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Universal almost optimal compression and Slepian-Wolf coding in
probabilistic polynomial time∗

BRUNO BAUWENS, National Research University Higher School of Economics, Russia

MARIUS ZIMAND†, Towson University, USA

In a lossless compression system with target lengths, a compressor C maps an integerm and a binary string x to anm-bit code p , and

ifm is sufficiently large, a decompressor D reconstructs x from p . We call a pair (m, x ) achievable for (C, D) if this reconstruction

is successful. We introduce the notion of an optimal compressor Copt, by the following universality property: For any compressor-

decompressor pair (C, D), there exists a decompressor D′ such that if (m, x ) is achievable for (C, D), then (m + ∆, x ) is achievable

for (Copt, D
′), where ∆ is some small value called the overhead. We show that there exists an optimal compressor that has only

polylogarithmic overhead and works in probabilistic polynomial time. Differently said, for any pair (C, D), no matter how slow C is,

or even if C is non-computable, Copt is a fixed compressor that in polynomial time produces codes almost as short as those of C. The

cost is that the corresponding decompressor is slower.

We also show that each such optimal compressor can be used for distributed compression, in which case it can achieve optimal

compression rates, as given in the Slepian-Wolf theorem, and even for the Kolmogorov complexity variant of this theorem.
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Bruno Bauwens and Marius Zimand. 2019. Universal almost optimal compression and Slepian-Wolf coding in probabilistic polynomial

time. J. ACM 1, 1 (November 2019), 33 pages. https://doi.org/0000001.0000001

1 INTRODUCTION

Good lossless compression means mapping data to short compressed codes. Ideally, the codes should have minimal or

close-to-minimal description length. It is also desirable to have efficient compression and decompression procedures.

Unfortunately, it is impossible to obtain close-to-minimal codes from which decompression is even remotely efficient.
1

In contrast, we show that, remarkably, there is no fundamental conflict between having close-to-minimal codes and

efficient compression. More precisely, if a good approximation of the length of a minimal description of the data is

given, then a probabilistic compressor can generate an almost minimal compressed code in polynomial time. The same

∗
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2014 [Bauwens & Zimand 2014] and at the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, June, 2017 [Zimand

2017]
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1
The standard proof that the Kolmogorov complexity function is not computable provides such counter examples. Indeed, for the sake of contradiction,

assume that for some computable time bound t : N→ N, the following holds: For all n and n-bit x with complexity smaller than 2 logn, there exists a
program of length at most n/10 that generates x in time t (n). Then the lexicographically first n-bit string x that does not have such a program, has

complexity at most logn +O (1), which is a contradiction for large n.
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2 Bauwens, B. and Zimand, M.

optimal compressor can be used for any description system, as explained in the abstract. Moreover, it can be used for

distributed compression as well.

Our study of compression uses a more general approach than what is standard in information theory. In information

theory, the underlying assumption is that data is generated by a stochastic process, whose structural properties, such

as various types of independence, ergodicity, various statistics of the distribution, etc., are at least partially used in

constructions or in the analysis. Instead, we do not assume any generative model, and require that for each string,

the compressed length is as small as in any other compressor-decompressor pair up to an additive polylogarithmic

term. Our main results subsume important results in information theory: the Shannon source coding theorem and the

Slepian-Wolf coding theorem. Moreover, they provide corresponding results in algorithmic information theory, where

the optimal compression length of a string is measured by its Kolmogorov complexity relative to an optimal Turing

machine.

The contributions of this paper concern both single-source compression and multi-source distributed compression.

Single source compression

By direct diagonalization, one may observe that no (probabilistically) computable compressor is optimal: for each such

compressor Cmapping binary strings to binary strings, there exists another deterministic compressor C′ and a sequence

x1,x2, . . . of strings with length |xn | = n such that |C(x)| ≥ n (using the maximal length over all randomness if C is

probabilistic) and |C′(x)| ≤ O(logn). To overcome this barrier, we consider compression functions that have a “target

compression size” as an additional input. Our compressors are also probabilistic.

Consequently, a compressor C is a probabilistic algorithm that has three inputs: the string x being compressed, the

target compression lengthm, and the error probability ε . The output is a random variable, denoted Cε,m (x), whose

realization is a string of lengthm.

A decompressor D is a deterministic partial function mapping strings (viewed as compressed codes) to strings. The

Kolmogorov complexity of x relative to the decompressor D, is given by

CD(x) = min{|p | : D(p) = x}.

Note that unlike standard Kolmogorov complexity theory, we do not restrict D to be partial computable. Our definition

of optimal compressors requires that (i) the length of the compressed code is equal to the target length, and (ii)

simultaneously for all decompressors D, correct decompression is achieved as soon asm is slightly above CD(x).

Definition 1.1. A compressor C is a probabilistic function that maps ε > 0,m and x , with probability 1, to a string

Cε,m (x) of length exactlym. Let ∆ be a function of ε,m and x , called overhead. A compressor C is ∆-optimal if for every

decompressor D there exists a decompressor D′ such that for all ε > 0, x andm ≥ CD(x) + ∆:

Pr

[
D′

(
Cε,m (x)

)
= x

]
≥ 1 − ε .

In our constructions, the mapping from D to D′ is effective in a certain sense, and this implies that if D is partial

computable, respectively, computable, and computable in polynomial space, then so is D′, see Remark 2.

Our main result for single-source compression states that for some polylogarithmic overhead ∆, an optimal compression

function exists, and can even be computed in polynomial time.

Theorem 1.1. There exists a O(logm · log |x |ε )-optimal compressor that is computable in time polynomial in |x |.
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Universal almost optimal compression and Slepian-Wolf coding in probabilistic polynomial time 3

In other words, any slow compressor in a compressor-decompressor pair can be replaced by a fixed fast compressor

and slower decompressor, at the expense of a small infrease of the compression length.

Remark. It is standard in compression to assume that the parties do not share a source of randomness. If they do, the

result of Theorem 1.1 can be obtained via simple hashing, as we explain in section 2.

In Kolmogorov complexity, one typically fixes an optimal
2
partial computable decompressor U and writes C(x) in

lieu of CU(x). C(x) is called the Kolmogorov complexity or the minimal description length of x . In a similar way, for

two strings x and y, we define C(x | y), the complexity of x conditional on y, see equation (2). Theorem 1.1 implies

polynomial time compression of a string x down to almost its minimal description length, more precisely down to

lengthm = C(x) +O(log2(|x |/ε)), provided the compressor works with target lengthm.

Corollary 1.2. There exists a polynomial-time computable compressor C and a constant c , such that for all ε > 0,m

and x with C(x) ≤ m − c · logm · log |x |ε :

Pr[U(Cε,m (x)) = x] ≥ 1 − ε .

The compressor in Theorem 1.1 also provides a solution to the so-called document exchange problem, which can be

formulated as follows. Suppose y is the obsolete version of an updated file x . The receiver holds y and the sender holds

x . The sender transmits Cε,m (x) to the receiver, and if C(x | y) ≤ m − ∆, then the receiver can reconstruct x . This

follows from the optimality condition in Definition 1.1 applied for D(·) = U(·,y), where U is the optimal machine in

the definition of C(· | ·). It is remarkable that the sender computes Cε,m (x) without knowing y, but only the target

lengthm = C(x | y) + ∆.

The overhead ∆ can be improved from polylogarithmic to logarithmic at the cost of a slower compressor running in

exponential space, and, hence, double exponential time.

Proposition 1.3. There exists a O(log |x |ε )-optimal compressor that is computable in exponential space.

The compressor in Proposition 1.3 is also probabilistic and uses a logarithmic number of random bits. We prove the

following lower bounds, which show that the overhead and the randomness in Proposition 1.3 are essentially minimal:

Every compressor with a computably bounded running time has overhead ∆ ≥ Ω(log |x |ε ), and if ∆ ≤ O(|x |0.99), at

least a logarithmic amount of randomness is needed. Let ⌈a⌉ = ceil(a).

Proposition 1.4. Let ∆ and r be functions of ε and n = |x |. If there exists a ∆-optimal compressor that can be evaluated

with at most r random bits in a computably bounded running time, then

• ∆ ≥ log
n
ε − log log

n
ε − 8 for all n and ε with 2

−n/4 ≤ ε ≤ 1/4,

•
⌈
ε2r+1

⌉
≥

n−r−log(2/ε )
∆+4 for all n and ε ≤ 1/2.

The second item for r = 0 and ε = 1/2 implies that a deterministic computable compressor can only be ∆-optimal for

∆ ≥ n − 6. Essentially the same bounds also apply for a weaker version of ∆-optimality in which we consider a single

optimal Turing machine as decompressor, and allow probabilistic decompression, see Lemmas 4.1 and 4.2.

2 U is a Turing machine, and its optimality means that for every other Turing machineD, there exists a constant c such for every string x , CU(x ) ≤
CD(x ) + c . Here, we assume thatU is universal in the sense that for each other Turing machineD, there exists a stringw such thatU(wp) =D(p)
for all strings p for whichD(p) is defined.
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4 Bauwens, B. and Zimand, M.

Distributed compression

In its most basic form, distributed compression is the task of compressing correlated pieces of data by several parties,

each one possessing one piece and acting separately. This task is also known as Slepian-Wolf coding.

For illustration, let us consider the following simple example, with two senders, Alice and Bob, and a receiver, Zack.

Alice knows a line L of the form y = ax + b in the affine plane over a finite field with 2
n
elements, and Bob knows a

point P with coordinates (u,v) on this line. Each of L and P has 2n bits of information, but, because of the geometrical

relation, together they only have 3n bits of information. Alice and Bob want to email L and P to Zack, without wasting

bandwidth. If they have to compress the message in isolation, how many bits should they send to Zack?

Obviously, Alice can send L, so 2n bits, and then Bob can send n bits, or symmetrically Bob can send P , so 2n bits, and

then Alice can send n bits. What about other compression lengths? Some necessary requirements for the compression

lengths are easy to see. Let kA be the number of bits to which Alice compresses her point L, and let kB have the analogous

meaning for Bob. It is necessary that kA + kB ≥ 3n, kA ≥ n and kB ≥ n. The first inequality holds because Zack needs to

acquire 3n bits, and the other two hold because if Zack gets somehow either L or P , he still needs n bits of information

about the remaining element.

Without any assumption regarding how L and P were generated, the version of Slepian-Wolf coding in this paper

implies that any numbers kA and kB satisfying the above necessary conditions (such as, for instance, kA = kB = 3n/2),

are also sufficient up to a small polylogarithmic overhead. More precisely, there exists a probabilistic polynomial-time

compression algorithm such that if kA and kB satisfy these conditions, then Alice can apply the algorithm to compress

the line L to a binary string pA of length kA + O(log
2 n), Bob can compress point P to a binary string pB of length

kB +O(log
2 n), and Zack can with high probability reconstruct L and P from pA and pB.

In the general case (presented here for simplicity for two senders), Alice has a string xA, Bob has xB, which they want

to send to Zack. Suppose Zack is using the decompressor D. Let kA,kB represent the compression lengths as above, and

let CD(xA,xB),CD(xA | xB),CD(xB | xA) denote the Kolmogorov complexities relative toD of (xA,xB), and respectively,

of xA conditioned by xB and of xB conditioned by xA. Similarly to the simple example with the line and the point, for

Zack to be able to reconstruct (xA,xB), it is necessary (up to a small additive term) that kA and kB satisfy the following

inequalities, called the Slepian-Wolf constraints:

kA ≥ CD(xA | xB)

kB ≥ CD(xB | xA)

kA + kB ≥ CD(xA,xB).

(1)

Note that these requirements on the compression lengths are necessary even when Alice and Bob are allowed to

collaborate. We show that modulo a polylogarithmic overhead, the conditions are also sufficient. Moreover, such

compression is achieved by the optimal compressors from Definition 1.1.

Formally, let D be a decompressor mapping pairs of strings to strings. The conditional Kolmogorov complexity ofw

given z is

CD(w |z) = min {|p | : D(p, z) = w} . (2)

Let [ℓ] = {1, 2, . . . , ℓ}. The parameter ℓ represents the number of senders. Given J ⊆ [ℓ], and an ℓ-tuple x = (x1, . . . ,xℓ),

let xJ be the set {(j,x j ) : j ∈ J }. The Kolmogorov complexity of xJ is defined by encoding this finite set as a string in

some canonical way.
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Universal almost optimal compression and Slepian-Wolf coding in probabilistic polynomial time 5

Definition 1.2. An ℓ-tuple k = (k1, . . . ,kℓ) of integers satisfies the D-Slepian-Wolf constraints for x if

CD

(
xJ | x[ℓ]\J

)
<

∑
j ∈J

kj for all non-empty J .

Theorem 1.5. Assume C is ∆-optimal for some computable ∆. For every decompressor D there exists a decompressor D′

such that for all ε > 0, ℓ, ℓ-tuples x, and ℓ-tuples m:

Pr

[
D′

(
ε,Cε,m1

(x1), . . . ,Cε,mℓ (xℓ)
)
= x

]
≥ 1 − 8ℓε,

provided (m1−∆1− log
ℓ
ε , . . . , mℓ−∆ℓ− log

ℓ
ε ) satisfies the D-Slepian-Wolf constraints for x, where ∆j is the value of ∆

corresponding to the inputs ε ,mj and x j .

