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Lattice of definability (of reducts)
for integers with successor

A. L. Semenov and S. F. Soprunov

Abstract. In this paper the lattice of definability for integers with a suc-
cessor (the relation y = x + 1) is described. The lattice, whose elements
are also knows as reducts, consists of three (naturally described) infinite
series of relations. The proof uses a version of the Svenonius theorem for
structures of special form.
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§ 1. Introduction. Background of the problem

The results of this work are related to the theory of definability, namely to
the question of whether or not it is possible to define one relation through other
ones. Alfred Tarski said: “Mathematicians, in general, do not like to operate with
the notion of definability; their attitude towards this notion is one of distrust and
reserve” [1], p. 110. Indeed, there are much fewer results (and publications) in
definability theory than in model theory or proof theory. In 1959 Lars Svenonius
established a fundamental result in this field (see below), which can be viewed as
an analogue of the completeness theorem. Tarski begins his paper “Some method-
ological investigations on the definiteness of concepts” [1], pp. 296–310, with a par-
allel between definability and provability.

In the early 1970s Albert Abramovich Muchnik (1934–2019), a student
of P. S. Novikov and the scientific supervisor of A. L. Semenov, posed a num-
ber of tasks for his disciple concerning definability in structures related to finite
automata. One of these tasks was to generalise to the multidimensional case
the Cobham theorem on definability of relations definable by finite automata in
two number systems. The solution of this problem was one of the results of
A. L. Semenov’s PhD thesis, see [2]. Later, Andrei Albertovich Muchnik (1958–2007),
son of Albert Abramovich and a student of Semenov, found a new proof of the
Cobham–Semenov theorem using the concept of self-definability, which was intro-
duced by him. The results of Semenov and Andrei Muchnik have been used and
discussed in a number of papers; among recent publications, see, for example, [3].

At the same time, in the early 1970s, Albert Muchnik, with reference to
P. S. Novikov, formulated the problem of describing the lattice of definability spaces
(the term appeared later) for the addition of integers. The task did not seem so dif-
ficult, and A. L. Semenov offered it to his students. Two of them, L. V. Kostyukov
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(later a famous writer) and O. V. Mitina (later a professor of psychology at the
Moscow State University), proposed similar hypotheses about the composition of
the elements of this lattice, but their proofs contained gaps. It became clear that
the problem is not simple at all.

On the other hand, the authors of the present paper also became interested in
general problems of definability lattices. In particular, in the classical work of Elgot
and Rabin [4] the existence problem for maximal decidable definability spaces was
raised in connection with extensions of finite automata definability. For the weak
monadic case, this problem was solved by Soprunov in [5]. It remains open for
first-order logic and monadic logic.

In the following years, the authors of the present paper together with Andrei
Muchnik undertook a study of various issues related to definability lattices; see, for
example, [6]. In particular, the authors of this paper have obtained a combinatorial
analogue of the Svenonius theorem [7]. Examples of spaces of arbitrary width were
constructed [8].

To illustrate the range of results in this area we point out a few examples. The
first significant result, a description of the definability lattice of rational numbers
with order, was obtained by Claude Fresnay [9] in 1965 (as indicated in [10]). Since
then, this result has been repeatedly rediscovered (see [11] and [6]). As shown in
these papers, the lattice of subspaces for the order of rational numbers contains
five elements. If zero is added to the structure, then there are 116 elements [12].
The lattice for a random graph has five elements. For a random linear order, it has
42 elements [13]. Among the latest results, we note the proof [14] of the absence
of spaces lying strictly between the space generated by the relation + and all the
constants on the carrier Z and the space generated by the relations + and < on
the same carrier.

The authors of this paper together with V. Uspensky summed up some results
in the review [15]. The main result of this paper was also announced therein.

In what follows we give the definitions which are needed, formulate the Svenonius
theorem along with a corollary of this theorem, which is what will be used, describe
the lattice under investigation, and, finally, formulate some conjectures and open
problems.

§ 2. Definitions

Let S be a set of relations on a universe A and let R be the name of a relation
on A. To define the relation R through S in a logical language L means

(1) to give names to the relations in a finite subset of S, and
(2) to write a formula in the language L that is equivalent to R (on A) using the

given names as extra-logical symbols.
The definability closure of a set S (denoted by [S]) consists of all the relations

that can be defined through S. This is a closure operation in the usual topological
and algebraic sense (a Kuratowski closure). The set S is a base of the definability
closure [S]. Closed sets of relations are called definability spaces.

