
AUTOMORPHISMS OF ALGEBRAIC VARIETIES AND
INFINITE TRANSITIVITY

IVAN ARZHANTSEV

Abstract. We survey recent results on multiple transitivity of automorphism groups of
affine algebraic varieties. We consider the property of infinite transitivity of the special
automorphism group, which is equivalent to flexibility of the corresponding affine variety.
These properties have important algebraic and geometric consequences. At the same time
they are fulfilled for wide classes of varieties. Also we study situations where infinite
transitivity takes place for automorphism groups generated by finitely many one-parameter
subgroups. In the appendices to the paper, the results on infinitely transitive actions in
complex analysis and in combinatorial group theory are discussed.
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Introduction

In this survey we study multiply transitive actions of automorphism groups of algebraic
varieties and the closely related concept of a flexible affine algebraic variety. Let us start
by reminding basic definitions.
Let us fix a positive integer m. We say that an action of a group G on a set X is m-transitive
if for any two tuples of m pairwise distinct points of the set X there exists an element of
the group G that sends the first tuple to the second one. The action of G on X is called
infinitely transitive if it is m-transitive for any positive integer m. Infinite transitivity is
equivalent to the fact that the pointwise stabilizer of any finite set of points acts transitively
on the complement to this set.
In the case of finite groups, it is easy to see that the symmetric group Sn acts on a set with
n elements n-transitively. The same action restricted to the subgroup of even permutations
An becomes (n−2)-transitive. The surprising fact is that all other finite permutation groups
have the transitivity degree not greater than 5 [30, p. 2.1]. Moreover, only the Mathieu
groups M12 and M24 have the transitivity degree 5, and the transitivity degree equals 4
only for the Mathieu groups M11 and M23 [30, Chapter 6]. At the same time, there are
infinitely many finite groups of the transitivity degree 3. For example, we may consider the
action of the group PGL2(Fq) on the projective line P1(Fq) over a field with q elements.
With different values of q we obtain different 3-transitive actions.
Let us move to the case of infinite groups. First of all, we are interested in automor-
phism groups of algebraic varieties. It is well known that the connected component of the
automorphism group of a complete (in particular, projective) algebraic variety is a (finite-
dimensional) algebraic group [68]. In particular, such a group can not act on a variety
infinitely transitively.
More precisely, it is known that the maximum of transitivity degree of the action of an
algebraic group is 3 and this value is achieved only for the action of the group PGL2 on
the projective line P1 [57, Corollary 2]. All 2-transitive actions of algebraic groups over an
arbitrary algebraically closed field are classified in [57]. It turned out that in addition to
the action of the group PGLn+1 on Pn, such actions are only the actions of the semidirect
product G ⋌ V on V , where G is a linear algebraic group and V is a rational G-module
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such that G acts on V \ {0} transitively. All such actions can be explicitly listed. Multiply
transitive actions of Lie groups were studied in [19, 60].

In the case of affine varieties, the situation changes essentially. It is not difficult to show
that for n ≥ 2 the automorphism group of the affine space An over an infinite field acts
on An infinitely transitively. Constructing other examples of infinitely transitive actions
on algebraic varieties is a nontrivial task that requires to develop a special technique.
One of the first works in this direction is the paper [54]. Here the infinite transitivity is
proved for the action of the automorphism group on the smooth locus of certain affine
hypersurfaces. Such hypersurfaces are called suspensions. In [13], the concept of a flexible
variety is defined, and the properties of flexibility and infinite transitivity were proved
for affine cones over varieties of generalized flags, non-degenerate affine toric varieties and
suspensions over flexible varieties.

One interpretation of the infinite transitivity of the action of the automorphism group is
that any two embeddings of a given finite set into the smooth locus of a flexible variety
are equivalent, that is, they can be translated to each other by a suitable automorphism of
the variety. This statement is consonant with the Abyankar-Moh-Suzuki Theorem on the
equivalence of embeddings of a line into a plane.

Unless otherwise stated, we assume the ground field K to be an algebraically closed field
of characteristic zero. Consider the additive group Ga of the field K with the natural
structure of a one-dimensional linear algebraic group. For each non-identical regular action
Ga×X → X, the image of Ga in the automorphism group Aut(X) is called a Ga-subgroup.
Denote by SAut(X) the subgroup of the group Aut(X) generated by all Ga-subgroups.
Since a subgroup conjugated to a Ga-subgroup by an arbitrary automorphism is again a
Ga-subgroup, the subgroup SAut(X) is normal in Aut(X).

We say that a smooth point x of a variety X is flexible if the tangent space Tx(X) is
generated by tangent vectors to the orbits of Ga-actions on X passing through x. An
algebraic variety X is called flexible if every its smooth point is flexible. For example, this
condition is satisfied if there is at least one flexible point on X and the group Aut(X) acts
transitively on the smooth locus.

We are ready to formulate the main result of the paper [6]. This is one of the central results
for this survey.

Theorem 1. Let X be an irreducible affine algebraic variety of dimension ≥ 2. Then the
following conditions are equivalent.

(i) The group SAut(X) acts on the smooth locus Xreg of the variety X transitively.
(ii) The group SAut(X) acts on the smooth locus Xreg infinitely transitively.
(iii) The variety X is flexible.

In other words, the transitivity of the group SAut(X) implies infinite transitivity, and these
conditions are equivalent to the flexibility condition formulated in infinitesimal terms. Note
that in [11, Theorem 2] and [33, Theorem 1.11] Theorem 1 is generalized to the case of
irreducible quasi-affine varieties of dimension ≥ 2.

Let us take a closer look at the structure of this paper. In the first section, following [6],
we define algebraically generated subgroups of the automorphism group of an algebraic
variety as subgroups generated by a family of algebraic subgroups. Note that the group
SAut(X) defined above is algebraically generated. Actions of such subgroups have a number
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of properties in common with the actions of finite-dimensional groups. Such properties
include the local closedness of orbits, as well as an analogue of Rosenlicht’s theorem on
the separation of orbits by rational invariants and an analogue of Kleiman’s theorem on
transversality. After that we proceed to the discussion on locally nilpotent derivations
of affine algebras. The technique of locally nilpotent derivations and the construction of
replicas of Ga-subgroups are among the main technical tools of this theory. The discussion
of this technique ends with the proof of equivalence of conditions (i) and (iii) in Theorem 1.
Finally, in the last part of this section we discuss results which lead to implication (i)⇒ (ii)
in Theorem 1. In fact, we deal with more general setup: infinite transitivity is considered
on an open orbit, which need not coincide with the smooth locus of the variety, and the
acting group need not be SAut(X), but any subgroup of this group generated by a saturated
family of Ga-subgroups.

Section 2 is devoted to the study of properties of flexible varieties established in [6, 33]
and subsequent papers. We show that the existence of a flexible point on an affine variety
is equivalent to the triviality of the Makar-Limanov field invariant and prove that every
such variety is unirational. Bogomolov’s conjecture [17] is also discussed here. It offers
a characterization of unirational varieties in terms of stably infinitely transitive birational
models. We consider collectively infinitely transitive actions, the A1-richness property, and a
generalization of the Gromov-Winkelmann Theorem to arbitrary flexible varieties obtained
in the work of Flenner, Kaliman and Zaidenberg [33]. The theorem claims that flexibility
is preserved when passing to a quasi-affine variety obtained from a flexible affine variety
by removing a subvariety of codimension ≥ 2. We also consider the question of when the
automorphism group of an affine variety X acts on the smooth locus 2-transitively. In the
case when some affine algebraic group of positive dimension acts non-identically on X, this
condition is equivalent to the flexibility of the variety [4].

In Section 3 we consider examples of flexible varieties. The presentation begins with the
already mentioned construction of suspension. Then non-degenerate affine toric varieties
are considered. To prove flexibility, the root Ga-subgroups and related Demazure roots
are used. A generalization of this result is the theorem on flexibility of non-degenerate
affine horospherical varieties proved in recent papers by Gaifullin and Shafarevich [84, 40].
Flexibility of affine cones over projective varieties is studied, in particuar over del Pezzo
surfaces [72, 74] and higher dimensional Fano varieties [70, 80]. Here the proof of flexibility
uses the construction of a cylindrical subset on a projective variety proposed by Kishimoto,
Prokhorov and Zaidenberg, see e.g. [21]. We discuss the flexibility property for a universal
torsor and for a total coordinate space over varieties covered by open charts isomorphic
to an affine space [11]. These objects arise in the theory of Cox rings. The flexibility of
Gizatullin surfaces and Calogero-Moser varieties is also considered.

In Section 4 we discuss a recently discovered effect — infinite transitivity can occur for
subgroups of the automorphism group generated by a finite number of Ga-subgroups. In
the case of affine spaces, this result can be extracted from the theorems of Derksen and
Bodnarchuk. In [9], we formulate a conjecture that for any flexible affine variety there
exists such a finite set of one-dimensional unipotent subgroups that the group generated by
them acts infinitely transitively on its open orbit. This conjecture is proved in [9] for non-
degenerate affine toric varieties of dimension ≥ 2, which are nonsingular in codimension 2.
It is known that in the case of an affine space, three generating Ga-subgroups are sufficient
for infinite transitivity. The ind-structure on the automorphism group Aut(X) and the



AUTOMORPHISMS AND INFINITE TRANSITIVITY 5

passage from the subgroup G to its closure G in the ind-topology play an important role
here. In the last part, we follow the paper [12] and discuss the Tits alternative for groups
generated by a finite number of root subgroups in the automorphism group of an affine
toric variety.

The last part of the survey consists of two appendices. Appendix A is devoted to holomor-
phic flexibility and infinite transitivity for groups of automorphisms of complex analytic
manifolds, as well as to the explanation of the connection of concepts and constructions
introduced above with the Andersen-Lempert theory, Gromov sprays, Oka manifolds and
Oka maps.

In Appendix B we prove several results on infinite transitivity of actions of abstract groups.
To the reader who has not worked with infinitely transitive actions before, we recommend
to read this appendix before reading the main part of the text. Here we prove the infinite
transitivity for a normal subgroup of an infinitely transitive group. Following [69], we
construct an example of an infinitely transitive action of a 2-generated group and give a
brief overview of the known facts on existence of infinitely transitive effective actions of
finitely generated groups. Such actions are implemented both on abstract sets and on
infinite graphs, metric spaces and other natural objects. Recently, this direction has been
actively developing, but this happens without any connection with the results on infinite
transitivity of automorphism groups of algebraic varieties. It is natural to expect that in
the future the two theories will enrich each other.

Note also that the survey contains some original results and observations. For example,
Proposition 6 seems to be new.

In our opinion, the theory of flexible varieties is currently at its zenith. On the one hand,
this area has proved its right to exist: a number of general structural theorems have been
obtained, interesting applications and consequences of the results on flexibility have been
found, it has been shown that wide classes of affine varieties have the flexibility property,
nontrivial connections with other areas of mathematics have been established. On the
other hand, a number of important open questions and conjectures are connected with this
topic, which seem to be accessible, including within the framework of already developed
techniques, and which are interesting to work on. We are confident that in the coming
years the theory of flexible varieties will be supplemented with new results, and we hope
that this survey will contribute to the further development of this area.

The author would like to take this opportunity to thank his co-authors and colleagues
with whom he works together in this field or discusses related issues. He is sincerely
grateful to Mikhail Zaidenberg, Jürgen Hausen, Shulim Kaliman, Frank Kutzschebauch,
Hubert Flenner, Hendrik Süss, Gene Freudenburg, Alvaro Liendo, Yuri Prokhorov, Dmitry
Timashev, Karine Kuyumzhiyan, Sergey Gaifullin, Alexander Perepechko and many others.
Special thanks are due to the referee for a careful reading of the text and many valuable
comments.

1. Basic facts on infinitely transitive actions and flexible varieties

1.1. Infinite transitivity on an affine space. We start this section by proving a well-
known fact: for n ≥ 2, the group Aut(An) acts on An infinitely transitively. This result
hardly makes sense to associate with a specific work, it has a folklore nature and can
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be proved by a junior math student who is familiar with the concept of an interpolation
polynomial. It is also an obvious consequence of Theorem 1: the space An is flexible,
since the tangent space at each point is generated by tangent vectors to the orbits of one-
parameter subgroups of parallel translations along the coordinate axes. Nevertheless, we
give here a direct proof of the infinite transitivity of the action of the automorphism group,
since it illustrates a number of ideas and methods underlying this theory. An affine space
is considered here over an arbitrary infinite field.

Proposition 1. For n ≥ 2, the group Aut(An) acts on An infinitely transitively.

Proof. We fix a positive integer m and choose m pairwise distinct points

(x11, . . . , xn1), . . . , (x1m, . . . , xnm).

It suffices to prove that these points can be moved to a standard position by a suitable
automorphism of the space An. Over a field of characteristic zero, we can assume that a
standard position is the set

(1, . . . , 1), . . . , (m, . . . ,m),

and over fields of positive characteristic, obvious changes need to be made in the arguments
given below.

