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Modification of optical phonon spectra in contacting nonpolar nanoparticles compared to single particles
is studied. Optical phonons in dielectric and semiconducting particles obey the Euclidean metric Klein-Fock-
Gordon equation with Dirichlet boundary conditions. This equation is supposed to be solved numerically for
manifolds of cojoined spheres. It is proposed to replace this problem with the simpler-to-solve coupled-oscillator
model (COM), where an oscillator is attributed to each phonon mode of a particle and the particle overlap
leads to the appearance of additional couplings for these oscillators with the magnitude proportional to the
overlap volume. For not too big overlaps, this model describes solutions of the original eigenvalue problem
with a quantitative level of accuracy. In particular, it works beyond isotropic s modes in dimers, which has been
demonstrated for p modes in dimers and for tetramers. It is proposed to apply the COM for the description
of recently manufactured dimer nanoparticles and quantum dots. The obtained results are in agreement with
the dynamical matrix method for optical phonons in nanodiamonds. The dynamical matrix method is also used
to demonstrate that the van der Waals contacts between faceted particles lead to very small modifications of
the optical phonon spectra, which therefore could be neglected when discussing the propagation of vibrational
excitations via a nanopowder. The possibility to distinguish between dimerized and size-distributed single
particles from their Raman spectra is also considered. The proposed COM paves a way towards the description
of propagation of vibrational modes in the ensembles of particles in contact including tight agglomerates,
nanocrystal solids, and porous media.
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I. INTRODUCTION

Raman spectroscopy is a powerful tool widely used for
characterization of modern nanostructured materials includ-
ing nanoparticles, nanorods, and two-dimensional nanos-
tructures, which gives a precise energy fingerprint of the
excitations peculiar to the material such as phonons [1–5],
magnons [6–8], and excitons [9,10]. Currently, the Raman
spectra measurements are the standard characterization pro-
cedure for carbon materials [11–13] and various application-
oriented nanomaterials [14–22]. Combining the simplicity of
implementation, the nondestructive nature, and versatile data
obtained from spectra analysis, Raman spectroscopy con-
tributes significantly to modern nanotechnology and materials
science.

On the basic level, the structure of optical phonon lines
obtained by Raman spectroscopy allows determination of the
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composition of a material. As far as nanoparticles are con-
cerned, the more sophisticated theoretical approach applied
to fit Raman spectra can yield many more parameters, i.e.,
the nanoparticle average size L, the deviation δL in the size
distribution function, the concentration of lattice impurities,
and the geometric shape (faceting) [23]. The nanoparticle
size can be roughly estimated from the phonon confinement
model (PCM) [16,24–29] or with higher accuracy (includ-
ing the standard deviation in the size distribution) from the
joint [30] dynamical matrix method [31]–bond polarization
model (DMM-BPM) theory [32,33]. The nanoparticle shape
(faceting) also affects the main peak position and overall
peak structure [34] in Raman spectra of nanoparticles. In-
formation about the type and the concentration of lattice
impurities can be obtained from the broadening of the Raman
peak for nanoparticles [23,35–37] and also for bulk materials
[11,38–41]. This picture is actual for dielectric diamond
nanoparticles as well as for crystalline Si, Ge, GaAs, and CdTe
and many other types of semiconductor quantum dots.

Recently, promising objects such as quantum dot (QD)
molecules have been synthesized and now they are a subject
of extensive ongoing research [42–45]. Quantum dot dimers
are investigated to find applications for biomolecule sensing
and for nanoantennas with controlled polarization. An inter-
esting feature that QD dimers demonstrate is their electronic
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structure matching with that of molecules. Significant
progress has been obtained in the fine control of the neck
thickness, which gives a possibility to tune precisely the cou-
pling constant between the monomers.

At the same time, the hybridization of optical phonons
in nanoparticles in contact with each other and/or in QD
dimers can affect the Raman spectrum of an ensemble and
in particular the crystalline Raman peak shift and its shape.
These effects are evidently important for characterization of
the whole ensemble mentioned above.

In addition, a complete understanding of the optical
phonon hybridization and of the coupling in QD molecules
opens up the possibility to describe theoretically the role of
interparticle contact in the Raman spectra of nanopowders,
tight nanoparticle agglomerates [46,47], strongly coupled QD
nanocrystal solids [48], and porous materials [49–53]. Cur-
rently, the Raman spectra analysis relies on the single-particle
properties only. The present study addresses the problem of
optical phonon modes in contacting and/or cojoined nanopar-
ticles and quantum dots of nonpolar materials. We argue that
along with direct calculation of these modes within the pro-
posed geometry, the simple coupled-oscillator model (COM)
could be used to qualitatively describe the corresponding
vibrational spectra. After some insignificant improvements,
the COM is sufficient to reproduce the principal features
of optical phonon hybridization. This statement is verified
using both continuous scalar Euclidean Klein-Fock-Gordon
(EKFG) model (see Ref. [34]) and atomistic DMM ap-
proaches. In the strongly coupled regime of cojoined particles,
the effect of hybridization on the Raman spectra is found
to be pronounced, whereas in the case of weakly coupled
(say, via the van der Waals forces) particles the correspond-
ing optical phonon frequency shifts are negligible. The latter
means that the theory of propagation of vibrational modes
through a nanopowder can safely ignore the perturbations
of phonon spectra in individual particles stemming from
their contacts, operating only with the single-particle spectral
characteristics.