The definability spaces of a given universe form the definability lattice with the
intersection of sets and the closure of the union of sets as the lattice operations.

If S1 and S2 are sets of relations on the same universe, then S1 < S2 if the
definability space generated by S2 is a subset of the that generated by S1. If S1 < S2

and S2 < S1, then S1 ≈ S2. The symbol ≻ is understood accordingly.
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A definability space is said to be countable if it is countable or finite and its
universe is countable. In this paper L is a first-order language with equality,
and only countable definability spaces are considered. The definability space of
a structure is the set of all relations definable in it. The definability lattice of the
structure is formed by all subspaces of this space. Evidently, if two structures are
elementary equivalent, then their definability lattices are isomorphic. Well known
examples of definability spaces include: arithmetic relations, algebraic relations,
automata-definable relations, and Presburger relations (that is, relations generated
on Z by + and 6). The subspaces of a space are also called reducts of the original
space or the original structure.

The main aim of this study is to describe the definability lattice for integers with
successor.

§ 3. Permutations and the Svenonius theorem

The bijections of a set A onto A are also called permutations of A. The group of
all permutations of A is denoted by Sym(A). A permutation ϕ of a set A preserves

a relation R on A if and only if R(a) ≡ R(ϕ(a)) for every tuple a of elements in A,
where ϕ(a) is the tuple of images of a under the permutation ϕ. A permutation
preserves a set of relations S if it preserves all relations in S. A collection F of
permutations preserves S if every permutation in F preserves S.

A group GS ⊆ Sym(A) can be associated with every set of relations S. The
group GS consists of all permutations of A that preserve S. We have S1 ⊆ S2 ⇒
GS1

⊇ GS2
(an antimonotone Galois correspondence). However, it is usually dif-

ficult to recover a definability space from the corresponding subgroup of Sym(A).
The group corresponding to a subspace is called a supergroup of the group of the
original space.

Let S1 be a definability space on the universe A, let B ⊆ A, and let S2 be the
set of restrictions to B of all relations in S1. Let us name the relations in a finite
subset F of S1 and use the same names for the restrictions of the relations in F
to B. Every formula using only these names defines two relations, one on A and one
on B. The second relation does not have to be a restriction of the first one to B.
However, if it is a restriction for every formula, then S2 is called an elementary

restriction of S1 (and S1 is an elementary extension of S2). Every elementary
restriction of a definability space is also a definability space.

The Svenonius theorem [16] (more precisely, a consequence of this theorem given
below) is the main tool used in this study. It can be formulated as follows (see [17],
p. 516).

Svenonius Theorem. Let S− and S be countable definability spaces on a uni-

verse A such that S− ⊂ S . Then the following two statements are equivalent for
every relation R ∈ S :

(a) R ∈ S− ;
(b) for every S′ which is a countable elementary extension of S and every

S0 ⊂ S′ and R0 ∈ S′ such that the restriction of S0 to A coincides with S− ,
the restriction of R0 to A coincides with R, and the group of permutations on the

universe of S′ that preserves all the relations from S0 also preserves R0 .

Thus, the Svenonius theorem states that, if the permutations of elementary
extensions of the original space are considered in addition to the permutations of
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the original space, then it is possible to distinguish the subspaces of the original
space.

Examples of using permutation groups to describe definability lattices can be
found, for instance, in [10].

A countable definability space S is maximal (or upper complete) if the structures
of all its countable elementary extensions are isomorphic (with a proper choice of
names for the relations).

For maximal spaces, the Svenonius theorem can be simplified as follows.

Corollary 3.1. Let S− and S be countable definability spaces on a universe A such

that S− ⊂ S and the space S is maximal. Then the following two statements are

equivalent for every relation R ∈ S :
(a) R ∈ S− ;
(b) the group of permutations on A that preserves all relations in S− also pre-

serves R.

