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Abstract

We study the elliptic zastava spaces, their versions (twisted, Coulomb,
Mirković local spaces, reduced) and relations with monowalls moduli
spaces and Feigin-Odesskĭı moduli spaces of G-bundles with parabolic
structure on an elliptic curve.
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1. Introduction

1.1. Zastava spaces: General overview. Let G be an almost simple

simply connected algebraic group over C. Let us also fix a pair of opposite

Borel subgroups B, B− whose intersection is a maximal torus T . To a smooth

projective complex curve C, one can associate the zastava moduli space Z(C)

(the definition goes back to V. Drinfeld, see e.g. [BFGM]). It is the moduli
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space of G-bundles on C equipped with a generalized B-structure and a gener-

ically transversal U−-structure (here U− stands for the unipotent radical of

B−). It is actually a scheme with infinitely many connected components num-

bered by the degrees of B-bundles. It has numerous applications in geometric

representation theory and especially in the geometric Langlands program (see

e.g. [Gai,BF]).

The zastava space Z(C) is equipped with a morphism π to the colored

configuration space ConfG(C) of C (it keeps track of the points of C where

the B- and U−-structures fail to be transversal), and one of the key features

of Z(C) is its factorization structure over the configurations (locality over C).

It allows to define Z(C) for arbitrary smooth complex curve; not necessarily

projective: Z(C) is defined as the preimage π−1ConfG(C) ⊂ Z(C) for a

smooth compactification C ⊃ C.

A special role is played by three smooth curves carrying the structure of

1-dimensional complex algebraic groups: the additive group Ga, the multi-

plicative group Gm, and an elliptic curve E. The open zastava
◦
Z(C) ⊂ Z(C)

(given by the open condition that a B-structure is genuine as opposed to gen-

eralized) for these three curves play a prominent role in physics as various

versions of the monopole moduli spaces.

More precisely, the additive (or rational) open zastava are isomorphic

to the euclidean monopoles’ moduli spaces [J1, J2], while the multiplicative

(or trigonometric) open zastava are expected to be related to the periodic

monopoles’ moduli spaces [CK], and elliptic open zastava are expected to

be related to the doubly periodic monopoles’ (or monowalls’) moduli spaces

[CW]. Yet more precisely, the open zastava spaces are equipped with a natu-

ral T -action and a map to CrkG playing the role of the moment map. These

allow to define a sort of (quasi)-Hamiltonian reduction
◦
Z(C). The reduced

zastava in additive case is isomorphic to the moduli space of centered eu-

clidean monopoles; in multiplicative (resp. elliptic) case, the reduced zastava

is expected to be isomorphic to the moduli space of periodic monopoles (resp.

monowalls). The monopole moduli spaces come equipped with a natural hy-

perkähler structure, and the zastava spaces carry the corresponding holomor-

phic symplectic structure that can be defined in modular terms and explicitly

computed in appropriate coordinates.

Furthermore, the euclidean monopole moduli spaces are known to be iso-

morphic to the Coulomb branches of 3-dimensional N = 4-supersymmetric

quiver gauge theories (for the Dynkin quiver of G; with symmetrizers if G

is not simply laced). See [BFN2] for a mathematically rigorous identifica-

tion of the Coulomb branch with
◦
Z(Ga). Similarly, the K-theoretic Coulomb

branch can be identified with
◦
Z(Gm), see [FT]. One of the main topics of the
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present paper is an identification of
◦
Z(E) with an appropriate version of ellip-

tic Coulomb branch (whose rigorous mathematical definition is not formulated

yet). From this point of view, the above holomorphic symplectic structures on

open zastava arise from the natural quantizations of the Coulomb branches.

These quantizations are, respectively, the truncated shifted Yangians [BFN2],

the truncated shifted quantum affine algebras [FT], and supposedly related

to the elliptic quantum groups.

Actually, the reduced elliptic open zastava
◦
Z(E) appeared in mathemat-

ics long ago in another disguise in the works of B. Feigin and A. Odesskĭı.

