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Abstract: Currently, the superconducting diode effect (SDE) is being actively discussed, due to its
large application potential in superconducting electronics. In particular, superconducting hybrid
structures, based on three-dimensional (3D) topological insulators, are among the best candidates,
due to their having the strongest spin–orbit coupling (SOC). Most theoretical studies on the SDE focus
either on a full numerical calculation, which is often rather complicated, or on the phenomenological
approach. In the present paper, we compare the linearized and nonlinear microscopic approaches in
the superconductor/ferromagnet/3D topological insulator (S/F/TI) hybrid structure. Employing the
quasiclassical Green’s function formalism we solve the problem self-consistently. We show that the
results obtained by the linearized approximation are not qualitatively different from the nonlinear
solution. The main distinction in the results between the two methods was quantitative, i.e., they
yielded different supercurrent amplitudes. However, when calculating the so-called diode quality
factor the quantitative difference is eliminated and both approaches result in good agreement.

Keywords: superconductivity; superconducting diode effect; hybrid structures; topological insulators

1. Introduction

The field of superconducting electronics is an important area in the research and
development of hybrid quantum devices with lower power consumption. Superconduct-
ing hybrid structures, consisting of a superconductor and non-superconducting material
(normal metal N, ferromagnet F, etc.), operate by means of the proximity effect. This effect
can be described as a leakage of the superconducting correlations into the adjacent non-
superconducting layer [1–11]. Superconductor/ferromagnet (S/F) structures have been
proposed in many nanoelectronic applications, such as the following: memory devices [12],
quantum and classical logic devices [12,13], artificial neural networks [14], detectors and
bolometers [15], nanorefrigerators [16,17] and spin-valves [18]. Placing two-dimensional
(2D) S/F structures on the surface of a 3D topological insulator, a material with strong
spin–orbit coupling, may add new functionality and create superconducting diode, see
Figure 1.

The superconducting diode effect (SDE) is an active area of research because of its
great application potential in the fields of superconducting electronics and spintronics.
Generally, the SDE is observed in two-dimensional superconducting systems with bro-
ken inversion and time reversal symmetries [19]. While the former usually implies the
presence of the spin–orbit field, the latter can be achieved by the exchange field from the
ferromagnet, or by exposing the system to an external magnetic field. These conditions
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allow for the possibility of superconducting helical state realization. The helical state is
characterized by the order parameter modulated in the direction transverse to the field
by the phase factor exp (iq0 · r), where q0 is the Cooper pair momentum [20]. In this case,
the critical supercurrents are different in the directions parallel to and anti-parallel to the
momentum q0. Significant advances have been made since the experimental discovery
of the diode effect by Ando et al. [21]. There have been numerous reports involving both
experimental [21–27] and theoretical studies [28–36] of the SDE. Hybrid SDE devices de-
serve special attention [33,37,38]. In such structures, the ingredients for the SDE effect are
brought together by the proximity effect. For instance, the S/F/TI hybrid structure is a
promising platform for realization of the superconducting diode [38]. It should be noticed
that placing the S/F structures on the surface of a 3D topological insulator leads to a num-
ber of striking phenomena of magnetoelectric nature [39–44]. Moreover, new electronic
states have been predicted to appear in such structures, including magnetic monopoles [45]
and Majorana fermions [46–49]. It has also been predicted that the presence of helical
magnetization in the F layer leads to nonmonotonic dependence of the critical temperature
on the F layer width in S/F/TI structures [50].

The majority of the existing theoretical studies on the SDE focus either on the micro-
scopic numerical calculations [30,32,51,52] or on the phenomenological approach [29,33].
In this work, we consider both linear and nonlinear approaches to calculate the SDE in the
hybrid S/F/TI structure. We use the microscopic quasiclassical Green’s function formalism
in the diffusive regime. We compare the results obtained by linear and nonlinear methods
and discuss their ranges of applicability.

Figure 1. Schematic representation of the superconducting diode, where a two-dimensional (2D) S/F
structure is placed on the surface of a three-dimensional (3D) topological insulator.