Here it is pertinent to note that in polar materials there is a
strong coupling between volume (and surface) phonons and
the electromagnetic field, which results in shape-dependent
shifts itself (see, e.g., Refs. [54–56]). A corresponding theory
for dimerized systems is an interesting and important prob-
lem. In the case of nonpolar materials, the physics behind
the COM is quite simple: We have well-defined vibrational
modes in each of the particles, which interact only through
the intersection volume. Next they hybridize in accordance
with COM predictions in both strongly coupled (resonance)
and weakly coupled (out-of-resonance) regimes. The main
advantage of the COM is directly connected to its compu-
tational simplicity. This concerns the possibility to build up
a semimicroscopic theory of interparticle vibrational modes
propagating in a granular medium.

Importantly, we show that the usual tunneling tight-binding
model for the Schrödinger equation (see, e.g., Ref. [57]) is not
applicable for our problem. It makes incorrect predictions for
the hybridized phonon frequencies even on the quantitative
level.

The rest of the paper is organized as follows. In Sec. II we
start with a description of the model of coupled oscillators

FIG. 1. Eigenvalue problem of the Laplace operator �ψ +
q2ψ = 0 with Dirichlet boundary conditions ψ |∂� = 0 on the mani-
fold of two cojoined spheres has solutions close to the model of two
coupled harmonic oscillators.

to familiarize readers with the approach to be developed.
Then we utilize the EKFG model for insight into the prob-
lem of optical phonons in the cojoined spherical particles.
We demonstrate the similarity of these problems and build
up consistent perturbation theory formulating the COM for
eigenvalues and eigenfunctions of intersecting spheres. In
Sec. III we use the microscopic DMM model and compare its
predictions with the yield of the EKFG and coupled-oscillator
approaches. We also use the DMM-BPM approach to study
the case of two faceted particles in contact through weak
van der Waals interaction. In Sec. IV we study the effect of
nanoparticle dimerization on the Raman spectra. Section V
discusses our results. We summarize in Sec. VI.

II. SEMIQUANTITATIVE APPROACH: COUPLED
OSCILLATORS AND EKFG THEORY

Below we show that there is a good correspondence be-
tween the eigenmodes of the EKFG approach for cojoined
particles and the classical problem of two coupled oscillators
(COM; see Fig. 1).

A. Coupled oscillators

The Lagrange function of two coupled oscillators reads

L = mẋ2
1

2
+ mẋ2

2

2
− k1x2

1

2
− k2x2

2

2
− kint(x1 − x2)2

2
, (1)

where two oscillators with frequencies ω2
1,2 = k1,2/m are

assumed to be coupled by the spring with rigidity kint.
Newtonian equations of motion can be written as

mẍ1 = −k1x1 − kint(x1 − x2),

mẍ2 = −k2x2 − kint(x2 − x1). (2)
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To find the harmonic solutions, we rewrite them as

(k1 + kint )x1 − kintx2 = mω2x1,

(k2 + kint )x2 − kintx1 = mω2x2. (3)

The eigenvalues (squares of frequencies) are given by

ω2
± =

k1 + k2 + 2kint ±
√

(k1 − k2)2 + 4k2
int

2m
. (4)

In the particular resonant case k1 = k2 = k we have

ω2
+ = k + 2kint

m
, ω2

− = k

m
(5)

for x1 − x2 and x1 + x2 eigenfunctions, respectively. We see
that one resonant solution is not affected by the coupling,
whereas the frequency of the other one increases linearly with
the parameter kint. In the highly off-resonant case |k1 − k2| �
kint we get

ω2
± = k1,2 + kint

m
, (6)

so the oscillators almost do not “feel” each other, but they feel
the additional spring.

We discuss the two oscillators case above. However, we
note that the generalization for n > 2 coupled-oscillator prob-
lem is straightforward.

B. The EKFG model

The continuous method of finding the eigenfunctions and
the eigenvalues of the long-wavelength optical phonon modes
applicable for the arbitrary shape of the manifold � starts
from evaluation of the Euclidean metric Klein-Fock-Gordon
equation [34](

∂2
t + C1� + C2

)
ψ = 0, ψ |∂� = 0, (7)

where ψ is an envelope function of the optical vibration,
which indicates the amplitude of the relative displacements
of neighboring atoms, and the second expression refers to
the Dirichlet boundary conditions. The parameters C1,2 are
related to the constants of the optical phonon dispersion in
the long-wavelength limit via

ω2 = C2 − C1q2 ⇐⇒ ω(q) ≈ √
C2 − C1√

C2

q2

2
≡ ω0 − αq2,

(8)

where ω0 is the maximal optical mode frequency and q2 is the
eigenvalue of the corresponding boundary value problem

�ψ + q2ψ = 0, ψ |∂� = 0. (9)

This equation can be solved numerically for an arbitrary man-
ifold using, e.g., Wolfram Mathematica. We dub ψ a wave
function.