Proof. The proof is simple and not provided here. �

§ 4. Results

This section describes the lattice of definability spaces of the structure 〈Z, {′}〉,
that is, of the set of integers with the successor relation. For every positive integer n,
we define:

A0,n(x1, x2) ⇌ |x1 − x2| = n;
A1,n(x1, x2, x3, x4) ⇌ x1 − x2 = x3 − x4 = n ∨ x1 − x2 = x3 − x4 = −n;
A2,n(x1, x2) ⇌ x1 − x2 = n.
Thus, for every positive integer n, we have

A0,n(x1, x2) ≡ A1,n(x1, x2, x1, x2)

and A1,n is explicitly defined by using A2,n.
We can naturally extend A0,n to A0,0 as an equality. Hence,

A2,n < A1,n < A0,n < A0,0.

According to [6], a relation will be regarded as false whenever the values of two
of its arguments are equal. Such relations will be referred to as non-gluing.

It is easy to see that, for every relation R, one can construct a finite class of
non-gluing relations that generates the same definability space as R. From now on,
all definable relations will be non-gluing.

Theorem 4.1. If a relation R is definable in 〈Z, {′}〉, then R ≈ Ai,d for some

positive integer d and some i. Moreover,
(i) all the [Ai,d] are different;
(ii) [Ai,d] ∪ [Aj,k] = [Am,n], where m = max{i, j} and n is the greatest common

divisor of d and k ;
(iii) [Ai,d] ∩ [Aj,k] = [Am,n], where m = min{i, j} and n is the least common

multiple of d and k .

The rest of this paper is devoted to the proof of Theorem 4.1. This proof is
based on Corollary 3.1 to the Svenonius theorem.

If a structure M is elementary equivalent to 〈Z, {′}〉, then M is a disjoint union
of copies of Z. These copies are called galaxies. All structures M consisting of a
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countable set of galaxies are isomorphic. So, they are maximal. This structure,
which is unique up to isomorphism, is denoted by Zω.

As a result, Corollary 3.1 can be applied to Zω.
Let us define an ordered set Z∞ = Z ∪ {∞} such that the order on Z is the

standard one and z < ∞ for every z ∈ Z. Then we define the function of absolute
value (||) on Z∞ such that it is the standard one on Z and |∞| = ∞. The subtraction
function (−) takes Zω onto Z∞, coincides with the subtraction inside every galaxy
(which is a copy of Z), and is equal to ∞ if the arguments are from different galaxies.
The expression a > b for any a, b ∈ Zω is an abbreviation of ∞ > a − b > 0.

Next, a permutation is a permutation on the domain of the structure Zω. A per-
mutation γ is called a shift if γ(a)− γ(b) = a− b for every a, b ∈ Zω. The group of
all permutations preserving ′ is the group of all shifts, which we denote by Γ.

For every a, b ∈ Zω, there is a shift s such that s(a) = b. So, every 1-ary relation
definable in Zω is constant.

Lemma 4.1. Suppose that tuples a0, . . . , an−1, b0, . . . , bn−1 ∈ Zω are such that ai−
aj = bi − bj for all i, j . Let a partial map γ be also given by the equality γ(ai) = bi

for every a0, . . . , an−1 . Then γ can be extended to a shift.

Lemma 4.1 is simple and can be proved by considering elements from the same
or different galaxies.

Let a group of permutations Γ′ include the group of shifts Γ. Then z1, z2 ∈ Z

are said to be equivalent (with respect to Γ′) if the equality γ(a + z1) − γ(a) = z2

holds for some γ ∈ Γ′ and a ∈ Zω. The relation thus defined is an equivalence
in view of the properties of the supergroup containing the group of shifts. Let
us prove the transitivity (the proof of the other properties is even easier). By
definition, if z1 ∼ z2 and z2 ∼ z3, then the equalities γ1(a1 + z1)− γ1(a1) = z2 and
γ2(a2 +z2)−γ2(a2) = z3 hold for some γ1, a1, γ2, a2. Then γ(a1 +z1)−γ(a1) = z3,
where γ = γ2 ◦ s ◦ γ1 and s is a shift such that s(γ1(a1)) = a2, and so z1 ∼ z3.
The equivalence class of z (with respect to Γ′) is denoted by Kz. A number z ∈ Z,
z 6= 0, is regular (with respect to Γ′) if Kz is finite and |γ(a + z) − γ(a)| < ∞ for
every a ∈ Zω and γ ∈ Γ′.

