A homeomorphism

h : Sg → Sg is periodic if there exists m ∈ N such that hm = id, where id denotes the identical

transformation. The least number m possessing such properties is called the period of the

periodic homeomorphism.

We denote by P the set of pseudo-Anosov homeomorphisms and by Z(P ) the centralizer of

a mapping P ∈ P, i.e., Z(P ) = {h ∈ Homeo(Sg) : Ph = hP}.
Proposition 1.1 ([7, 8]). Any homeomorphism h ∈ Z(P ) has the form h = ι

h
pnh , where ι

h

is a periodic homeomorphism in the finite set IP , p ∈ P, n
h
∈ Z.

We set

I =
⋃

P∈P
IP , J = P ∪I .

We consider the class G of homeomorphisms f : M3 → M3 whose nonwandering sets NW (f)

consist of finitely many connected components B1, . . . ,Bm possessing the following properties

for i ∈ {1, . . . ,m}:
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• Bi is an orientable surface of a genus greater than 1 such that Bi is cylindrically embedded

into M3,

• there exists a natural number ki such that fki(Bi) = Bi and the mapping fki |Bi
is topo-

logically conjugate to a pseudo-Anosov homeomorphism,

• Bi is either an attractor or a repeller of the homeomorphism fki .

We denote by A the set of all attractors and by R the set of all repellers of a homeomor-

phism f .

Let J : Sg → Sg be a homeomorphism of a closed orientable surface Sg of genus g > 1. We

set MJ = (Sg × R)/Γ, where Γ = {γi, i ∈ Z} is the group of powers of the homeomorphism

γ : Sg×R → Sg×R given by γ(z, r) = (J(z), r−1). We denote by πJ : Sg×R → MJ the natural

projection.

The following assertion is proved in Section 2.

Theorem 1.1. A manifold M3 admits a homeomorphism f of class G if and only if M3 is

homeomorphic to the manifold MJ , where J ∈ J .

We construct model homeomorphisms of class G on each admissible manifold.

We consider tuples of numbers n, k, l such that n, k ∈ N, where l = 0 if k = 1 and

l ∈ {1, . . . , k − 1} is mutually prime with k if k > 1. For every tuple n, k, l we define the

diffeomorphism ϕn,k,l : R → R by

ϕn,k,l(r) = r +
1

4πnk
sin(2πnkr) +

l

k
.

For P ∈ P we introduce the mapping ϕP,n,k,l : Sg × R → Sg × R by

ϕP,n,k,l(z, r) = (P (z), ϕn,k,l(r)).

The following lemma is proved in Section 3.

Lemma 1.1. The formula

ϕP,J,n,k,l(w) = πJ (ϕP,n,k,l(π
−1
J

(w))),

where w ∈ MJ and π−1
J (w) is the complete preimage of a point w ∈ MJ , defines a homeomor-

phism ϕP,J,n,k,l : MJ → MJ if and only if J ∈ Z(P ).

Homeomorphisms of the form ϕP,J,n,k,l will be said to be model. By Proposition 1.1, Theorem

1.1, and Lemma 1.1, a model homeomorphism exists on each manifold MJ , J ∈ J , and, by

construction, belongs to the class G under consideration.

The following assertion is proved in Section 4.

Theorem 1.2. The homeomorphisms ϕP,J,n,k,l and ϕP ′,J ′,n′,k′,l′ are topologically conjugate

if and only if

(a) k = k′, n = n′ and either l = l′ or k − l = l′,

(b) there exists a homeomorphism H : Sg → Sg such that PH = HP ′ and either HJ = J ′H,

or l = l′, or HJ = J ′−1H if k − l = l′.
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2 Structure of Manifolds Admitting
Homeomorphisms of Class G

Before proving Theorem 1.1, we first study the structure of the nonwandering sets of home-

omorphisms of class G .

Lemma 2.1. For any orientation-preserving homeomorphism f ∈ G the sets A and R
are not empty and consist of the same number nk � 1 of connected components of the same

period k � 1. The set M3 \ (A ∪R) has 2nk connected components such that the boundary of

each component consists exactly of one periodic attractor component and one periodic repeller

component.

Proof. We denote by U(A) (U(R)) a cylindrical neighborhood of an attractor A ∈ A
(R ∈ R). We set U̇(A) = U(A) \A (U̇(R) = U(R) \R).