Unlike the yield of the PCM, the realistic structure of
the phonon spectrum in nanoparticles is discrete like in di-
amondoids [58,59] and in fullerenes [32]. The vibrational
modes should resemble the standing-wave-like eigenmodes of
a resonator of the same shape as the nanoparticle or, more
generally, electron orbitals in an atom (see Refs. [30,34]).
Therefore, their classification into s, p, etc., orbital-like
classes makes perfect sense, at least for spherical particles and

FIG. 2. Phonon wave functions of s modes along the x axis (con-
necting the centers) for noncontacting spheres with radii R1 = R2 =
2 (green and orange, manually shifted left by δr, the eigenvalues
q2

1 = q2
2 = 2.469) and for symmetric and antisymmetric modes of the

dimer with δr = 0.2 (red and blue, eigenvalues q2 = 2.447, 2.471).
The antisymmetric mode is very close to the mode of the free par-
ticles and has nearly the same eigenvalue. The eigenvalue of the
symmetric mode is strongly shifted and the wave function profile
differs, in particular in the contact region. The symmetric mode in
the spheres corresponds to the antisymmetric mode in the coupled-
oscillator approach.

their cojoined combinations. In particular, this means that the
formation of the symmetric (bonding) and the antisymmetric
(antibonding) states in nanoparticle dimers (or quantum dot
molecules) should occur on the same footing as in real atoms
and molecules.

Figure 2 shows optical phonon wave functions with small-
est q2 in two cojoined spheres with radii R1 = R2 = 2 and the
penetration length δr = 0.2 (all the distances are measured in
the lattice parameter a0 units unless specified otherwise). It is
important to underscore that the antisymmetric eigenfunction
profile nearly coincides with the wave function profile of an
isolated sphere. The eigenvalue of the antisymmetric mode is
also very close to the one of the isolated sphere. In contrast,
the symmetric wave function differs significantly from the
isolated sphere wave function in the region of contact. The
eigenvalue, corresponding to this function, is also downshifted
with respect to the isolated sphere eigenvalue.

Figure 3 shows the two smallest eigenvalues for two in-
terpenetrated spheres as a function of penetration length δr
[Fig. 3(a)] and as a function of the radius of one of the
spheres R2 [Fig. 3(b)]. The fit with the use of eigenvalues
of the coupled-oscillator Hamiltonian (discussed below) is
also depicted. One can see the avoided crossing behavior
of the eigenvalues, which is captured by both the EKFG
model and the COM. However, in contrast to the tunnel-
ing Jaynes-Cummings Hamiltonian [60], both eigenvalues
are downshifted. The latter is typical for the COM and will be
discussed in more detail below. The crucial parameter for the
developed theory is the intersection volume of two particles
in the dimer, which is quadratic in penetration length δr under
the assumption that δr � R1,2:

V12(R1, R2, δr) ≈ πδr2R1R2

R1 + R2
+ O(δr3). (10)

013153-3



KONIAKHIN, UTESOV, AND YASHENKIN PHYSICAL REVIEW RESEARCH 5, 013153 (2023)

FIG. 3. (a) Two smallest eigenvalues of the Laplace operator in
the system of two spheres of radii 2 as a function of penetration
length δr represented by red (symmetrical ψ) and blue (antisym-
metrical ψ) markers. Blue and red curves show the result of the
coupled-oscillator approach [see Eq. (4)] for k1 = k2 and black
dashed curves show the result of the tunneling tight-binding model
without the on-site corrections. The dependence kint ∝ δr2 is used.
(b) Two upper Laplacian eigenvalues in the system of the two spheres
with fixed penetration length δr = 0.21 and the radius of the left
particle R1 = 2 as a function of the right particle radius R2. The
green points correspond to the eigenfunctions concentrated in the
first particle and the orange ones correspond to the eigenfunctions
with domination inside the second particle. The orange and green
solid curves represent the fit with the use of Eq. (4) for fixed k1 and
kint and k2 = k1 + const(R2 − 2). Freestanding black curves show
the sketched shapes of the wave functions. Dashed lines are for the
eigenvalues of isolated particles.

C. How to construct the coupled-oscillator Hamiltonian

Basing on the results presented above, now we formulate
the following rules allowing one to construct the Hamiltonian
of the coupled-oscillator model Hpq capable of reproducing
the optical phonon modes in contacting particles. The in-
dices p and q in H span all the modes of interest in all
the particles considered (more than two of them may ex-
ist), e.g., p → (i, m) stands for the mth mode in the ith
particle.

(i) For each pair of particles i and j one calculates the
intersection (overlap) volume Vi j . Either its approximate value
given by Eq. (10) or precise value could be taken.

(ii) For each mode m of interest in the ith particle one
writes in the diagonal element Hpp of the Hamiltonian [where
p = (i, m)] its bare eigenvalue q2

im. For optical phonons it
should be taken as the value of the size-quantization induced
redshift of the given mode frequency in the ith nanoparticle
with respect to its bulk crystal value ω0 measured in units of
cm−1 [see Eq. (8)].

(iii) For each mode m one calculates the on-site volume
correction (diagonal) by summing over the neighboring parti-
cles j: �p ≡ �im = q2

imαm
∑

j f (Vi j/Vi ). After that, one adds
the result to the diagonal matrix element. The factor αm (dis-
cussed below) depends on the symmetry of the modes s, p,
etc., f (x) = x − (x/0.425)2, where the second term is an em-
pirical correction important for relatively large penetrations.

(iv) For each pair of modes from different particles one
calculates the off-diagonal coupling terms Hpq = −Cpq =
−

√
q2

imq2
jnβmnVi j/

√
ViVj . Here again βmn are the coefficients,

dependent on the symmetry of the modes (discussed below).
(v) The eigenvalues of H should be subtracted from ω0 in

order to obtain the physical frequencies visible in the Raman
spectra. The eigenfunctions of H reveal the amplitudes of
phonon modes located at the particles under consideration.