The compressors in this definition work in isolation in a very strong sense: besides their string x j , they only use the

targets ε andmj . They do not use the decompressor D or even ℓ.

If we apply this theorem to the compressor in the proof of Theorem 1.1, then a similar remark for the effectivity

of the transformation from D to D′ holds as for Definition 1.1: if D is partial computable, respectively, computable,

and computable in exponential time, then so is D′, see Remark 4. Moreover, for growing ℓ, the overhead ∆j + log
ℓ
ε is

logarithmic in ℓ and the error is linear in ℓ. Hence, the result can be meaningful even when the number of senders is

exponential in the length of the strings.

Related works and comparison with our results

The study of the fundamental limits of data compression has been undertaken in both Information Theory (IT) and

Algorithmic Information Theory (AIT). We recall that the major conceptual difference between the two approaches is

that in IT data is viewed as being the outcome of a generative process, whereas in AIT the data consists of individual

strings without any assumption regarding their provenance. One can say that IT focuses on random processes, that is

processes whose outcomes have a degree of uncertainty, and AIT focuses on random strings, that is strings that do

not admit a concise description due to the lack of discernible patterns. Our approach is in the AIT spirit, but is more

general, because it is not restricted to computable decompressors.

We start by reviewing basic results in IT. For concreteness, let us first suppose that an n-bit string is produced by

a single activation of some generative process (this is called the “one-shot" scenario). The process is represented by

a random variable X (n) which takes values in {0, 1}n . A zero-error compression procedure is an injective mapping

C : {0, 1}n → {0, 1}∗ and if C(u) = v we think that v is the compressed encoding of u. The goal is to minimize Lavg(C),

which is the expected length of C(X (n)). If the range of C is a prefix-free set (or, more generally, a so-called instantaneous

code), which is desirable if we want to extend compression to a “multiple-shot" setting, then the Kraft inequality implies

that the average length has to be at least the Shannon entropy of X (n), i.e., Lavg(C) ≥ H (X (n)).

Huffman coding [Huffman 1952] is an algorithm that computes a prefix-free coding C
Huffman

with minimal average

length satisfying H (X (n)) ≤ Lavg(CHuffman
) ≤ H (X (n)) + 1. The drawback is that Huffman compression takes time

exponential in n and requires the knowledge of the distribution of X (n).

One way to overcome these issues it to depart from the “one-shot" scenario and to consider that the data is produced

by some stochastic process X1,X2, . . . which often satisfies simplifying assumptions, and also to allow some error.

The standard stochastic process of this type is the memoryless source, which means that X (n) = (X1,X2, . . . ,Xn ) are n

i.i.d. draws from some distribution px on {0, 1}. A fixed-length code with compression rate R is given by a family of

Manuscript submitted to ACM



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Bauwens, B. and Zimand, M.

functions (Cn ,Dn )n∈N of type Cn : {0, 1}n → {0, 1}Rn ,Dn : {0, 1}Rn → {0, 1}n . The error of the code is defined to be

εn = Prob(Dn (Cn (X
(n))) , X (n)).

The Shannon Source Coding Theorem [Shannon 1948] shows that if R > H (px ) then there exists a code (Cn ,Dn )n∈N

with compression rate R and limn→∞ εn = 0, and if R < H (px ), then every code (Cn ,Dn )n∈N with compression rate R

has inf εn > 0. The compression in the positive part of the Source Coding theorem takes time exponential in n and,

since the error is not zero, the decompression fails for some strings.

Similarly to the Source Coding theorem for single-source compression, the Slepian-Wolf theorem [Slepian & Wolf

1973] characterizes the possible compression lengths for distributed compression in the case of memoryless sources. For

notational convenience, our short description of the Slepian-Wolf theorem is restricted to the case of two senders (Alice

and Bob) and of data represented in the binary alphabet. Recall that in distributed compression, Alice observes X (n),

and Bob observes Y (n), where (X (n),Y (n)) have a joint distribution over {0, 1}n × {0, 1}n .

In the case of a 2-Discrete Memoryless Source (2-DMS), (X (n),Y (n)) are obtained byn i.i.d. draws from some distribution

px,y on {0, 1} × {0, 1}. In other words, a 2-DMS is given by a sequence (X1,Y1), (X2,Y2), . . ., where (Xi ,Yi ) is the i-th

independent draw from px,y . Alice observes X
(n) = (X1, . . . ,Xn ) and Bob observes Y (n) = (Y1, . . . ,Yn ). A distributed

compression procedure with compression rates (R1,R2) consists of a family of functions (C1,n ,C2,n ,Dn )n∈N of the

type C1,n : {0, 1}n → {0, 1}R1n
, C2,n : {0, 1}n → {0, 1}R2n

, Dn : {0, 1}R1n × {0, 1}R2n → {0, 1}n × {0, 1}n . The error

is defined as εn = Prob(Dn (C1,n (X
(n)),C2,n (Y

(n))) , (X (n),Y (n))).

The compression rates (R1,R2) are achievable if limn→∞ εn = 0, and the achievable rate region is the closure of the set

of achievable rates. The Slepian-Wolf theorem states that for a 2-DMS as above the achievable rate region is given by all

(R1,R2) satisfying R1 ≥ H (X1 | Y1), R2 ≥ H (Y1 | X1), and R1 +R2 ≥ H (X1,Y1) (these inequalities form the Slepian-Wolf

constraints).

The Source Coding Theorem has been extended to sources that are stationary and ergodic (using their asymptotic

equipartition property [Cover & Thomas 2006, Theorem 16.8.1]), and even to arbitrary sources [Han & Verdú 1993],

using the information-spectrum concepts initiated by Han and Verdú (see the monograph [Han 2003]).

Similar extensions exist for the Slepian-Wolf theorem: it has been generalized to sources that are stationary and

ergodic [Cover 1975], and, using the information-spectrum framework, a Slepian-Wolf coding theorem has been obtained

for general sources [Miyake & Kanaya 1995]. However, these latter results involving non-memoryless sources have a

strong asymptotic nature and require that the distribution of X (n) (and, respectively, of (X (n),Y (n)) for Slepian-Wolf

compression) is known.

In summary, the IT results mentioned above show that for data produced by a stochastic process:

• the minimal compression length for single-source compression is arbitrarily close to Shannon entropy in case of a

memoryless source, or to some asymptotical version of entropy for more general sources; in the case of distributed

compression, the optimal compression lengths are dictated by the Slepian-Wolf constraints, and

• optimal compression relies either on the very simple memoryless property, or on complete knowledge of the

distribution.

Theorem 1.1 and Theorem 1.5 can be viewed as a strengthening of the Source Coding and Slepian-Wolf theorems. The

main merit of our results compared to the classical theorems is that the compressor works in polynomial time, and is

universal in the strong sense of Definition 1.1, which, in particular, means that it does not assume any generative model.
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Another significant difference is that whereas in the IT results mentioned above (with the exception of Huffman

coding) compression fails for some realizations of the sources, the compression in our results works for all input tuples

satisfying the promise condition.

Our theorems imply their IT counterparts for memoryless sources and for stationary and ergodic sources using the

fact that a sequence of i.i.d. random variables (or, more generally, the outcome of a stationary ergodic source) gives with

a high probability a string of letters whose Kolmogorov complexity is close to Shannon’s entropy of the random source

(this was stated in [Zvonkin & Levin 1970, Proposition 5.1] and a proof appears in [Brudno 1982]; see also [Horibe 2003;

Ming & Vitányi 2014]).

Compression procedures for individual inputs (i.e., without using any knowledge regarding the generative process)

have been previously designed using the celebrated Lempel-Ziv methods [Lempel & Ziv 1976; Ziv 1978]. This approach

has lead to efficient compression algorithms that are used in practice. Such methods have been used for distributed

compression as well [Dueck & Wolters 1985; Kuzuoka 2009; Ziv 1984]. For such procedures two kinds of optimality

have been established, both valid for infinite sequences and thus having an asymptotic nature.

First, the procedures achieve a compression length that is asymptotically equal to the so-called finite-state complexity,

which is the minimum length that can be achieved by finite-state encoding/decoding procedures [Ziv 1978].

Secondly, the compression rates are asymptotically optimal in case the infinite sequences are generated by sources

that are stationary and ergodic [Wyner & Ziv 1994].

In contrast, the compression in Theorem 1.1 applies to finite strings and achieves a compression length close to

minimal description length. Unfortunately, it cannot be practical, because, as we have explained, when compression is

done at this level of optimality, decompression requires time longer than any computable function. Our theoretical

results show that compression is not a fundamental obstacle in the design of an efficient compressor-decompressor pair

that is optimal in some rigorous sense, and we hope that this principle will inspire and guide future research lines with

applicative objectives.

We now move to previous results obtained in the AIT framework. How well can we compress a string x? By a simple

counting argument, there is no compressor (even probabilistic, and even incomputable) that compresses all strings x

down to length C(x) − c , for some constant c . As already mentioned no computable procedure can compress x down to

a string of length C(x).

On the other hand, an easy argument shows that, if C(x) is also given (such an additional information regarding the

input is known as help), then a description of x of length C(x) can be obtained by exhaustive search, which, unfortunately,

is an exceedingly slow procedure whose running time grows faster than any computable function. Corollary 1.2 shows

that in fact a description of x of almost minimal length can be found in probabilistic polynomial time.

An interesting problem is the compression of x conditioned by some unavailable information y, also known as, the

asymmetric version of the Slepian-Wolf coding or source coding with side information at the receiver in the information-

theory literature, and as information reconciliation or the document exchange problem in the theoretical computer science

literature. This time, a compressor which knows C(x | y), but not y, cannot perform the exhaustive search.

Muchnik’s theorem [Muchnik 2002] gives a surprising solution: There exist algorithms C and D such that for all n

and for all n-bit strings x and y, C on input x , C(x | y) and O(logn) help bits outputs a string p of length C(x | y), and

D on input p, y, and O(logn) help bits reconstructs x . Thus, given C(x | y), Alice can compute from her string x and

only O(logn) additional help bits a string p of minimum description length such that Zack using p, y and O(logn) help

bits can reconstruct x .
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8 Bauwens, B. and Zimand, M.

Muchnik’s theorem has been strengthened in several ways. Musatov, Romashchenko and Shen [Musatov et al. 2011]

have obtained a version of Muchnik’s theorem for space bounded Kolmogorov complexity, in which both compression

and decompression are space-efficient. Romashchenko [Romashchenko 2005] has extended Muchnik’s theorem to the

general (i.e., non-asymmetric) Slepian-Wolf coding. His result is valid for any constant number of senders, but, for

simplicity, we present it for the case of two senders: For any two n-bit strings x and y and any two numbers n1 and

n2 satisfying the Slepian-Wolf constraints (1), there exist two strings p1 and p2 such that |p1 | = n1 +O(logn), |p2 | =

n2 + O(logn),C(p1 | x) = O(logn),C(p2 | y) = O(logn) and C(x ,y | p1,p2) = O(logn). In words, for any n1 and n2

satisfying the Slepian-Wolf constraints, Alice can compress x to a string p1 of length just slightly larger than n1, and Bob

can compress y to a string p2 of length just slightly larger than n2 such that Zack can reconstruct (x ,y) from (p1,p2),

provided all the parties use O(logn) help bits.

Bauwens et al. [Bauwens et al. 2013], Teutsch [Teutsch 2014] and Zimand [Zimand 2014] have obtained versions of

Muchnik’s theorem with polynomial-time compression, but in which the help bits are still present. In fact, their results

are stronger in that the compression procedure on input x outputs a polynomial-size list of strings guaranteed to contain

a short program for x given y. This is called list approximation. Note that using O(logn) help bits, the compression

procedure can pick the right element from the list, re-obtaining Muchnik’s theorem. The gain is that this compression

procedure halts even with incorrect help bits, albeit in this case the result may not be the desired x , see appendix G for

details.

Bauwens and Zimand [Bauwens & Zimand 2014] show the existence of polynomial-time list approximation algo-

rithms for programs of minimal description lengths that do not require help bits, but which, instead, are probabilistic.

Zimand [Zimand 2017] obtains Slepian-Wolf coding in the Kolmogorov complexity setting via probabilistic polynomial-

time encoding without help bits.

We were inspired by [Bauwens & Zimand 2014] and [Zimand 2017], which represent the starting point for our study.

This work contains conceptual and technical ideas that depart significantly from these two papers. The main conceptual

novelty is that the optimal compressors in this paper are universal, i.e., they work for any decompressor, computable or

not, in the sense explained in Definition 1.1.

On the technical side, we use a new fingerprinting technique, based on condensers and conductors, which leads to

smaller overhead (log2 n, compared to log
3 n in [Zimand 2017]).

Also, the Slepian-Wolf coding in Theorem 1.5 provides a double exponential improvement of the dependence of

the overhead on the number ℓ of senders compared to [Zimand 2017]. The latter paper implicitly assumes that ℓ is

constant; otherwise, the overhead obtained there makes the result essentially meaningless. The same is true for the

classical Slepian-Wolf theorem: no non-trivial compression can be achieved if the number of senders is significantly

larger than the length of the compressed strings.