We first prove that the sets A and R are not empty. Assume the contrary. Let R = ∅,

and let the set A consist of finitely many connected components. Then the manifold M3 is

represented as

M3 =
⋃

A∈A

( ⋃

n∈Z
fn(U(A))

)
.

Since M3 is connected, the set A consists of only one attractor A. We consider an isolating

neighborhood Ũ(A) of the attractor A. We note that the α-limit set of an arbitrary point

s /∈ Ũ(A) is contained in the nonwandering set of the homeomorphism f and, consequently,

belongs to the attractor A . Then there exists n ∈ N such that f−n(s) ∈ Ũ(A). By the

definition of an isolating neighborhood of an attractor, we have fn(f−n(s)) = s ∈ Ũ(A). We

arrive at a contradiction. Consequently, the sets A and R are nonempty.

Now, we prove that the boundary of each connected component of M3 \ (A ∪ R) consists

exactly of one periodic attractor component and one periodic repeller component. The set

M3 \ (A ∪R) is wandering and, consequently, can be represented as

M3 \ (A ∪R) =
⋃

A∈A

( ⋃

n∈Z
fn(U̇(A))

)
=

⋃

R∈R

( ⋃

n∈Z
fn(U̇(R))

)
.

Let V be a connected component of M3 \ (A ∪R). Since

V ⊂
⋃

A∈A

( ⋃

n∈Z
fn(U̇(A))

)
, V ⊂

⋃

R∈R

( ⋃

n∈Z
fn(U̇(R))

)

and the set V is connected, there exists a unique connected component A ∈ A and a unique

connected component R ∈ R such that

V ⊂
⋃

n∈Z
fn(U̇(A)), V ⊂

⋃

n∈Z
fn(U̇(R)).

Consequently, cl V = A ∪ V ∪R and ∂V = A ∪R.

We show that the number of components of all attractors in A coincides with the number

of components of all repellers in R. We fix a component A1 of an attractor in A . Then A1

belongs to the boundary of both domains V1, V2 ⊂ M3 \ (A ∪R). Assume that ∂V1 = A1 ∪R1

and ∂V2 = A2 ∪R2. Then either R1 and R2 coincide and the required assertion is true or there
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exist domains V3 and V4 such that R1 ⊂ ∂V3 and R2 ⊂ ∂V4. We denote by A2 the boundary

component of V4 different from R2 and by A3 the boundary component of V3 different from R1.

There are two cases: either A2 = A3 and the required assertion is valid or there exist domains

V5 and V6 whose boundaries contain A3 and A2 respectively. Arguing as above, and taking into

account that the number of connected components of the nonwandering set is finite, we find

that the number of periodic components of all attractors coincides with the number of periodic

components of all repellers.

We prove that all components of the set A ∪R have the same period. For this purpose we

first show that if there exists a component of the set A ∪R with period 1, then all components

of the set A ∪R have period 1.

For the sake of definiteness we assume that some connected component A of the set A has

period 1. Let V be a domain in M3 \ (A ∪R) such that ∂V = A ∪ R, where R is a connected

component of the set R. We show that R also has period 1. Assume the contrary, i.e., f(R) �= R.

We set Ṽ = f(V ) and note that ∂Ṽ = f(A) ∪ f(R) = A ∪ f(R) which implies V ∩ Ṽ �= ∅.

We consider a cylindrical neighborhood U(A) of the attractor A such that U(A) ⊂ V ∪ A ∪ Ṽ .

We denote by Q and Q̃ the connected components of the set U(A) \ A such that Q ⊂ V and

Q̃ ⊂ Ṽ respectively. Then f(Q) ⊂ Ṽ and f(Q̃) ⊂ V . Since the diffeomorphism f preserves

the orientation of M3, we arrive at a contradiction with the fact that the restriction of the

diffeomorphism f on A preserves the orientation of A.

We assume that A ∪R has components of different periods. We denote by k the least period

of connected components of A ∪R, i.e., at least one connected component of the nonwandering

set NW (fk) of the homeomorphism fk has period 1. Then, as above, all connected components

of the set NW (fk) have period 1, which means that all connected components of the set A ∪R
for the homeomorphism f have period k.

Lemma 2.2. For any homeomorphism f ∈ G the closure of each connected component of

the set M3 \ (A ∪R) is homeomorphic to Sg × [0, 1].