It is pertinent to note that one can (and should) consider
only several close in energy modes; the effect of further modes
(including acoustic) is negligible.

D. Examples of construction

According to this construction algorithm, the dimension
of H is the number of all modes in all particles. If we are
interested in, say, only the lowest s modes, it reduces to the
number of particles N . If one s and three p modes at each par-
ticle are considered, then the dimension of H will be 4N , etc.
The shape-dependent coefficients are αs = 1, αp = 3, βss = 1,
βsp = 3, and βpp = 4.5.

For the simplest case of two particles and accounting for s
modes only (thus the mode indices m and n could be omitted),
the coupled-oscillator Hamiltonian reads

H =
(

q2
1 − �1 −C12

−C12 q2
2 − �2

)
. (11)

In the case of identical particles and small penetrations
[ f (x) = x], the on-site corrections and couplings are equal to
each other �1 = �2 = C12 and the Hamiltonian essentially
coincides with the eigenvalue problem for two coupled oscil-
lators given by Eq. (3). The only difference is the negative sign
in front of kint on the diagonal. As a result, in the resonant case,
the COM eigenvalue that corresponds to the antisymmetric
eigenfunction (1,−1)T does not change (cf. Fig. 2), whereas
for real coupled harmonic oscillators [Eq. (3)] it holds for
the symmetric eigenfunction. The second eigenvalue, which
is lower in magnitude, corresponds in the COM to the
symmetric wave function (1, 1)T , while for real cou-
pled harmonic oscillators this eigenvalue with changed
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(higher) magnitude is related to the antisymmetric wave
function.

In is instructive to compare the obtained Hamiltonian with
the one obtained using the quantum-mechanical tight-binding
model (TBM) [61] for the case of coupled quantum wells.
First, both of them contain the additional terms on the di-
agonals and the off-diagonal coupling terms [cf. Eq. (11)
above and Eqs. (24) and (25) in Ref. [57]]. However, the
diagonal terms for the TBM are generally much smaller than
the off-diagonal ones according to Eq. (14) from Ref. [57].
As a result, the levels split nearly symmetrically with re-
spect to their initial position [see Eqs. (53) and (54) in
Ref. [57]], giving as a limit the famous Jaynes-Cummings
Hamiltonian [60], applicable for variety of two-level
systems:

H =
(

k1 kint

kint k2

)
. (12)

In contrast, within the framework of the COM, the antisym-
metric state has the same energy as the initial energy levels,
while the symmetric state is shifted. The splitting itself in
both the COM and the TBM equals approximately twice the
off-diagonal terms. The obvious similarity is in the emergence
of symmetric and antisymmetric states both in continuous
approaches (cf. Fig. 2 above versus Fig. 5 from Ref. [57])
and in spinor form [see Eq. (57) in Ref. [57]]. Furthermore,
if one directly applies the algorithm of the matrix element
calculation from Ref. [57], one should treat zero boundary
conditions as an infinite potential, presuming explicitly zero
matrix elements.

When considering the case of unequal spheres, an ad-
ditional difference appears. The on-site volume correction
terms depend only on the intersection volume, the sphere
volume, and the bare eigenvalue of this sphere. Physically,
this means that an additional volume in the neighboring
particle becomes accessible for the phonon mode from the
first nanoparticle. This volume does not depend on the pre-
cise shape of the second overlapped manifold. The coupling
term is in fact the geometrical mean of the on-site vol-
ume corrections [within the assumption f (x) = x], which
is equal to the on-site volume correction only for equal
spheres.

For the more complicated case of two particles with two
modes (m, n = 1 for s and m, n = 2 for the px mode) at each

FIG. 4. Four highest eigenvalues for the nanoparticle dimer when
varying the size of the second particle while keeping constant the
size of the first one and the penetration length (R1 = 2 and δr12 =
0.2). The dots show the solution of the full Dirichlet eigenvalue
problem �ψ + q2ψ = 0. The curves show the results of the coupled-
oscillator model.

particle, we have the Hamiltonian

H =

⎛
⎜⎜⎜⎜⎝

q2
1 − �1 0 −C13 −C14

0 q2
2 − �2 −C23 −C24

−C13 −C23 q2
3 − �3 0

−C14 −C24 0 q2
4 − �4

⎞
⎟⎟⎟⎟⎠, (13)

where the notation p → (i, m) has the explicit form 1 →
(1, 1), 2 → (1, 2), 3 → (2, 1), and 4 → (2, 2). Among the
p modes, only those aligned along the x axis are considered
because py and pz modes have vanishing overlaps at small
penetrations.

Figure 4 shows the result of diagonalization together with
the results of the EKFG numerical calculation of the Laplace
eigenvalue problem. Once again, one can see good agree-
ment between the exact solution and the coupled-oscillator
approach.

Finally, we check the applicability of our approach to an
important case of many particles in contact. We consider only
s modes in four identical particles located at the vertices
of a slightly deformed square, which form a tetramer. The
corresponding Hamiltonian for small penetrations [ f (x) = x]
has the form

H =

⎛
⎜⎜⎜⎝

q2 − C12 − C13 −C12 −C13 0

−C12 q2 − C12 − C24 0 −C24

−C13 0 q2 − C13 − C34 −C34

0 −C24 −C34 q2 − C24 − C34

⎞
⎟⎟⎟⎠. (14)

The on-site volume correction terms �i are here written ex-
plicitly via the couplings Ci j = q2Vi j/V to underscore the
contributions of two neighbors for each particle. The mode
indices are omitted, similar to Eq. (11).