Step 1. We are going to ensure that x1i ̸= x1j for all i ̸= j. We consistently increase
the number of such inequalities. Let us suppose that x11 = x12. Then we can assume
that x21 ̸= x22. Let us find a polynomial f(x) such that f(x21) = a and f(x2i) = 0 for
all x2i ̸= x21, where a ̸= x1i − x1j for all i, j = 1, . . . ,m. Applying the automorphism
(x1 + f(x2), x2, . . . , xn) of An to our set, we achieve that x11 ̸= x12 and the inequalities of
the first coordinates of the points that took place before will not turn to equalities after
such a transformation. Thus, after a finite number of such transformations, we obtain the
required.

Step 2. Now we assume that x1i ̸= x1j for all i ̸= j. Let us take such polynomials
f2(x), . . . , fn(x) that xsi + fs(x1i) = i for all s = 2, . . . , n and i = 1, . . . ,m. After applying
the automorphism

(x1, x2 + f2(x1), . . . , xn + fn(x1))

we obtain a set of points

(x11, 1, . . . , 1), . . . , (x1m,m, . . . ,m).

Step 3. Take a polynomial h(x) such that

x1i + h(i) = i

for all i = 1, . . . ,m. Then the automorphism (x1 + h(x2), x2, . . . , xn) moves our set to the
standard position. □

Remark 1. For n = 1, the group Aut(A1) is isomorphic to the semidirect product Gm ⋌Ga,
where the torus Gm acts by scalar multiplications and the group Ga acts by parallel trans-
lations. This implies that Aut(A1) acts on A1 2-transitively, but not 3-transitively.
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1.2. Algebraically generated automorphism groups. Let X be an algebraic variety
over the ground field K. An algebraic subgroup of the automorphism group Aut(X) is a
subgroup H ⊆ Aut(X) with a structure of an algebraic group such that the action map
H ×X → X is a morphism of algebraic varieties. We say that a subgroup G of the group
Aut(X) is algebraically generated if it is generated as an abstract group by a family S of
connected algebraic subgroups of the group Aut(X).

Proposition 2 ([6, Propositions 1.3 and 1.5]). Consider an algebraically generated subgroup
G ⊆ Aut(X). Then

(a) for any point x ∈ X, the orbit is G.x is locally closed in X;
(b) there is such a finite set of not necessarily pairwise distinct subgroups H1, . . . , Hs ∈ S

that
G.x = H1.(H2. · · · (Hs.x))

for any point x ∈ X.

Proposition 3 ([6, Proposition 1.8]). Suppose that a generating family S of connected
algebraic subgroups is invariant under conjugation by elements of the group G. Then there
is such a sequence (H1, . . . , Hs) of subgroups in S that for all points x ∈ X the tangent
space Tx(G.x) to the orbit G.x is generated by tangent spaces

Tx(H1.x), . . . , Tx(Hs.x).

We consider an algebraically generated subgroup G ⊆ Aut(X) with a generating family
S of connected algebraic subgroups that is invariant under conjugation by elements of the
group G. We say that a point x ∈ Xreg is G-flexible if the tangent space TxX is generated
by subspaces Tx(H.x), where H ∈ S. Then [6, Corollary 1.11] states that a point x ∈ Xreg

is G-flexible if and only if the orbit G.x is open in X. Further, if such an open orbit exists,
then it is unique and consists exactly of all G-flexible points in Xreg. Note also that the
definition of a G-flexible point does not depend on the choice of a generating family S of
the group G.

Using the semi-continuity theorem for the dimension of fibers of a morphism, it is not
difficult to prove [6, Corollary 1.12] that for an algebraically generated group G ⊆ SAut(X),
the function X → Z≥0, x 7→ dimG.x is lower semi-continuous. In particular, the union of
orbits of maximum dimension in X is a Zariski-open subset.

The following result is an analogue of the well-known Rosenlicht theorem for algebraic
groups [79, Theorem 2.3].

Theorem 2 ([6, Theorem 1.13]). Let G ⊆ Aut(X) be an algebraically generated subgroup.
Then there is a finite set of rational G-invariant functions which separate G-orbits in general
position on X.

The proof of this result repeats almost verbatim the proof of the original Rosenlicht theorem
given in [79].

Corollary 1 ([6, Corollary 1.14]). Let an algebraically generated group G act on an irre-
ducible variety X. Then

tr.deg(K(X)G : K) = min
x∈X
{codimXG.x} .

In particular, there is an open G-orbit on X if and only if K(X)G = K.
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If an algebraic group G acts transitively on an algebraic variety X and Y, Z are smooth
subvarieties in X, Kleiman’s Transversality theorem claims that a typical translate g.Z
(g ∈ G) intersects Y transversally. The following generalization of this result takes place
in the case of algebraically generated subgroups.

Theorem 3 ([6, Theorem 1.15]). Let an algebraically generated subgroup G ⊆ Aut(X) be
generated by a family S of connected algebraic subgroups that is invariant under conjugation
by elements of G. Suppose that G acts with the open orbit O ⊆ X. Then there are such
subgroups H1, . . . , Hs ∈ S that for any locally closed reduced subschemes Y and Z in O
one can find such a Zariski-open subset U = U(Y, Z) ⊆ H1 × . . . ×Hs, that any elements
(h1, . . . , hs) ∈ U satisfy the following conditions:

(a) the translate (h1 · . . . · hs).Z
reg intersects Y reg transversely ;

(b) dim(Y ∩ (h1 · . . . · hs).Z) ≤ dimY + dimZ − dimX.

In particular, if dimY + dimZ < dimX, then Y ∩ (h1 · . . . · hs).Z = ∅.

Note that in the work [77] results on algebraically generated subgroups have been further
generalized. A number of properties of actions including local closureness of orbits and an
analogue of Rosenlicht’s theorem on rational invariants, are proved here for any connected
subgroup of the automorphism group of an arbitrary irreducible algebraic variety.

1.3. Locally nilpotent derivations and replicas of Ga-subgroups. For our further
purposes it is important to know how to work with infinitesimal generators of Ga-subgroups
of the automorphism group Aut(X) of an affine variety X. Below we formulate the related
results.

(1) If the group Ga acts on an affine variety X = SpecA, then the derivation ∂ of the
algebra A associated with this action is locally nilpotent, that is, for every f ∈ A there is
such an n ∈ N that ∂n(f) = 0. This result is explained by the fact that each function f
lies in a finite-dimensional Ga-invariant subspace in A, and, by the Lie-Kolchin Theorem,
in a suitable basis of this subspace the group Ga acts by unitriangular matrices. Hence, the
differential of such an action is given in this subspace by a nilpotent operator.

(2) Conversely, given a locally nilpotent K-linear derivation ∂ : A → A and t ∈ K, the
mapping exp(t∂) : A → A defines an automorphism of the algebra A and, consequently,
of the variety X. Thus, each locally nilpotent derivation ∂ ̸= 0 is associated with the Ga-
subgroup H = exp(K∂) in Aut(X); for more details see [37]. If we consider ∂ as a vector
field on X, the action of H on X is exactly the phase flow associated with this field.

(3) The algebra of invariants K[X]H = ker ∂ has the transcendence degree dimX − 1.
Further, each H-invariant function f ∈ K[X]H defines a new Ga-subgroup Hf := exp(Kf∂).
We call such subgroups replicas of the subgroup H. Bellow such subgroups play a significant
role.

The subgroup Hf acts in the same direction as the subgroup H, but with a different velocity
along the orbits. In particular, those H-orbits, where the function f vanishes, consist of
Hf -fixed points. The mapping f 7→ f∂ embeds ker ∂ as an abelian subalgebra into the Lie
algebra of all regular vector fields on X.

For a subgroup G ⊆ SAut(X), we denote by LND(G) the set of locally nilpotent vector fields
on X that generate Ga-subgroups contained in G. This set is invariant under conjugation
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by elements of G and is a cone, that is, K · LND(G) ⊆ LND(G). In the following, we
consider subsets N ⊆ LND(G) of locally nilpotent vector fields for which the associated
subgroups {exp(K∂)}, ∂ ∈ N generate the group G. For brevity, we say that N generates
the group G and write G = ⟨N⟩.
The following result can be deduced from Proposition 3.

Corollary 2 ([6, Corollary 1.21]). For a subgroup G = ⟨N⟩ of the group Aut(X), where
N ⊆ LND(G) is invariant under conjugation in G, there are locally nilpotent vector fields
∂1, . . . , ∂s ∈ N that generate the tangent space Tx(G.x) at each point x ∈ X.

For a point x ∈ X, let LNDx(G) ⊆ TxX denote the cone of all tangent vectors ∂(x),
where ∂ runs through LND(G). According to Corollary 2, we have Tx(G.x) = ⟨LNDx(G)⟩.
Thus, a point x ∈ Xreg is G-flexible if and only if the cone LNDx(G) generates the tangent
space TxX.

Applying Corollary 2 to the group G = SAut(X), we obtain equivalence (i)⇔(iii) in Theo-
rem 1 from the Introduction.

Corollary 3. For an irreducible affine variety X, the action of the group SAut(X) on Xreg

is transitive if and only if X is flexible.

Example 1. We illustrate the notion of a replica and a special automorphism group SAut(X)
in the case of the affine space X = An. The group SAut(An) contains Ga-subgroups of par-
allel translations in all directions. The infinitesimal generator of such a subgroup coincides
with the partial derivative in this direction, which is considered as a locally nilpotent deriva-
tion of the polynomial ring in n variables. For example, in the case of the parallel translation
along the first coordinate axis (x1 + t, x2, . . . , xn), t ∈ K, the corresponding derivation ∂
is ∂

∂x1
. Replicas of such a subgroup are translations of the form (x1 + f, x2, . . . , xn) for an

arbitrary polynomial f ∈ K[x2, . . . , xn].

As one more example, we consider the locally nilpotent derivation ∂ = x1
∂

∂x2
+ x2

∂
∂x3

of
the polynomial ring K[x1, x2, x3] and the invariant function f = x2

2 − 2x1x3 ∈ ker ∂. The
corresponding replica Hf contains the well-known automorphism of Nagata

Hf (1) = exp(f · ∂) ∈ SAut(A3).

Note that any automorphism from SAut(An) preserves the volume form on An. So we have

SAut(An) ⊆ Jn,

where Jn denotes the subgroup in Aut(An) consisting of all automorphisms such that the
determinant of the Jacobi matrix is 1.

Let us recall that the subgroup of tame automorphisms Tamen ⊆ Aut(An) is the subgroup
generated by all elementary automorphisms σ ∈ Aut(An) of the form

σ = σi,λ,f : (x1, . . . , xi−1, xi, xi+1, . . . , xn)

7−→ (x1, . . . , xi−1, λxi + f, xi+1 . . . , xn),

where f ∈ K[x1, . . . , xi−1, xi+1 . . . , xn] and λ ∈ Gm. An elementary automorphism σ with
λ = 1 is contained in the Ga-subgroup {σi,1,tf}t∈K. Since for any λ ∈ Gm the conjugated
element hλ ◦ σ ◦ h−1

λ , where hλ(x) = λx, is again elementary, any tame automorphism β
with Jacobi matrix having determinant 1 can be written as a product of elementary auto-
morphisms with Jacobi matrix having determinant 1. Thus Tamen ∩ Jn ⊆ SAut(An) ⊆ Jn.
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For n = 3 the first inclusion is strict. In fact, the Shestakov-Umirbaev Theorem states that
the Nagata automorphism Hf (1) is wild or, in other words,

Hf (1) ∈ SAut(A3) \ (Tame3 ∩ J3).

For n = 2, the Jung–van der Kulk Theorem states that
Aut(A2) = Tame2

and so SAut(A2) = J2. It is also known that the group J2 is perfect and its derived subgroup
coincides with the derived subgroup of the group Aut(A2). The question of whether the
equality SAut(An) = Jn holds for n ≥ 3 remains open, see [38, Question 15.5.4]. Moreover,
it is not known whether the group Jn coincides with the closure of the subgroup SAut(An)
with respect to the ind-topology on the group Aut(An).

1.4. Flexibility and infinite transitivity. Let X be an affine algebraic variety and
G ⊆ SAut(X) be a subgroup generated by a set N of locally nilpotent vector fields sat-
isfying the following conditions:

(a) N is invariant under the action of the group G by conjugation;
(b) N is closed under taking replicas.

We call such a generating set saturated. Note that a more essential condition here is
condition (b), since starting from an arbitrary set of locally nilpotent vector fields N0

generating G and satisfying condition (b) we can add all conjugates by elements of G to
elements of N0 and obtain a saturated set N generating the same group G.
The following theorem proves (i)⇒(ii) in Theorem 1 from the Introduction.