The equivalence, even though it is simple, proves extremely useful for our consid-
erations. Let us take a look at the main examples. If Γ′ = Γ, then the equivalence
is trivial. If the group Γ′ is generated by the set Γ and the permutation x 7→ −x on
each copy of Z in Zω, then every z ∈ Z such that z 6= 0 is regular and Kz = {z,−z}.
A slightly more sophisticated case is typical in our context. Let Γ′ be generated
by Γ and a permutation γ such that γ(x) = x for all elements of Zω, except for
one copy of Z, where γ(x) = x for even values of x and γ(x) = −x for odd values
of x. Then each even z 6= 0 is regular with Kz = {z,−z}, and no odd z is regular.
Finally, there is no regular number for the group of all permutations.

Lemma 4.2. (a) If z1 and z2 are regular numbers, then the numbers z1 ± z2 are

also regular.
(b) The greatest common divisor of two regular numbers is regular.

Proof. (a) Let z1 and z2 be regular and let γ ∈ Γ′. Then

γ(a + z1 + z2) − γ(a) = γ(a + z1 + z2) − γ(a + z1) + γ(a + z1) − γ(a)

and
γ(a + z1 + z2) − γ(a + z1) ∈ Kz2

, γ(a + z1) − γ(a) ∈ Kz1
.
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So, the set Kz1+z2
is finite and does not contain ∞.

The case of z1 − z2 is completely similar.
Part (b) follows from (a). �

Lemma 4.3. Let a group of permutations Γ′ include Γ and let d be the greatest
common divisor of all regular numbers with respect to Γ′ . Then Kd = {d} or

Kd = {d,−d}.
Moreover, if Kd = {d}, then Kz = {z} for every multiple z of d. And if Kd =

{d,−d}, then Kz = {z,−z} for every multiple z of d.

Proof. Let D be a number equivalent to d with respect to Γ′ with maximal absolute
value. Then D = N · d or D = −N · d for some positive integer N .

Suppose that N > 1 and choose γ ∈ Γ′ and a, b ∈ Zω such that b − a = D and
γ(b) − γ(a) = d. Then, for every k such that 0 6 k < N , we put

Ck = {ck,i | ck,i = a + k · d + i · D, i ∈ Z}.

The collection {Ck} is a partition of the set {a+z ·d | z ∈ Z}. Since d is regular,
the difference γ(c) − γ(a) is a multiple of d for each c ∈ Ck, 0 6 k < N . Thus, the
collection {γ(Ck)} is a partition of the set {γ(a) + z · d | z ∈ Z}.

Let us consider the set

E = {γ(a), γ(a) + d, . . . , γ(a) + (N − 1) · d}.

Since γ(a), γ(b) ∈ γ(C0) ∩ E and there are exactly N elements in E, there is a k′

such that 0 6 k′ < N and γ(Ck′)∩E = ∅. Since the absolute value of D is maximal
in the equivalence class of d, it follows that all the elements of γ(Ck′) have to lie
on one side of the segment E. Hence, either γ(c) < γ(a) for each c ∈ Ck′ or
γ(a) + (N − 1) · d < γ(c) for each c ∈ Ck′ . Otherwise there is a ck′,i such that
|γ(ck′,i+1) − γ(ck′,i)| > D and ck′,i+1 − ck′,i = D, and D has maximal absolute
value in its equivalence class. Suppose that γ(c) < γ(a) for every c ∈ Ck′ (the other
case is completely similar). Then there is a k′ such that 0 6 k′′ < N and the set
{c ∈ Ck′′ | γ(c) > γ(a)} is infinite. Therefore, the absolute value of the difference
|γ(a+k′ ·d+z ·D)−γ(a+k′′ ·d+z ·D)| is unbounded for z ∈ Z, which contradicts
the regularity of (k′ − k′′) · d.

So, N = 1 and Kd = {d} or Kd = {d,−d}.
If Kd = {d}, then Kz = {z} for every z that is a multiple of d. Suppose that

Kd = {d,−d} and z = n · d, where n is a positive integer (the case when z = −n · d
is similar). Then, for every i such that 0 6 i < n, every γ ∈ Γ′, and every a ∈ Zω,
we have

γ(a + (i + 1) · d) − γ(a + i · d) = d

or

γ(a + (i + 1) · d) − γ(a + i · d) = −d.