In order to investigate an even more complicated case, we
study numerically unequal spheres with the Hamiltonian (14)

modified according to the rules formulated in the preceding
section. Figure 5 shows the result of diagonalization for the
Hamiltonian constructed within the coupled-oscillator model
and the results of the numerical solution of the eigenvalue
problem for the Laplace operator with Dirichlet boundary
conditions. One sees a very good correspondence between
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FIG. 5. Four lowest eigenvalues for various configurations of a
tetramer. Initially, four particles with radii 2, 1.8, 2.2, and 2.08 are
placed in the corners of a rectangle in the XY plane. The sides
of the rectangle could be calculated from the penetration lengths
δr12 = 0.26 and δr23 = 0.22. Then the fourth particle is moved by
t along the horizontal and vertical axes. The trajectory of the center
is depicted by an arrow in the inset, which gives the top view. The
gray dots represent the results for the original Dirichlet eigenvalue
problem �ψ + q2ψ = 0. The colored dashed curves are for the
4 × 4 H for s modes with f (x) = x and approximate intersection
volumes Vi j calculation via Eq. (10). The colored open markers are
for the 4 × 4 H for s modes with f (x) = x − (x/0.425)2 and precise
calculation of the intersection volumes.

the approaches. Only at very high penetration lengths do the
deviations become significant.

III. DYNAMICAL MATRIX METHOD

The more direct atomistic DMM of the treatment of optical
phonons is even better adapted for precise calculations of
vibrational modes in nanoparticles including the intermediate-
wavelength regime and phonon polarizations. It also allows us
to consider the loose arrays of faceted nanoparticles weakly
interacting via the van der Waals forces.

A. Method formulation

The DMM is successful in obtaining the vibrational modes
of molecules, atomic clusters, and nanoparticles. It is based
on writing Newton’s second law for all atoms with the forces
caused by bonds stretching and bending of valence angles. In-
corporating into calculations the conventional Keating model
[62–65] allows us to write these equations of motion in the
form

mr̈p = Mpqrq, (15)

with the designations p = (i, α) and q = ( j, β ), where latin
letters enumerate the atoms and greek letters span over the
Cartesian coordinates α, β = x, y, z. The dynamical matrix is
given by

Mpq =
N∑

j=1

∑
β=x,y,z

∂2�(r1, r2, . . .)

∂r j,α∂r j,β
r j,β . (16)

In Eqs. (15) and (16) m is the mass assumed to be the
same for all atoms and � is the total potential energy of
nanocrystallites expressed via displacements ri of atoms from
their equilibrium positions. More specifically, � is a sum
of pairwise interaction energies for bond stretching and de-
pends on the positions of three atoms for valence angles
deformations.

Equation (15) can be solved to trace the time dy-
namics from some initial conditions or, in the frequency
representation, to obtain the phonon frequencies and eigen-
modes:

mω2rp = −Mpqrq. (17)

The vector rp contains all information about phases and direc-
tions of atomic displacements.

B. Results for conjoined spheres: Comparison with the COM

It is natural to verify the proposed coupled-oscillator model
by a comparison of its predictions with the numerical results
of the atomistic DMM. When constructing the coupled-
oscillator Hamiltonian using Eq. (11), one can directly take
the Dirichlet problem bare eigenvalue q2 for separate particle
as its energy redshift q2 = ω0 − ω with respect to the opti-
cal phonon frequency in the Brillouin zone center ω0 [see
Eq. (8); here we set α = 1 and measure q2 in cm−1]. Note
that below we will discuss the results in terms of the optical
phonon frequencies taking the diamond with ω0 = 1333 cm−1

as an example. We choose the Keating model parameters as in
Ref. [30].

Figure 6 shows the six highest eigenvalues for a couple
of diamond particles as a function of penetration length δr
obtained using the DMM approach (the lowest eigenvalues
q2 of the Dirichlet problem in terms of the EKFG approach
due to the dispersion law with negative effective mass). The
obtained data are compared with the predictions of the COM.
One sees that for various optical phonon polarizations the

FIG. 6. Six highest phonon frequencies of 2.4- and 2.3-nm spher-
ical diamond particles in contact as a function of penetration length
δr. Different colors correspond to various phonon polarizations. Red,
orange, and yellow are for eigenfunctions mainly localized inside the
2.4-nm particle (right particle). Blue tones correspond to the 2.3-nm
particle (left particle). The dashed curve is obtained based on the
coupled-oscillator model.
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FIG. 7. Six highest phonon frequencies of the nanoparticle dimer
as a function of the diameter of the second (left) particle. The size of
the right particle is 2.4 nm. The dashed curves are obtained based on
the coupled-oscillator model.

couplings have differing magnitudes. Still, the COM works
semiquantitatively. The out-of-resonance case similar to what
we expect from Eq. (6) is visible at small penetrations where
both energies are shifted equally and the shift is proportional
to δr2.