Proof. Without loss of generality we assume that the period of connected components of

the nonwandering set is k = 1 (otherwise, we can consider the homeomorphism fk). Let A (R)

be an attractor (a repeller) lying in the nonwandering set of f , and let A (R) be homeomorphic

to the surface Sa (Sr). Since A (R) is a cylindrically embedded surface, there exists a closed

neighborhood U(A) (U(R)) and a homeomorphism hA (hR) such that hA : U(A) → Sa × [−1, 1]

(hR : U(R) → Sr × [−1, 1]); moreover, hA(A) = Sa × {0} (hR(R) = Sr × {0}). We set

U1
A = h−1

A (Sa × [−1, 0]), U2
A = h−1

A (Sa × [0, 1]),

N1
A = h−1

A (Sa × {−1}), N2
A = h−1

A (Sa × {1})

(
U1
R = h−1

R (Sr × [−1, 0]), U2
R = h−1

R (Sr × [0, 1]),

N1
R = h−1

R (Sr × {−1}), N2
R = h−1

R (Sr × {1})
)
.

We fix an attractor A. Since the nonwandering set of f consists only of attractors and repellers,

there exists a natural number m such that f−m(N1
A) belongs to a neighborhood of some repeller

R1 ⊂ NW (f) and f−m(N2
A) belongs to a neighborhood of some repeller R2 ⊂ NW (f), where R1
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and R2 are homeomorphic to Sr1 and Sr2 respectively (we note that R1 = R2 for n = 1). Without

loss of generality we can assume that f−m(N1
A) ⊂ int U1

R1
and f−m(N2

A) ⊂ int U2
R2

. We show

that R1 and N1
R1

belong to different connected components of the set U1
R1

\ f−m(N1
A). Assume

the contrary. By [9, Lemma 3.1], f−m(N1
A) is the boundary of some domain D1

A ⊂ int U1
R1

. By

[10, Lemma 1], R1 ⊂ int f−m(U1
A). Since the surface R1 is invariant, we arrive at a contradiction.

Thus, the set U1
R1

\ f−m(N1
A) consists of two connected components. By [9, Theorem 3.1], we

have a � r1 (the genus of f
−m(N1

A) is not less than that of R1). Similarly, acting by the mapping

f on the surface N1
R1

, we find r1 � a. Consequently, a = r1 and the surfaces A and R1 are

homeomorphic.

Further, we set a = r1 = g. By [9, Theorem 3.2], the closure of each connected component of

the set U1
R1

\f−m(N1
A) is homeomorphic to Sg×[0, 1]. (We note that the assumptions of Theorem

3.2 in [9] include the smoothness condition on f−m(N1
A). However, the result remains valid if the

surface is tame embedded.) Then the surfaces R1 and f−m(N1
A) bound a closed domain in M3

that is homeomorphic to Sg × [0, 1]. Since the set f−m(U1
A) is also homeomorphic to Sg × [0, 1],

from [10, Lemma 2] it follows that the connected component of the set M3 \ (A ∪R), bounded

by A and R1, is homeomorphic to the direct product Sg × [0, 1]. Similarly, we can show that the

connected component of the set M3 \ (A ∪R), bounded by A and R2, is homeomorphic to the

direct product Sg × [0, 1]. Arguing in the same way for all attractors in NW (f), we conclude

that each connected component of the set M3 \ (A ∪R) is homeomorphic to Sg × [0, 1].

Proof of Theorem 1.1. Sufficiency. The required assertion follows from the existence of

model homeomorphisms on each manifold MJ (cf. Lemma 1.1).

Necessity. Let the manifold M3 admit a homeomorphism f in the class G . By Lemma 2.1, all

connected components of the wandering set NW (f) have the same period k ∈ N. Without loss

of generality we assume that k = 1 (otherwise, we can consider the homeomorphism fk). We

fix an attractor A. Then f(A) = A and, in view of Lemma 2.2 and [10, Lemma 2], cl (M3 \ A)
is homeomorphic to Sg × [0, 1]. Then the manifold M3 is covered by the space Sg × R with a

covering mapping q
f
: Sg × R → M3 such that q−1

f (A) = Sg × Z, whereas the homeomorphism

f lifts to a homeomorphism f : Sg ×R → Sg ×R (q
f
f = fq

f
) such that f(Sg × {0}) = Sg × {0}

(see, for example, [11, Statement 10.35]).