Theorem 4 ([6, Theorem 2.2]). Let X be an affine variety of dimension ≥ 2 and
G ⊆ SAut(X) be a subgroup generated by a saturated set of locally nilpotent vector fields.
Suppose that G acts with the open orbit O ⊆ X. Then G acts on O infinitely transitively.

For a subset Z ⊆ X, we denote by NZ the set of vector fields from N that vanish on Z. Let
GN,Z = ⟨H = exp(K∂) : ∂ ∈ NZ⟩

be the subgroup in G generated by exponents of all elements in NZ . It is clear that
automorphisms from GN,Z preserve the subset Z pointwise. It is easy to see that NZ is a
saturated generating set of the group GN,Z .
One of the main technical results of the work [6] can be formulated as follows.

Theorem 5 ([6, Theorem 2.5]). Let X be an affine variety of dimension ≥ 2 and
G ⊆ SAut(X) be a subgroup generated by a saturated set N of locally nilpotent vector fields.
Suppose that G acts with the open orbit O ⊆ X. Then for each finite subset Z ⊆ O the
group GN,Z acts transitively on O \ Z.

Theorem 5 implies Theorem 4. In turn, the proof of Theorem 5 is based on the orbit
separation property [6, Definition 2.6]. This proof requires considerable technical efforts.

Finally, let us mention one more result on this subject, which is of independent interest.

Theorem 6 ([6, Theorem 2.15]). Let X be an affine variety of dimension ≥ 2. Suppose
that a group G ⊆ SAut(X) generated by a saturated set N of locally nilpotent vector fields
acts on X with an open orbit O and Y = X \O. Then the group GN,Y acts on O infinitely
transitively.
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2. Properties of flexible varieties

In this section we consider several algebraic and geometric results related to flexibility of
an algebraic variety.

2.1. The Makar-Limanov invariant and rationality properties. Recall [37] that the
Makar-Limanov invariant ML(X) of an affine algebraic variety X is the intersection of
kernels of locally nilpotent derivations on K[X]. In other words, ML(X) is the subalgebra
of SAut(X)-invariant regular functions on X.

In [67], a close concept is defined: the Makar-Limanov field invariant FML(X) is the
intersection of kernels of derivations obtained by extension of locally nilpotent derivations
of the algebra K[X] to the field of rational functions K(X). This is a subfield of the field
K(X) consisting of rational functions invariant with respect to the group SAut(X). If this
invariant is trivial, i.e. FML(X) = K, then the invariant ML(X) is also trivial, but the
converse statement is generally not true. The triviality of FML(X) is equivalent to the
existence of an open SAut(X)-orbit in X (Corollary 1) or, equivalently, the existence of a
flexible point on X.

It is natural to assume that the triviality of such invariants should be connected with one
or another version of rationality properties of the variety X. Recall that an irreducible
algebraic variety X is rational if the field of rational functions K(X) is generated over the
field K by a finite set of algebraically independent elements. Equivalently, there is an open
subset in X isomorphic to an open subset of an affine space. An irreducible variety X is
stably rational if the variety X × Ak is rational for some positive integer k. Finally, an
irreducible variety X is unirational if the field of rational functions K(X) can be embedded
as a subfield in the field of rational fractions K(x1, . . . , xm). Geometrically, this means that
there exists a rational dominant morphism to X from an affine space. It is known that if
X is a curve or a surface then the rationality of X is equivalent to unirationality. At the
same time, there are unirational but not rational varieties of dimension 3.

Examples of non-unirational three-dimensional affine varieties X with ML(X) = K are
known; in these examples, the varieties are birationally equivalent to the direct product
C × A2, where C is a smooth curve of genus g ≥ 1; see [66, Example 4.2]. For such
varieties, typical SAut(X)-orbits have dimension two, that is, the field invariant FML(X)
is nontrivial.

The following proposition confirms, in particular, Conjecture 5.3 from [67].

Proposition 4 ([6, Proposition 5.1]). Let X be an irreducible affine variety. If
FML(X) = K, then the variety X is unirational.

The proof follows from the observation that the condition FML(X) = K means that there
is an open SAut(X)-orbit O in X. Proposition 2 guarantees that there are Ga-subgroups
H1, . . . , Hs in SAut(X) and a point x ∈ X such that the image of the map

H1 × . . .×Hs → X, (h1, . . . , hs) 7→ (h1 . . . hs).x

equals O. Since the product H1× . . .×Hs is isomorphic (as a variety) to the affine space As,
this implies unirationality of X. Moreover, every two points on O are connected by the
image of a morphism A1 → O. In other words, the orbit O is A1-connected.
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In general, flexibility entails neither rationality nor stable rationality. For example,
Popov [76, Example 1.22] pointed out examples of finite subgroups F ⊆ SLn for some
n such that the smooth flexible unirational affine homogeneous space X = SLn/F is not
stably rational.

The paper [17] is devoted to a conjecture that characterizes unirationality in terms of
infinitely transitive actions. To formulate the conjecture, we need several definitions.

We say that an irreducible variety X is stably birationally infinitely transitive if for some
positive integer m the purely transcendental extension K(X)(y1, . . . , ym) of the field K(X)
is the field of rational functions on some flexible affine variety of dimension ≥ 2. If this
condition holds for m = 0, the variety X is called birationally infinitely transitive.

It is clear that the affine space An is stably birationally infinitely transitive, and for n ≥ 2 it
is birationally infinitely transitive. Thus, the same properties hold for any rational algebraic
variety.

Conjecture 1 ([17, Conjecture 1.4]). Any unirational variety is stably birationally infinitely
transitive.

In [17, Example 1.6] it is shown that the stability requirement is essential for the conjec-
ture. In fact, the authors show that any unirational three-dimensional variety admitting an
infinitely transitive birational model is rational. Indeed, for a typical Ga-orbit C on a given
model, this model is birationally isomorphic to C×Y for some surface Y . By assumptions,
the surface Y is unirational, and therefore rational. At the same time, there are examples
of unirational but not rational three-dimensional varieties.

In [17, Theorems 2.1–2.2], sufficient conditions for stable birational infinite transitivity of a
variety are given. These conditions allow to prove Conjecture 1 for wide classes of varieties,
see [17, Section 3].

2.2. Collective transitivity. By collective infinite transitivity we mean the possibility to
translate simultaneously, that is, by the same automorphism, arbitrary finite sets of points
to arbitrary finite sets of points of the same cardinality in the same orbits. The general
results on collective infinite transitivity obtained in [6, Section 3] are illustrated here by
examples from matrix algebra, see [81, 82].

Let X = Mat(n,m) be the space of matrices of size n × m over the ground field K. It
is well known that a locally closed subset Xr ⊆ X of matrices of rank r has dimension
mn − (m − r)(n − r). Further we assume that this dimension is at least 2. The group
SLn × SLm acts on X by means of left/right multiplications and preserves the subsets Xr.
For any k ̸= l, let Ekl and Ekl be matrix units, that is, xkl = 1 and all other matrix
elements are zero. Let Hkl = In + KEkl ⊆ SLn and Hkl = Im + KEkl ⊆ SLm denote the
corresponding Ga-subgroups. They preserve the stratification X =

⋃
r Xr. Let δkl and δkl

be the corresponding locally nilpotent vector fields on X. These fields are tangent to the
elements of the stratification.

Let us say that the Ga-subgroups Hkl, Hkl and their replicas are elementary Ga-subgroups.
Our goal is to establish collective infinite transitivity on strata for the subgroup G of the
group SAut(X) generated by such two-sided elementary subgroups.
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We know from linear algebra that the subgroup SLn × SLm ⊆ G acts transitively on every
subvariety Xr with the exception of the open subvariety Xn in the case m = n. In the
latter case, G-orbits lying in Xn are the level subvarieties of the determinant.

Theorem 7 ([6, Theorem 3.3]). Let us consider two finite ordered sets S1 and S2 of the
same cardinality, consisting of such matrices from Mat(n,m) that the sequences of ranks
of these matrices coincide. In the case m = n, we additionally require a matching of the
sequences of determinants. Then there is an element of the group G whose diagonal action
translates S1 to S2.

Similar results in the case of symmetric and skew-symmetric matrices are obtained in [6,
Section 3.3].

2.3. A1-richness and the Gromov-Winkelmann Theorem. Let X be a flexible affine
variety of dimension ≥ 2. Consider a set of pairwise distinct points p1, . . . , pk ∈ Xreg. Let us
fix a Ga-orbit C on Xreg and a set of k pairwise distinct points q1, . . . , qk ∈ C. It follows from
infinite transitivity that there is such an element g ∈ SAut(X) that g·q1 = p1, . . . , g·qk = pk.
Thus, the shift g · C of the curve C is a Ga-orbit on X with respect to the conjugated
action and it passes through the points p1, . . . , pk. This elementary observation can be
strengthened as follows.

An algebraic variety X is called A1-rich if for any finite subset Z and any closed subvariety
Y of codimension ≥ 2 that does not intersect Z, there is a curve on X that is isomorphic
to the line A1, does not intersect Y , and passes through all points of Z. The next result
follows from the Transversality Theorem (Theorem 3).

Proposition 5 ([6, Corollary 4.18]). Let us consider an affine variety X and assume that
the group SAut(X) acts with an open orbit O ⊆ X. Then for any finite subset Z ⊆ O and
any closed subvariety Y ⊆ X of codimension ≥ 2 with the condition Z ∩ Y = ∅ there is an
orbit C ∼= A1 of some Ga-action on X which does not intersect Y and passes through all
points of the subset Z

In the case X = An, this result follows from the Gromov-Winkelmann Theorem [87]. This
theorem states that the group SAut(An \ Y ) acts on An \ Y transitively and, as we know,
this entails infinite transitivity of the action.

A generalization of the Gromov-Winkelmann Theorem is obtained in [33]. Firstly, the
authors show that the flexibility of an affine variety X is equivalent to the flexibility of the
smooth quasi-affine variety Xreg.

Theorem 8 ([33, Theorem 0.1]). Let X be a smooth flexible quasi-affine variety of dimen-
sion ≥ 2 and Y ⊆ X be a closed subscheme of codimension ≥ 2. Then the variety X \ Y is
also flexible.

Finally, it is shown in [33, Proposition 1.8] that for a normal quasi-affine variety X and a
closed subset Y ⊆ X of codimension ≥ 2, each Ga-action on X \ Y can be extended to a
Ga-action on X, which stabilizes Y .
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2.4. Transitivity on jets. We limit ourselves in this subsection to the formulation of only
one result. By the volume form on a variety X of dimension n, we mean a differential
n-form ω defined on Xreg that does not vanish anywhere.

Theorem 9 ([6, Theorem 4.14 and Remark 4.16]). Let X be a flexible affine variety of
dimension n ≥ 2 equipped with a volume form ω. Then for any m ≥ 0 and any finite subset
Z ⊆ Xreg there is an automorphism g ∈ SAut(X) with prescribed m-jets at points p ∈ Z
provided that these jets preserve the form ω and map Z to Xreg injectively. The same holds
without assuming that there is a global volume form on Xreg provided that each point p ∈ Z
corresponds to a jet that fixes the point p and the linear part of the jet belongs to SL(TpX).

Other results on transitivity on jets can be found in [6, Section 4.2].

2.5. Multiple transitivity of the automorphism group. It is natural to ask whether
the flexibility is the only reason that the automorphism group Aut(X) of an affine variety
X acts on the smooth locus of X multiply transitively. In [4] a positive answer to this
question is obtained under some additional restrictions.

We say that a variety X satisfies condition (∗) if X admits a non-identical action of a
connected affine algebraic group of positive dimension. Condition (∗) is equivalent to the
fact that there is a non-identical action of either the group Ga or the group Gm on X.

Theorem 10 ([4, Theorem 11]). Let X be an irreducible quasi-affine variety of dimension
≥ 2 satisfying condition (∗). Suppose that the group Aut(X) acts on X with an open
orbit O. Then the following conditions are equivalent.

(1) The group Aut(X) acts on O 2-transitively.
(2) The group Aut(X) acts on O infinitely transitively.
(3) The group SAut(X) acts on O transitively.
(4) The group SAut(X) acts on O infinitely transitively.

In particular, the group Aut(X) acts on the smooth locus 2-transitively if and only if the
variety X is flexible.

Implications (4) ⇒ (2) and (2) ⇒ (1) are obvious. Implication (3) ⇒ (4) follows from
Theorem 4.

It remains to prove implication (1) ⇒ (3). Here we give arguments that are somewhat
different from the arguments in [4] and are based on the group-theoretic facts set out in the
second appendix to this paper. Let us first assume that there is a non-identical action of
the group Ga on X. This means that the group SAut(X) is nontrivial. Since SAut(X) is
a normal subgroup of the group Aut(X), condition (1) and Lemma 7 imply condition (3).