2 OPTIMAL SINGLE SOURCE COMPRESSION: PROOF OF THEOREM 1.1

The main novel features of the proof are an efficient fingerprinting construction based on condensers and conductors

and a method to handle fingerprints that produce many collisions. We present below the basic ideas.
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Universal almost optimal compression and Slepian-Wolf coding in probabilistic polynomial time 9

Invertible functions

In Definition 1.1, the optimal compressor and the corresponding decompressor D′ only need to work correctly for

strings x in

{x : CD (x) < k}, (*)

where k = m − ∆ + 1. For different D, these sets are different, however all of them have size less than 2
k
. This set

contains the initial suspects, from which the decompressor has to find the compressed string x . The optimal compressor

provides a fingerprint, i.e., a small amount of information about the input string x that allows its identification among

these suspects. Because of the universality property, the compressor needs to generate fingerprints without knowing

the list of suspects. For any set X, let X≤K denote the set of lists of elements in X with size at most K . The above

discussion leads to the following definition.

Definition 2.1. A probabilistic function F : X → Y is (K , ε)-invertible if there exists a deterministic partial function

д : X≤K × Y → X such that for all S ∈ X≤K and all x ∈ S :

Pr [дS (F(x)) = x] ≥ 1 − ε ,

where дS (y) = д(S,y). F is online (K , ε)-invertible if there exists such a function д that is monotone in S : if list S ′ extends

S , then the function y 7→ дS ′(y) is an extension of y 7→ дS (y).

The interpretation is that д, on input a list S of suspects and a random fingerprint F(x) of x , identifies x with high

probability among the suspects. The main technical result, from which Theorem 1.1 follows, is a probabilistic polynomial

time algorithm that computes an invertible function.

Theorem 2.1. There exists a probabilistic algorithm F that on input ε > 0, k and string x , outputs in time polynomial

in |x | a string Fε,k (x) of length k +O(logk · log(|x |/ε)), such that for all ε > 0 and k , the function x 7→ Fε,k (x) is online

(2k , ε)-invertible.

Moreover, there exists a family of monotone inverses дε,k of Fε,k , for which the mapping (ε,k, S,y) 7→ дε,k,S (y) can be

evaluated in space polynomial in maxz∈S |z |.

Proof of Theorem 1.1 (assuming Theorem 2.1). Without loss of generality, we assume that ε is a negative power

of 2, because rounding down ε increases the overhead by less than a constant factor. Hence, we can represent ε in binary

using at most O(log 1

ε ) bits. The optimal compressor outputs the string Cε,m (x) which is anm-bit representation of the

triple (ε,k(ε,m, |x |), Fε,k (x)), where the function k is chosen large enough such thatm−k(ε,m,n) ≤ O(logm · log(n/ε)),

but not too large such that the triple can still be represented in binary using preciselym bits. On input a triple (ε,k,y),

the decompressor D′ first enumerates the set S of equation (*), and outputs дS (y), where д is the monotone inverse

of Fε,k . □

Remark 1. The theorem considers inputs x of arbitrary length. However, it is enough to construct for each fixed input

size n, an invertible F : {0, 1}n 7→ {0, 1}m with inverse д. Indeed, by adding n to the output, we obtain an inverse in

{0, 1}∗, simply by evaluating the inverse for n-bit inputs on the n-bit elements in (*).

Remark 2. The definition of ∆-optimality requires the existence of some mapping D 7→ D′, but does not impose any

computability requirement on this mapping. However, from the proof of Theorem 1.1 we obtain that if D is given as

an oracle, we can evaluate D′ for an n-bit compressed string in space polynomial in n, and hence in time exponential

in n. Indeed, assume the length n is a part of the output, as explained in the previous remark. On input (ε,k,y,n), the
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10 Bauwens, B. and Zimand, M.

decompressor D′ uses the oracle to enumerate the set S of n-bit strings in (*). Each time such a string is found, the

value of дS (y) is calculated, and the output of D′ is the corresponding value. The monotonicity property guarantees

that the output of D′ does not change after new elements appear in S . If D is computable in polynomial space, then so

is the corresponding D′. Similarly, if D is computable, respectively, partial computable, then so is D′.

It remains to prove Theorem 2.1. To better understand the main difficulty, we first review weaker results based on

standard fingerprinting techniques.

Fingerprints from random hashing

Fix ε > 0 and K . Theorem 2.1 provides (K , ε)-invertible functions with output length close to logK . Consider the variant

of Definition 2.1 in which the functions F and д are evaluated using shared randomness in their evaluations. In this

model, F and д have an extra argument ρ representing a random string. Fingerprints given by random subset parities

provide (K , ε)-invertible functions for this easier setting.

The fingerprints. On input x and a sufficiently long ρ, let Fρ (x) be a string of sizem = ⌈log
K
ε ⌉ evaluated by takingm

disjoint segments ρ1, . . . , ρm of length |x | from ρ, and setting the i-th bit equal to

∑
j≤n ρi, jx j mod 2. In other words,

Fρ (x) = Rx , where R is the matrix having the rows ρ1, . . . , ρm , and the ρi ’s and x are viewed as n-vectors with elements

in the field GF[2].

The inverse д. On input ρ, a list S of strings, and y, the value дρ,S (y) is given by the first z in S for which Fρ (z) = y.

Lemma 2.2. If S is a list of at most K strings of equal length and x ∈ S , then Prρ
[
дρ,S (Fρ (x))=x

]
≥ 1 − ε .

Proof. For two different strings x and z of equal length, the probability over ρ that Fρ (x) = Fρ (z) is at most

2
−m ≤ ε/K . By the union bound, the probability that some z ∈ S different from x , has the same subset parities, is at

most ε . This bounds the probability that д returns an element different from x . □

How can shared randomness be eliminated? One idea is to attach the random bits to the output of F. However, on input

x , the technique above usesm · |x | random bits, and after attaching, the length exceeds the output length of the identity

function. We can try another well known hashing technique based on arithmetic modulo prime numbers, which only

requires about logK random bits, and provides output lengths close to 2 logK . This hashing technique will be used

later, and is based on the following.

Lemma 2.3. If x , z1, . . . , zK are different nonnegative integers less than 2
n
and P is a set of at least Kn/ε prime numbers,

then for a fraction 1 − ε of primes p in P : x mod p < {z1 mod p, . . . , zK mod p}.

Proof. Each number (x − zi ) has at most n different prime factors. Thus all (x − zi )’s together have at most Kn

different prime factors. Hence a random element in a set of at least Kn/ε primes, is a prime factor with probability at

most ε . □

Interpret strings x as nonnegative integers smaller than 2
|x |

. Let the fingerprint Hε,K (x) = (p,x mod p) be given by

selecting p randomly among the primes of bit size at most s + ⌈log s⌉ + 1, where s = log(K |x |/ε).

Lemma 2.4. For all ε > 0,K and n, the fingerprint Hε,K applied to n-bit strings, defines a (K , ε)-invertible function with

output size at most 2 logK +O(log n
ε ).
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Universal almost optimal compression and Slepian-Wolf coding in probabilistic polynomial time 11

Proof. The prime number theorem implies that the i-th prime is less than 2i log i for large i . Hence, the set of primes

of bit size at most s + ⌈log s⌉ + 1 contains at least 2s = Kn/ε primes. On input a set S and a pair (p, j), the function д

outputs an element x in S for which x = j mod p. By the lemma above, with probability 1 − ε , there exists no such z

different from x , and hence, the decompressor outputs the correct value. □

Let us summarize: a (2k , ε)-invertible function has output size at least k . The fingerprints of Lemma 2.2 have output

size k +O(log 1

ε ), which is close to optimal, but use shared randomness. Lemma 2.4 does not use shared randomness,

but the method cannot achieve compression lengths better than 2k +O(log 1

ε ).
3

The technique used in the above lemmas produces inverses д of F of a simple form: дS (y) searches for the first

x ∈ S such that F(x) = y has positive probability. We show that this technique has a limitation that precludes optimal

compression for all inputs. Let Fx denote the set of all values of F(x) that appear with positive probability. For the

technique to work correctly, we need that with positive probability Fx is not included in

⋃
{Fz : z ∈ S, z , x}, in other

words, the fingerprint F(x) does not cause x to collide with any other z ∈ S . Unfortunately, such inverses for lists of

suspects of size 2
k
, always require output sizesm ≥ 2k , instead of the desired k .

Lemma 2.5. For all x ∈ X, let Fx ⊆ Y . If #Y < min{ 1
4
K2,#X − 1

2
K}, there exists an x ∈ X and a set S ⊆ X of size less

than K such that

Fx ⊆
⋃

z∈S,z,x
Fz .

The lemma follows from a more general theorem about union-free sets, see Jukna [Jukna 2011, Th 8.13]. In appendix A

we give a simple proof of the lemma.

Fingerprints from condensers and conductors

We bypass the issue from Lemma 2.5 by allowing a limited amount of collisions. By using a second fingerprint and a

more complex inverse function д, each input can still be recovered with high probability. The required first fingerprints

are obtained from condensers and conductors, which have been studied in the theory of pseudo-randomness. We

introduce the specific type of conductor that we use, after which we present an overview of the proof of Theorem 2.1.

Condensers have been introduced in various studies of extractors [Raz et al. 1999; Raz & Reingold 1999; Ta-Shma

et al. 2007], and conductors were explicitly introduced by Capalbo et al. [Capalbo et al. 2002], under the name simple

conductors. The following closely related variant is tailored to our purposes. Let P be the probability measure of a

random variable Y with finite range Y. The γ -excess of Y is∑
y∈Y

max{0, P(y) − γ } .

For a set S , letUS be the random variable that is uniformly distributed in S .

Definition 2.2. A probabilistic function F : X → Y is a (K
ε
→K ′)-condenser if for every set S ⊆ X of size #S = K , the

(1/K ′)-excess of F(US ) is at most ε . F is a (K , ε)-conductor if it is a (K ′
ε
→K ′)-condenser for all K ′ ≤ K .

3
An idea would be to improve Lemma 2.2 by computing fingerprints with fewer random bits. A possibility would be to use randomness generated by a

pseudo-random generator. In this case, one can prove a weaker variant of Theorem 1.1 where one is restricted to decompressorsD running in polynomial

time. Moreover, the statement is valid only conditional on a hardness assumption from computational complexity.

Another possibility would be to use Newman’s theorem from communication complexity, that converts protocols with shared randomness into protocols

with private randomness. In this way, we can only achieve invertible functions for a fixed set S . This means that we obtain a variant of Theorem 1.1

where the optimality requirement considers only a single decompressor. Even if this decompressor runs in polynomial time, the resulting compressor

runs in exponential time. If the decompressor is optimal, as in Corollary 1.2, the resulting compressor is not even computable.
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Equivalently, F is a (K , ε)-conductor if for every set S of size at most K , the (1/#S)-excess is at most ε . The equivalence

with standard definitions in the literature is discussed in appendix B. The following lemma shows that every invertible

function is a conductor. It is used in the proof of Proposition 1.4.

Lemma 2.6. Every (K , ε)-invertible function is a (K , ε)-conductor.

Proof. Let F : X → Y be (K , ε)-invertible. For any S ∈ X≤K and x ∈ S , we have дS (F(x)) = x with probability at

least 1 − ε . Thus дS (F(US )) , US with probability at most ε .

Let P be the measure of дS (F(US )). We show that this variable has (1/#S)-excess at most ε . If we subtract from P(x)

the probability that дS (F(x)) , x , the resulting semimeasure has (1/#S)-excess 0. Hence, дS (F(US )) has (1/#S)-excess at

most ε .

Note that after applying a deterministic function, the excess can only increase. Since y 7→ дS (y) is deterministic, also

F(US ) has excess at most ε . □

Remarkably, the relation in the other direction also holds true: from conductors we obtain invertible functions. This

is the content of Theorem 2.1. We present a sketch of the proof. The main observation is that conductors produce

fingerprints with some relaxed properties, but which are still good enough for decompression. The first relaxation

is that we do not need to insist on a fingerprint that produces zero collisions as in Lemma 2.5. It is sufficient if, for

each list of suspects S , a string has a random fingerprint that causes at most t collisions with other elements in S , for

t polynomial or quasi-polynomial in n. Such a fingerprint is called a light fingerprint. This works, because to the light

fingerprint, we simply append a second hash code based on prime numbers. By Lemma 2.3, its size is O(log(tn/ε)), and

this constitutes the overhead. Then the string can be isolated from the t collisions, and be reconstructed. The second

relaxation is that we do not require that all the elements of S have light fingerprints, but only at least half of them.

More precisely, we say that a string x is deficient if with probability ε/2, the fingerprint p = F(x) is not light, where F is

the conductor that we use as a hash function that produces fingerprints. Then, as we explain in the next paragraph, it

suffices if at most half of the elements in S are deficient, and a conductor F indeed has this property.