One sees that polarization results in more complicated
behavior of modes hybridization. The COM describes the
situation for all separate modes qualitatively and for their sum
quantitatively. Figure 7 illustrates the same idea, investigating
the case when we vary the size of one of the particles while
the penetration length remains intact.

C. Results for weakly interacting faceted particles

Another important and physically meaningful case is at-
taching of faceted particles. The underlying mechanism of
their interaction can be the van der Waals forces or the co-
valent ones similar to the dimer case. Below we use k for
the rigidities of interparticle bonds and K for the regular
intraparticle (covalent) ones.

Figure 8 shows the frequency shifts of the three highest
phonon modes in each cubic particle of a touching couple.
The sizes of particles are 1.8 and 1.7 nm, respectively. For
k/K � 1 the frequencies are all blueshifted linearly with the
bond strength k, which qualitatively corresponds to the out-
of-resonance case. Physically, the van der Waals interaction
constant k is about three orders of magnitude lower than the
covalent one [64,66].

One can estimate the coupling-induced frequency shift as
δω ∝ ω0ψ

2
surfVinter (k/K ), where ψsurf is an estimation of the

atomic displacements magnitude at the surface and V = Sa0

is the effective interaction volume (S is the contact surface and
a0 is the lattice parameter):

δω = const × ω0

(
1√
L3

× a0

L

)2

× (a0S) × k

K
. (18)

For the case of faceted particles whose facet surface and there-
fore contact area are proportional to the size L, the following

FIG. 8. (a) Energies of six highest phonon modes for two weakly
interacting cubic particles of sizes 1.9 and 1.8 nm as functions of the
ratio k/K . (b) Same as (a) but for energy shifts with respect to the
k = 0 case (noninteracting particles). Guides to the eye for linear
dependences are given.

scaling takes place:

δω = const × ω0 × srel

(
a0

L

)3

× k

K
. (19)

Here srel = s/S is the percentage of surface experiencing con-
tact with the neighboring particle.

In Fig. 9 one can see the shift saturation occurring because
the phonon wave function (the standing wave in the shape
of the product of three cosine functions for cubes) decreases
from the facet center to its edges. As a result, the overlap of
the wave functions of two particles is defined by the central
regions of the facets. In practice, the effects should be even
smaller because of a mismatch between contacting facets,
their corrugations, and the presence of functional groups. We
conclude that without a big spot of covalent bonds, the effect
of contacts on optical phonons in general and on Raman spec-
tra in particular is negligible taking into account the present
accuracy of measurements. From the point of view of the pos-
sibility to build up an adequate theory of modes propagating in
such a medium, this implies that one can use for this purpose
the unperturbed eigenfunctions and eigenvalues of isolated
particles.
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FIG. 9. (a) Energy shifts of the six highest phonon modes for
two cubic particles of size L (given by the horizontal axis) and 0.9L
in contact; the ratio k/K is 0.2. Shifts are calculated with respect to
the noninteracting particles k/K = 0. The dashed lines are guides to
the eye for the L−3 power law. (b) Eigenvalue shift as a function of
contact surface s with respect to the full surface s/S = l2/6L2. Two
equal 3-nm cubes are in contact only in the central square-shaped
region (of size l < L) of their joint facet; the bond strengths in
contact are k/K = 0.333. For a large range of parameters the energy
shift is linear in s/S; the corresponding guides to the eye are depicted.

IV. APPLICATION OF THE COM FOR RAMAN
SPECTRUM CALCULATION

In this section we study the effect of nanoparticle dimer-
ization on the Raman spectra. Silicon nanoparticles with a
mean size of 4 nm are normally distributed around this value
(with a FWHM of 5% of the mean value). The corresponding
Raman spectra [27,28,67–69] are redshifted by approximately
5 cm−1 with respect to the bulk silicon with the peak centered
at 520 cm−1. The nanoparticle dimers with penetration length
distributed uniformly in the range from 0 to 1 nm are com-
pared with the aforementioned case. Within the EKFG model,
the spectra are calculated using the standard procedure [34]
formulated as follows. The intensity of each mode is given by
the square of the wave function volume integral | ∫ ψ (r)dr|2
(cf. with the structure factor in the conventional scattering
problems for q = 0) and then the summation over all modes
is performed in order to incorporate the phonon peak inten-
sities and their positions into the Raman peak. The Raman
spectrum can be also obtained using the COM. Within the
isotropic s-mode approximation resulting in the 2 × 2 Hamil-
tonian for the dimer, the intensity of each of the two modes is

FIG. 10. Raman spectra of (4 ± 0.1)-nm silicon particles with
and without (blue curve) dimerization. Red curve gives the EKFG
approach yield for penetration lengths varying randomly from 0 to
1 nm. The black dashed curve is for the Raman spectrum obtained
using the coupled-oscillator approach with the same size and pen-
etration length distributions. The green solid curve is for smaller
penetration lengths from 0 to 0.3 nm.

proportional to |ψ1V1 + ψ2V2|2, where ψi stands for the com-
ponents of the spinor ψ . Figure 10 shows the Raman spectra
of free particles and nanoparticle dimers.

One sees the full agreement between the EKFG model
and the COM. Dimerization results in a decrease of the red-
shift of the peak and in a change of its shape. Effectively,
it can be explained by a higher volume accessible for the
phonons which suppresses the confinement and reduces the
size quantization effects. The effect of dimerization is at
the level of experimental accuracy of modern spectrometers
(0.3 cm−1); however, the peaks differ significantly in their
shape. The peak asymmetry coefficient for dimers is 0.37
whereas for free particles it is 0.22, which in our opinion rules
out the possibility of confusion. We believe that incorporat-
ing into the theory the out-of-shell effects [35], making the
phonon lines even more asymmetric, will further improve the
situation.