Let us recall that an algebraic variety X is called rigid if there is no non-identical Ga-
action on X. For an affine X, this condition is equivalent to the fact that the algebra
K[X] does not admit nonzero locally nilpotent derivation. In this case, there is a unique
maximal torus T in the group Aut(X). This result is proved in [8, Theorem 1] for an affine
variety X and is generalized to the quasi-affine case in [4, Theorem 5]. In particular, the
maximal torus T is a normal subgroup in Aut(X). According to condition (∗), the torus T
is nontrivial. From Lemma 7 we conclude again that T acts transitively on O. Thus, the
orbit O is isomorphic to the torus T . However, the automorphism group of the variety T is
a semidirect product of T and the discrete group GLn(Z). Such a group acts transitively
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but not 2-transitively on T . Thus, for a rigid variety X with condition (∗) condition (1)
does not hold, and implication (1)⇒ (3) is proved.

The ideas of this reasoning can be used in the following situation.

Definition 1. We call a set of automorphisms of an algebraic variety X geometric if this
set is invariant under conjugation by any automorphism of the variety X and contains at
least one non-identical automorphism.

Informally speaking, geometric sets of automorphisms can be understood as sets that are
defined by certain invariant geometric properties. For example, such sets form all automor-
phisms of order two that have a single fixed point, or all automorphisms that preserve the
set of curves that do not intersect, cover the smooth locus of the variety X, and each of
these curves is isomorphic to the affine line.

Proposition 6. Let X be a flexible quasi-affine variety of dimension ≥ 2. Then for any
geometric set of automorphisms of the variety X, the subgroup of the automorphism group
generated by this set acts on the smooth locus Xreg infinitely transitively.

The proof follows immediately from the fact that a geometric set of automorphisms gen-
erates a nontrivial normal subgroup in Aut(X), and Theorem 24 shows that this group is
infinitely transitive on Xreg.

In [77] the author studies relations between multiple transitivity of the action of a group of
automorphisms and geometric properties of a variety, such as rationality or unirationality.
An action of a group G on a variety X is said to be generically m-transitive if the restriction
of this action to some open invariant subset of the variety X is m-transitive. In [77,
Theorem 5] it is proved over an uncountable algebraically closed field that for any irreducible
variety X, the condition of generic 2-transitivity of the action of the group Aut(X) implies
that either X is unirational, or the group Aut(X) does not contain nontrivial connected
algebraic subgroups. In particular, if the variety X is complete, the generic 2-transitivity
of the action of Aut(X) on X implies unirationality.

We also note that flexible varieties form a natural class of varieties where it makes sense
to investigate the problem of continuation of isomorphisms between subvarieties. Namely,
let X be a smooth flexible quasi-affine variety and Y1, Y2 be two closed subvarieties in X.
The extension problem consists in finding conditions on the variety X, the subvarieties
Y1, Y2, and possibly tangent subbundles TY1, TY2, under which any isomorphism Y1 → Y2

can be extended to an automorphism of the variety X. A classical result of this type is
the Abyankar-Moh-Suzuki Theorem, which states that the images of any two isomorphic
embeddings of the affine line A1 into the affine plane A2 can be sent to each other by an
automorphism of the plane. A number of sufficient conditions for extension of an isomor-
phism between subvarieties in a flexible variety can be found in [50, 53] and in the works
listed there in the references.

3. Examples of flexible varieties

Considerable interest in flexible varieties is caused not only because such varieties have a
number of remarkable geometric properties, but also by the fact that the class of flexible
varieties is surprisingly wide. In this section we give various examples of flexible varieties.
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We largely follow the work plan from [7], supplementing the presentation with the results
of recent years.

3.1. Suspensions. One of the first papers, where the property of infinite transitivity of
the action of a group of automorphisms of an algebraic variety was studied, is the work [54].

Theorem 11 ([54, Theorem 5.1]). Consider a hyperplane X in the affine space An, n ≥ 4,
given by an equation of the form

x1x2 = f(x3, . . . , xn),

where f is an arbitrary non-constant polynomial in n−2 variables. Then the group SAut(X)
acts on the smooth locus of the variety X infinitely transitively.

This result motivates the following definition.

Definition 2. Let X be an irreducible affine variety and f ∈ K[X] be a non-constant
function. The suspension over the variety X is the affine variety

Susp(X, f) = {uv − f(x) = 0} ⊆ A2 ×X,

where u and v are coordinates on the plane A2.

In these terms, the varieties from Theorem 11 are exactly suspensions over the affine
space An−2. The following general fact holds.

Theorem 12 ([13, Theorem 3.2]). Let X be a flexible affine variety and f ∈ K[X] be a
non-constant function. Then the suspension Susp(X, f) is also a flexible variety.

Thus, iterating the suspension construction, we obtain a wide class of flexible varieties.

Note that in Theorem 12, the case of a one-dimensional variety X is also allowed. In this
case, we have X = A1 automatically. In fact, a similar result for the affine line can be
obtained over any field of characteristic zero.

Theorem 13 ([13, Theorem 3.1]). Let K be a field of characteristic zero and f ∈ K[x] be
a polynomial such that f(K) = K. Consider a hypersurface X ⊆ A3 given by the equation
x1x2 = f(x3). Then the group SAut(X) acts on the smooth locus of the variety X infinitely
transitively.

The case of the field of real numbers K = R was considered separately. The initial result [13,
Theorem 3.3] has been strengthened to the following general fact.

Theorem 14 ([63, Theorem 1]). Let X be an affine algebraic variety over the field of real
numbers and f ∈ R[X]. Suppose that each connected component X i of the smooth locus of
the variety X has dimension ≥ 2 and f is non-constant on X i. If the variety X is flexible
and the action of the group SAut(X) is infinitely transitive on each component X i, then
the same properties hold for the suspension Susp(X, f).

Let us return to the case of an algebraically closed field of characteristic zero and describe
several more classes of flexible affine hypersurfaces. We fix positive integers n0, n1, n2 and
put n=n0+n1+n2. For each i = 0, 1, 2, we also fix a set of positive integers li ∈ Zni

>0 and
define monomials

T li
i := T li1

i1 . . . T
lini
ini
∈ K[Tij ; i = 0, 1, 2, j = 1, . . . , ni].
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A trinomial is a polynomial of the form f = T l0
0 + T l1

1 + T l2
2 , and a trinomial hypersurface

X is the set of zeroes of a trinomial f in the affine space An. It is not difficult to verify that
X is an irreducible normal affine variety of dimension n − 1. Among such hypersurfaces
there are examples of both rigid and flexible varieties. For example, if for some i we have
ni = li1 = 1, then the trinomial hypersurface is isomorphic to the affine space An−1, and
if ni = 2 and li1 = li2 = 1, then the trinomial hypersurface is a suspension over the affine
space An−2. In addition to these examples, five sufficiently broad classes of flexible trinomial
hypersurfaces are described in [39, Theorem 4]. For instance, hypersurfaces corresponding
to trinomials of the form T l0

0 + T l1
1 + T21T22 . . . T2n2 are flexible. At the same time, in [39]

flexibility and rigidity are investigated both for trinomial hypersurfaces and for a wider
class of affine trinomial varieties.

3.2. Affine toric varieties. We recall that a normal algebraic variety X is toric if there
exists a regular effective action of an algebraic torus T on X with an open orbit. Some
affine toric varieties are not flexible. For example, if we put X = T , then the algebra K[X]
is generated by invertible functions, and the group SAut(X) is trivial.

Let us call a toric variety non-degenerate if every invertible regular function on X is con-
stant. This condition is equivalent to the fact that X cannot be represented as a direct
product X ′ ×Gm for some toric variety X ′.

Theorem 15 ([13, Theorem 2.1]). Evere non-degenerate affine toric variety is flexible.

In order to explain the idea of the proof of this result, we consider T -normalized Ga-
subgroups and describe such subgroups in terms of so-called Demazure roots.

Let N be the lattice of one-parameter subgroups of the torus T and M be the dual lattice of
characters. Let ⟨ · , · ⟩ : N×M → Z be the canonical pairing. We let χm denote the character
of the torus T corresponding to a point m ∈ M . In this case we have χmχm′

= χm+m′ , so
the group algebra

K[M ] :=
⊕
m∈M

Kχm

can be identified with the algebra K[T ] of regular functions on the torus T . Denote by T.x0

the open T -orbit on X. Since the orbit map T → X, t 7−→ t.x0 is dominant, we can identify
K[X] with a subalgebra in K[M ]. More precisely, there is such a convex polyhedral cone
σ∨ ⊆ MQ := M ⊗Z Q that K[X] coincides with the semigroup algebra of the semigroup
σ∨ ∩M , that is

K[X] =
⊕

m∈σ∨∩M

Kχm.

The dual cone σ to the cone σ∨ is a strictly convex cone in NQ. We assume that the variety
X is non-degenerate. This means that the cone σ does not lie in a proper subspace of the
space NQ. Let Ξ = {p1, . . . , pr} be the set of generators on rays, that is, the set of primitive
vectors on one-dimensional faces of the cone σ. Each vector p ∈ N is associated with a
one-parameter subgroup Rp of the torus T .

There are natural one-to-one correspondences between faces δ of the cone σ, the dual faces
τ = δ⊥ of the cone σ∨, and T -orbits Oτ on X, where dimOτ = dim τ = dimσ − dim δ. In
particular, the only T -fixed point on X corresponds to the vertex of the cone σ∨, and the
open T -orbit corresponds to the cone σ∨ itself. These correspondences preserve inclusions:
a T -orbit Oµ is contained in the closure Oτ if and only if µ ⊆ τ or, equivalently, µ⊥ ⊇ τ⊥.
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Every face τ ⊆ σ∨ defines a decomposition

K[X] = K[Oτ ]⊕ I(Oτ ),

where
K[Oτ ] =

⊕
m∈τ∩M

Kχm, and I(Oτ ) =
⊕

m∈(σ∨\τ)∩M

Kχm

is the ideal of the subvariety Oτ in K[X].

The stabilizer Tp of a point p ∈ X is connected, that is, Tp ⊆ T is a subtorus. Further, we
have an inclusion Tp ⊆ Tq exactly when T.q ⊆ T.p, and T.p = XTp , where XG denotes the
set of fixed points of an action of a group G on a set X.

Definition 3 ([28]). A Demazure root of a cone σ is a vector e ∈M such that for some i
with 1 ≤ i ≤ r, where r is the number of elements in Ξ, we have

⟨pi, e⟩ = −1 and ⟨pj, e⟩ ≥ 0 for all j ̸= i.

Denote by R(σ) the set of all Demazure roots of a cone σ. There is a one-to-one correspon-
dence e ←→ He between roots of the cone σ and Ga-subgroups in Aut(X) normalized by
the acting torus, see [28, 66]. Such subgroups are called root subgroups.

We put pe := pi. A root e ∈ R(σ) defines a locally nilpotent derivation ∂e on the M -graded
algebra K[X] given as

∂e(χ
m) = ⟨pe,m⟩χm+e.

Its kernel is a finitely generated homogeneous subalgebra in K[X]:

ker ∂e =
⊕

m∈p⊥e ∩M

Kχm,

where p⊥e = {m ∈ σ∨ ∩M, ⟨pe,m⟩ = 0} is a facet, i.e. a face of codimension one, of the
cone σ∨ orthogonal to pe.

Two roots e and e′ such that pe = pe′ are called equivalent; we write e ∼ e′. The roots e
and e′ are equivalent if and only if ker ∂e = ker ∂e′ .

A numbering of the generators on the rays Ξ = {p1, . . . , pr} determines the partition

R(σ) =
r⋃

i=1

Ri, where Ri = {e ∈ R(σ) | pe = pi}

are nonempty. Moreover, these subsets are infinite if the dimension of the cone is ≥ 2.

As an example, we consider the affine plane X = A2 with the standard action of a two-
dimensional torus. Here the cones σ and σ∨ coincide with the positive quadrants. The set
R(σ) consists of two equivalence classes

R1 = {(−1, y) | y ∈ Z≥0} and R2 = {(x,−1) |x ∈ Z≥0}.

The derivation ∂e generates a Ga-subgroup

He = λe(K) ⊆ Aut(X),

where λe : t 7−→ exp(t∂e). The algebra of invariants K[X]He coincides with ker ∂e. The
embedding K[X]He ⊆ K[X] induces a morphism π : X → Z = SpecK[X]He whose typical
fibers are one-dimensional He-orbits isomorphic to the line A1. The torus T normalizes the
subgroup He. In particular, T leaves the set of fixed points XHe invariant.
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Let Re = Rpe ⊆ T be the one-dimensional subtorus corresponding to the vector pe ∈ N .
The action of Re on the graded algebra K[X] with a suitable parametrization pe : Gm(K) ∋
t 7−→ pe(t) ∈ Re is given by

t.χm = t⟨pe,m⟩χm, t ∈ Gm(K).