Moreover, since

γ(a + (i + 2) · d) 6= γ(a + i · d),

all the differences have the same sign. This means that

γ(a + n · d) − γ(a) = n · d
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or
γ(a + n · d) − γ(a) = −n · d

for each a ∈ Zω, that is, Kz ⊂ {z,−z}. Since there are γ ∈ Γ′ and a ∈ Zω such
that γ(a + d) − γ(a) = −d, it follows that γ(a + z) − γ(a) = −z and −z ∈ K. We
can similarly obtain z ∈ K, that is, Kz = {z,−z}. �

Let a group of permutations Γ′ include Γ and let d be the greatest common
divisor of all the regular numbers with respect to Γ′. Then, for every γ ∈ Γ′, there
are three possibilities:

(1) γ(a + n · d) − γ(a) = n · d
for every a ∈ Zω and every positive integer n (such permutations γ are called
permutations of the first type);

(2) γ(a + n · d) − γ(a) = −n · d
for every a ∈ Zω and every positive integer n (such permutations γ are called
permutations of the second type);

(3) γ(a + n · d) − γ(a) = n · d or γ(a + n · d) − γ(a) = −n · d
for every a ∈ Zω and every positive integer n, where each of the equalities is realised
for some a and n (such permutations γ are called permutations of the third type).

If Kd = {d}, then every permutation γ ∈ Γ′ is of the first type. If Kd = {d,−d},
then a permutation γ ∈ Γ′ can be of the first, second, or third type.

From now on, ΓR denotes the group of all permutations that preserve a relation R
definable in 〈Zω, {′}〉.

For every d ∈ Z such that d > 0:
– ΓA0,d

is the group of all permutations γ such that |γ(a + d) − γ(a)| = d for
every a ∈ Zω; it is easy to notice that the regular numbers of this group are of the
form {z ·d | z is an integer}, and so this group consists of permutations of all three
types;

– ΓA1,d
is the (proper) subgroup of ΓA0,d

consisting of all permutations of the
first and second types;

– ΓA2,d
is the (proper) subgroup of ΓA1,d

consisting of all permutations of the
first type.

Corollary 4.1. For all positive integers d, k and 0 6 i, j 6 2:
(i) i 6= j ∨ d 6= k → [Ai,d] 6= [Aj,k];
(ii) [Ai,d] ≻ [Ai−1,d];
(iii) [Ai,d] ≻ [Ai,d·k];
(iv) [Ai,d] ∪ [Aj,k] = [Am,n], where m = max{i, j} and n = the greatest common

divisor of d and k ;
(v) [Ai,l] ∩ [Aj,k] = [Am,n], where m = min{i, j} and n = the least common

multiple of l and k .

Proof. Parts (i)–(iv) follow directly from Corollary 3.1 and a comparison of the
corresponding groups.

Let us give a sketch of the proof of (v). In view of Corollary 3.1, it should
be shown that the group ΓAm,n

is generated by the union of ΓAi,l
and ΓAj,k

. The
implication in one direction is obvious since ΓAi,l

and ΓAj,k
are subgroups of ΓAm,n

.
Let γ ∈ ΓAm,n

. We intend to show that γ is a composition of permutations in ΓAi,l

and ΓAj,k
. For simplicity, we restrict ourselves to considering a single galaxy. Let

us choose an arbitrary element a in this galaxy and assume that l = l1 ·d, k = k1 ·d,
and n = l1 · k1 · d, where d is the greatest common divisor of l and k.
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Since γ(a+n) = γ(a)±n, it follows that in one of the two groups (suppose that
in ΓAi,l

) there is a permutation γ′ such that the sign of γ(a + l) − γ(a) coincides
with that of γ′(a + n) − γ′(a). We put |l′| = l. The sign of l′ coincides with that
of γ′(a + n) − γ′(a). We can assume that the permutation γ′ transposes the pairs
of elements 〈a + z · l, γ(a) + z · l′〉 and is identical on all other elements. We note
that the permutations γ and γ′ coincide on elements of the form a + z · n. Let
us now choose a permutation γ′′ ∈ ΓAj,k

which transposes the pairs of elements
〈a+z1 · l+z2 ·k, γ(a)+z1 · l

′ +z2 ·k〉, where 0 < z1 < k1, z1, z2 ∈ Z, and is identical
on all other elements (and, in particular, on elements of the form γ(a + z · n)).

It is easy to see that the permutation γ0 = γ′′◦γ′ coincides with γ on all elements
of the form a + z · n and is identical on all other elements.