For i ∈ Z we set q
f ,i = q

f
|Sg×{i} : Sg ×{i} → A. Then the mapping q

f ,i is a homeomorphism

and determines the homeomorphism Pi : Sg → Sg by

(Pi(z), i) = q−1
f ,i

fq
f ,i(z, i). (2.1)

Since f |A is a pseudo-Anosov homeomorphism, Pi is also a pseudo-Anosov homeomorphism.

Since f(Sg× [0, 1]) = Sg× [0, 1], the homeomorphisms P0 and P1 are homotopic (cf., for example,

[12, Theorem 5.15.3]). Consequently (see, for example, [7]), there exists a homeomorphism

ψ : Sg → Sg that is homotopic to the identity mapping and such that

ψP0 = P1ψ. (2.2)

We define the homeomorphism J̃ : Sg → Sg by

(J̃(z), 0) = q−1
f,0

q
f,1
(z, 1). (2.3)

Then the manifoldsM
˜J
andM3 are homeomorphic by a homeomorphism sending the equivalence

class of Sg × R by the action of (J̃(z), r − 1) to a point qf (z, r). Furthermore, (2.1) and (2.3)
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imply

J̃P1 = P0J̃ . (2.4)

We set J = J̃ψ. Expressing P1 from (2.2) as P1 = ψP0ψ
−1 and substituting into (2.4), we

get J̃ψP0ψ
−1 = P0J̃ or JP0 = P0J . Then J ∈ Z(P0) and, consequently, J ∈ J . Since

the homeomorphisms J and J̃ are isotopic, MJ is homeomorphic to M
˜J
(cf., for example, [13,

Proposition 1]). Hence M3 is homeomorphic to MJ , where J ∈ J .

3 Properties of Model Homeomorphisms

We show that the formula ϕP,J,n,k,l(w) = πJ (ϕP,n,k,l(π
−1
J

(w))), where w ∈ MJ and π−1
J (w)

is the complete preimage of the point w ∈ MJ , defines a homeomorphism ϕP,J,n,k,l : MJ → MJ

if and only if J ∈ Z(P ).

Proof of Lemma 1.1. We recall that for a homeomorphism J : Sg → Sg we denote by

MJ the space of orbits (Sg × R)/Γ, where Γ is the infinite cyclic group of powers of the home-

omorphism γ : Sg × R → Sg × R given by γ(z, r) = (J(z), r − 1). We denote by α : R → R the

diffeomorphism given by

α(r) = r − 1. (3.1)

Then

γ(z, r) = (J(z), α(r)). (3.2)

We recall that the homeomorphism ϕP,n,k,l : Sg × R → Sg × R has the form

ϕP,n,k,l(z, r) = (P (z), ϕn,k,l(r)), (3.3)

where P : Sg → Sg is a pseudo-Anosov homeomorphism and ϕn,k,l : R → R is the diffeomorphism

given by

ϕn,k,l(r) = r +
1

4πnk
sin(2πnkr) +

l

k
. (3.4)

By [11, Statement 10.35], the homeomorphism ϕP,n,k,l is projected by the natural projection

π
J
: Sg × R → MJ to a homeomorphism ϕP,J,n,k,l = π

J
ϕP,n,k,lπ

−1
J

of the manifold MJ if and

only if

ϕP,n,k,lγ = γmϕP,n,k,l, m ∈ {−1, 1} (3.5)

Substituting (3.2) and (3.3) into (3.5), we obtain the equality

(PJ(z), ϕn,k,lα(r)) = (JmP (z), αmϕn,k,l(r)) (3.6)

which implies

ϕn,k,lα = αmϕn,k,l. (3.7)

Substituting (3.1) and 3.4 into (3.7), we find that m = 1 and, consequently, PJ = JP which

implies J ∈ Z(P ).

By construction, the model homeomorphism ϕP,J,n,k,l belongs to the class G . We list the

main properties of this homeomorphism. These properties follow from the definition.

Proposition 3.1. The model homeomorphism ϕP,J,n,k,l : MJ → MJ possesses the following

properties.
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(1) The nonwandering set NW (ϕP,J,n,k,l) of the homeomorphism ϕP,J,n,k,l consists of 2nk con-

nected components B1, . . . ,B2nk such that each of them has period k.