Namely, let us modify the definition of
◦
Z(E), replacing a U−-structure by a

UK
− -structure, where UK

− is a unipotent group scheme over E obtained from

U− via twisting by a regular T -torsor KT . Then the resulting reduced zastava
◦
ZK(E) is isomorphic to the Feigin-Odesskĭı moduli space of complete flags in

the G-bundle IndGT KT with a fixed isomorphism class of the associated graded

bundle. B. Feigin and A. Odesskĭı constructed a natural symplectic structure

on their moduli spaces (along with its quantization), and it turns out that

this symplectic structure coincides with the one of the previous paragraph.

In the remainder of this section we provide a more detailed overview of the

above topics along with some other aspects of our work, like Mirković local

spaces needed for identification of various types of elliptic zastava.

1.2. Rational zastava and euclidean monopoles. We denote by B

the flag variety of G. Let Λ denote the cocharacter lattice of T ; since G

is assumed to be simply connected, this is also the coroot lattice of G. We

denote by Λpos ⊂ Λ the sub-semigroup spanned by positive coroots.

It is well known that H2(B,Z) = Λ and that an element α ∈ H2(B,Z)

is representable by an effective algebraic curve if and only if α ∈ Λpos. The

(open) zastava
◦
Zα is the moduli space of maps C = P1 → B of degree α

sending ∞ ∈ P1 to B− ∈ B. It is known [FKMM] that this is a smooth sym-

plectic affine algebraic variety, which can be identified with the hyperkähler

moduli space of framed G-monopoles on R3 with maximal symmetry breaking

at infinity of charge α [J1,J2]. Let us mention one more equivalent definition

of
◦
Zα: it is the moduli space of G-bundles on P1 equipped with a B-structure

of degree α and a U−-structure transversal to the B-structure at ∞ ∈ P1.

The zastava space is equipped with a factorizationmorphism πα :
◦
Zα → Aα

with a simple geometric meaning: for a based map ϕ ∈
◦
Zα the colored divisor

πα(ϕ) is just the pullback of the colored Schubert divisor D ⊂ B equal to

the complement of the open B-orbit in B. The morphism πα :
◦
Zα → Aα is

the Atiyah-Hitchin integrable system (with respect to the above symplectic

structure): all the fibers of πα are Lagrangian.
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A system of étale birational coordinates on
◦
Zα was introduced in [FKMM].

Let us recall the definition for G = SL(2). In this case α is a times the simple

coroot, and
◦
Za :=

◦
Zα consists of all maps P1 → P1 of degree a which send ∞

to 0. We can represent such a map by a rational function R
Q whereQ is a monic

polynomial of degree a and R is a polynomial of degree < a. Let w1, . . . , wa

be the zeros of Q. Set yr = R(wr). Then the functions (y1, . . . , ya, w1, . . . , wa)

form a system of étale birational coordinates on
◦
Za, and the above mentioned

symplectic form in these coordinates reads Ωrat =
∑a

r=1
dyr∧dwr

yr
.

For general G the definition of the above coordinates is quite similar. In

this case given a point in
◦
Zα we can define polynomials Ri, Qi where i runs

through the set I of vertices of the Dynkin diagram of G, α =
∑

aiαi, and

(1) Qi is a monic polynomial of degree ai,

(2) Ri is a polynomial of degree < ai.

Hence, we can define (étale, birational) coordinates (yi,r, wi,r) where i ∈ I

and r = 1, . . . , ai. Namely, wi,r are the roots of Qi, and yi,r = Ri(wi,r).

The Poisson brackets of these coordinates with respect to the above sym-

plectic form are as follows: {wi,r, wj,s}rat = 0, {wi,r, yj,s}rat = d∨iδijδrsyj,s,

{yi,r, yj,s}rat = (α∨i , α
∨
j )

yi,ryj,s

wi,r−wj,s
for i �= j, and finally {yi,r, yi,s}rat = 0. Here

α∨i is a simple root, (, ) is the invariant scalar product on (LieT )∗ such that

the square length of a short root is 2, and d∨i = (α∨i , α
∨
i )/2.

Finally, let us mention that the zastava space
◦
Zα is isomorphic to the

Coulomb branch of a 3d N = 4 supersymmetric quiver gauge theory (for a

Dynkin quiver of G, with no framing; with symmetrizers for a nonsimply laced

G), see [BFN2,NW].