Let x be the string that we want to compress and let p = F(x) be a random fingerprint of x produced by the conductor

F. We now sketch the decompression procedure which reconstructs x from p and the prime-based hash code. Assume

S is a valid set of suspects, i.e., x ∈ S . Initially, we collect the first t strings in S that have p as a fingerprint. If x is

non-deficient, x will be among the collected strings with high probability. But x may very well be deficient, and, in

this case, x needs to be reanalyzed at a later stage. So, we form a smaller set R(S) with all the deficient strings, and

the decompressor is applied recursively to R(S), the new list of suspects. Since each recursive call decreases the set

of suspects by half, the recursion has at most log(2#S) levels, and we collect at most t log(2#S) strings at all the levels

of recursion. Now, the second prime-based hash code will allow us to distinguish x among the collected strings and

reconstruct it. The details are presented in the next section, where we prove Theorem 2.1.

We next present the condensers and conductors that we use in the proofs. In our construction of (2k , ε)-invertible

functions, the difference between the output size and k is proportional to the length of the second hash code, which is

in turn proportional to the number of random bits used in the evaluation of the conductor. In the pseudo-randomness

literature, this is called the seed length, and a Ω(log n
ε ) lower bound has been proven, see [Nisan & Zuckerman 1996;

Radhakrishnan & Ta-Shma 2000] and Proposition 4.3 below. By a standard construction using the probabilistic method,

there exist condensers that can be evaluated with O(log n
ε ) random bits. They are computable, but unfortunately not

computable in polynomial time.
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Proposition 2.7. For all ε , n and k , there exists a (2k , ε)-conductor F : {0, 1}n → {0, 1}k+2 that uses log 4n
ε bits of

randomness.

Remark. Because conductors are finite objects, they can be computably constructed by exhaustive search. On input ε,k

and n, this search can be done in space exponential in n.

The result of Theorem 2.1 considers a polynomial time construction. A family of condensers or conductors is explicit if

there exists a probabilistic algorithm that on every input, consisting of ε , k and an n-bit x , outputs F(n)ε,k (x) in polynomial

time.

We obtain explicit families of conductors from known constructions of extractors. Based on a result of Raz, Reingold,

and Vadhan [Raz et al. 2002], Capalbo et al. [Capalbo et al. 2002] show that there exists an explicit conductor that uses

r = O(logk · log2 n
ε ) random bits. In section D, we obtain from explicit extractors given by Guruswami, Umans, and

Vadhan [Guruswami et al. 2009], an improved explicit conductor that uses less randomness.

Proposition 2.8. There exists an explicit family F
(n)
ε,k of (2k , ε)-conductors F(n)ε,k : {0, 1}

n → {0, 1}k that uses O(logk ·

log
n
ε ) random bits, for all ε , k and n.

We also present a closely related, but technically less cumbersome approach, which does not use conductors, but instead

obtains invertible functions by combining a few condensers given by the following result.

Theorem 2.9 ([Guruswami et al. 2009], Theorem 1.5 or 4.17). For all n,κ and ε , there is an explicit family of

(22κ
ε
→ 2

κ )-condensers F : {0, 1}n → {0, 1}κ whose evaluation requires O(log n
ε ) bits of randomness.

Remark. The cited theorem in [Guruswami et al. 2009] gives an extractor with output lengthm ≥ k/2. We can set

m = ceil(k/2), because in extractors, we can reduce the output size by merging equal numbers of outputs, and this

does not increase the statistical distance to the uniform measure. Finally, we obtain a condenser, since a function is a

(22κ , ε)-extractor if and only if it is a (22κ
ε
→ 2

κ )-condenser, see Remark 5 in appendix B.

Proof of Proposition 1.3 and Theorem 2.1

The following corresponds to the weak invertibility requirement in the above proof sketch.

Definition. F : X → Y is online (K , t , ε)-list invertiblewithT rejections if there exist deterministic monotone functions

R: X≤K → X≤T and G: X≤K × Y → X≤t such that for all S ∈ X≤K and all x ∈ S \ R(S):

Pr [x ∈ G(S, F(x))] ≥ 1 − ε .

The interpretation is thatG is the “pruning" function, which on inputs S and y, reduces the list of K suspects to a smaller

list of at most t elements. For y = F (x), this short list should contain x , provided that x ∈ S and x does not belong to

the set R(S) of at mostT “deficient elements." R is the “reanalyze” function that determines the elements in S that can be

incorrectly lost in the pruning, and need to be reanalyzed again.

Lemma 2.10. Let a be an integer. Every (K
ε
→ 1

aK)-condenser that can be evaluated with r random bits is online

(K ,a2r , 2ε)-list invertible with K/2 rejections.

In this section we use the lemma with a = 1.
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Proof. For S ∈ X≤K and y ∈ Y, let G(S,y) be the list containing the first a2r appearances of elements x in S for

which F(x) = y has positive probability (or all appearances, if there are less than a2r of them).

Note that G is monotone in S . We assume that S has size exactly K , since the invertibility conditions only become

easier to prove for smaller S . For a list L, letUL denote the random variable obtained by selecting a random element

in L. Observation:

If L′ is the sublist of some L ∈ YB
obtained by retaining the first b appearances of each element y ∈ L, then

Pr[UL < L
′] is at most the (b/B)-excess ofUL .

We show that

Pr [US < G(S, F(US ))] ≤ ε .

Let L be the list of length 2
rK of the values Fρ (x) for all x ∈ S and all assignments ρ of r random bits in F(x). More

precisely, for S = [x1, . . . ,xK ], concatenate [F0r (xi ), . . . , F1r (xi )] for increasing values of i . Note that UL has the same

distribution as F(US ), which by definition of condenser, has
a
K -excess at most ε . The procedure for G defines a sublist L′

of L, containing all first a2r appearances of some y ∈ Y. By choice of L and L′, the eventsUL < L
′
andUS < G(S, F(US ))

have precisely the same probability. The inequality follows by applying the above observation, with b = a2r ,B = K2r .

The function R is obtained by selecting the elements x ∈ S for which Pr [x < G(S, F(x))] > 2ε . R is monotone,

because after adding an element to S , these probabilities for its other elements do not change. The proof finishes by

showing that R(S) contains at most K/2 elements, i.e., Pr[US ∈ R(S)] ≤ 1/2. This follows from

2ε · Pr[US ∈ R(S)] ≤ Pr[US < G(S, F(US ))] ≤ ε . □

Remark. If the function F : {0, 1}n → Y can be evaluated in space polynomial in n, then also the functions R and G

constructed in the proof above can be evaluated in space polynomial in n.

Corollary 2.11. If F is a (M, ε)-conductor that can be evaluated with r random bits, then F is online (M, 2r log(2M), 2ε)-

list invertible (with 0 rejections).

Proof. Let G and R be the functions defined above for a = 1. Note that we have #R(S) ≤ 1

2
#S for all S , since the

algorithms do not depend on K , and the assumption holds for all K ≤ M , by definition of conductors.

For S ∈ X≤M and y ∈ Y, the inverse G′ that satisfies the conditions is defined recursively. If S is empty, thenG ′(S,y)

is empty. Otherwise, G ′(S,y) is the concatenation of G(S,y) and G
′(R(S),y).

Each recursive call adds at most 2
r
elements, and at most log(2M) recursive calls are made. The probability that

x < G
′(S, F(x)) is at most 2ε . Indeed, if x < R(S), this follows from Lemma 2.10, and otherwise, this follows by an

inductive argument on the size of S . □

Remark 3. If the function F : {0, 1}n → Y can be evaluated in space polynomial in n, then also the functions R
′
and G

′

constructed in the proof above can be evaluated in space polynomial in n. Indeed, these functions operate on sets of

n-bit strings and can be of exponential size. But, to evaluate the functions R(S) and G(S,y), one does not need to store

the full set S , but only needs to iterate over elements in S . This implies that the space needed to evaluate G
′(S,y) equals

the recursion depth times the space needed to iterate over R(·) and G(·,y), and this is polynomial in n.

The next result follows almost directly from the definitions.

Lemma 2.12. If F is (K , t , ε)-list invertible with T rejections, F
′
is (t +T , ε ′)-invertible, and both functions have the same

domain, then x 7→ (F(x), F′(x)) is (K , ε + ε ′)-invertible.
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The next result follows directly from this lemma and Corollary 2.11.

Corollary 2.13. If F : {0, 1}n 7→ Y is a (K , ε)-conductor that can be evaluated using at most r random bits, then the

function

x 7−→ (F(x),Hε,s (x)) with s = 2
r
log(2K)

is (K , 3ε)-invertible, where Hε,s is the prime-based hash function from Lemma 2.4.

Proof of Theorem 2.1. We apply Corollary 2.13 to the conductor given in Proposition 2.8. The result is a family of

online (2k , ε)-invertible functions where F : {0, 1}n → {0, 1}m withm − k ≤ O(logk · log n
ε ). By Remark 3, the inverse

can be evaluated in space polynomial in n. Finally, by Remark 1, we obtain an inverse function over the set of strings of

all lengths. □

Proof of Proposition 1.3. We apply Corollary 2.13 to the conductor given in Proposition 2.7. The result is a family

of online (K , ε)-invertible functions where #Y/K is polynomial in n/ε . Proposition 1.3 follows by converting invertible

functions to compressors, as explained in the proof of Theorem 1.1 assuming Theorem 2.1 presented at the beginning

of section 2. □

Proof of Theorem 2.1 based on condensers

The proof of Theorem 2.1 given in the previous section requires the explicit conductor from Proposition 2.8, whose

proof is rather technical. In this subsection, we give an easier and more direct proof that is based only on condensers,

bypassing conductors. The two proofs are similar, still, they each have their own advantage: if explicit conductors are

discovered that use less randomness, then this leads to improved compressors through the first proof. On the other

hand, if explicit condensers are found that use logarithmic randomness and extract more of their minentropy, then the

approach of this section leads to improved compressors. The following is a consequence of Lemma 2.10.

Lemma 2.14. Let a and b be integers. If F is a (M
ε
→ 1

aM)-condenser that can be evaluated with r random bits, then F is

online (bM,ab2r log(2b), 2ε)-list invertible withM/2 rejections.

Proof. The pruning and reanalyze functions G
′
and R

′
are defined recursively in b. Given S ∈ X≤bM , partition S in

b sublists S ′ of length at mostM , and apply the functions G and R from Lemma 2.10. Collect the to-be-reanalyzed strings

from all R(S ′)’s in a set Srec, and the selected strings from all sets G(S ′,y) in a set S
sel
. If #Srec ≤ M/2 we are done, and

we let R
′(S) = Srec and G

′(S,y) = S
sel
. Otherwise, we continue recursively by letting G

′(S,y) be the concatenation of

S
sel

and G
′(Srec,y), and letting R

′(S) = R
′(Srec).

We show that the algorithm works correctly. By construction, R
′
outputs the required number of elements. In each

recursive call, #Srec is at least halved. Thus, the number of recursive calls is at most log(2b). In each call, the size of S
sel

is at most b · (a2r ), and hence this number of elements is appended to G
′
. Thus, this function outputs a list of size at

most ab2r log(2b). □

Using Lemma 2.12, this implies the following for a = b = K andM = K2
.

Lemma 2.15. If F is a (K2
ε
→K)-condenser that can be evaluated with r random bits, F

′
is (K2

2
r
log(4K), ε ′)-invertible,

and both functions have the same domain, then x 7→ (F(x), F′(x)) is (K3, 2ε + ε ′)-invertible.

We apply this lemma to the following condensers given by Guruswami, Umans, and Vadhan [Guruswami et al. 2009].
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Theorem (Restated). For all n,κ and ε , there is an explicit family of (22κ
ε
→ 2

κ )-condensers F : {0, 1}n → {0, 1}κ

whose evaluation requires O(log n
ε ) bits of randomness.

Proof of Theorem 2.1. By Remark 1, it suffices to present the construction for inputs of a fixed length n. If k ≥ n,

then let F be the identity function. Otherwise, we apply Lemma 2.15 recursively for decreasing k . In other words, we

concatenate O(logk) condensers with geometrically decreasing values of κ.

We present the details. Let r denote the O(log n
ε ) bound on the randomness in the condenser of Theorem 2.9. Let b

be such that 2
b ≥ 2

r
log(4K) for all K ≤ 2

n
, but still satisfies b ≤ O(log n

ε ).

If k < 100 ·b, we obtain an (2k , ε)-invertible function using prime hashing from Lemma 2.4. Otherwise, the invertible

function is obtained by concatenating the condenser for κ = ceil(k/3) and the recursive application of the construction

for k ← 2κ + b.

At most d ≤ O(logk) recursive calls are made, because if k ≥ 100 · b, the recursive value for k is close to
2

3
k , say at

most
5

6
k . We verify that if the recursion depth is d , then we obtain a (2k , 2dε)-invertible function with output length

k + bd . Indeed, in each concatenation, the error given by Lemma 2.15 increases with 2ε , and the output length increases

with κ, while the value of k increases by κ − b. This proves the first part of the theorem. The moreover part follows

from similar observations as in Remark 3. □

3 OPTIMAL DISTRIBUTED COMPRESSION: PROOF OF THEOREM 1.5

Observe that if F1 : X → Y1 and F2 : X → Y2 are (K1, ε1) and (K2, ε2)-invertible, then x 7→ (F1(x), F2(x)) is

(K1K2, ε1 + ε2)-invertible. We can not apply this observation to the setting of distributed compression. Indeed, if

we choose X = X1 ×X2, and consider a function F1 acting on the left and F2 on the right coordinate, then F1 can not be

invertible on X, because it can not distinguish tuples with the same right coordinate. The following proposition obtains

invertible functions suitable for distributed compression with 2 sources.