In particular, we have K[X]Re = K[X]He . Therefore, the morphism π : X → Z coincides
with the quotient morphism X → X//Re, and typical He-orbits coincide with the closures
of typical Re-orbits. This statement holds for any one-dimensional He-orbit.

We have a decomposition

K[X] = K[X]Re ⊕
⊕

m∈σ∨∩M\p⊥e

Kχm = K[X]Re ⊕ I(De),

where De := XRe ∼= Z. The divisor De coincides with the set of limit points of the action
of Re on X. Thus, each one-dimensional Re-orbit has a limit point on De.

Proposition 7 ([13, Proposition 2.1]). Let e ∈ R(σ) and He ⊆ SAut(X) be the associated
Ga-subgroup. Then the following statements hold.

(a) For any point x ∈ X \XHe the orbit He.x intersects precisely two T -orbits O1 and
O2 on X, and dimO1 = dimO2 + 1.

(b) The intersection O2 ∩He.x consists of a unique point, while

O1 ∩He.x = Re.y, y ∈ O1 ∩He.x.

We say that a pair of T -orbits (O1,O2) on X is He-connected if He.x ⊆ O1 ∪ O2 for some
x ∈ X\XHe . Proposition 7 shows that for such a pair (up to permutation) we have O2 ⊆ O1

and dimO1 = dimO2 + 1. Here we choose the point x on the orbit O1. Since the torus
normalizes the subgroup He, any point on O1 can serve as the point x from the definition
of He-connectedness.

Proposition 7 implies the following criterion of He-connectedness.

Lemma 1 ([13, Lemma 2.2]). Let (O1,O2) be a pair of T -orbits on X with O2 ⊆ O1, where
Oi = Oσ⊥

i
for a face σi of the cone σ, i = 1, 2. For a given root e ∈ R(σ) a pair (O1,O2)

is He-connected if and only if we have e|σ2≤0 and σ1 is a facet of the cone σ2 given by the
equation ⟨v, e⟩ = 0.

The following lemma is a key technical result.

Lemma 2 ([13, Lemma 2.3]). For any point x ∈ Xreg \ Oσ∨ there is a root e ∈ R(σ) such
that

dimT.y > dimT.x

for a generic point y ∈ He.x. In particular, the pair (T.y, T.x) is He-connected.

From this lemma it is not difficult to deduce the transitivity of the action of the group
SAut(X) on the smooth locus of a non-degenerate affine toric variety X, which leads to the
proof of Theorem 15.

Remark 2. Already in the case of affine toric surfaces, we can give examples of flexible
varieties X such that the smooth locus Xreg is not a homogeneous space for any algebraic
group, see [13, Example 2.2].
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To study actions of Ga-subgroups, the following generalization of the notion of a root
subgroup on a toric variety is very useful.

Definition 4. Let X be an algebraic variety with an action of an algebraic torus T . A
Ga-subgroup in Aut(X) is called a root subgroup if it is normalized by the torus T . In this
situation, the character e of the torus T by which T acts by conjugation on the Ga-subgroup
is called the root of the corresponding subgroup:

ts(a)t−1 = s(χe(t)a), t ∈ T, a ∈ K.

Many research projects are devoted to the study of root subgroups of automorphism groups
or, equivalently, homogeneous locally nilpotent derivations of graded algebras. This topic
deserves a special survey, and we will not consider it in detail here.

Finally, we note that in the recent paper [18], flexibility and rigidity criteria for non-normal
affine toric varieties are obtained.

3.3. Homogeneous and almost homogeneous varieties. Following [76], we consider
a class of connected linear algebraic groups that are generated by their Ga-subgroups. It
is not difficult to see that this class coincides with the class of connected linear algebraic
groups that do not admit nontrivial characters. In turn, these are exactly the groups that
are semidirect products of a connected semisimple group and a unipotent radical. If such a
group G acts on a variety X, then the image of G in Aut(X) is contained automatically in
the group SAut(X). In particular, if G acts on the smooth locus of a variety X transitively,
then X is flexible.

As an example of such a situation, we consider a simple finite-dimensional module V of a
semisimple group G and let X be equal to the closure of the orbit of a highest weight vector.
It is known from [78] that the variety X consists of two orbits, an open orbit and a fixed
point coinciding with the origin. If the variety X does not coincide with the space V , the
origin is a singular point of the variety X. This shows that X is flexible. The variety X is a
normal affine cone over the generalized flag variety G/P , where P is a parabolic subgroup
of the group G. The flexibility of such cones was first proved in [13, Theorem 1.1].

Also, the above proposition can be applied to homogeneous spaces G/H of groups G without
nontrivial characters. It is well known that for a semisimple group G such a homogeneous
space is affine if and only if the subgroup H is reductive [79, Theorem 4.17]. Along the way
we obtain many important examples of smooth flexible varieties [6, Proposition 5.4]. For
instance, such examples are homogeneous spaces of the groups SLn, SOn and Sp2n.

Now we suppose that a connected linear algebraic group G acts on an irreducible variety X
with an open orbit. In this situation, the variety X is called almost homogeneous. It turns
out that under certain conditions it is possible to guarantee the flexibility of such varieties.

3.3.1. The smooth case. Suppose that an almost homogeneous affine variety X is smooth.
In the case of a semisimple group G, using Luna’s Slice Theorem, we show in [6, Theo-
rem 5.6] that X is a homogeneous variety with respect to a larger group which is a semidirect
product G⋌ V , where V is a finite-dimensional G-module. Since the group G⋌ V has no
characters, the variety X is flexible.



AUTOMORPHISMS AND INFINITE TRANSITIVITY 21

In the case of an arbitrary reductive group G under the assumption that there is no non-
constant invertible regular function on the variety, a similar result is proved in [40, Theo-
rem 2].

3.3.2. SL2-embeddings. Suppose that the group SL2 acts with an open orbit on a normal
affine three-dimensional variety X. The classification of such varietiess was obtained by
Popov [75] in the early 70s. In this situation, the stabilizer of a general position for the
action of the group SL2 is finite. If such a stabilizer is not commutative, the variety turns out
to be SL2-homogeneous, and we come to the situation considered above. In the remaining
cases, the stabilizer of a general position is cyclic, and two cases are possible here. In the
first case, the variety consists of no more than two SL2-orbits, it is smooth and therefore
flexible. In the second case, the variety X consists of three orbits, one is a fixed point, and
it is the only singular point on X. In [14] it is shown that X is realized as a categorical
quotient of the affine hypersurface xb

0 = x1x4 − x2x3 by the action of a one-dimensional
diagonalizable group. This hypersurface is a suspension over A3. Using this circumstance,
in [6, Theorem 5.7] we construct a Ga-subgroup in Aut(X) that connects three-dimensional
and two-dimensional SL2-orbits on X, and thereby prove the flexibility of the variety X.

As a result, we obtain that any normal affine variety with an action of the group SL2 with
an open orbit is flexible.

3.3.3. Horospherical and spherical varieties. We recall that a normal algebraic variety X
on which a connected reductive group G acts with an open orbit is horospherical if the
stabilizer in G of a point in the open orbit contains a maximal unipotent subgroup of G.
Affine horospherical varieties were studied in detail in [78].

The flexibility of affine horospherical varieties of a semisimple group G is proved in [84]. The
idea of the proof is to construct Ga-subgroups in Aut(X) that connect different G-orbits
on X consisting of smooth points. These subgroups are realized as exponents of locally
nilpotent derivations whose kernels, as in the toric case, correspond to the faces of a cone
associated with a horospherical variety.

In the case of an arbitrary reductive group G, the flexibility of affine horospherical varieties
without non-constant invertible regular functions is proved in [40, Theorem 3]. In particular,
a new proof of the flexibility of non-degenerate affine toric varieties is obtained here.

A natural generalization of horospherical varieties are spherical varieties. Recall that a
normal algebraic variety X with an action of a reductive group G is called spherical if
the restriction of the action to a Borel subgroup B has an open orbit in X. Spherical
varieties are considered as the most adequate analogue of toric varieties in the case of
actions of noncommutative reductive groups. There is also a combinatorial, albeit much
more complex description of spherical varieties in terms of so-called colored cones.

The following conjecture in formulates in [7, Section 6].

Conjecture 2. Any affine spherical variety without non-constant invertible regular func-
tions is flexible.

The above results confirm this conjecture, but in general it remains open.
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3.4. Vector bundles. Let π : E → X be a reduced irreducible linear space over a flexible
variety X, which is a vector bundle over Xreg. Suppose there is an action of the group
SAut(X) on E such that the action of each Ga-subgroup in SAut(X) is algebraic and
the morphism π is equivariant. In [6, Corollary 4.5] it is shown that the total space E
is a flexible variety. In particular, the total space of the tangent bundle TX and, more
generally, of any tensor bundle E = (TX)×a × (T ∗X)⊗b is flexible.

In [32] one can find an example of a smooth rational affine surface S with a finite auto-
morphism group such that the automorphism group of the cylinder S × A2 acts infinitely
transitively on the complement in this cylinder to a closed subset of codimension ≥ 2.
This example shows that there are rigid varieties such that the cylinders over them are
generically flexible.

3.5. Affine cones over projective varieties. Let X be an affine cone over a projective
variety Y polarized by an ample divisor H. By an affine cone we mean the spectrum of the
homogeneous coordinate ring ⊕

n≥0

H0(Y, nH).

If the divisor H is very ample and we consider the image of the variety Y under embedding
into a projective space by means of a complete linear system |H|, the variety X coincides
with the affine cone over the projective subvariety Y .

A natural question is the characterization of flexibility of the variety X in terms of the
pair (Y,H). The study of this question began in the work of Perepechko [73]. It is based
on the results of a series of papers by Kishimoto-Prokhorov-Zaidenberg. We briefly recall
the relevant concepts and results. A detailed explanation can be found, for example, in a
recent survey [21].

An open subset U of a variety Y is called a cylinder if U ∼= Z ×A1 for some smooth affine
variety Z. A cylinder U is called H-polar if U = Y \ SuppD for some effective Q-divisor
D linearly equivalent to H. In the works of Kishimoto-Prokhorov-Zaidenberg it is shown
that an H-polar cylinder U on Y determines a Ga-action on the affine cone X over Y .

We call a subset W ⊆ Y invariant with respect to a cylinder U ∼= Z × A1 if W ∩ U =
π−1(π(W )), where π : U → Z is the projection along A1. In other words, a subset W is
invariant if every A1-fiber of the cylinder is either contained in W or does not intersect W .
A variety Y is transversally covered by cylinders Ui, i = 1, . . . , s if Y =

⋃
i Ui and no proper

subset W ⊆ Y is invariant with respect to all elements of the covering {Ui}.
Theorem 2.5 in [73] states that if for some very ample divisor H on a normal projective
variety Y there is a transversal cover by H-polar cylinders, then the corresponding affine
cone X over Y is flexible. This result allows to prove that any affine cone over a del Pezzo
surface of degree ≥ 5 is flexible. In [73] flexibility is also proved for some affine cones over
del Pezzo surfaces of degree 4, including the pluri-anticanonical cone. In [72], the result on
flexibility is obtained for all affine cones over del Pezzo surfaces of degree 4.

On the other hand, it is known that pluri-canonical cones over del Pezzo surfaces of degrees
1 and 2 are rigid, that is, they do not admit nontrivial Ga-actions, see [23, Corollary 1.8]
and [55, Theorem 1.1]. The question of the rigidity of a pluri-canonical cone over del Pezzo
surfaces of degree 3 has remained open for more than 15 years. The proof of this fact is
obtained in [23]. It is all the more surprising that any very ample divisor on a del Pezzo
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surface of degree 3 that is not proportional to the anticanonical divisor defines an affine cone
X on which the group SAut(X) acts with an open orbit [74]. The presence of nontrivial
Ga-actions on affine cones corresponding to the anticanonical divisor on del Pezzo surfaces
with singularities is investigated in [22].

In [70], the following result is obtained.

Proposition 8 ([70, Theorem 1.4]). Suppose that a normal projective variety Y is covered
by flexible affine charts Ui, i ∈ I and we fix a very ample divisor H on Y . If each subset
Y \Ui is the support of an effective Q-divisor Di that is linearly equivalent to the divisor H,
then the affine cone AffConeHY over Y is a flexible variety.

By the Segre-Veronese variety vs1(Pd1) × . . . × vsk(Pdk) we mean the image of embedding
of the direct product Pd1 × . . . × Pdk of projective spaces, where each of the factors is
embedded into a larger projective space by the Veronese map with the parameters s1, . . . , sk,
respectively, and the product is embedded by the Segre map. Further, for each projective
subvariety X ⊆ Pn we call the variety of secants (respectively, the variety of tangents) of
X the Zariski closure of the union of secant (respectively, tangent) lines of the subvariety
X in Pn. In [70, Theorem 2.20] it is shown that the affine cone over the variety of secants
to a Segre-Veronese variety is flexible. Moreover, if s1 = . . . = sk = 1, then the affine cone
over the variety of tangents of a Segre-Veronese variety turns out to be flexible.