1.3. Trigonometric zastava and periodic monopoles. We have an

open subset Gα
m ⊂ Aα (colored divisors not meeting 0 ∈ A1), and the trigono-

metric zastava is defined as the open subvariety † ◦
Zα := (πα)−1(Gα

m) ⊂
◦
Zα. It

can be identified with a solution of a certain moduli problem on the irreducible

nodal curve of arithmetic genus 1 obtained by gluing the points 0,∞ ∈ P1,

see [FKR]. From this point of view it acquires a natural symplectic structure

with the corresponding bracket {, }trig. Note that {, }trig is not the restriction

of {, }rat from
◦
Zα, but rather its trigonometric version.

For example, when G = SL(2) and α is a times the simple coroot, the

Atiyah-Hitchin integrable system πa :
◦
Za → A(a) is nothing but the classical

Toda lattice for GL(a), while its trigonometric version πa : † ◦
Za → G

(a)
m can be

identified with the relativistic Toda lattice for GL(a), see [FT, §2].
An explicit formula for {, }trig in w, y-coordinates is obtained in [FKR].
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The composed morphism

† ◦
Zα πα

−−→ G
α
m

∏
−→ G

I
m

∼= T

(recall that I is the set of simple coroots of G) is the group valued moment

map of the Hamiltonian action of T on † ◦
Zα. The quotient of a level of this

moment map by the action of T is the reduced trigonometric zastava † ◦
Zα: the

(quasi-)Hamiltonian reduction of † ◦
Zα.

It is likely that the reduced trigonometric zastava is isomorphic to the

moduli space of periodic monopoles (see e.g. [CK]) in one of its complex

structures (it has a natural hyperkähler structure, and among the S2-worth

of the underlying complex structures we need a generic one, in which this

moduli space is an affine variety). The corresponding holomorphic symplectic

structure on the moduli space of periodic monopoles matches the reduction

of {, }trig. Note an important difference with the rational case: the usual

zastava was isomorphic to the euclidean monopoles’ moduli space, and its

Hamiltonian reduction with respect to the T -action was isomorphic to the

centered monopole moduli space. In the periodic case the monopoles come

centered by definition.

Finally, the trigonometric zastava † ◦
Zα is isomorphic to the K-theoretic

Coulomb branch of a 3d N = 4 supersymmetric quiver gauge theory (for a

Dynkin quiver of G, with no framing; with symmetrizers for a nonsimply laced

G), see [FT] for the simply laced case. The reduced trigonometric zastava † ◦
Zα

is isomorphic to the K-theoretic Coulomb branch where the gauge group must

be taken as the product of SL(Vi) (as opposed to the product of GL(Vi) for

the trigonometric zastava).

1.4. Elliptic zastava. The explicit formulas for {, }rat and {, }trig look

like rational and trigonometric degenerations of the Feigin-Odesskĭı bracket

[FO] on the moduli space of G-bundles with a parabolic structure on an elliptic

curve. The goal of the present paper is to give a precise meaning to this

observation.1

For a T -bundle KT on an elliptic curve E we consider the moduli space
◦
Zα
K of the following data:

(a) a G-bundle FG on E,

(b) a B-structure ϕ+ on FG such that the induced T -bundle LT = IndTBϕ+

has degree −α,

(c) a UK
− -structure ϕ− on FG generically transversal to ϕ+. Here UK

− is a

sheaf of unipotent groups locally isomorphic to U−, obtained from the trivial

1This goal is achieved in Theorem 6.4.1 where we establish a symplectomorphism of the

Feigin-Odesskĭı moduli space with a reduced elliptic zastava space. Compare the formula
at the end of §1.7 with the one at the end of §1.2.
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sheaf by twisting with T -bundle KT (we view T as a subgroup of AutU− via

the adjoint action).

The open elliptic zastava
◦
Zα
K is a smooth connected variety of dimension

2|α| equipped with an affine factorization morphism πα :
◦
Zα
K → Eα to a con-

figuration space of E. It has a relative compactification (compactified elliptic

zastava)
◦
Zα
K ⊂ Zα

K

πα

−−→ Eα,

where we allow both a B-structure and a UK
− -structure to be generalized in

the sense of Drinfeld. There is also an intermediate version
◦
Zα
K ⊂ Zα

K ⊂ Zα
K

(elliptic zastava) where only a B-structure is allowed to be generalized.