Substituting elements of the form a+c with c < n in place of a, we can construct
a set of n permutations whose composition coincides with γ on the given galaxy. �

If m is a positive integer, then two vectors a, b ∈ Zω of the same length are said
to be m-indistinguishable if ai − aj = bi − bj for all i, j such that |ai − aj | < m or
|bi − bj | < m.

Lemma 4.4. For every formula R in the signature {′}, there is a positive integer w
such that R(a) ≡ R(b) for every two w-indistinguishable tuples a, b ∈ Zω .

Proof. Let a formula Q(w, x, y) in the signature {+, <} express the fact that the
tuples x and y are w-indistinguishable. Then the assertion of Lemma 4.4 can be
written in the form

(∃w)(∀x)(∀ y)(Q(w, x, y) → (R(x) ≡ R(y))).

Let us consider a countable non-standard elementary extension M0 of the struc-
ture 〈Z, {+, <}〉 and an arbitrary non-standard number w0 > 0 in M0. For all
tuples a, b ∈ M0, it follows from Q(w0, a, b) that, for every standard k, the equa-
tion ai − aj = k holds if and only if bi − bj = k. The structures M0 and Zω are
isomorphic (as structures with the only relation ′), and therefore Lemma 4.1 can
be used to extend the map f(ai) = bi to a shift. Thus

(∀ a)(∀ b)(Q(w0, a, b) → (R(a) ≡ R(b)))

is true in M0. Then

(∀ a)(∀ b)(Q(m, a, b) → (R(a) ≡ R(b)))

is true for any standard number m as well. Evidently, M0 is the enrichment of
the maximal structure having the only relation ′, and therefore the corresponding
depletion of M0 is isomorphic to Zω. So the assertion of the lemma holds in Zω. �

A positive integer w is called a boundary of a definable relation R if and only if
R(a) ≡ R(b) for every two w-indistinguishable vectors a, b ∈ Zω.

The following lemma states that, if the differences between some elements of a
vector a are non-regular (with respect to the group ΓR), then they can be replaced
by elements for which the corresponding differences are infinite, without changing
the values of R.
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Lemma 4.5. Let an n-ary relation R be definable in 〈Zω, {′}〉 and let

a = 〈a0, . . . , an−1〉 ∈ Zω.

Then a tuple

b = 〈b0, . . . , bn−1〉 ∈ Zω

can be constructed such that

(i) R(a) ≡ R(b);
(ii) if the difference ai−aj 6= 0 is non-regular with respect to ΓR , then bi−bj = ∞;
(iii) if the difference ai − aj is regular, then |ai − aj | = |bi − bj |; moreover, if ΓR

contains permutations of the first type only, then ai − aj = bi − bj ;
(iv) if ΓR contains no permutation of the third type, then

– either ai − aj = bi − bj for every i and j with a regular difference ai − aj ,
– or ai − aj = bj − bi for every i and j with a regular difference ai − aj .

Proof. The lemma can be proved by induction on the number of pairs i, j such that
ai − aj is a finite non-zero non-regular number. Suppose that a0 − a1 6= 0 is finite

and non-regular. It is possible to construct a vector b and a permutation γ ∈ ΓR

such that
(a) R(a) ≡ R(b);
(b) b0 − b1 = ∞;
(c) for every i, j < n, if ai − aj = ∞, then bi − bj = ∞;
(d) for every i, j < n, if bi − bj = ∞, then ai − aj is non-regular;
(e) for every i, j < n, if bi − bj < ∞, then bi − bj = γ(ai) − γ(aj).
Let w be a boundary of R and let w′ be the maximal absolute value among the

elements of the set
⋃
{Kai−aj

| the difference ai − aj is regular}.
Assume that the non-zero finite difference a0 − a1 is non-regular and take a per-

mutation γ′ ∈ ΓR for which |γ′(a0)−γ′(a1)| > n ·max(w, w′). Let us choose a shift
s such that s(a0) = a0, s(a1) = a1, and if ai−aj = ∞, then |γ′(s(ai))−γ′(s(aj))| >
n · max(w, w′).

We put γ = γ′ ◦ s. Then |γ(a0) − γ(a1)| > n · max(w, w′) and |γ(ai) − γ(aj)| >
n · max(w, w′) if ai − aj = ∞.