Proposition 3.1. If F1 : X1 → Y1 is (K1, ε)-invertible and F2 : X2 → Y2 is (K2, ε)-invertible, then (x1,x2) 7→

(F1(x1), F2(x2)) is (3ε)-invertible
4
in sets S ⊆ X1 × X2 for which

#S ≤ K1K2,

#{(z1, z2) ∈ S : z2 = x2} ≤ K1 ∀x2 ∈ X2,
#{(z1, z2) ∈ S : z1 = x1} ≤ K2 ∀x1 ∈ X1.

The proof is given in appendix E. For the proof of Theorem 1.5, we need an online variant of this proposition for an

arbitrary number of invertible functions. Its statement requires some more definitions.

Definition 3.1. Let S ⊆ X1 · · · Xℓ and K = (K1 . . .Kℓ) be an ℓ-tuple of integers. S has K-small slices if for all x ∈ S

and for all J ⊆ [ℓ]:

#{z ∈ S : zJ = xJ } ≤
∏

j ∈[ℓ]\J

Kj .

Let X<ω
denote the set of finite sequences of elements in X.

4
We say that F is invertible in a set S if there exists a function h such that Pr[h(F(x )) = x ] ≥ 1 − ε for all x ∈ S .
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Definition 3.2. Let S be a collection of subsets of X. F is ε-invertible on S if there exists a mapping д : X<ω ×Y → X,

such that for all S , whose elements form a set in S

Pr [дS (F(x)) = x] ≥ 1 − ε ,

F is online ε-invertible on S if there exists a monotone such д, as in Definition 2.1.

Theorem 1.5 follows from the proof of the following.

Theorem 3.2. If Fj : Xj → Yj is online (
ℓ
ε Kj , ε)-invertible for all j ∈ [ℓ], then the function

(x1, . . . ,xℓ) 7−→ (F1(x1), . . . , Fℓ(xℓ))

is online (8ℓε)-invertible on the collection of sets with K-small slices.

Remark. The offline variant also holds, in which we start with a weaker assumption and obtain a weaker conclusion.

The proof of Proposition 3.1 can be modified for the online version and extended to arbitrary ℓ. Moreover, compared to

Theorem 3.2 it is easier, and provides slightly better parameters when ℓ and ε are small. Unfortunately, the obtained

error is ℓ2ℓε , which can be much larger than 8ℓε .

The difficulty in proving both the proposition and the theorem is to partition the large set S of initial suspects

into smaller subsets on which the inverses of the functions Fj can be applied. For the proposition, this partition is

deterministic and rather intuitive. For the theorem, we use a different and novel technique, called randomized-tree

partition, and this allows to reduce the error to O(εℓ).

Proof of Theorem 3.2

We construct a probabilistic algorithm д that on input y ∈ Y and a list S of tuples in X1 × · · · × Xℓ with K-small slices,

selects an element д(S, y) from S such that for each fixed x ∈ S :

Pr [д(S, F(x)) , x] ≤ (exp(1) + ℓ)ε, (*)

in which the probability is over the random choices of both д and F. The algorithm operates in an online way for the

input S . This means that д starts by executing an initialization procedure that does not depend on S . Next, for each

subsequent element x in S , an update procedure is run that manipulates some variables. This update procedure might

decide to assign the output д(S, y) = x. Once, committed to an output, this output may no longer be changed. In this

way, the obtained function д is monotone.

A deterministic online inverse is obtained by taking majority votes of the probabilistic outcome of д. This at most

doubles the error. Indeed, given a set S , a value y is bad for some x ∈ S if д(S, y) = x has probability at most 1/2. By the

inequality above, the output F(x) is bad for x with probability at most 2 · (exp(1) + ℓ)ε ≤ 8ℓε , and if F(x) is not bad, then

the majority vote returns x. Hence, the derandomized д satisfies the invertibility conditions of the theorem, where the

correspondence with the notation from the definition is obtained by дS (y) = д(S, y).

The initialization algorithm for д creates a random tree. It starts by creating the root, which has depth 0. Afterwards,

for j = 1, . . . , ℓ and for each node at depth j − 1, it creates ℓ
ε Kj children and associates each element in Xj to a random

child. After the random tree is created, the initialization procedure finishes.

Recall that the update procedure for д(S, y) is run when a new element x is added to S . This procedure is deterministic

and places copies of x on some nodes of the tree. We can view the copies of x as pebbles labeled by x. Elements are
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never removed from nodes, and we ensure that at each moment, there is at most one element on a node. The update

procedure proceeds in two steps, which we call top-down percolation and bubble up.

The top-down percolation step.

Place x on a leaf of the tree by descending it in the natural way: for moving down from depth j − 1 to depth j , select the

child node associated to x j . If the leaf already contains an element, then x is not placed on any leaf, and the update

procedure terminates without selecting x for the output.

Before presenting the second step, we first bound the probability that a fixed x in S is not placed on a leaf during the

percolation step.

Lemma 3.3. Assume S has K-small slices and that x belongs to S . The probability that x is not placed on a leaf is at most

ε exp(1).

Proof. We bound the probability that some tuple z in S , different from x, descends to the same leaf as x. If this is not

the case, than x is indeed placed on a leaf.

Let J be a non-empty subset of [ℓ] and let z be an ℓ-tuple for which zj , x j for all j ∈ J , and zj = x j for all j ∈ [ℓ] \ J .

The probability that z is placed in the same leaf as x is at most∏
j ∈J

ε

ℓKj
.

By the slice assumption, the set S contains at most

∏
j ∈J Kj such elements z, and hence, the probability that this happens

for such a z is at most

(ε/ℓ)#J ≤ ε(1/ℓ)#J ,

since J is nonempty. By the union bound over all nonempty subsets J ⊆ [ℓ], the probability that some element of S is

placed in x’es leaf is at most

≤ ε
∑
J

(
1

ℓ

)#J
≤ ε

(
1 +

1

ℓ

)ℓ
≤ ε exp(1). □

The second step of the update procedure is the bubble up step. In this step, the element x assigned to some leaf, attempts

to be copied upwards to the root. There is a “competition,” and out of the elements placed on the children of a node, at

most one progresses up. If x reaches the root, then it is the output of д(S, y). Let дj be the online function that inverts Fj .

The bubble up step.

Repeat the rounds that we describe next until termination. At the current round, execute the following four steps:

- Consider the node with minimal depth that contains x and let j be this depth (so, at the first round, j is ℓ).

- Let Bj be the set of j-th coordinates of tuples placed on the siblings of this node. We view these tuples as competing

to create a copy of themselves in the parent.

- If дj (Bj ,yj ) = x j , place a copy of x on the parent node (in other words, x is the winner). Otherwise, terminate without

selecting x.

- If x is placed in the root, terminate and select x for the output.

Remarks.

Manuscript submitted to ACM



937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Universal almost optimal compression and Slepian-Wolf coding in probabilistic polynomial time 19

The above loop always terminates, because if termination does not happen in the third step of a round, x is raised up

in the tree and the algorithm continues with the next round. Therefore, if termination does not happen in a third step

of any round, x reaches the root and the algorithm terminates in the fourth step.

As promised above, in every node, at most one tuple is placed. Indeed, for leaves this follows by the construction in

the percolation step. For the other nodes, this follows by the definition of online inverses дj , because if дj (Bj ,yj ) has

committed to an output x j , then further additions of elements to Bj will not change this output. By the construction of

the tree, all siblings in the third step contain tuples with different j-th coordinates, and therefore only at most one can

win.

When the algorithm commits to an output, this answers remains. Indeed, by the previous step, at most one tuple is

placed in the root, and after being placed, it is never removed.

We prove (*). For a tuple x ∈ S , consider the following events:

- E0 is the event that x is assigned to a leaf of the tree at the percolation step.

- For each j ∈ [ℓ], consider the node at depth j on the branch of x. Let Bj be the set of j-th coordinates of tuples placed

in the node’s siblings after processing all elements of S . Ej is the event that дj (Bj , Fj (x j )) = x j .

Conditioned on all events E0 and Eℓ , . . . ,E1 being true, x will appear in the root and, thus, is the output of д(S, F(x)),

in other words, д has correctly inverted F(x). Indeed, by E0, x is placed to some leaf during the percolation step. And by

Ej , at each depth j in the bubble up step, the tuple x wins the competition and is placed on its parent, since, no other

sibling has the same j-th coordinate.

We now bound the error probability that at least one of the above events does not happen. By Lemma 3.3, the

probability that x is not placed on a leaf at the percolation phase is at most ε exp(1). Otherwise, x is placed to some

leaf. Consider its branch. Note that the size of Bℓ is at most
ℓ
ε Kℓ , because this is the number of sibling nodes, and each

node contains at most one tuple. By the ( ℓε Kℓ , ε)-invertibility of Fℓ , the value of дℓ(Bℓ , Fℓ(xℓ)) differs from xℓ with

probability at most ε . Otherwise, if this does not happen, then x is placed in the branch at depth ℓ − 1, and xℓ−1 belongs

to Bℓ−1. By induction, the same argument is valid for all levels, and thus every event Ej fails with probability at most ε .

The probability that one of the events does not happen is bounded by the sum of all mentioned probabilities, which

is precisely the right-hand side of (*). The theorem is proven.

Proof of Theorem 1.5.

We first connect the Slepian-Wolf constraints from Definition 1.2 to K-small slices.

Lemma 3.4. The set S of tuples x such that k satisfies theD-Slepian-Wolf constraints for x has (2k1 , . . . , 2kℓ )-small slices.

Proof. If J = [ℓ], the set in Definition 3.1 equals {x} and the inequality is true. Fix a strict subset J ⊂ [ℓ]. All

elements in z ∈ S satisfy

CD(z[ℓ]\J | zJ ) <
∑

j ∈[ℓ]\J

kj .

The number of such ℓ-tuples z with zJ = xJ is therefore bounded by the exponent of the right hand side. Hence, this set

has the required size. □

Recall that in the proof of Theorem 1.1, we constructed a compressor using a family Fε,κ of (2κ , ε)-invertible functions

on {0, 1}∗. For this, we simply appended the parameters ε and κ to the output. Note that for the obtained overhead ∆,

the output length is equal tom = κ + ∆ − 1. For such compressors, Theorem 1.5 follows easily from Theorem 3.2.

Manuscript submitted to ACM



989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Bauwens, B. and Zimand, M.

Proof of Theorem 1.5 for compressors that have the parameter κ in their output. Let ε and y = (y1, . . . ,yℓ)

be inputs for the decompressor D′ that we need to construct. By the assumption, each yj provides us with the value κj ,

and therefore specifies a monotone (2κj , ε)-inverse дj . Let д be the inverse constructed in the proof of Theorem 3.2.

This construction only uses objects that are specified by the inputs ε and y ofD′: ε , ℓ, κj and дj for all j . Let S be the set

of strings for which (κ1 − log
ℓ
ε , . . . ,κℓ − log

ℓ
ε ) satisfies the D-Slepian-Wolf constraints. Define D′(ε, y) = д(S, y).

If x satisfies the (m1 − ∆1 − log
ℓ
ε , . . . ,mℓ − ∆ℓ − log

ℓ
ε )-Slepian-Wolf conditions, then x ∈ S by choice of S , (there is

even 1 bit surplus). By Lemma 3.4, S has ( εℓ 2
κ1 , . . . , εℓ 2

κℓ )-small slices. By choice of D′ and by Theorem 2.1, the event

D′(ε, F(x)) = x has probability at least 1 − 8εℓ. This implies the theorem. □

For the general case, we need to adapt the proof of Theorem 3.2.

Proof of Theorem 1.5. Assume the compressor is ∆-optimal, and for inputs (ε,m,x), let ∆(ε,m,x) be the value of

the overhead. Given a decompressor D and an ℓ-tuple m, we define the set Sm of tuples x that satisfy the conditions of

the theorem:

CD(xJ | x[ℓ]\J ) ≤
∑
j ∈J

(
mj − ∆(ε,mj ,x j ) − log

ℓ
ε

)
for all nonempty J ⊆ [ℓ].

Let d be an ℓ-tuple of integers. The set of elements x in Sm forwhich∆(ε,mj ,x j ) = dj for all j ∈ [ℓ] has (
ε
ℓ 2

m1−d1 , . . . , εℓ 2
mℓ−dℓ )-

small slices.

Given the set Sm as a list, we need to specify an output for a decompressorD′ for some inputs ε and y. We modify

the tree-partitioning in the online algorithm of Theorem 3.2 as follows. For each depth j ∈ [ℓ], for each node at depth j ,

for each dj ≤ mj , we create 2
mj−dj

children, and associate each stringw for which ∆(ε,mj ,w) = dj to a random such

child.

We now consider the update procedure. The first step, the top-down percolation step, does not change. In the

bubble up step, we only change the third instruction. For this instruction, we have no inverse function available. But

instead, we construct a decompressor E, and apply the decompressor E′ obtained from the definition of ∆-optimality.