2. Materials and Methods

In this section, we present the model under consideration. The system is described by
the following Hamiltonian model:

H = H0 + HF + HS, (1)

where

H0 =
∫

d2rΨ†(r)
[
−iα(∇r × ẑ)σ − µ + V(r)

]
Ψ(r), (2)

HF = −
∫

d2rΨ†(r)
[
hσ
]
Ψ(r), (3)

HS = ∆(r)Ψ†
↑(r)Ψ

†
↓(r) + ∆∗(r)Ψ↓(r)Ψ↑(r). (4)

Here, Ψ†(r) = (Ψ†
↑(r), Ψ†

↓(r)) is the creation operator of an electron at the 3D TI surface,
ẑ is the unit vector normal to the surface of TI, α is the Fermi velocity of electrons at
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the 3D TI surface and µ is the chemical potential. σ = (σx, σy, σz) is a vector of Pauli
matrices in spin space and h = (hx, hy, 0) is an in-plane exchange field, which is assumed
to be nonzero only at x < 0. The superconducting pairing potential ∆ is nonzero only at
x > 0. Therefore, effectively, the TI surface states are divided into two parts: one at x < 0
possesses h 6= 0, which can be called “ferromagnetic”, while the other corresponds to x > 0
with ∆ 6= 0, which can be called “superconducting”. Below we use subscripts f and s to
denote quantities related to the appropriate parts of the TI surface. The potential term V(r)
includes the nonmagnetic impurity scattering potential Vimp = ∑

ri

Viδ(r− ri), which is of a

Gaussian form 〈V(r)V(r′)〉 = (1/πντ)δ(r− r′) with ν = µ/(2πα2).
The superconductivity and in-plane exchange field is assumed to be proximity-

induced, due to adjacent superconducting and ferromagnetic layers. Thus, we can imagine
the system as a planar hybrid structure, consisting of a superconductor, S, and a ferromag-
netic layer, F, on top of a three-dimensional topological insulator, TI, as shown schematically
in Figure 1. The role of the TI surface is to provide strong spin–orbit coupling which pro-
duces a full spin–momentum locking effect. In this case, only one helical band crossing the
Fermi energy is present. We employ the quasiclassical Green’s function formalism in the
diffusive regime. In principle, Green’s function matrices have two degrees of freedom that
are particle–hole and spin. In our model, the spin structure is characterized by a projection
onto the conduction band:

ǧs, f (nF, r, ε) = ĝs, f (r, ε)
(1 + n⊥σ)

2
, (5)

where, ĝs( f ) is the spinless Green’s function matrix in the particle–hole space in the su-
perconducting (ferromagnetic) part of the 3D TI layer, nF = pF/pF = (nF,x, nF,y, 0) is a
unit vector directed along the quasiparticle trajectory and n⊥ = (nF,y,−nF,x, 0) is a unit
vector perpendicular to the quasiparticle trajectory, and directed along the quasiparticle
spin, which is locked to the quasiparticle momentum.

In our theoretical analysis, we consider the diffusive limit, in which the superconduct-
ing coherence length is given by the expression ξs =

√
Ds/2πTcs, where Ds is the diffusion

coefficient and Tcs is the critical temperature of the bulk superconductor (we assume
h̄ = kB = 1) and the elastic scattering length `� ξs. We also neglect the nonequilibrium
effects in the structure [53–55].

In the following we outline the nonlinear and linear equations to calculate the SDE
effect in the system under consideration.

2.1. Nonlinear Usadel Equations

The quasiclassical Usadel equation for spinless Green’s functions is [56,57]:

D∇̂
(

ĝ∇̂ĝ
)
=
[
ωnτz + i∆̂, ĝ

]
. (6)

Here, D is the diffusion constant, τz is the Pauli matrix in the particle–hole space,
∇̂X = ∇X + i

(
hx êy − hy êx

)
[τz, ĝ]/α. The gap matrix ∆̂ is defined as ∆̂ = Ûiτx∆(x)Û†,

where ∆(x) is a real function and transformation matrix Û = exp(iqyτz/2) . The finite
center of mass momentum q takes into account the helical state. The Green’s function
matrix is also transformed into ĝ = ÛĝqÛ†. Inclusion of the magnetization component hy
produces no quantitative effect on either the supercurrent in y direction of the bilayer or
on the critical temperature in the S part. It only enters the solution f f as a phase factor
exp

(
2ihyx/α

)
[50,56]. Thus, we did not take it into consideration in our model, and define

hx = h.
In the hybrid structure under consideration, the helical state appears in the system

in the following way. In our system, the Zeeman field and superconducting region are
spatially separated, so that the helical state is realized via the proximity effect through the
S/F interface. The helical state in the system is also characterized by the order parameter
with a spatially inhomogeneous phase. However, the supercurrent density is not uniform
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in the structure. The total current across the hybrid structure is equal to zero. Thus, we call
this state the hybrid helical state. More detailed analysis of the hybrid helical state can be
found in [38].