We put a′ = γ(a). In this case
– if ai − aj < ∞, then a′

i − a′

j = γ(ai) − γ(aj).
Now we want to transform a′ into a vector b such that
– if |a′

i − a′

j | < n · max(w, w′), then bi − bj = a′

i − a′

j ;
– if |a′

i − a′

j | > n · max(w, w′), then bi − bj = ∞ (in particular, b1 − b0 = ∞).
In the process of transformation, we consider in succession the pairs of elements

of a′ such that |a′

i − a′

j | > n ·max(w, w′) and |a′

i − a′

j | 6= ∞. Thus, the elements a′

i

and a′

j lie in the same galaxy U . Suppose that a′

i <a′

j . Let c0 < · · · < ck be all the

elements of a′ in U . There is an element cm such that a′

0 6 cm < cm+1 6 a′

1 and
cm+1 − cm > max(w, w′). Let us choose a vector b in such a way that

– bi = a′

i if a′

i /∈ U or a′

i 6 cm;
– all elements of {bi | a′

i > cm+1, a′

i ∈ U} lie in a separate galaxy that does not
contain elements of a′.

Due to Lemma 4.4, R(a′) ≡ R(b) and R(a) ≡ R(a′).
Since cm+1 − cm > w′, it follows that the difference bi − bj is regular if and only

if ai − aj is a regular number. Thus, it is clear that conditions (a)–(e) hold.
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Evidently, (i) follows from (a), and (iii)–(iv) follow from (d) and (e). It follows
from (b)–(e) that the number of finite non-zero non-regular differences between the
elements of b is less than that of a.

It can be assumed that there are no pairs i, j for which ai − aj is finite and

non-regular. This gives us b as the required vector. �

The following statement claims that, for every non-trivial relation R definable
in 〈Zω, {′}〉, the corresponding group of permutations ΓR coincides with ΓAi,j

for
some i, j. Thus, according to Corollary 3.1, R ≈ Ai,j .

Proposition 4.1. Every non-gluing relation R is either trivial or there is the great-
est common divisor d of all regular numbers with respect to ΓR . In this case

(i) if ΓR contains no second- or third-type permutations, then R ≈ A2,d ;
(ii) if ΓR contains no third-type permutations and does contain a second-type

permutation, then R ≈ A1,d ;
(iii) if ΓR contains a third-type permutation, then R ≈ A0,d .

Proof. First of all, we note that, according to Lemma 4.5, if there are no regular
numbers with respect to ΓR, then R(a) ≡ R(b) for all tuples a and b such that
ai 6= aj and bi − bj = ∞, and thus a non-gluing relation without regular numbers
is trivially definable through equality.

Secondly, it can readily be seen that: if the group ΓR contains no second- or
third-type permutations, then R < A2,d; if ΓR contains no third-type permuta-
tions and contains second-type permutations, then R < A1,d; and if ΓR contains
a third-type permutation, then R < A0,d.

To prove the converse, we need to show that every permutation that preserves
A2,d (A1,d, A0,d) belongs to ΓR if the corresponding conditions hold.

Let Γ′ denote the set of permutations γ such that |γ(a+d)−γ(a)| = d for every
a ∈ Zω. As mentioned above, Γ′ = ΓA0,d

. The subgroup of Γ′ consisting of the
first- and second-type permutations forms the group ΓA1,d

. The subgroup of Γ′

consisting of the first-type permutations is the group ΓA2,d
.

The proofs of all three statements (i)–(iii) follow the same scheme: we suppose
that there is a tuple a ∈ Zω and a permutation γ ∈ ΓAi,d

\ΓR for which R(a) 6≡

R(γ(a)). Next, Lemma 4.5 is used to construct vectors b and c such that R(a) ≡
R(b); then R(γ(a)) ≡ R(c). With the aid of Lemma 4.4, we can find a boundary w
of R. Then, if necessary, w-indistinguishable vectors v1 and v2 can be constructed
with R(b) ≡ R(v1) and R(c) ≡ R(v2). This contradicts Lemma 4.4.