(2) Each connected component Bi of the nonwandering set NW (ϕP,J,n,k,l) is a tame embedding

of the oriented surface Sg into M3.

(3) The set

MJ \
2nk⋃

i=1

Bi

consists of 2nk connected components V1, . . . , V2nk such that cl (Vi) is homeomorphic to

Sg × [0, 1] and the boundary consists of the surfaces Bi and Bi+1 one of which is an

attractor and the other is a repeller of the homeomorphism ϕk
P,J,n,k,l.

(4) The set

MJ \
k⋃

j=1

ϕj−1
P,J,n,k,l(Bi)

consists of k connected components W 1
i , . . . ,W

k
i such that cl (W j

i ) is homeomorphic to

Sg × [0, 1] and the boundary consists of the surfaces ϕ
�(j−1)
P,J,n,k,l(Bi) and ϕ�j

P,J,n,k,l(Bi), where


 ∈ N is such that 1 � 
 � k and 
l ≡ 1 (mod k).

4 Classification of Model Homeomorphisms

Proof of Theorem 1.2. Necessity. Assume that the homeomorphisms ϕ = ϕP,J,n,k,l and

ϕ′ = ϕP ′,J ′,n′,k′,l′ are topologically conjugate by a homeomorphism h : MJ → MJ ′ . By Lemma

2.1, the nonwandering sets of the homeomorphisms ϕ and ϕ′ consist of 2nk and 2n′k′ connected
components with periods k and k′ respectively. Since the homeomorphism h sends orbits of the

mapping ϕ to orbits of the mapping ϕ′, we have k = k′ and 2nk = 2n′k′. Hence n = n′. We set

B′
i = h(Bi).

If k = 1, then assertion (a) is proved. If k > 1, then, according to Proposition 3.1 (4), there

exist two connected components W 1
i and W k

i of the set MJ \
k⋃

j=1
ϕj−1(Bi) whose boundary

contains Bi. Moreover, ∂W 1
i = Bi 	 ϕ�(Bi) and ∂W k

i = Bi 	 ϕ�(k−1)(Bi), where 
l ≡ 1

(mod k). The same is valid for the surfaces B′
i, the diffeomorphism ϕ′, and a number 
′ such

that 
′l′ ≡ 1 (mod k). Hence we have either h(W 1
i ) = W ′1

i or h(W 1
i ) = W ′k

i . In the first case,


′ = 
, and, in the second case, 
′(k − 1) ≡ 
 (mod k), which implies either l = l′ or k − l = l′.
Thus, we have proved the necessity of condition (a). Let us prove the necessity of condition

(b). For this purpose we consider two cases: l = l′ and k − l = l′.

Case 1: l = l′. We set ϕ = ϕP,J,n,k,l and ϕ′ = ϕP ′,J ′,n′,k′,l′ . By [11, Statement 10.35],

there exists a lifting h : Sg × R → Sg × R of the homeomorphsim h that is a homeomorphism

conjugating the homeomorphisms ϕ and ϕ′

hϕ = ϕ′h. (4.1)

Without loss of generality we can assume that h(Sg×{0}) = Sg×{0} (otherwise, we can choose
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another covering possessing the same property). We set R = πJ (Sg × {0}). Then

π−1
J

(R) = Sg ×
{⋃

i∈Z

i

k

}
.

We set Ri = Sg × {i/k}, i ∈ Z. The same notation with prime will be used for the homeo-

morphism ϕ′. Then h(Ri) = R
′
i. We define the homeomorphism Hi : Sg → Sg by the formula

(Hi(z), i/k) = h(z, i/k). We recall that the homeomorphism ϕ : Sg × R → Sg × R is written as

ϕ(z, r) =
(
P (z), ψ(r) +

l

k

)
, (4.2)

where P : Sg → Sg is a pseudo-Anosov homeomorphism and ψ : R → R is the diffeomorphism

given by

ψ(r) = r +
1

4πnk
sin(2πnkr). (4.3)

The mapping ϕ′ has a similar form. Then the equality (4.1) for points (z, 0) ∈ Sg × {0} can be

written as (
HlP (z),

l

k

)
=

(
P ′H0(z),

l′

k

)

which implies HlP = P ′H0 and, consequently, H−1
0 HlP = H−1

0 P ′H0. Since h(Sg × [0, l/k]) =

Sg × [0, l/k], the homeomorphisms H0 and Hl are homotopic (cf., for example, [12, Theorem

5.15.3]). Then the pseudo-Anosov homeomorphisms P and H−1
0 P ′H0 are homotopic. Hence

they are topologically conjugate by a homeomorphism H̃ homotopic to the identity mapping

(see, for example, [7]), i.e., H̃P = H−1
0 P ′H0H̃ which implies HP = P ′H for H = H0H̃.