To facilitate the solution procedures of the nonlinear Usadel equations we employ θ
parametrization of the Green’s functions [58]:

ĝq =

(
cos θ sin θ
sin θ − cos θ

)
. (7)

Substituting the above matrix into the Usadel Equation (6), we obtain the following in the
S part of the TI surface x > 0:

ξ2
s πTcs

[
∂2

xθs −
q2

2
sin 2θs

]
= ωn sin θs − ∆(x) cos θs,

and in the F part x < 0:

ξ2
f πTcs

[
∂2

xθ f −
q2

m
2

sin 2θ f

]
= ωn sin θ f , (8)

where ξ f =
√

D f /2πTcs, and D f is the diffusion coefficient of the ferromagnetic layer.
qm = q + 2h/α and Xs( f ) means the value of X in the S(F) part of the TI surface, respectively.
The self-consistency equation for the pair potential reads:

∆(x) ln
Tcs

T
= πT ∑

ωn

(
∆(x)
|ωn|

− 2 sin θs

)
. (9)

We supplement the above equations with the following boundary conditions at the S/F
interface (x = 0) [59]:

γB
∂θ f

∂x

∣∣∣
x=0

= sin
(

θs − θ f

)
, (10)

γB
γ

∂θs

∂x

∣∣∣
x=0

= sin
(

θs − θ f

)
, (11)

where γ = ξsσf /ξ f σs, γB = Rσf /xi f , and σs( f ) is the conductivity of the S (F)layer. The
parameter γ determines the strength of suppression of superconductivity in the S lead
near the interface compared to the bulk. No suppression occurs for γ = 0, while strong
suppression takes place for γ � 1. The parameter γB is a dimensionless parameter,
describing the transparency of the S/F interface [59–61]. For example, the imperfect
transparency can take place due to the Fermi velocity mismatch or presence of the potential
barrier at the S/F interface. To complete the boundary problem, we also set boundary
conditions at the free edges:

∂θ f

∂x

∣∣∣
x=−d f

= 0,
∂θs

∂x

∣∣∣
x=ds

= 0. (12)

In order to calculate the superconducting current we utilize the expression for super-
current density:

Js( f ) =
−iπσs( f )

4e
T ∑

ωn

Tr
[
τz ĝs( f )∇̂ĝs( f )

]
. (13)
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Performing the unitary transformation U, the current density transforms as follows:

js
y(x) = −πσsq

2e
T ∑

ωn

sin2 θs, (14)

j f
y (x) = −πσn

2e

[
q +

2h
α

]
T ∑

ωn

sin2 θ f . (15)

The total supercurrent flowing via the system along the y-direction can be calculated by
integrating the current density of the total width of the S/F bilayer d f + ds:

I =
∫ 0

−d f

j f
y (x)dx +

∫ ds

0
js
y(x)dx. (16)

2.2. Linear Usadel Equations

At the limit when T ≈ Tc, the Usadel equations (6) can be linearized, since the normal
Green’s function is close to unity, i.e., ĝq ≈ τz + θ(x)τx.

In the superconducting S layer (0 < x < ds), the linearized Usadel equation for the
spinless amplitude θs reads [56–58,62]:

ξ2
s πTcs

(
∂2

x − q2
)

θs −ωnθs + ∆ = 0. (17)

In the ferromagnetic region of the TI, the linearized Usadel equation takes the form:

∂2
xθ f =

[
ωn

ξ2
f πTcs

+ q2
m

]
θ f . (18)

The solution of Equation (18) is found in the form:

θ f = C(ωn) cosh kq

(
x + d f

)
, (19)

where

kq =

√
|ωn|

ξ2
f πTcs

+ q2
m. (20)

Here, C(ωn) is found from the boundary conditions. Using boundary conditions (10), the
problem is written in a closed form with respect to the Green’s function fs. At x = 0 the
boundary conditions can be written as:

ξs
∂θs(0)

∂x
= Wq(ωn)θs(0), (21)

where,

Wq(ωn) =
γ

γB + AqT(ωn)
, AqT(ωn) =

1
kqξ f

coth kqd f . (22)

In general, the boundary condition (21) can be complex. However, in the considered system,
AqT is real. Hence, the condition (21) coincides with its real-valued form.