To prove (i), suppose that there is a first-type permutation γ in Γ′ \ ΓR. Then
there is a vector a = 〈a0, . . . , an−1〉 ∈ Zω such that R(a) 6≡ R(γ(a)). By the defini-
tion of the group Γ′, if ai−aj is non-regular with respect to ΓR, then the difference
γ(ai) − γ(aj) is also non-regular. By the definition of a first-type permutation, if
ai − aj is regular with respect to ΓR, then γ(ai)− γ(aj) = ai − aj . Lemma 4.5 can

be used to choose vectors b and c that correspond to a and γ(a). Since ΓR contains
first-type permutations only, it follows that the regular differences of the vectors b
and c are the same, and b and c are w-indistinguishable for every finite w. Thus,
R(b) ≡ R(c), a contradiction.

To prove (ii), suppose that there is a first- or second-type permutation γ in
Γ′ \ ΓR. Vectors a, b, and c can be selected as in the proof of (i).

If bi − bj = ci − cj with a regular difference bi − bj , then the same equality holds
for every regular difference, so this case is the same as (i).



Lattice of definability (of reducts) for integers with successor 11

If bi − bj = cj − ci with a regular difference bi − bj , then the same equality holds

for all regular differences of b. There is a second-type permutation γ′ in ΓR, that
is, γ′(t + z · d) − γ′(t) = −z · d for every z ∈ Z and t ∈ Zω. Let us fix some t ∈ Zω

and consider the set S = {t + d · z | z ∈ Z}.
Let w be a boundary of R.
There is a vector s in S such that
– if |ci − cj | < ∞, then si − sj = ci − cj ;
– if |ci − cj | = ∞, then |si − sj | > w.

By Lemma 4.4, R(c) ≡ R(s) holds. Since si − sj = γ′(sj)− γ′(si) for all i, j < n, it

follows that the vectors b and γ′(s) are w-indistinguishable. This is a contradiction.
To prove (iii), suppose that there is a permutation γ in Γ′ \ ΓR. The vectors a,

b, and c can be selected as in case (i).
If the permutation γ is of the first type, then the proof coincides with that in

case (i).
If there is a permutation of the second or third type, then we take a permuta-

tion γ′ of the third type in the group ΓR and t1, t2 ∈ Zω such that, for every z ∈ Z,
we have

γ′(t1 + z · d) − γ′(t1) = z · d, γ′(t2 + z · d) − γ′(t2) = −z · d.

Let us consider the sets S1 = {t1 + z · d | z ∈ Z} and S2 = {t2 + z · d | z ∈ Z}.
If the permutation γ is of the second type, then the proof coincides with that of

case (ii) if we take S2 for S.
Finally, if γ is a permutation of the third type, then the following fact holds: if

the difference bi − bj is regular, then bi − bj = ci − cj or bi − bj = cj − ci.
If bi− bj = ci − cj and bk − bl = cl − ck, then the difference bk − bi is non-regular,

and so ci and ck lie in different galaxies.
Let w be a boundary of R. A collection {s0, . . . , sn−1} ⊂ S1 ∪ S2 can be chosen

in such a way that
– if |ci − cj | < ∞, then si − sj = ci − cj ;
– if |ci − cj | = ∞, then |si − sj | > w and |γ′(si) − γ′(sj)| > w;
– if the difference bi − bj is regular and bi − bj = ci − cj , then si, sj ∈ S1;
– if the difference bi − bj is regular and bi − bj = cj − ci, then si, sj ∈ S2.
By Lemma 4.4, R(s) ≡ R(c). The equality γ′(si) − γ′(sj) = bi − bj holds for

every regular difference bi − bj , so the vectors b and γ′(s) are w-indistinguishable.
We have arrived at a contradiction. �

Proposition 4.1 together with Corollary 4.1 form Theorem 4.1.

§ 5. Open problems and conjectures

Specific structures.
1. To obtain an explicit description of the definability lattice for the order on

non-negative rational numbers based on the general description in [12] or indepen-
dently of this description. It is clear that such a lattice includes the spaces with
bases:

– a relation that highlights the zero;
– an order on the whole universe;
– the usual generators for the rational order restricted to positive rationals and

false if one of the arguments is zero.
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What else?
2. The order on integers. Can the definability lattice be obtained for this order

by a natural combination of relations from this work and analogues for integers of
relations from the lattice for the order of rational numbers?

Searches for structures that are elementary equivalent to maximal ones.
What can be said about the existence of maximal structures that are elementary

equivalent to the following ones:
3. The order on integers.
4. The successor on positive integers.
5. An infinite undirected connected graph without cycles, all of whose vertices

have degree three.
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