This decompressor E assigns programs of lengthmj − dj to all j-th coordinates of tuples of children with associated

value dj . (Recall that there are precisely 2
mj−dj

such children.) Let E′ be the corresponding decompressor obtained

from Definition 1.1. If E′(yj ) = x j then x is copied from the child to the parent.

The analysis of this algorithm follows the analysis above: by the same reasoning as in Lemma 3.3, for each fixed

tuple d, there are no collisions in leafs of d-branches, i.e., branches whose nodes at depth j have corresponding values

for dj . Indeed, each factor
ε
ℓ 2

mj−dj
in the condition of ( εℓ 2

m−d)-small slices, is a factor
ε
ℓ smaller than the number of

branches, which is 2
mj−dj

. Finally, the probability that for a fixed x ∈ Sm, on input ε,Cε,m1
(x1), . . . ,Cε,mℓ (xℓ), the

tuple x bubbles up to the root, also follows the same analysis. □

Remark 4. Recall that in the single source case, the optimal compressor in the proof of Theorem 1.1, provides a modified

decompressor that can be evaluated in space polynomial in nS = max{|z | : z ∈ S}, when given oracle access to the

original decompressor. Given oracle access to a decompressor D acting on tuples, the above procedure defines a

decompressor D′ that can be evaluated in time exponential in ℓ and nS = max{|zj | : z ∈ S and j ∈ [ℓ]}, and space

polynomial innS ·2
ℓ
. This implies that ifD is partial computable, respectively, computable and computable in exponential

time, then so is the corresponding D′.
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4 LOWER BOUNDS

In this section we prove the lower bounds on the overhead ∆ and on the number of random bits r used by the compressors

given in Proposition 1.4. To strengthen these lower bounds, we first show that ∆-optimality is equivalent to a weaker

notion of optimality.

Robustness of the definition of optimal compressor

Probabilistic decompressors. We show that the definition of ∆-optimality does not change if we also consider

probabilistic decompressors, except for a small rescaling of ε .

For a probabilistic partial function D let Dmaj be the partial function that for each argument of D is undefined if

every value appears with probability at most 1/2, and otherwise, it equals the unique value that appears with probability

strictly more than 1/2.

Lemma 4.1. For every probabilistic function F:

Pr[D(F(x)) , z] ≥ 1

2
· Pr[Dmaj(F(x)) , z].

Proof. We call a value p = F(x) bad if D(p) = z has probability at most 1/2. The right-hand side is equal to the

probability that F(x) generates a bad value. The inequality follows directly. □

A single optimal decompressor. Recall that a Turing machine U is optimal if for every other Turing machine M

there exists a constant cD such that for all strings x : CU(x) ≤ CD(x) + cD. We show that if in stead of considering any

decompressor in the definition of ∆-optimality, we only consider a single optimal decompressor, the definition does not

change after a constant shift of ∆, provided ∆ is a computable expression.

Lemma 4.2. Assume that ∆ is a computable function of the compressors inputs, U is an optimal Turing machine, and

there exists a Turing machine U′ such that for all ε,x andm ≥ CU(x) + ∆ we have

Pr

[
U′(Cε,m (x)) = x

]
≥ 1 − ε .

Then C is (∆ +O(1))-optimal.

Proof. We show the contrapositive: If for large c , compressor C is not (∆+ 2c)-optimal, then no machine U′ satisfies

the condition of the lemma.

For each positive integer c , consider a decompressor Dc for which the (∆ + 2c)-optimality condition does not hold,

i.e., there exists no D′ that satisfies the condition of Definition 1.1. By a compactness argument, there exists such a

Dc with finite domain, and hence, on input c , such a decompressor can be found by exhaustive search. Note that this

search requires the evaluating of ∆.

We construct a decompressor D by combining all these Dc . More precisely, given an input of the form 0
c
1p, the

output of D is given by Dc (p). By optimality of U, we have

CU(x) ≤ CD(x) + cD ≤ CDc (x) + cD + c .

Let c = cD. The assumptionm ≥ CU(x) + ∆ in the lemma implies the assumptionm ≥ CD(x) + (∆ + 2cD) in the

(∆ + 2c)-optimality criterion for Dc . Thus if there exists a machine U′ satisfying the conditions of the lemma, then it

gives us a machine D′ satisfying the (∆ + 2c)-optimality criterion. By choice of Dc , such D′ does not exist, and hence,

U′ also does not exist. The lemma is proven. □
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Lower bound for the randomness used by optimal compressors

Proposition (Second part of Proposition 1.4). Let ∆ and r be functions of ε and n = |x |. If there exists a ∆-optimal

compressor that can be evaluated with at most r random bits in a computably bounded running time, then for all ε ≤ 1/2:⌈
ε2r+1

⌉
≥

n − r − log(2/ε)

∆ + 4

Recall that for a deterministic compressor we have r = 0. If such a compressor is ∆-optimal and has a computably

bounded running time, then for ε = 1/2, this implies ∆ ≥ n − 6. As a warm-up, let us prove in a direct way, a slightly

stronger bound for deterministic compressors.

Lemma. If a ∆-optimal compressor is deterministic, then ∆ ≥ n − 1.

Proof. We show the lemma by contraposition. Assume there exists an (n − 2)-optimal compressor. There are less

than 2
n
different outputs of lengthm = n − 1. Thus given targetm, there exist 2 different n-bit x and x ′ that are mapped

to the same string. Consider a decompressor D for which CD(x),CD(x
′) ≤ 1, and hence,m ≥ CD(x) + (n − 2). By

(n − 2)-optimality, both x and x ′ must be decompressed correctly, but this is impossible since they are mapped to the

same output. Hence, the compressor is not ∆-optimal. □

We now prove the second item of Proposition 1.4. Recall that ∆-optimal compressors define conductors, and hence

condensers, with small output size, see Lemma 2.6.

In the pseudorandomness literature, condensers are usually defined as 2-argument functions f : X × D → Y,

where the size of D is called the degree, see also appendix B. For such f , the function x 7→ f (x ,UD ) is a probabilistic

1-argument function as above. The number of random bits needed for its evaluation is log#D, provided #D is a power

of 2.

We obtain lower bounds for the amount of randomness from degree lower bounds of condensers, such as given

in [Nisan & Zuckerman 1996; Radhakrishnan & Ta-Shma 2000]. In particular, the second item of Proposition 1.4 follows

by applying the next lower bound for a suitable value of K .

Proposition 4.3. If f : X × [D] → Y is a (K , ε)-condenser with #Y ≥ 2K ≥ 4D/ε and ε ≤ 1/2, then

⌈2εD⌉ ≥
log(#X/K)

3 + log(#Y/K)
.

The proof is given in appendix F.

Proof of the second item of Proposition 1.4. If C is a ∆-optimal compressor, then for all n,m and ε the function

F : {0, 1}n → {0, 1}m defined by F(x) = Cε,m (x) is a (2
m−∆, ε)-conductor, and hence, a (2m−∆, ε)-condenser. We apply

the lower bound of Proposition 4.3 with D = 2
r
and K = 2D/ε , for the target size given bym = ⌈logK⌉ + ∆. Thus, we

haveY = {0, 1}m and log(#Y/K) ≤ ∆+ 1. The formula of Proposition 4.3 implies the inequality of the second item. □

Lower bound for the overhead of optimal compressors

The proof of the first item of Theorem 1.4, uses the second item and Lemma 4.5 below. This lemma essentially states

that a simple modification of any invertible function can reduce its use of randomness to r ≤ ∆ +O(1). In the proof we

use another lemma.
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Lemma 4.4. Let b be a nonnegative integer. If a measure µ over Y is supported on a set of size at most 2
d
, then there

exists a sampling algorithm that uses d + b random bits, and generates samples from Y such that each element y ∈ Y

appears with probability at most (1 + 3 · 2−b )µ(y).

Proof. Let D = 2
d
. The proof for arbitrary b is similar to the proof for b = 0, which we present here. We show

that there exists a measure ν whose values are multiples of 1/D such that ν (y) ≤ 4µ(y) for all y ∈ Y. This is done by

rounding. The sampling procedure satisfying the conditions of the lemma, simply outputs a random sample of ν , and

we can generate such a sample using d random bits.
5

Let µ ′(y) be 0 if µ(y) < 1/2D, and µ(y) otherwise. Note that Z =
∑
y µ ′(y) ≥ 1/2 since µ is supported on at most D

elements. µ ′/Z is a measure. We obtain the measure ν by rounding all values of µ ′/Z to multiples of 1/D. By rounding

up a suitable set of elements and rounding down the others, we indeed obtain a measure, because:

- if we round up all values, the sum of

∑
y ν (y) is at least 1,

- if we round down, the sum is at most 1, and

- changing the choice for one element y, changes the sum by a multiple of 1/D.

We verify that ν (y) ≤ 4µ(y). Recall that 1/Z ≤ 2. If µ(y) ≥ 1/(2D), then

ν (y) ≤
µ ′(y)

Z
+

1

D
≤ 2 · µ(y) + 2 · µ(y). □

Lemma 4.5. Assume ε ≤ 1/4. For every (K , ε)-invertible function with at mostM values, there exists a (K , 2ε)-invertible

function with at mostM + K values that can be evaluated using at most ⌈log(M/K)⌉ + 3 bits of randomness.

Proof. Let F be (K , ε)-invertible with inverse д. For a given input x , consider the list of all possible outputs that

appear with positive probability. Let Px be the set of these outputs after removing a set of measure at most ε with

maximal cardinality. We first prove the following 2 properties.

• Let S be a list of K inputs. For all x ∈ S : #Px is at least the number of values y for which дS (y) = x .

• There are less than K inputs x for which #Px > M/K .

For the first property, note that by definition of (K , ε)-inverse, for a given x , the measure of outcomes y = F(x)

with дS (y) , x is at most ε . Thus, the property follows by choice of Px .

For the second property, consider the set of inputs x for which the property holds. Assume there are at least K such

inputs, and let S be a list of precisely K such inputs. By the first property, for each such element there are more than

M/K outputs y with дS (y) = x . But since there are only M outputs and дS is deterministic, this is impossible. Our

assumption must be false, and hence there are less than K such inputs. The 2 properties are proven.

Construction of the (K , 2ε)-invertible function F
′
.

Let y1, . . . ,yK be new values, different from any value of F. On input x consider the set Px . If #Px > M/K , compute the

index K ′ of x in a list of all such inputs, and let the output be yK ′ . (The second property implies K ′ ≤ K .) Otherwise,

let µx be the measure obtained by normalizing the probabilities of Px . Sample an output y from F(x) using a sample

procedure satisfying the conditions of Lemma 4.4 with b = 3.

By construction, this algorithm uses at most ⌈log(M/K)⌉ + 3 bits of randomness.

5
The following sample procedure can be used: pick a random integer i in the interval [2d ], and output the largest y in the support of ν with∑
y′≺y ν (y′) ≤ i/2d , where ≺ is some fixed order on Y.
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Construction of the inverse д′ of F′.

For values y = yK ′ , the value of д
′
S (y) is the K

′
-th input for which #Px > M/K , (thus in this case, the value does not

depend on S). For the other values of y, we simply output дS (y).

It remains to bound the probability that д′S (F
′(x)) , x by 2ε . For x such that #Px > M/K , this probability is 0, by

construction. For the other x , the rescaling in the definition of µx amplifies the probability of дS (F(x)) by a factor at

most 1/(1 − ε) ≤ 4/3. The sampling procedure from Lemma 4.4 with b = 3 can amplify this probability by at most a

factor 1 + 3/8. Together, the amplification is at most a factor 2. The invertibility condition is satisfied. □

Proposition (First part of Proposition 1.4, restated). ∆ ≥ log
n
ϵ − log log

n
ϵ − 8 if 2

−n/4 ≤ ϵ ≤ 1/4.

Proof. For a fixed target sizem, the compressor provides us with a (2m−∆, ϵ)-invertible function. From Lemma 4.5

we obtain a (2m−∆, 2ϵ)-invertible function that can be evaluated with r = ∆ + 3 random bits, and whose output is 1 bit

longer. To this function we apply the same argument as in the proof of the second item of the Proposition. We obtain

that ⌈
ϵ2∆+5

⌉
≥

n − ∆ − 4 − log(1/ϵ)

∆ + 4
.

Note that the right-hand side is decreasing in ∆ and the left-hand side is increasing. Hence, any value of ∆ that makes

the above equation false is a lower bound for the overhead of a decompressor. A calculation shows that for all values of

n and ϵ with 2
−n/4 ≤ ϵ ≤ 1/4, the assignment

∆ = log
n
ϵ − log log

n
ϵ − 8.

violates the inequality. This finishes the proof. □

Limitations for polynomial time compression

Question. Suppose there exists an O(log n
ε )-optimal polynomial time computable compressor, does this give us an

explicit conductor of logarithmic degree?

We do not know the answer. But, we can prove something weaker: such a compressor implies the existence of a family

of conductors of degree O(2∆) that can be computed by polynomial size circuits.

We sketch the proof. We need to prove a variant of Lemma 4.5 where the first invertible function is computable in

polynomial time, and the second computable by a family of polynomial sized circuits.