Theorem 4.5 in [70] guarantees the flexibility of affine cones over some three-dimensional
Fano varieties. In [80], the flexibility of affine cones over four-dimensional Fano-Mukai
varieties of genus 10 is proved.

3.6. Universal torsors. The concept of a universal torsor originated in the works of
Colliot-Thélène and Sansuc [25, 26] on arithmetic algebraic geometry and was used to
study rational points on algebraic varieties. In particular, universal torsors demonstrated
their effectiveness for obtaining positive results on the Manin Conjecture that provides an
asymptotic formula for the number of rational points of bounded height.

Let us recall briefly the definition. Let X be a normal algebraic variety with a free finitely
generated divisor class group Cl(X). Denote by WDiv(X) the group of Weil divisors on
X and fix a subgroup K ⊆ Div(X) that projects onto Cl(X) isomorphically. Consider the
Cox sheaf R of the variety X associated with the subgroup K: to each open subset U ⊆ X
this sheaf put in correspondence the algebra of sections⊕

D∈K

H0(U,D).

The algebra of global sections of this sheaf is called the Cox ring R(X) of the variety X. It
is easy to see that the objects defined here up to isomorphism do not depend on the choice
of the subgroup K.

The relative spectrum of the sheaf R determines the morphism

q : X̂ := SpecXR → X.

In the case when the variety X is smooth, the map q is a principal locally trivial bundle
whose fiber is a torus H with the character group Cl(X). This mapping has certain universal
properties and is called the universal torsor over the variety X. It is known that X̂ is a
smooth quasi-affine variety.
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If the Cox ring R(X) is finitely generated, we can consider its spectrum X := SpecR(X).
It is called the total coordinate space of the variety X. This is an affine factorial variety, and
the variety X̂ is embedded into X as an open subset whose complement does not contain
divisors. For more information on this construction and its generalizations, see [27] and [5,
Chapter I].

Following the work [11], we say that a variety X is A-covered if there is a cover of X by
open subsets Ui isomorphic to the affine space An. It is clear that an A-covered variety is a
smooth rational variety with a free finitely generated divisor class group. In [11] examples
of wide classes of A-covered varieties are given. In particular, these are all smooth complete
toric varieties, all flag varieties, and, more generally, all smooth complete spherical varieties.
Using the fact that the property to be A-covered is preserved under blowing up a point, it
can be shown that all smooth complete rational surfaces are A-covered. In [11, Appendix] it
is proved that all smooth complete rational varieties with an action of a torus of complexity
one are A-covered.

Theorem 16 ([11, Theorem 3]). Let X be an A-covered variety of dimension ≥ 2 and
q : X̂ → X be a universal torsor over X. Then the group SAut(X̂) acts on the variety X̂
infinitely transitively.

The proof of this result is based on the fact that every open chart on X isomorphic to An

carries n transversal structures of cylinders, each of which defines a Ga-action on the uni-
versal torsor.

Theorem 16 allows to obtain many interesting examples of smooth flexible quasi-affine
varieties. For instance, in this way one can construct a flexible quasi-affine variety with a
non finitely generated algebra of regular functions [11, Section 5].

Note that Theorem 16 implies only that the group SAut(X) has a big open orbit on the
total coordinate space X [11, Theorem 4]. The question of the flexibility of the variety
X remains open. Partial results are known in this direction: in [70, Theorem 5.4] it is
proved that the total coordinate space over a smooth del Pezzo surface is flexible, and [70,
Theorem 5.9] guarantees the flexibility property for total coordinate spaces over complete
smooth rational T -varieties of complexity one.

3.7. Gizatullin surfaces. This is what normal affine surfaces are called, which admit a
completion by a chain of smooth rational curves. Gizatullin’s Theorem [43, Theorems 2
and 3] (see also [31]) states that a normal affine surface X other than

A1 ×
(
A1 \ {0}

)
admits such a completion if and only if the group SAut(X) acts on X with an open orbit;
in this case the complement to the open orbit is finite.

Gizatullin [43] conjectured that if the ground field K has characteristic zero then the open
orbit coincides with the set of smooth points, that is, X is flexible. At that time, it was
known that this is not the case in positive characteristic, since here the full automorphism
group of a surface X can have smooth fixed points [44]. As we have seen above, Gizatullin’s
conjecture is true for Gizatullin surfaces defined in A3 by equations of the form xy−f(z) = 0;
in this case we obtain a suspension over the line A1. A wide class of surfaces for which
Gizatullin’s conjecture holds form the so-called Danilov-Gizatullin surfaces [42].
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However, in [58] Kovalenko constructed a counterexample to Gizatullin’s conjecture over
the field of complex numbers: in [58, Theorem 3.11] classes of smooth Gizatullin surfaces
X are described for which the action of the group Aut(X) on X is not transitive.

3.8. Calogero-Moser spaces. Recall that the Calogero-Moser space is the space of the
categorical quotient

Cn =
{
(X, Y ) ∈ Matn(C)×Matn(C) : rk([X, Y ] + Id) = 1

}
//GLn(C),

where the group GLn(C) acts on pairs of matrices by conjugation:

g(X, Y ) = (gXg−1, gY g−1).

Such spaces play an important role in representation theory and other branches of mathe-
matics. It is known that Cn is a smooth irreducible affine variety of dimension 2n. It carries
a hyperkähler structure and is an example of a Nakajima quiver variety. This variety arises
as a partial completion of the integrable Calogero-Moser system. These and other facts
with links to the original works can be found in [15, Section 1].

Let us consider on the space of pairs of matrices the mappings of the form

(X, Y ) 7→ (X + p(Y ), Y ) and (X, Y ) 7→ (X, Y + q(X)),

where p(x) and q(x) are arbitrary polynomials in one variable. It is easy to see that
these mappings induce automorphisms of the space Cn. Let us denote by G the group of
automorphisms of the space Cn generated by these automorphisms. In [15, Theorem 1] it is
proved that the action of G on Cn is 2-transitive. In the same paper, the authors consider
the diagonal action of the group G on the direct product Cn1 × . . .× Cnk

for any pairwise
distinct positive integers n1, . . . , nk. We call such an action collectively infinitely transitive
if for any positive integers m1, . . . ,mk and any sets of pairwise distinct m1 points on Cn1 ,
pairwise distinct m2 points on Cn2 and so on, there is an element of the group G that
translates these sets to any other predefined sets of pairwise distinct points of the same
cardinalities.

In [15], the authors conjectured that the action of the group G on the space Cn is infinitely
transitive, and the diagonal action described above has the property of collective infinite
transitivity. These conjectures are proved in [62, Theorem 3]. Independently, in [2] the
author checks the flexibility of the variety Cn, which implies infinite transitivity of the
group SAut(Cn) containing G as a proper subgroup.

4. Infinite transitivity and finite generation

In this section we discuss a recently discovered nontrivial effect. It would seem that the
infinite transitivity of the action of the group of special automorphisms on the set of smooth
points of a flexible affine variety is caused by the fact that we include saturated sets of Ga-
subgroups, in particular, all replicas of Ga-subgroups, in the acting group. In this context,
the following conjecture, formulated in [9], may look unexpected.

Conjecture 3. Let X be an affine variety of dimension ≥ 2, where the set of flexible
points forms a nonempty open subset O. Then there is such a finite collection {H1, . . . , Hk}
of Ga-subgroups in the automorphism group Aut(X) that the subgroup G = ⟨H1, . . . , Hk⟩
generated by these subgroups as an abstract group acts on O infinitely transitively.
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4.1. The case of an affine toric variety. In [9] and subsequent publications, a number
of confirmations of Conjecture 3 were obtained. The most general result in this direction
is the following theorem.

Theorem 17 ([9, Theorem 5.20]). Let X be a non-degenerate affine toric variety of dimen-
sion ≥ 2. Assume that X is smooth in codimension two. Then there is a finite collection
H1, . . . , Hk of root subgroups on X such that the group G = ⟨H1, . . . , Hk⟩ acts on the smooth
locus Xreg infinitely transitively.

Below we describe a scheme of the proof of this and similar results. The proof is divided
into four stages. At the first stage, a description of certain countable sets of Ga-subgroups
of the group Aut(X) is obtained for which the group G generated by them acts on X
with an open orbit and the action of G on the open orbit is infinitely transitive, see [9,
Theorem 2.2, Corollary 2.8].

At the second stage we take the closure G of the subgroup G in the automorphism group
Aut(X) considered as an ind-group. Let us discuss this stage in more detail. Following [59,
Proposition 2.1], we fix an embedding X ↪→ An and consider the degree function on the
algebra K[X] induced by the embedding. For each automorphism α ∈ Aut(X), we define
deg(α) as a maximum of degrees of homogeneous components of the images of elements of
a fixed generating system under the action of the automorphism α.

Then we have Aut(X) = lim−→Σs, where

• for s ≥ 1 the subset Σs := {α ∈ Aut(X) | deg(α), deg(α−1) ≤ s} is a closed subvari-
ety of the variety Σs+1;
• for r, s ≥ 1 the composition defines a morphism Σr × Σs → Σrs;
• the passage to the inverse element defines an automorphism of Σs.

The Zariski closure of a subset F ⊆ Aut(X) is defined as

F = lim−→ (F ∩ Σs),

where the dash means the Zariski closure in the variety Σs. The Zariski closure of a subset F
is a closed ind-subvariety in the ind-variety Aut(X). In these terms, an algebraic subgroup
in Aut(X) is a subgroup that is a closed subvariety in some Σs.

It is not difficult to verify that the closure G of a subgroup G ⊆ Aut(X) is a closed ind-
subgroup in Aut(X). Further, if ρ : A1 → Aut(X) is such a morphism that ρ(t) ∈ G for
t ̸= 0, then we have ρ(0) ∈ G.

Lemma 3 ([9, Lemma 3.2]). Any G-invariant closed subset Y ⊆ X is G-invariant. If the
group G acts on X with an open orbit OG, then OG coincides with the open orbit OG of the
group G.

These observations in the case of algebraically generated subgroups allow us to prove the
following.

Proposition 9 ([9, Proposition 3.4]). Let G be an algebraically generated subgroup of the
group Aut(X). Then

(a) the orbits of the groups G and G on X coincide. In particular, if G acts with an
open orbit OG, then the same is true for G and OG = OG;

(b) if G acts m-transitively on OG, then the same is true for G;
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(c) if G acts infinitely transitively on OG, then the same is true for G.

Thus, the results of the second stage allow us to prove the infinite transitivity not for the
action of the group G, but for the action of its closure.

At the third stage we guarantee that G contains extra root subgroups with respect to G.
This requires a certain degeneration technique. Namely, consider the locally nilpotent
derivation ∂ of the algebra K[X] corresponding to a Ga-subgroup of the group G, and define
its Newton polyhedron N(∂) as the convex hull of weights of homogeneous components of
the derivation ∂. Vertices of this polyhedron correspond to root subgroups, and these
subgroups are contained in the group G, see [9, Corollary 4.17].

In order to find a non-root subgroup with which to start this process, we conjugate one
root subgroup in G by another root subgroup that does not centralize the first one. The
Newton polyhedron N(∂) for locally nilpotent derivation corresponding to the result of such
conjugation turns out to be a segment whose ends correspond to new root subgroups in G.
This segment can be calculated explicitly using the Baker-Campbell-Hausdorff formula, see
[9, Corollary 4.14]. On this path, we come to the next technical result.

Let X be an affine toric variety of dimension ≥ 2. Below we use the terminology and
notation introduced in Section 3.2. Consider the Demazure roots e1, e2 of the cone of
the variety X corresponding to primitive vectors p1, p2 on the edges of the cone, and the
corresponding root subgroups He1 , He2 in the group Aut(X). Let d = ⟨p1, e2⟩ + 1 and
assume that e2 + de1 is a Demazure root associated with the vector p1, or, equivalently,
that ⟨p2, e1⟩ > 0.

Lemma 4 ([9, Lemma 4.18]). The root subgroup He1+de2 lies in the subgroup ⟨He1 , He2⟩.

Finally, at the fourth stage [9, Section 5.3], we find some finite collection of root subgroups
H1, . . . , Hk in the group Aut(X) and generate a subgroup G by them. Repeatedly applying
Lemma 4, we find a countable set of root subgroups in the group G, which satisfies the
conditions of the first stage. This completes the proof of Theorem 17.

Remark 3. The condition of smoothness in codimension two is essentially used at the fourth
stage of the proof of Theorem 17 when constructing a collection of subgroups H1, . . . , Hk.
Unfortunately, we cannot find a way to construct the required collection that would not
use this condition.

Let us formulate a generalization of Lemma 4 as a conjecture.