Then, we write the self-consistency equation for ∆ considering only positive Matsub-
ara frequencies:

∆ ln
Tcs

T
= πT ∑

ωn>0

(
2∆
ωn
− 2θs

)
, (23)
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The Usadel equation in the superconducting part is given by:

ξ2
s

(
∂2θs

∂x2 − κ2
qsθs

)
+

∆
πTcs

= 0. (24)

Within the linearized Usadel equations, the supercurrent is also calculated in the self-
consistent manner, using Equations (21)–(24).

Single-Mode Approximation

In the framework of the single-mode approximation, the solution in S is introduced in
the form [63,64]:

θs(x, ωn) = f (ωn) cos
(

Ω
x− ds

ξs

)
, (25)

∆(x) = δ cos
(

Ω
x− ds

ξs

)
. (26)

The solution presented above automatically satisfies boundary condition (12) at x = ds.
Substituting expressions (25) and (26) into the Usadel equation for θs (24) yields:

f (ωn) =
δ

ωn + Ω2πTcs + q2ξ2
s πTcs

. (27)

Employing the single-mode approximation and using the solution in the TI layer, as well
as the boundary conditions, we find the total supercurrent flowing through the system in
the y direction. We obtain the following expression:

I = − π

4e
T ∑

ωn

f 2(ωn)

[
σsqCs +

σn

β2 cos2
(

Ω
ds

ξs

)
qmC f

]
, (28)

Cs =

(
ds +

ξs

2Ω
sin
(

2Ω
ds

ξ

))
,

C f =

(
d f +

1
2kq

sinh
(

2kqd f

))
,

where the coefficient β is defined as:

β = γBkqξ f sinh kqd f + cosh kqd f , (29)

and Ω is calculated from the boundary condition for the single-mode approximation (21).
In the following section, we present the results of the supercurrent calculations for both
linear (self-consistent and single-mode) and nonlinear approaches.

3. Results

In this section, we present the results of the calculations based on the model presented
above. For simplicity we set ξs = ξ f = ξ.

In Figure 2, we compare I(q) dependencies calculated by linear and nonlinear ap-
proaches. Both of these curves were calculated in a numerical self-consistent approach.
At equilibrium, when no external supercurrent was applied, the superconducting system
chose the state with non-zero q0. This state corresponded to zero total supercurrent (in the
y direction), i.e., the condition I(q0) = 0 was satisfied, which can be seen in Figure 2. In the
system, q cannot be varied directly, but one can apply an external supercurrent through
the structure in the range between the critical supercurrents I+c and I−c , where I+(−)

c is
the critical supercurrent for the positive (negative) direction. Applying a certain value of
the supercurrent leads to the superconducting state with a corresponding value of q 6= q0.
When current |I| was applied in the range between I+c and |I−c | the system was still in a
superconducting state for +I (since there was a superconducting state with a corresponding
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q), and the system was in the normal state for −I (there was no superconducting state with
q that corresponded to the applied current −I ).

We noticed that the linearized solution resulted in higher values of the critical currents.
As expected, the linearized approach did not capture nonlinearities in the current behavior
as a function of q.

-0.3 -0.2 -0.1 0.0 0.1
-15.0

-7.5

0.0

7.5

15.0
x10-3

 Linear
 Nonlinear

I [
2e

/
k BT

c
s

]

q

B=0.3
T/Tcs=0.25

Figure 2. The total supercurrent I as a function of the Cooper pair momentum q calculated
self−consistently via linear and nonlinear methods. The parameters of the calculation: ds = 1.2ξ,
d f = ξ, γ = 0.5, ξh/α = 0.3.