As it was shown above, the COM approach can be adjusted
to the case of many (n > 2) particles. Calculation of Raman
spectra from the those obtained by the COM eigenstates for
n > 2 can be scaled as well, in the same manner as for the
above-described case of spinor (two-component) eigenstates
for dimerized particles. Figure 11 shows Raman spectra for
regular arrays (particles arranged in simple cubic lattice) of
various sizes calculated using both the DMM-BPM and COM
approaches. Importantly, due to atomic effects on the surface,
the particles in clusters are not equal and experience slight
scatter in the number of atoms, which can be accounted for
as scatter in size in the framework of the COM. Three polar-
izations are also slightly split due to lowering the symmetry.
Finally, the coupling constants (the off-diagonal terms) fluc-
tuate for various polarizations, as can be seen in Figs. 6 and
7. All this requires averaging over relative orientations be-
tween particles in array and crystallographic directions when
using the DMM-BPM approach and providing the equivalent
averaging over nanoparticle sizes and values of coupling con-
stants when using the COM. For 2.4-nm particles, the latter is
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FIG. 11. (a) Raman spectra of regular arrays of diamond
nanoparticles of size L = 2.4 nm and penetration length δR = 0.2L.
A comparison of the DMM and COM is given for a single particle
and a 2 × 2 × 2 array. Fully atomistic DMM models contain approx-
imately 1300 and 10 000 atoms, respectively. Arrays of larger sizes
can be treated only using the COM approach. (b) Same as (a) but
for lower nanoparticle size L = 1.6 nm and δR = 0.15L, which al-
lows calculation of the 3 × 3 × 3 array using the the DMM-BPM
approach.

characterized by a 0.005 coefficient of variation in nanopar-
ticle size distribution and 0.13 for the coefficient of variation
in distribution of coupling constants. For 1.6-nm particles, the
coefficients of variation are larger and have the values 0.01
and 0.5, respectively. One sees good agreement of the DMM-
BPM and COM approaches when calculating Raman spectra
of many-particle arrays. Importantly, the COM approach al-
lows calculating Raman spectra for the systems inaccessible
by the fully atomistic DMM-BPM approach. Thus the appli-
cation of the COM approach can be fruitful for studies of
Raman spectra in systems composed of many nanoparticles,
i.e., agglomerates, porous media, and nanocrystal solids.

V. DISCUSSION

In the present paper we have studied the behavior of optical
phonons in contacting nonpolar nanoparticles. Basically, such
phonon modes should be derived as the eigenvectors of the
dynamical matrix. At the same time they obey the contin-
uous Euclidean metric Klein-Fock-Gordon equation leading
to the Laplace eigenvalue problem �ψ + q2ψ = 0 with

Dirichlet boundary conditions ψ |∂� = 0. We have used the
EKFG approach as a frame and reference point, comparing
its numerical solution for interpenetrating spheres with the
results of a phenomenological but technically simpler method,
which we called the coupled-oscillator model. We have for-
mulated the phenomenological COM where each mode in
each particle is brought into correspondence with an oscil-
lator of a given frequency. The particle contacts cause the
appearance of additional oscillator couplings proportional to
the volume of particles overlaps. For not too large overlaps,
the formulated algorithm describes pretty well the behavior
of the levels’ eigenvalues (i.e., s and p symmetric vibrational
modes) as a function of particle sizes and penetration depth,
being in good agreement with the original Dirichlet problem.
In the case of many particles, the formulated rules do not lose
their accuracy and thus the coupled-oscillator model can be
used for large arrays of contacting nanoparticles. The COM
approach works well for s and p levels up to the ratio of pene-
tration depth to particle size δr/R � 0.15. At higher ratios, the
complex geometry of p modes starts playing its role, and more
sophisticated functions of intersection volumes are required to
construct the COM Hamiltonian. However, the bands of s and
p modes remain well separated for not too big scatter (when
the levels of differing symmetry do not overlap). For s levels
only and the noted condition on scatter size, the COM works
well up to δr/R < 0.5.

To solidify our findings, we have compared the results
of the COM with the yield of the microscopic dynamical
matrix method for lattice vibrations. Also, the DMM has been
used to consider the special but physically relevant case of
faceted particles with weak van der Waals interaction. Only
small frequency shifts far beyond the accuracy of the Raman
spectroscopy have been obtained in this case. The interaction
effects will be even weaker for spherical particles coupled by
van der Waals interaction due to the lower contact surface.
So the important conclusion of the present study is that Ra-
man spectra of nanopowders can be interpreted as neglecting
the effects of particle-particle contacts. In contrast, for QD
nanocrystal solids and porous materials (the latter can be
considered as a network of cojoined nanoparticles) the effects
of the optical phonon hybridization should be strong enough
to result in long-distance phonon propagation accompanied by
the Raman peak shift and broadening with respect to the pow-
der of nanoparticles of comparable size. The COM approach
can be useful for their quantitative description.