Imagine, we want to evaluate the function F
′
constructed in the above proof in polynomial time. To do this, we

face 2 obstacles. The first is that counting the number of n-bit input strings x ′ that lexicographically precede x , and

satisfy #Px > A for the given bound A, takes exponential time. To solve this, we consider strings x with #Px > 2A, and
observe that at most K/2 strings satisfy this condition. We handle such strings by recursively applying the algorithm to

a (K/2, ε)-invertible function.

A second obstacle is that one needs to decide whether Px has size larger than A, and if the algorithm for F uses a

very large amount of randomness, we can not brute-force search all random choices in polynomial time. However, if

∆ is logarithmic, then A is polynomial. If #Px is not too much above A, we can approximate #Px in polynomial time

with a probabilistic algorithm. For this, we try a few random seeds, and inspect the frequencies with which the output

values are sampled. With minor modification, such an approximation is enough to execute the plan above.

Finally, with a standard technique, we transform probabilistic algorithms to circuits. We obtain circuits of size

poly(nε , 2
∆) which map n-bit strings tom-bit strings, and compute (2m−∆, ε)-conductors.
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A PROOF OF LEMMA 2.5

Lemma (Restated). For all x ∈ X, let Fx ⊆ Y . If #Y < min{ 1
4
K2,#X − 1

2
K}, there exists an x ∈ X and a set S ⊆ X of

size less than K such that

Fx ⊆
⋃

z∈S,z,x
Fz .

Proof. Note that by assumption on the size of Y, there exists at least one x ∈ X such that

Fx ⊆
⋃

z ∈X,z,x
Fz ,

because if this was not the case, we could build a 1-to-1 correspondence between elements of X and some elements of

Y, by mapping z ∈ X to an element in Fz that appears in no other set Fz′ , and this contradicts #Y < #X − K/2. In fact,

by the same reasoning, there exist K/2 such elements x1, . . . ,xK/2.

If there exists such an xi for which Fxi has size less than K , then we choose x = xi and obtain S by selecting for each

y ∈ Fx an element z ∈ X with y ∈ Fz . Otherwise, if each such set has size at least K , we construct S ⊆ X together with

a set Y ⊆ Y iteratively as follows. Initially, S and Y are empty. At stage i , we check whether adding Fxi to Y increases

its cardinality by at least K/2. If this is indeed so, we add xi to S and Fxi to Y , and proceed to stage i + 1. Otherwise, we

choose x = xi , and exit the iterative process. Finally, for each y ∈ Fx \ Y , we add an element z to S for which y ∈ Fz .

In the first case, the inclusion of the lemma is satisfied by construction. In the second case, we first need to verify that

there exists an index i ≤ K/2 for which the cardinality of Y increases by at most K/2. Indeed, assume that for all such i

the cardinality increases by more than this amount, then after K/2 stages, the cardinality of Y exceeds (K/2) · (K/2).

On the other hand, Y ⊆ Y and by assumption, the cardinality of Y is at most K2/4. A contradiction. This implies

that S contains less than K/2 elements of the form xi . In the last step, we add at most #(Y \ Fx ) elements to S , and by

construction this is at most K/2. In total S contains less than K elements. Also, by construction, the inclusion of the

lemma is satisfied. □

B STANDARD DEFINITIONS OF CONDUCTORS AND CONDENSERS

We present the definitions of condensers and conductors from the literature, and explain their equivalence with our

versions.

Let X be a random variable in X with probability measure P . The minentropy is

H∞(X ) = min{log(1/P(x)) : x ∈ X}.

We use the statistical distance to measure similarity of random variables. Let Y and Y ′ be random variables having the

same range Y. These variables are said to be ε-close if |Pr[Y ∈T ] − Pr[Y ′ ∈T ]| ≤ ε for all T ⊆ Y.

Remark. In this definition, the maximal difference is obtained for the set T given by all values y ∈ Y for which the

probability of Y exceeds the probability of Y ′. Hence, if Y and Y ′ have statistical distance at most ε , then for any γ , the

γ -excess of Y and Y ′ differ by at most ε .

Manuscript submitted to ACM



1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Universal almost optimal compression and Slepian-Wolf coding in probabilistic polynomial time 27

A random variable with minentropy at least k is called a k-source. A random variable that is ε-close to a k-source, is

called a (k, ε)-source.

Lemma B.1. Let Y be a random variable in a domain of size at least K . Y is a (logK , ε)-source if and only if it has

(1/K)-excess at most ε .

Proof. Assume that Y is a (logK , ε)-source. By definition, there exists a (logK)-source Y ′ with statistical distance

at most ε from Y . Since the (1/K)-excess of Y ′ is zero, the remark above implies that Y has (1/K)-excess at most ε . Note

that this direction does not use the assumption on the domain size.

Now assume that Y has (1/K)-excess at most ε . Let Y ′ be a (logK)-source obtained by trimming the measure of Y to

the value 1/K , and redistributing all trimmed measure over the other values, while keeping them bounded by 1/K . This

is possible, because the domain of Y is at least K . The variables Y and Y ′ are ε-close, because for the optimal set T of

the remark, the difference is precisely the (1/K)-excess of Y . Hence, Y is a (logK , ε)-source. □

Lemma B.2. A function x 7→ f (x ,UD ) is a (K
ε
→K ′)-condenser if and only if for every (logK)-source X , the variable

f (X ,UD ) is a (logK
′, ε)-source.

Proof. The backwards implication follows directly from Lemma B.2: for every set S of sizeK , the function f (US ,UD )

is a (K ′, ε)-source, and hence, has (1/K ′)-excess at most ε .

For the forward direction, observe that each random variable that is a (logK)-source, can be written as a mixture of

uniform distributions on sets of size K .6 Each such variable induces a (logK ′, ε)-source. Therefore, the mixture induces

a mixture of (logK ′, ε)-sources, which is also a (logK ′, ε)-source. □

Remark 5. A probabilistic function F : X → Y is a (K , ε)-extractor if and only for every (logK)-source, the variable

F(X ) is ε-close toUY . There is only 1 distribution over Y that is a (log#Y )-source, which is the uniform distribution.

Hence, F is a (K , ε)-extractor if and only if it is a (K
ε
→#Y)-condenser.

Definition B.1 ([Capalbo et al. 2002]). A function f : {0, 1}n ×{0, 1}d → {0, 1}m is a (kmax, ε,a)-simple conductor

if for any nonnegative integer k ≤ kmax and any k-source X , the induced variable f (X ,Ud ) is a (k + a, ε)-source.

Lemma B.3. If f is a (kmax, ε, 1)-simple conductor, then x 7→ f (x ,Ud ) is a (2
kmax , ε)-conductor according to Definition 2.2.

Note that it is not enough to assume that f is a (kmax, ε, 0)-simple conductor, because the definition only considers

integers k , and for sets S whose size is not a power of 2, the output might loose 1 bit of minentropy. The proof follows

directly from Lemma B.2.

To a probabilistic function F : {0, 1}n → {0, 1}m whose evaluation requires r random bits, we associate the function

f : {0, 1}n × {0, 1}r → {0, 1}m

obtained by setting the random bits equal to the second argument.

6
A nice proof from [Vadhan 2012, Lemma 6.10] is as follows. Let P1, P2, . . . , Pe be probabilities on a finite set such that all Pi ≤ 1/K . Construct a circle

with circumference 1, and lay out consecutive segments I1, I2, . . . , Ie on its circumference of lengths, respectively, P1, P2, . . . . Consider a K -regular

polygon inscribed in this circle. The K vertices of the polygon lie on different segments and therefore the polygon specifies K segments. For a subset S of

K segments, let αS be the probability that a random rotation of some fixed polygon specifies S . The result follows by showing that the distribution P is

the same as the distribution of

∑
αSUS , where the sum is taken over all K -element sets of segments. Indeed, the probability that we obtain segment It

by first selecting a random rotation of the fixed polygon, followed by a random selection of one the K segments specified by the rotated polygon is the

same as the probability of obtaining It by selecting a random point on the circle and taking the segment containing the point, and the latter probability is

equal to Pt .
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Lemma B.4. Let kmax ≤ m. If F : {0, 1}n → {0, 1}m is a (2kmax , ε)-conductor according to Definition 2.2, then the

associated function f is a (kmax, ε, 0)-simple conductor.

Again this follows directly from the definitions and Lemma B.2.

C NON-EXPLICIT CONDUCTORS

Recall that [n] = {1, 2, . . . ,n}. Proposition 2.7 follows from the following.

Proposition. For all ε , n and Kmax, there exists a (Kmax, ε)-conductor F : [2
n ] → [4Kmax] whose evaluation requires at

most log
4n
ε bits of randomness.

In the proof we use a theorem by Hoeffding. The following is obtained from equation 2.1 of Theorem 1 in [Hoeffding

1963].

Theorem (Hoeffding bound, simplified). Let X1, . . . ,Xt be independent variables taking values in the real inter-

val [0, 1]. Let µ be the expected value of Z = X1 + · · · + Xt , for all ν > µ:

Pr [Z ≥ ν ] ≤
( µ
ν

)ν
.

Proof. Let Y = [4Kmax]. If #Y > 2
n
, the identity function F satisfies the conditions. If Kmax ≤ 1/ε , then we output

a random element of [2 ⌈log(1/ε )⌉ ] ⊆ Y. Assume εKmax > 1 and #Y ≤ 2
n
.

We construct a function F such that

∀X ⊆ [2n ] with #X ≤ Kmax ∀Y ⊆Y with #Y = ⌈ε#X ⌉ : Pr [F(UX ) ∈Y ] ≤ ε .

We first show that such an F is a conductor. Indeed, for any K ≤ Kmax and any set X ⊆ [2n ] of size K , consider the set Y

of elements y ∈ Y for which y = F(UX ) has probability strictly more than 1/K . We have #Y ≤ εK , because otherwise

any subset Y ′ ⊆ Y of size ⌈εK⌉ violates the condition above. The (1/K)-excess of F(UX ) is less than the probability that

F(UX ) ∈Y , which, by the above condition, is at most ε .

Let D = ⌈3n/ε⌉. We obtain F from a function f : [2n ] × [D] → Y as F(x) = f (x ,U[D]). The existence of the required

f is shown by the probabilistic method: we select each value f (x , i) randomly in Y, and show that the property is

satisfied with positive probability.

For a fixed (x , i) and a fixed set Y of size at most εKmax, such a random f satisfies f (x , i) ∈ Y with probability

at most ε/2, since Kmaxε > 1 and hence, #Y ≤ ⌈εKmax⌉ ≤ 2εKmax ≤ ε#Y/2. For fixed sets X and Y satisfying the

conditions, consider the event “f (x , i) ∈ Y for more than an ε-fraction of (x , i) ∈ X × [D]”. By the simplified Hoeffding

bound, this is at most 2
−εD#X

.

The number of sets X of size K is at most 2
nK

. The number of sets Y of size ⌈εK⌉ is (#Y) ⌈εK ⌉ ≤ 2
n ⌈ε ⌉K

. By the

union bound, the probability that the condition is violated is at most:

≤

Kmax∑
K ≥1

2
nK · 2nK · 2−εKD .

By choice of D, each term is at most 2
−nK

, thus the sum is strictly smaller than 1. This implies that the required function

f exists. □
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D CONSTRUCTION OF EXPLICIT CONDUCTORS

We prove Proposition 2.8. For inductive purposes, it is convenient to switch to a stronger type of conductors, which

correspond to “conductors of the extracting type” in Capalbo et al. [Capalbo et al. 2002].

Definition D.1. A probabilistic function F : X → Y is an ε-conductor if it is an (#Y, ε)-conductor.

We restate the proposition using this definition.

Proposition. There exists an explicit family F
(n)
ε,k of ε-conductors F(n)ε,k : {0, 1}

n → {0, 1}k whose evaluation requires

O(logk · log n
ε ) random bits, for all ε , k and n.

Every ε-conductor is a (#Y
ε
→#Y)-condenser, and hence a (Y, ε)-extractor, by Remark 5 in appendix B. Raz, Reingold

and Vadhan [Raz et al. 1999], and Guruswami, Umans, and Vadhan [Guruswami et al. 2009] construct explicit extractors

from which we immediately obtain condensers. Both constructions actually give conductors. The latter uses the smallest

amount of randomness for all choices of the parameters n,k, ε . Therefore, we explain why this construction also provides

conductors.

To prove the main result in [Guruswami et al. 2009], several extractors from Theorem 2.9 (restated below) are

concatenated. To show that such a concatenation provides larger extractors, Guruswami et al. use a known “composition

lemma", see [Guruswami et al. 2009, Lemma 4.18]. We show that this concatenation also provides conductors, and for

our purposes, an easier variant of the composition lemma is enough. The above proposition follows almost immediately

from the next 2 results.

Theorem ([Guruswami et al. 2009], Theorem 1.5 or 4.17). For all n,κ and ε , there is an explicit family of (22κ
ε
→ 2

κ )-

condensers F : {0, 1}n → {0, 1}κ whose evaluation requires O(log n
ε ) bits of randomness.

Lemma D.1 (Composition lemma). If S : X → Y1 is a (K
′ ε
→#Y1)-condenser and T: X → Y2 is an ε2-conductor with

#Y2 ≥ K ′, then

x 7−→ (S(x),T(x))

is an (ε1+ε2)-conductor.

We first prove the proposition, and afterwards this lemma.