When calculating the critical temperature in the hybrid structure, it is common to use
the single-mode approach within the linearized Usadel equations. We tested the application
possibility of the single-mode method in calculating the supercurrent. The main disad-
vantages of Equations (25) and (26) are that these expressions disregard the dependencies
of the amplitude δ on the parameter q. Moreover, the amplitude of the pair potential
cannot be obtained within the solution provided by the single-mode, i.e., δ remains as a
fitting parameter. In Figure 3, we compare the full nonlinear approach and the single-mode
approximation. We observed that the supercurrent derived by the single-mode was in
fairly good agreement with the nonlinear method in the vicinity of the equilibrium value of
q = q0. However, for larger values of q− q0, it was clear that the single-mode approach
tended to fail, resulting in much larger values of the critical current.

In the calculations we set the temperature T = 0.25Tcs , which may seem to be out of
the applicability range of the linearized Usadel equations. However, the true value of the
critical temperature in the S part can be substantially lower, due to strong suppression from
the adjacent F part of the structure. In our system, the critical temperature did not exceed
0.3Tcs, as seen in Figures 2 and 3.

It is more instructive to discuss the diode quality factor, which is defined in the
following way:

η =
∆Ic

I+c + |I−c |
=

I+c − |I−c |
I+c + |I−c |

. (30)

However, before doing so, we briefly discuss the temperature dependencies of the
supercurrent nonreciprocity for the linear and nonlinear approaches. In Figure 4, the
temperature dependence of ∆I = I+c − |I−c | is demonstrated. Both methods showed
approximately the same temperature when the current nonreciprocity vanished. This
corresponded to the transition from the superconducting state to the normal state. It can
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be seen from the figure that there was a substantial quantitative difference between the
two methods.

-0.38 -0.19 0.00 0.19
-3.6

-1.8

0.0

1.8

3.6
x10-2

 Linear single-mode
 Nonlinear

I [
2e

/
k BT

c
s

]

q

B=0.5
T/Tcs=0.25

Figure 3. The total supercurrent I as a function of the Cooper pair momentum q, calculated
self−consistently via linear single-mode approximation and the self-consistent nonlinear method.
The amplitude of the single-mode solution δ = 0.05πTcs. The vertical dotted line corresponds to the
critical temperature calculated by the single-mode approximation. The parameters of the calculation
were: ds = 1.2ξ, d f = ξ, γ = 0.5, ξh/α = 0.3.

0.2 0.3 0.4 0.5
0.00

0.13

0.26

0.39

B=0.3
=0.5

I c [
2e

/
k BT

c
s

]

T/Tcs

 Linear
 Nonlinear

x10-2

Figure 4. ∆I as a function of temperature. The parameters of the calculation were: ds = 1.2ξ, d f = ξ,
ξh/α = 0.2.

In Figure 5, we demonstrate the SDE quality factor as a function of the exchange
field ξh/α for the nonlinear and linear approaches. We emphasize that the quality factors
calculated for both cases were quite similar, despite the fact that I(q) may be substantially
different both quantitatively and qualitatively (Figure 2). This fact can be connected with
the definition of the quality factor η. In brief, since η is defined as a ratio between a sum



Condens. Matter 2023, 8, 36 9 of 12

and a difference of the critical currents, it loses information about current values and
q dependencies.

-0.4 -0.2 0.0 0.2 0.4
-5.0

-2.5

0.0

2.5

5.0

B=0.3
T/Tcs=0.25

h/

 Linear
 Nonlinear

x10-2

Figure 5. SDE quality factor η as a function of exchange field h. The parameters of the calculation
were: ds = 1.2ξ, d f = ξ, γ = 0.5.

4. Discussion

In this work, we calculated the superconducting diode effect using three different
methods, which included linear and nonlinear equations.The results obtained above suggest
several conclusions. The simplified single-mode approximation for the linearized Usadel
equation is only applicable for a qualitative critical temperature calculation. Although the
single-mode approach may be used at the vicinity of (q− q0), it does not capture the possible
q dependency of the pair potential and fails at larger |q− q0|. When operating close to the
critical temperature, the full solution of the linearized Usadel equation provides adequate
results. In particular, η, calculated via the linearized approach, is in good agreement with
the nonlinear case (Figure 5). Nevertheless, in order to get a valid description of the helical
state and the SDE in a wide range of parameters one should use fully nonlinear equations.
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