Since the homeomorphism h is projected by the homeomorphism h to the space of orbits

h : MJ → MJ ′ , arguing as in Lemma 1.1, we can show that H0J = J ′Hk. Then H0JH
−1
0 =

J ′HkH
−1
0 and, consequently, homeomorphisms H0JH

−1
0 and J ′, as well as homeomorphisms

J and H−1
0 J ′H0 are homotopic. Since J ∈ Z(P ), J ′ ∈ Z(P ′) in view of Lemma 1.1, from

Proposition 1.1 it follows that the homeomorphisms J and H−1
0 J ′H0 are topologically conjugate

by the homeomorphism H̃, i.e., H̃J = H−1
0 J ′H0H̃ which implies HJ = J ′H.

Case 2: k − l = l′. We set ϕ = ϕP,J,n,k,l. For ϕ′ we consider the covering of the home-

omorphism ϕ′ given by the formula ϕ′(z, r) = (P ′(z), ψ′(r) − l/k). Introducing the notation

as in Case 1, we have h(Ri) = R
′
−i and HlP = P ′H0. Since h(Sg × [0, l/k]) = Sg × [−l/k, 0],

we get HP = P ′H for some homeomorphism H : Sg → Sg. As in the proof of Lemma 1.1,

we can show that H0J = J ′−1Hk. Further, as above, we can show that homeomorphisms J

and H−1
0 J ′−1H0 are homotopic. Since J ∈ Z(P ), J ′−1 ∈ Z(P ′) in view of Lemma 1.1, from

Proposition 1.1 if follows that homeomorphisms J and H−1
0 J ′−1H0 are topologically conjugate

by the homeomorphism H̃, i.e., H̃J = H−1
0 J ′−1H0H̃ which implies HJ = J ′−1H.

Sufficiency. Assume that k = k′, n = n′, and H : M2 → M2 is a homeomorphism such

that PH = HP ′. We set h(z, r) = (H(z), r) if HJ = J ′H and h(z, r) = (H(z),−r) if

HJ = J ′−1H. Then hγ = γ′h if HJ = J ′H and hγ = γ′−1h if HJ = J ′−1H. Since

(P (H(z)), ϕ(r)) = (H(P ′(z)), ϕ(r)) and (P (H(z)), ϕ(−r)) = (H(P ′(z)),−ϕ(r)), in both cases,

the homeomorphism h conjugate homeomorphisms ϕ and ϕ′. By [11, Statement 10.35], h is

projected to the homeomorphism h = pJ ′hp−1
J conjugating the homeomorphisms ϕ and ϕ′.
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43, No. 2, 289–299 (1991).

9. V. Z. Grines, E. V. Zhuzhoma, and V. S. Medvedev, “New relations for Morse–Smale systems
with trivially embedded one-dimensional separatrices,” Sb. Math. 194, No. 7, 979–1007
(2003).

10. V. Z. Grines, Yu. A. Levchenko, and V. S. Medvedev, “On topological classification of
diffeomorphisms on 2-manifolds with two-dimensional surface attractors and repellers” [in
Russian], Nelinein. Din. 10, No. 1, 17–33 (2014).

11. V. Z. Grines, T. V. Medvedev, and O. V. Pochinka, Dynamical Systems on 2- and 3-
Manifolds, Springer, Cham (2016).

12. H. Zieschang, E. Vogt, and H. D. Coldewey, Surfaces and Planar Discontinuous Groups,
Springer, Berlin etc. (2006).

13. V. Z. Grines, E. Y. Gurevich, and O. V. Pochinka, “On the number of heteroclinic curves of
diffeomorphisms with surface dynamics,” Regular Chaotic Dyn, 22, No. 2, 122–135 (2017).

Submitted on November 17, 2022

692


	Abstract
	1 Introduction
	2 Structure of Manifolds AdmittingHomeomorphisms of Class G
	3 Properties of Model Homeomorphisms
	4 Classification of Model Homeomorphisms
	Acknowledgments
	References