For example, when G = SL(2), KT is trivial, and α is a times the simple

coroot, there is an isomorphism Za
Ktriv

	 TE(a) with the total space of the

tangent bundle of the a-th symmetric power of E. Unfortunately, neither

TE(a) nor its open subvariety
◦
Za
Ktriv

carries any natural Poisson structure.

1.5. Coulomb elliptic zastava. Similarly to the rational and trigono-

metric cases, one can consider the elliptic Coulomb branch of a 3d N = 4

supersymmetric quiver gauge theory for a Dynkin quiver of G with no fram-

ing. We restrict ourselves to the case of simply laced G.2 The elliptic Coulomb

branch is the (relative) spectrum of the equivariant Borel-Moore elliptic ho-

mology of a certain variety of triples. The theory of equivariant Borel-Moore

elliptic homology is not developed yet; it is to appear in a forthcoming work

of I. Perunov and A. Prikhodko. We sketch some results in §4. The resulting

elliptic Coulomb branch is denoted C
◦
Zα
Ktriv

. It is equipped with a natural Pois-

son (in fact, symplectic) structure due to the existence of quantized elliptic

Coulomb branch.

For example, when G = SL(2), there is an isomorphism C
◦
Za
Ktriv

	
Hilbatr(E × Gm) with the transversal Hilbert scheme of the surface E × Gm

(an open subvariety of the Hilbert scheme of points on E × Gm classifying

those subschemes whose projection to E is a closed embedding). Note that

we have an open embedding Hilbatr(E × Gm) ⊂ T ∗E(a) into the total space

of the cotangent bundle of the a-th symmetric power of E. Contrary to the

rational and trigonometric cases, there is no isomorphism C
◦
Za
Ktriv

�	
◦
Za
Ktriv

of

the open elliptic zastava with the elliptic Coulomb branch.

Still, the elliptic Coulomb branch is not so much different from the elliptic

zastava. Namely, they can be both obtained by the Mirković construction of

local spaces over (the configuration spaces of) E, see e.g. [MYZ, §2]. This

construction depends on a choice of a local line bundle; one choice gives rise to

the elliptic zastava; another gives rise to the elliptic Coulomb branch, see §3.
2In the nonsimply laced case one should use the approach of [NW] with symmetrizers.
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Moreover, this way we can define the Coulomb elliptic zastava C
◦
Zα
K depending

on an arbitrary T -bundle KT , not necessarily trivial.

1.6. Feigin-Odesskĭı moduli space. Another closely related moduli

space M(FG,LT ) depending on a choice of a G-bundle FG and a T -bundle

LT on E classifies the B-structures ϕ on FG equipped with an isomorphism

IndTBϕ
∼−−→ LT . It can be equipped with a natural structure of a derived

stack with a (0-shifted) symplectic form, see §6. B. Feigin and A. Odesskĭı

construct in [FO] a Poisson structure on the moduli space BunP of P -bundles

on E (where P is a parabolic subgroup of G). The above moduli spaces

M(FG,LT ) coincide with certain symplectic leaves of BunB. For instance, if

G = SL(2), then M(FG,LT ) is the moduli space of extensions of a line bundle

L−1 by L with a fixed isomorphism class of the resulting rank 2 bundle VF.

If VF is assumed to be stable, then M(FG,LT ) is a symplectic leaf of the

Feigin-Odesskĭı bracket on BunB .

If we fix a regular T -bundle KT (this means that all the line bundles associ-

ated to the roots of G are nontrivial), take FG = IndGTKT and degLT = −α,

then M(FG,LT ) can be identified with a certain “quasi-Hamiltonian” reduc-

tion D

◦
Z

α

K of
◦
Zα
K. Namely, the reduction is defined as the quotient with respect

to the natural T -action of a fiber over D ∈ EI of the composed morphism

◦
Zα
K

πα

−−→ Eα
∑
−→ EI

(recall that I is the set of simple coroots of G).