Conjecture 4 ([9, Conjecture 5.23]). Let X be an irreducible affine variety. Consider the
group G = ⟨H1, . . . , Hk⟩ generated by a finite collection of Ga-subgroups Hi = exp(K∂i) in
Aut(X), where ∂i is a locally nilpotent derivation of the algebra K[X]. Then a Ga-subgroup
H = exp(K∂) lies in G if and only if the locally nilpotent derivation ∂ belongs to the Lie
algebra generated by ∂1, . . . , ∂k.

Currently, this conjecture has not been proved.
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4.2. The case of an affine space. The scheme of the proof of Theorem 17 described
above allows us to obtain more explicit results in the case X = An.

Let us start with the case n ≥ 3. We fix a positive integer l and consider a Ga-subgroup Fl

of transformations of the space An, which transforms coordinates according to the formula
(x1 + txl

2, x2, . . . , xn), t ∈ K. Let Sn be the symmetric group acting on An by permutations
of coordinates. Denote by Gl the subgroup in Aut(An) generated by the subgroups Fl

and Sn.

Theorem 18 ([9, Theorem 5.2]). The group G2 acts on the set An \ {0} infinitely transi-
tively.

Note that for l ̸= 2 the action of the group Gl on An \ {0} is not even 2-transitive. Indeed,
for l = 1, this action is linear and, therefore, preserves the property of a pair of vectors to
be collinear. For l > 2, we fix a primitive root of unity ω of degree l−1 and consider the set
of pairs of points on An \ {0} of the form (P, ωP ). It is easy to check that transformations
from the group Gl send pairs of this form to pairs of the same form.

Now we come to the case n = 2. Here we define two one-parameter subgroups of the
automorphism group: the subgroup Fl acts according to the formula (x1 + t1x

l
2, x2), and

the subgroup Rs acts as (x1, x2 + t2x
s
1), t1, t2 ∈ K. Let Gl,s be the subgroup in Aut(A2)

generated by the subgroups Fl and Rs.

With ls ̸=2 the action of the group Gl,s on A2 is not even 2-transitive. Indeed, for l = 0 or
s = 0, the action preserves the differences of the corresponding coordinates. If l = s = 1,
then the action is linear. Finally, if ls > 2, we fix the primitive root of unity ω of degree
ls− 1 and consider the set of pairs of points on A2 \ {0} of the form ((x1, x2), (ωx1, ω

sx2)).
A direct check shows that transformations from the group Gl,s send such pairs to pairs of
the same type.

Thus, it remains to consider the case ls = 2, or, up to permutation, l = 2 and s = 1. So
far we have not been able to prove the infinite transitivity of the action of the group G2,1

on the set A2 \ {0} within the framework of the plan described above. After we formulated
this property in a conjectural form, its proof was obtained using a different technique.

Theorem 19 ([65, Corollary 21]). The action of the group G2,1 on the set A2 \ {0} is
infinitely transitive.

The main idea of [65] is to study relationships between two structures on the group Aut(A2),
the structure of the ind-group and the structure of the amalgamated free product. Using a
technique related to the so-called Polydegree Conjecture, the authors show that the closure
of the subgroup G2,1 contains all subgroups Fl for l ≥ 2, see [65, Theorem 20]. This
result implies Theorem 19. It would be interesting to find a more elementary proof of this
theorem. 1

Let us return to the case of an affine space An of arbitrary dimension. We denote by Affn

the group of affine transformations of the space An. We also consider the group of tame
automorphisms Tamen, see Section 1.3.

1A new proof and generalizations of this result are given in a recent preprint Chistopolskaya A. and
Taroyan G., Infinite transitivity for automorphism groups of the affine plane, arXiv:2202.02214
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Definition 5. An automorphism h ∈ Aut(An) is called co-tame if ⟨Affn, h⟩ = Tamen, and
topologically co-tame if ⟨Affn, h⟩ = Tamen.

The Edo Theorem, generalizing the results of Bodnarchuk and Furter, claims that for n ≥ 2
any automorphism h ∈ Aut(An) \ Affn is topologically co-tame. This result leads to the
following theorem.

Theorem 20 ([9, Theorem 5.12]). For n ≥ 2 and any automorphism h ∈ Aut(An) \ Affn

the group G = ⟨Affn, h⟩ acts on An infinitely transitively.

Bodnarchuk, Levis and Edo showed that for n ≥ 3 any triangular non-affine automorphism
of the space An is co-tame, whereas for n = 2 a triangular automorphism cannot be co-
tame. A detailed presentation of these results and links to original works can be found in [9,
Section 5.2]. It should be noted that back in 1995 in the work [16] Bodnarchuk related these
results to the infinite transitivity of the action of subgroups of the automorphism group of
an affine space.

It is natural to ask for what minimum value k there is a group G = ⟨H1, . . . , Hk⟩ generated
by Ga-subgroups that acts on the space An infinitely transitively. It turns out that the value
k = 3 is suitable. For example, in the case n = 2 one may consider the subgroup generated
by G2,1 and an arbitrary one-dimensional subgroup of parallel translations. Also for any
n ≥ 2 we construct the required triple of subgroups H1, H2, H3 in [9, Theorem 5.17]. This
construction is based on a result of Chistopolskaya [24], which states that for an arbitrary
nonzero nilpotent matrix x, there is such a nilpotent matrix y that x and y generate
the Lie algebra sln. Another triple of subgroups having the same property is constructed
independently in [1, Theorem 10].

The question of whether the value k = 2 is achievable for any n ≥ 2 remains open.

Remark 4. In [33, Proposition 1.14] it is shown that for any flexible variety X in the
group SAut(X) there are two Ga-subgroups H1, H2 such that the group G generated by the
subgroups H1, H2 and all their replicas acts on X with an open orbit O, and the action of
G on O is infinitely transitive.

4.3. Groups generated by root subgroups and the Tits alternative. At the end of
this section, we outline briefly the results of the work [12]. The starting point was Demailly’s
question about whether it is possible to characterize the infinite transitivity property of the
action of the group G = ⟨H1, . . . , Hk⟩ on its open orbit in terms of the growth of finitely
generated subgroups of the group G.

In this context, it is natural to mention the classical result of Tits [85]: any finitely generated
subgroup in a linear algebraic group over an arbitrary field contains either a solvable sub-
group of finite index (the virtual solvability property) or a non-commutative free subgroup.
If the ground field has characteristic zero, this alternative holds for any, not necessarily
finitely generated subgroup.

We say that a group G satisfies the Tits alternative if any its subgroup is either virtually
solvable or contains a non-commutative free subgroup. It is known that the Tits alternative
holds for the group Aut(A2) and, more generally, for the group of birational automorphisms
of a compact complex Kähler surface, in particular, for the two-dimensional Cremona group.
The alternative also holds for the automorphism group of a three-dimensional smooth affine



30 IVAN ARZHANTSEV

quadric and for a number of other automorphism groups; references to the original works
can be found, for example, in the Introduction to [12].

For groups generated by root subgroups, there is a weaker result.

Theorem 21 ([12, Theorem 1.1]). Let X be an affine toric variety and G = ⟨H1, . . . , Hk⟩
be a subgroup of Aut(X) generated by a finite set of root subgroups. Then either G is a
unipotent linear algebraic group, or G contains a non-commutative free subgroup.

The question whether the group G from Theorem 21 satisfies the Tits alternative is open.
At the same time, Theorem 21 shows that the property of infinite transitivity of an action
of a group on its open orbit cannot be characterized only in terms of maximal growth of
subgroups: any non-unipotent group G = ⟨H1, . . . , Hk⟩ contains a non-commutative free
subgroup, that is, a subgroup of the (maximal possible) exponential growth. Nevertheless,
the following conjecture remains open.

Conjecture 5 ([12, Conjecture 1]). Let X be an affine variety of dimension ≥ 2. Consider a
subgroup G = ⟨H1, . . . , Hk⟩ in Aut(X) generated by a finite collection of Ga-subgroups. Sup-
pose that G acts 2-transitively on some of its orbits. Then G contains a non-commutative
free subgroup.

In the proof of Theorem 21, we start with the case k = 2. If the subgroups H1 and
H2 commute elementwise, the group G is commutative and unipotent. Therefore, we can
assume that the Demazure roots e1, e2 corresponding to the subgroups H1, H2 are associated
with primitive vectors p1, p2 on different rays of the cone of the affine toric variety X. In
this case, everything is determined by the values of the pairings ⟨p1, e2⟩ and ⟨p2, e1⟩: if
at least one of these pairings is zero, the group G turns out to be unipotent, and in the
case when both pairings are positive, we prove the existence of a non-commutative free
subgroup in the group G. For example, if both pairings are ≥ 2, the group G turns out
to be a free product of the subgroups H1, H2 and any two nonunit elements h1 ∈ H1 and
h2 ∈ H2 generate a free subgroup; see details in [12, Section 3].

In the case k ≥ 3, we can assume without loss of generality that for any pair ei, ej of
Demazure roots corresponding to root subgroups of the group G, at least one of the pairings,
⟨pi, ej⟩ or ⟨pj, ei⟩, is zero. In this situation, we prove that the group G is unipotent [12,
Proposition 4.8]. This result is based on the study of the Lie algebra generated by a finite
collection of homogeneous locally nilpotent derivations.

The methods used here are close to the methods of [10], where a criterion of the finite
dimensionality of a Lie algebra generated by a finite collection of homogeneous locally
nilpotent derivations is obtained, and the structure of such finite-dimensional Lie algebras
is described. In particular, the results of [10] generalize the well-known Demazure Theo-
rem [28]: the Lie algebras arising here have type A, that is, the semisimple parts of such
Lie algebras are direct sums of Lie algebras sl.

5. Appendix A. Infinitely transitive actions in complex analysis

In this section we consider complex-analytic versions of flexibility and infinite transitivity
of the action of the automorphism group, and also discuss connections of these concepts
and the constructions studied above with the Andersen-Lempert theory and the concept of
Gromov sprays.
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Definition 6 ([46, Section 1.1.B]). Let us consider a complex manifold X.

(i) A dominating spray on X is a holomorphic vector bundle ρ : E → X with a holo-
morphic map s : E → X such that its restriction s to the zero section Z is the
identical map, and for each point x ∈ Z ∼= X the tangent mapping dxs sends the
fiber Ex := ρ−1(x) (viewed as a subspace of the tangent space TxE) to the tangent
space TxX surjectively.

(ii) Let h : X → B be a surjective submersion of complex manifolds. We say that h
admits a fiber dominating spray if there exists a holomorphic vector bundle E over
X and a holomorphic map s : E → X such that the restriction of s on each fiber
h−1(b), b ∈ B yields a dominating spray on this fiber.

In these terms, the well-known Oka-Grauert-Gromov principle can be stated as follows.

Theorem 22 ([46, Section 4.5]). Consider a surjective submersion

h : X → B

of Stein manifolds. If h admits a fiber dominating spray, then

(a) any continuous section of the mapping h is homotopic to a holomorphic section;
(b) if two holomorphic sections are homotopic in the class of continuous maps, then they

are also homotopic holomorphically.

The following result shows that this principle is applicable to smooth affine algebraic G-
bundles with flexible fibers.

Proposition 10 ([6, Proposition A.3]).

(a) Every smooth flexible affine complex algebraic variety X admits a dominating spray.
(b) Let h : X → B be a surjective submersion of smooth affine complex algebraic vari-

eties. Assume that there exists an algebraically generated subgroup G ⊆ Aut(X),
whose orbits coincide with the fibers of h. Then the mapping X → B admits a fiber
dominating spray.

Proof. It is clear that assertion (a) follows from assertion (b). To prove (b), we consider a
sequence of algebraic subgroups

H = (H1, . . . , Hs)

in the group G such that the tangent space to the orbit Gx at each point x ∈ X is generated
by tangent vectors to the orbits Hix, i = 1, . . . , s. Let exp : T1(Hi)→ Hi be the exponential
map. Consider the trivial vector bundle

E =
s∏

i=1

T1(Hi)×X

over X and the morphism

s : E → X,
(
(h1, . . . , hs), x

)
7→ exp(h1) . . . exp(hs)x.

It is not difficult to see that this is a fiber dominating spray. □

Now we come to the definition of holomorphic flexibility. Recall that a holomorphic vector
field on a complex manifold X is called completely integrable if its phase flow determines a
holomorphic action of the group (C,+) on H.
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Definition 7 ([6, Definition A.4]).

(i) A Stein manifold X is called holomorphically flexible if completely integrable holo-
morphic vector fields on X generate the tangent space TxX at every smooth point
on X.

(ii) Consider a holomorphic submersion h : X → B of Stein manifolds. We say that X is
holomorphically flexible over B if completely integrable relative holomorphic vector
fields on X generate the relative tangent bundle for X → B at each point x ∈ X.
In this case, each fiber h−1(b), b ∈ B is a holomorphically flexible Stein manifold.