It also follows from our analysis that the straightfor-
ward formulation of the perturbation theory in the spirit of
a quantum-mechanics-like tight-binding model for diatomic
molecules is not possible because the Dirichlet boundary
conditions correspond to infinite potential barriers. Concern-
ing the general properties of the Laplace operator eigenvalue
problem, in the literature there exist only general statements
like the Rayleigh-Faber-Krahn inequality [70]: The ball of
the required dimension has the lowest eigenvalue when the
body volume is fixed. The problems of minimization and
maximization of the first Dirichlet eigenvalue for the Lapla-
cian in the body with an obstacle [71] and minimization of
the eigenvalues beyond the first one (see [72] and references
therein) were also considered, but they do not help quantify
the behavior of eigenvalues and eigenfunctions of intersected
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spheres when varying their size mismatch and penetration
parameter. Finally, the physical problem of the capacitance
of joined spheres [73] also deserves to be mentioned here, but
it also does not provide the required asymptotic behavior of
eigenvalues for the cojoined spheres.

Inasmuch as the theory describes the behavior of the �ψ +
q2ψ = 0 equation eigenvalues and eigenfunctions in the man-
ifold of the intersected spheres, our results can be applied also
to any problem leading to this mathematical physics problem.
Along with the considered case of phonons in the interpen-
etrating nanoparticles, the example of such a problem is the
electronic level structure in quantum dot molecules (stationary
Schrödinger equation). The obtained asymptotic behavior and
Hamiltonian construction rules are important for the mathe-
matical physics itself. Interestingly, the effective Hamiltonian
appears to be inspired by and close to the elastic problem of
coupled oscillators rather than to quantum-mechanical tight-
binding-like perturbation theory.

Regarding the systems of quantum dot molecules/
nanoparticle dimers, the COM approach itself cannot provide
better accuracy when considering the optical phonon modes
in comparison with the DMM-BPM and EKFG approaches
for it is just a sort of their approximate formulation. At the
same time, it provides better comprehension of the underlying
physics by drawing a parallel to the other physical systems,
where similar hybridization takes place, including quantum
wells with tunneling coupling and diatomic molecules. Since
the formation of symmetric and antisymmetric states occurs
in these systems, the COM approach gives the instructive
asymptotic picture of the coupling.

One can benefit from the computational simplicity of the
COM when describing large systems or if it is necessary
to consider many system configurations for the purpose of
averaging. The desktop-class workstations of the year 2020
can derive the phonon modes for nanoparticles containing
10 000 atoms for a time period comparable to 1 h. This num-
ber of atoms corresponds to a size of approximately 5 nm
for diamond nanoparticles, which is typical for real samples
[46,74–77] and is close to the theoretical prediction of the
stability range of carbon nanoclusters [78]. Thus even consid-
ering computationally the dimerized diamond nanoparticles of
this size becomes hardly accessible. For the case of diamond
nanoparticle agglomerates containing hundreds of primary
particles, porous media, or nanocrystal solids, only the COM
will allow a computationally feasible approach to treat vi-
brational modes. Moreover, when considering disorder (the
simplest case is a broadened size distribution) the problem of
ensemble averaging also arises and one will again profit from
the computational simplicity of the COM. An example of such
a profit for the case of the ensemble of nanoparticle dimers is
shown in Fig. 10. It is noteworthy that even the system size
accessible by the continuous EKFG method is restricted as

well, because the mesh should be comparable to the lattice
constant in order to reach the appropriate accuracy (the mesh
effects will manifest most profoundly in the regions of particle
contacts).

The developed theory is applicable beyond three di-
mensions. For instance, in the two-dimensional space the
COM-like Hamiltonian can be constructed for the polariton
molecules [79] and graphene [79–81], which is important to
account for problems such as engineering the effective gauge
fields in such structures [82]. However, in lower dimensions,
due to the higher fraction of the wave function exposed to
the overlap area, the dependences of matrix elements on the
penetration length and overlap volume can be more complex.

VI. CONCLUSION

We have considered the problem of optical phonons and
Raman spectra in the cojoined crystalline nanoparticles and
coupled by weak van der Waals interaction faceted crystalline
nanoparticles. In the latter case, the effects of the interaction
on optical phonon modes and Raman spectra are negligible
with respect to the modern experimental accuracy of Raman
spectra measurements. In contrast, in the case of cojoined
particles with coherently oriented crystal lattices, the effects
are strong. The behavior of optical phonon modes is simi-
lar to the system of coupled harmonic oscillators with the
formation of symmetric and antisymmetric wave functions.
The corresponding 2 × 2 coupled-oscillator model Hamilto-
nian formulation was proposed with the terms calculated via
the nanoparticle volumes and penetration lengths and demon-
strated a quantitative level of accuracy. As long as the optical
phonon modes obey the Euclidean metric Klein-Fock-Gordon
equation and thus �ψ + q2ψ = 0 in the stationary case, the
COM approach can be used for any physical or mathematical
physics problem leading to this equation in the manifold of
cojoined spheres and could be considered as a main yield of
the present study and its physical insight is threefold: drawing
the parallel between the physical problem of optical phonons
in nanoparticle dimers and other similar problems such as
diatomic molecules and coupled quantum wells, giving the
approximate solution for the �ψ + q2ψ = 0 equation eigen-
function problem in the manifold of cojoined spheres and
zero boundary conditions, and calculating Raman spectra of
large arrays of coupled nanoparticles not accessible by other
methods such as the DMM-BPM approach.
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