Proof of Proposition 2.8. For k ≥ n the function F(x) = x satisfies the conditions. For k ≤ 2, the construction of

an ε-conductor that uses O(1) of randomness is also easy. Otherwise, we repeatedly apply Lemma D.1 to the condenser

of Theorem 2.9, where we choose K ′ = #Y2, as long as the new output size is at most k . In each application, the bit

length of the output increases at least by a factor 3/2. Hence, O(logk) applications are sufficient. After this, we do one

more application, where K ′ < #Y2 is chosen to obtain the correct output size. We obtain an O(ε logk)-conductor that

uses O(logk · log n
ε ) bits of randomness. The proposition follows after downscaling ε by a factor O(logk). □

To prove the lemma, we use a direct corollary of Lemma B.2.

Corollary. If F : X → Y is a (K ′
ε
→M)-condenser, then for every set X ⊆ [X] of size at least K ′, the variable F(UX )

has (1/M)-excess at most ε .

Proof of Lemma D.1. Let X ⊆ X be a set of size at most #Y1 · #Y2. We need to prove that the (1/#X )-excess of

(S(UX ),T(UX )) is at most ε1 + ε2. If #X ≤ K ′, then #X ≤ #Y2, and already the second component has (1/K)-excess
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at most ε2. The first component can only decrease the excess, and hence the property is satisfied. Assume #X ≥ K ′.

By the condenser property and the corollary above, the variable S(UX ) has (1/#Y1)-excess at most ε1. For a list L, let

UL represent a randomly selected element from L. Our plan is to bound the excess of the pair using the following

observation.

Let L be a list and b an integer. Assume L′ is a maximal sublist of L that contains the same element at most b

times. Thus, if an element y appears at most b times in L, the list L′ contains all appearances, and otherwise

precisely b appearances. Then, the (b/#L)-excess ofUL is equal to the probability Pr[UL < L
′].

We assume that S(x) can be evaluated by a deterministic function S : X × D1 → Y1 by setting S(x) = S(x ,UD1
).

Moreover, we assume that D1 is finite. Let D1 = #D1. If this is not the case, we use an approximation for a finite D1

and take limits at the end of the proof. Similarly, assume T is evaluated by T : X × D2 → Y2 with finite D2 = #D2.

Consider the list L containing all pairs (S(x , i1),T (x , i2)) for all x ∈ X , i1 ∈ D1 and i2 ∈ D2, which has lengthD1D2#X .

We need to show thatUL has (1/#X )-excess at most ε1 + ε2. We construct a sublist L′ that satisfies the conditions of the

observation above.

• Let L1 be the list of pairs (S(x , i1),x) for all x ∈ X and i1 ∈ D1.

• For each y1 ∈ Y1, let Ly1 be the list of the first D1#Y2 pairs of the form (y1, ·) in L1.

• Split each Ly1 in D1 sublists of size at most #Y2 such that in each sublist, each right coordinate is unique. Denote

these lists as Ly1,e for e = 1, . . . ,D1.

• Let Py1,e be the list of pairs (y1,T (x , i2)) for all (y1,x) ∈ Ly1,e and i2 ∈ D2.

• Let P ′y1,e be the sublist containing all D2 first appearances of pairs of the form (·,y2).

• Let L′ be the concatenation of all lists P ′y1,e for y1 ∈ Y1 and e ≤ D1.

By construction, each pair (y1,y2) appears at most D1D2 times in L′. It remains to show that Pr[UL < L
′] ≤ ε1 + ε2.

Note that if in the second and fifth step, we did not restrict the number of appearances, then we would obtain L = L′.

We show that in these steps, we withhold at most an ε1-fraction and ε2-fraction of the elements in L, and this finishes

the proof.

For the second step, note that since #Y2 ≥ #X/#Y1 and #L1 = D1#X , we have D1#Y2/#L1 ≥ 1/#Y1, and hence, the

(D1#Y2/#L1)-excess ofUL1 is at most ε1. By the observation, at most an ε1-fraction of elements are withhold.

For the fifth step, note that the right coordinates in each Ly1,e define a set X ′ of size at most #Y2. By the conductor

property, the variable T(UX ′) has (1/#X
′)-excess at most ε2. By the observation, each list P ′y1,e contains all but an

ε2-fraction of the elements of Py1,e . Hence, this step withholds at most an ε2-fraction of the elements. □

E PROOF OF PROPOSITION 3.1

Proposition (Restated). If F1 : X1 → Y1 is (K1, ε)-invertible and F2 : X2 → Y2 is (K2, ε)-invertible, then (x1,x2) 7→

(F1(x1), F2(x2)) is (3ε)-invertible in sets S ⊆ X1 × X2 for which

#S ≤ K1K2,

#{(z1, z2) ∈ S : z2 = x2} ≤ K1 ∀x2 ∈ X2,
#{(z1, z2) ∈ S : z1 = x1} ≤ K2 ∀x1 ∈ X1.
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Let the sets in the second and third condition be denoted as Sx2 and Sx1 . Let д1(S1, ·) denote an inverse of F1 in S1 ⊆ X1

and similar forд2. We need to determine an inverseд of the product function. More precisely, for every (y1,y2) ∈ Y1×Y2,

we need to specify a value д(S,y1,y2) that satisfies the conditions of (3ε)-invertibility.

A first idea is to define the set T containing all (x1,x2) for which x1 = д1(Sx2 ,y1). Thus T contains at most one

pair of the form (·,x2) for all x2, see the left of Figure 1. Let T2 be the projection of T on the second coordinate. We

apply д2(T2,y2), and if the outcome is x2, we output the corresponding pair (x1,x2). If T2 has size at most K2, then

the constructed mapping д(S, ·) is indeed a (2ε)-inverse in S , but unfortunately, this assumption may not be true. For

example, this happens if S is a large diagonal, see the middle of Figure 1. In the proof below, we use a second partition

of S , and by evaluating д1 a second time on its parts, we can prune T to the required size.

X1

X2

×

×
×

×
×

×

T2

X1

X2

×
×
×
×
×
×
×
×
×

X1

X2

R1

R2
R3

×

×× ×

Fig. 1. Left: a set T denoted in circles. Middle: a large diagonal set. Right: Inputs are split in 3 parts, in which one is selected.

Proof. Let R1, . . . ,RK2
be a partition of S where each set Ri has size at most K1 and contains at most 1 pair of the

form (x1, ·) for all x1 ∈ X1, see the right of Figure 1.

Such a set can be obtained by assigning the elements of S as follows. For all x1 ∈ X1, select the pairs of the form

(x1, ·) in S , and add them to different sets Ri of smallest cardinality. Note that since #Sx1 ≤ K2, this is always possible.

In this way, the parts Ri are filled such that in each moment, their cardinalities differ by at most one.

Construction of д(S,y1,y2). Let T be the set of pairs x = (x1,x2) in S for which

д1(R
′
x
,y1) = д1(Sx2 ,y1) = x1,

where R′
x
is the projection on the first coordinate of the part Ri that contains (x1,x2). Recall that T2 is the projection of

T on the second coordinate. Let the value of д be the pair (x1,x2) in T for which д2(T2,y2) = x2, provided the output of

д2 is defined. Otherwise, let the value be undefined.

In the example at the right of Figure 1, the pairs selected for R2 and R3 lie on the same horizontal line. The application

of д1(Sx2 ,y1) selects one of them. We now prove that with probability at most 3ε :

д(S, F1(x1), F2(x2)) , (x1,x2).
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Recall that Sx2 and R
′
x
have at most K1 elements. T2 has at most K2 elements, since T contains at most 1 element from

each part Ri , and there are K2 such parts. If

д1(R
′
x
, F1(x1)) = x1

д1(Sx2 , F1(x1)) = x1

д2(T2, F2(x2)) = x2,

then the required output appears. Indeed, the first 2 conditions imply that (x1,x2) ∈ T , the last condition selects x2, and

the second condition implies that for this value of x2, there is a unique pair in T of the form (·,x2). Thus the output

must be (x1,x2).

By invertibility and the union bound, the probability that one of these events does not happen is at most ε + ε + ε .

The proposition is proven. □

F DEGREE LOWER BOUNDS FOR CONDENSERS: PROOF OF PROPOSITION 4.3

Proposition (Restated). If f : X × [D] → Y is a (K , ε)-condenser with #Y ≥ 2K ≥ 4D/ε and ε ≤ 1/2, then

⌈2εD⌉ ≥
log(#X/K)

3 + log(#Y/K)
.

Proof. We first increase ε to the minimal value such that 2εD is a positive integer. This can be done without affecting

the statement, because for ε = 1/2 the value is always integer.

If y is randomly selected according to a distribution on Y with (1/K)-excess at most ε , then for every subset Y ⊆ Y

of size less than εK , we have Pr[y ∈ Y ] < 2ε . Therefore, by contraposition, it suffices to prove the following.

Claim. If the inequality of the proposition is false, then there exists a subset Y ⊆ Y of size less than εK , and K different

x ∈ X for which

Pr

[
f
(
x ,U[D]

)
∈ Y

]
≥ 2ε . (*)

We construct Y using the probabilistic method. Let s = ⌈εK⌉ − 1. Select Y randomly among all s-element subsets. For a

fixed x ∈ X, we lower bound the probability that f (x , i) ∈ Y for all i ∈ [2εD]. Note that the most unfavorable case is

when f (x , 1), . . . , f (x , [2εD]) are all different. Therefore, the probability is at least

≥

(
#Y − 2εD

s − 2εD

)
/

(
#Y

s

)
=

s

#Y
·

s − 1

#Y − 1
· . . . ·

s − 2εD + 1

#Y − 2εD + 1
.

The last factor is the smallest and its numerator is at least εK − 2εD ≥ εK/2, because our assumptions imply K ≥ 4D.

Thus each factor exceeds ε/(2A), where A = #Y/K . By a similar reasoning, the probability that f (x , i) < Y for

i = 2εD + 1, . . . ,D is at least (1 − ε)(1−2ε )D , where we used (#Y − #Y − D)/#Y ≥ 1 − ε/2 − ε/2, by the assumptions

#Y ≥ 2K and #Y ≥ 2D/ε . The probability that precisely 2εD of the elements f (x , 1), . . . , f (x , [D]) are selected in Y is

at least

≥

(
D

2εD

)
·

( ε

2A

)
2εD
· (1 − ε)(1−2ε )D ≥

(
1

2ε

)
2εD
·
( ε
2A

)
2εD
· (1 − ε)

1

ε ·εD ≥

(
2
−3

A

)
2εD

.

For a randomly selected Y , the expected number of elements x satisfying (*) is at least #X times this quantity, by

additivity of expectations. This is at least K , because by assumption, the negation of the inequality of Proposition 4.3

holds, and is equivalent to

K < #X

(
2
−3

A

)
2εD

.
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Since for a random Y , the expected number of x satisfying (*) is at least K , at least 1 set Y exists that satisfies the

conditions of the claim. Hence the proposition is proven. □

G RELATIONWITH PREVIOUS RESULTS ON SHORT LISTS WITH SHORT PROGRAMS

As in Corollary 1.2 we fix a universal Turing machine U. We say that a program is c-short for x if it outputs x and if

its length is at most c + C(x). In Bauwens et al. [Bauwens et al. 2013], it was shown that there exists a polynomial

time computable function that on input x outputs a list of polynomially many programs containing an O(log |x |)-short

program for x . Both constructions used to prove Theorem 2.1 (the one in Corollary 2.13 and the one in Lemma 2.15)

provide such lists of quasipolynomial size. Indeed, we can fix ε = 1/2, and consider the list indexed by the targets

m ≤ |x | and randomness ρ, used in the evaluation of Cε,m (x).

[Several small reformulations and corrections in the sketch.] We can reduce the list size to polynomial using dispersers

from [Ta-Shma et al. 2007]. We briefly sketch the modifications. Let FK be the explicit (K , 1/2)-disperser from [Ta-Shma

et al. 2007, Theorem 1.4] with left set {0, 1}n , polynomial degree D, and a right set of size Ω(KD/n3). Such dispersers

define (K , 1−Ω(1/(n3D)))-condensers that can be evaluated with O(logn) bits of randomness. By adapting Lemma 2.10,

we have that FM is online (M, poly(n),α)-list invertible with (1 − 1/poly(n))K rejections, for some α < 1. This implies

that FM is also (M, poly(n),α)-list invertibile withM/2 rejections, by a polynomial number of iterative applications of

the inverses. Let F(x) be the value of FK (x) for a randomly selected value K ∈ {M,M/2, . . . , 1}. For some β < 1, we

obtain that F is online (M, poly(n) · logM, β)-list invertible with 0 rejections, by a similar argument as in Corollary 2.11.

This implies the result.

Teutsch [Teutsch 2014] and Zimand [Zimand 2014] present lists containingO(1)-short programs. Like [Bauwens et al.

2013], these papers use online matching and explicit expanders. The condenser approach can not provide O(1)-short

programs, because this would violate the lower bounds on the overhead given in Proposition 1.4. On the other hand, to

obtain probabilistic optimal compression, condensers are unavoidable, as shown in Lemma 2.6. This suggests that there

exists no “master theorem” from which we can directly obtain the results about short lists and optimal probabilistic

compression.
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