For example, the vector field δ = z d
dz

on X = C \ {0} is completely integrable. However,
the derivation δ is not locally nilpotent. The manifold C \ {0} is not flexible in the sense
of the main part of this work, but it is holomorphically flexible.

In the context of holomorphic actions, it also can be shown that if X is a connected
Stein manifold that is holomorphically flexible over a Stein manifold B, then the relative
tangent bundle to X over B is generated by a finite number of completely integrable relative
holomorphic vector fields on X [6, Lemma A.6]. Repeating the reasoning given above, we
show that if a Stein manifold X is holomorphically flexible over a Stein manifold B, then
the map h : X → B admits a fiber dominating spray [6, Corollary A.7]. In particular, the
Oka-Grauert-Gromov principle applies to the map h : X → B.

It should be noted that the question of whether the group of holomorphic automorphisms
acts on a flexible connected Stein manifold X of dimension ≥ 2 infinitely transitively
remains open [6, Problem A.8]. In [6] it is shown that such an action is transitive: it
follows from the implicit function theorem that all orbits of the group of holomorphic
automorphisms are open in X in the standard Hausdorff topology, and so there is only one
orbit.

At the same time, the infinite transitivity of an action can be proved under stronger restric-
tion. To formulate the corresponding result, we need to introduce several concepts from
the Andersen-Lempert theory; see, for example, [51, 86].

Definition 8.
(i) A complex manifold X has the density property if the Lie algebra generated by all

completely integrable holomorphic vector fields is dense in the Lie algebra of all
holomorphic vector fields on X in the compact-open topology.

(ii) An affine algebraic variety has the algebraic density property if the Lie algebra gen-
erated by all completely integrable algebraic vector fields on X coincides with the
Lie algebra of all algebraic vector fields on X.

Theorem 23 ([51, 86]). If a connected Stein manifold X of dimension ≥ 2 has the den-
sity property, then the group of holomorphic automorphisms of the manifold X acts on
X infinitely transitively. Moreover, for any discrete subset Z ⊆ X and any Stein space
Y of positive dimension that admits a proper embedding into X, there is another proper
embedding φ : Y ↪→ X such that Z ⊆ φ(Y ).

A similar result can be proved for holomorphic automorphisms and holomorphic vector
fields preserving a volume form on a Stein manifold, see [51, Corollary 2.1 and Remark 2.2]
and [6, Theorem A.12].
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The study of relationships between the flexibility of varieties and different versions of the
concept of Gromov sprays has been conducted actively in recent years. Recall that a
complex manifold X is called elliptic (respectively, subelliptic) if it admits a dominating
holomorphic spray (respectively, a dominating family of holomorphic sprays; see [52, Defi-
nition 1.1] for a precise definition).

We say that a smooth algebraic variety X is locally stably flexible if X is a union
⋃

i Xi

of a finite number of Zariski-open quasi-affine subsets Xi, and for some positive integer m
the varieties Xi × Cm are flexible for all i. In [52] it is shown that the blow-up of a locally
stably flexible variety in a smooth algebraic subvariety is a subelliptic manifold. This result
is obtained in [52] as a consequence of a more general result concerning so-called k-flexible
varieties.

Let us fix a positive integer k. A flexible quasi-affine variety X is called k-flexible if there
exists such a morphism φ : X → Q to a normal affine variety Q that for some Zariski-open
subset Q0 in Q the preimage φ−1(Q0) is isomorphic to the direct product Q0×Ck over Q0.
Theorem 6.1 from [52] states that if X is a locally k-flexible variety for some k ≥ 2 and Z
is a closed subvariety in X of codimension at least k, then the result of the blow up of X
along Z is a subelliptic manifold.

In particular, varieties studied in [52] are Oka manifolds. Recall that a complex manifold
X is called an Oka manifold if, for any positive integer n, any holomorphic map from
a neighborhood of a compact convex subset K in the space Cn to X is a uniform limit
on K of holomorphic maps from Cn to X. For more information on Oka manifolds and
the connection of this theory with the concept of flexibility one can see, for example, the
work [61] and the recent survey [36]. The known facts on flexibility of toric varieties allow
to apply the Oka theory and to obtain interesting results on extension, approximation and
interpolation of maps and other geometric consequences both for toric varieties and for
classes close to toric varieties, see, for example, [64].

An exceptionally interesting object for research is the action of the group of holomorphic
automorphisms of a Stein manifold on countable sets of points of such a manifold, see
[83, 3, 88, 89] and references therein. In this situation, the orbits of the group of holomorphic
automorphisms on the set of infinite discrete sequences form continuum families. Among
such sets, there are those on which any permutation is obtained by restricting a holomorphic
automorphism of the ambient space. Such sets are called tame. In the case when the
ambient space is the space Cn, the property of a set to be tame is equivalent to the fact
that by a suitable holomorphic automorphism of Cn this set can be sent to a standard
position, for example, to the set of points with positive integer coordinates on the first
coordinate axis. Every tame set in Cn is disposable in the sense that for such a set E there
exists a biholomorphic map Cn → Cn \ E. On the other hand, there are examples of rigid
sets, that is, sets that are preserved only by the identical holomorphic automorphism.

6. Appendix B. Infinitely transitive actions of finitely generated groups

Let us start with elementary properties of multiply transitive actions of abstract groups on
arbitrary sets.

Lemma 5. A commutative group G cannot act 2-transitively on a set X with at least 3
elements.
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Proof. Let G act 2-transitively on X. Let us choose three distinct elements x1, x2, x3 ∈ X.
An element of G sending the pair (x1, x2) to the pair (x1, x3) is contained in the stabilizer
of the point x1. From commutativity of the group it follows that the stabilizer of the
point x1 acts identically on the orbit of the point x1, and hence on the entire set X, a
contradiction. □

In particular, no cyclic group can act 2-transitively. Now, following [69], we construct an
example of an infinitely transitive action of a 2-generated group on the set of integers Z.

We say that a permutation g of an infinite set X is an infinite cycle if the cyclic group ⟨g⟩
acts transitively on X. Consider two transformations on the set Z: let h : Z → Z send i
to i + 1, and f be an infinite cycle on the set of positive integers N that leaves all other
integers fixed.

Proposition 11 ([69, Lemma 1]). The group G := ⟨f, h⟩ acts on the set Z infinitely
transitively.

Let us start with an auxiliary statement. For each non-negative integer n, we consider the
subgroup Gn := ⟨f, h−1fh, . . . , h−nfhn⟩ in G. It is easy to see that this subgroup leaves
all integers not exceeding −n fixed, and, therefore, it acts on the set Xn consisting of all
integers greater than −n.

Lemma 6. The group Gn acts on the set Xn (n+ 1)-transitively.

Proof. We use the induction on n. For n = 0, the subgroup G0 coincides with ⟨f⟩. This
group acts transitively on X0 = N by construction.

Assume that the assertion is proved for all i less than some n. Note that

(h−nfhn)(−n+ 1) = f(1)− n ̸= −n+ 1.

Taking into account the inductive hypothesis, we conclude that the action of Gn on Xn

is transitive. The stabilizer of the point −n + 1 contains the subgroup Gn−1, which acts
n-transitively on Xn−1 = Xn \ {−n+ 1}. This proves the lemma. □

Proof of Proposition 11. Let us fix a positive integer m and consider two sets of pairwise
distinct integers of m elements each. We choose n ≥ m− 1 so that any element from these
sets is greater than −n. By Lemma 6, the first set can be sent to the second one by an
element of the subgroup Gn. □

It is shown in [69, Theorem 1] that by a suitable choice of the infinite cycle h one can ensure
that G is isomorphic to the free group with two generators f and h. It is well known that
a free group with two generators contains a normal subgroup, which is a free group with n
generators for any positive integer n, as well as a normal subgroup, which is a free group
with a countable number of generators, see, for example, [69, Section 1]. Thus, Theorem 24
below allows us to construct an effective infinitely transitive action of a free group with any
finite or countable number of generators on the set Z.

Let us prove some more general statements.

Lemma 7. Suppose that a group G acts on a set X with at least 3 elements effectively and
2-transitively. Let N be a nontrivial normal subgroup in G. Then the action of N on X is
transitive. In particular, the center Z(G) of the group G is trivial.
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Proof. Since the group G permutes N -orbits and at least one such orbit contains at least
two points, choosing a pair of points from X lying in the same N -orbit and a pair of points
lying in different N -orbits, we obtain a contradiction with 2-transitivity.

If the center of G is nontrivial, then it acts on X transitive. This shows that the stabilizers
in G of points in X are conjugated by elements of the center and so they coincide. This
again contradicts to 2-transitivity. □

Remark 5. Consider the group G of all affine transformations of a vector space V of dimen-
sion ≥ 2 over the field Z/2Z. Then G acts on V 3-transitively, and its normal subgroup N
of parallel translations acts on V transitively, but not 2-transitively. This shows that when
passing to a normal subgroup, the transitivity degree can decrease by more than 1.

The following result can be found, for example, in [30, Corollary 7.2A]. For convenience of
the reader, we give a proof of this result taken from [12, Lemma 5.6].

Theorem 24. Let a group G act on a set X effectively and infinitely transitively, and N be
a nontrivial normal subgroup in G. Then the action of N on X is also infinitely transitive.

Proof. Consider a set α = {x1, . . . , xm} of pairwise distinct elements in X. Let Gα be the
intersection in G of the stabilizers of points from α and set Nα = N ∩ Gα. Then Nα is a
normal subgroup in Gα. It is sufficient to prove that for any m and any α, the action of
Nα on X \ {x1, . . . , xm} is transitive. For m = 0 we obtain Gα = G, Nα = N , and the
transitivity follows from Lemma 7.

Suppose that the required property does not hold for some m and some α, and the value
m ≥ 1 is minimal possible. We know that the group Gα acts on X \ {x1, . . . , xm} infinitely
transitively. It follows from Lemma 7 that if the action of Nα on X \ {x1, . . . , xm} is not
transitive, then Nα = {e}.
Let β = {x1, . . . , xm−1}. From the minimality of m it follows that the group Nβ acts
transitively on X \ {x1, . . . , xm−1}. The condition Nα = {e} implies that this action is free,
and we can identify the sets X \ {x1, . . . , xm} and Nβ \ {e}: an element y is identified with
an element h ∈ Nβ \ {e} such that y = hxm. Under this identification, the action of Gα on
Nβ \ {e} is the action by conjugation:

ghxm = ghg−1gxm = ghg−1xm.

But a conjugation sends a pair of the form (h, h−1) to a pair of the same form. This
contradicts to 2-transitivity of the action of Gα on Nβ \ {e}, except in the case when all
elements of the group Nβ have order not higher than 2. In the latter case, the group Nβ

can be identified with the additive group (V,+) of some vector space V over the field Z/2Z.
Then the group Gα acts on V by linear transformations, such an action preserves linear
dependencies and, therefore, is not 3-transitive. The resulting contradiction completes the
proof of the theorem. □

In conclusion, we list several results on infinitely transitive actions of abstract groups.

It is clear that the group of all permutations with a finite support of an infinite set X acts
on X infinitely transitively. This group consists of elements of finite order and it is not
finitely generated.

It is easy to see that a group G admits an effective infinitely transitive action on a countable
set if and only if G can be embedded as a dense subgroup into the infinite symmetric group
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S(N) equipped with the topology of pointwise convergence. In [29] it is shown that most (in
the topological sense) infinitely transitive finitely generated subgroups in the group S(N)
are free.

In [56] it is proved that the fundamental group of a closed oriented surface of genus g > 1
admits an effective infinitely transitive action. A characterization of fundamental groups of
three-dimensional compact manifolds admitting such an action is obtained in [49].

The existence of effective infinitely transitive actions of free products G1∗G2 was studied in
[45, 47, 48, 71]. It turned out that if one of the groups Gi has order at least 3, then the free
product admits an effective infinitely transitive action, whereas the group (Z/2Z) ∗ (Z/2Z)
does not allow such an action. The existence of effective infinitely transitive actions for
groups acting on trees was studied in [34, 35].

It is shown in [49] that any group given by at least three generators and one defining relation
admits an effective infinitely transitive action.

In [12, Question 2], it is asked whether a finitely generated group G acting infinitely tran-
sitively on some infinite set X can have intermediate growth. Currently, this issue remains
open.

An effective infinitely transitive action of the group of outer automorphisms OutFn of the
free group Fn with n ≥ 4 is constructed in [41]. For n = 3, the same result is obtained
in [49]. It is also shown there that for n = 2 this group does not allow the required action.

In [20, Section IV.4], an effective infinitely transitive action of a non-elementary hyperbolic
group without nontrivial normal finite subgroups is constructed. In [49] it is shown that
every countable acylindrically hyperbolic group admits an infinitely transitive action with
a finite kernel. This result has many important consequences. Also the work [49] contains
a detailed survey of recent results on multiply transitive actions of countable groups.
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