By the very construction, the Coulomb elliptic zastava C
◦
Zα
K is also equipped

with the factorization morphism πα : C
◦
Zα
K → Eα, and so we can define the

reduced Coulomb elliptic zastava C
D

◦
Z

α

K in a similar way. The important dif-

ference with the usual elliptic zastava is that the Coulomb elliptic zastava
C

◦
Zα
K carries a symplectic form, and the above reduction is really a (quasi-

)Hamiltonian reduction. In particular, the reduced Coulomb elliptic zastava
C
D

◦
Z

α

K inherits a symplectic form.

The two main results of the present paper are as follows:

(A) The reduced elliptic zastava and reduced Coulomb elliptic zastava are

isomorphic: D

◦
Z

α

K 	 C
D

◦
Z

α

K′ for an appropriate choice of a T -bundle K′
T de-

pending on KT and on the level D of the “moment map” (Theorem 5.2.1).

(B) If KT is regular, the composed isomorphism M(IndGTKT ,LT )	D

◦
Z

α

K	
C
D

◦
Z

α

K′ is a symplectomorphism (Theorem 6.4.1).

It is also likely that the reduced elliptic zastava D

◦
Z

α

K is isomorphic to the

moduli space of monowalls (doubly periodic monopoles) [CW]. The situation

is similar to the case of periodic monopoles: the monowalls come centered by



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

190 M. FINKELBERG, M. MATVIICHUK, AND A. POLISHCHUK

definition. In the corresponding elliptic Coulomb branch of a quiver gauge

theory the gauge group must be taken as the product of SL(Vi) (as opposed

to the product of GL(Vi) for the nonreduced Coulomb elliptic zastava).

1.7. An explicit formula for the Feigin-Odesskĭı Poisson bracket.

We are finally in a position to address the problem of explicit computation of

the Feigin-Odesskĭı Poisson bracket. The Coulomb elliptic zastava C
◦
Zα
K comes

equipped with étale rational coordinates that are “trigonometric Darboux” for

its symplectic form by the very construction. The usual elliptic zastava also

carry étale rational coordinates (yi,r, wi,r)
1≤r≤ai

i∈I similar to the ones in §1.2
(but now wi,r is a point of E). The reduced elliptic zastava (alias the Feigin-

Odesskĭı moduli space in the regular case) inherits these coordinates with the

following caveats:

(a) The w-coordinates are constrained: for each i∈I the sum
∑ai

r=1wi,r∈
E is fixed;

(b) The y-coordinates are homogeneous: only the ratios
yi,r

yi,r′
are well

defined for i ∈ I, 1 ≤ r, r′ ≤ ai.

Then the only nontrivial Poisson brackets arising from the Feigin-Odesskĭı

symplectic form are as follows:

{ yi,r
yi,r′

, wi,r

}
FO

=
yi,r
yi,r′

,
{ yi,r
yi,r′

, wi,r′

}
FO

= − yi,r
yi,r′

,
{yi,r′

yi,p′
,
yj,r
yj,p

}
FO

=
yi,r′

yi,p′
· yj,r
yj,p

(
ζ(wi,r′−wj,r)−ζ(wi,r′−wj,p)−ζ(wi,p′−wj,r)+ζ(wi,p′−wj,p)

)
in case i �= j are joined by an edge in the Dynkin diagram of G, and zero

otherwise (recall that we assume G simply laced). Here ζ(w) is the Weierstraß

zeta function.

2. Elliptic zastava

2.1. A group G. Let G be an almost simple simply connected algebraic

group over C. We fix a pair of opposite Borel subgroups B, B− whose intersec-

tion is a maximal torus T . The unipotent radical of B (resp. B−) is denoted U

(resp. U−). Let Λ (resp. Λ∨) denote the cocharacter (resp. character) lattice

of T ; since G is assumed to be simply connected, this is also the coroot lattice

of G. We denote by Λpos ⊂ Λ the sub-semigroup spanned by positive coroots.

We say that α ≥ β (for α, β ∈ Λ) if α − β ∈ Λpos. The simple coroots are

{αi}i∈I ; the simple roots are {α∨i }i∈I ; the fundamental weights are {ω∨i }i∈I .
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An irreducible G-module with a dominant highest weight λ∨ ∈ Λ∨+ is de-

noted Vλ∨ ; we fix its highest vector vλ∨ . For a weight μ∨ ∈ Λ∨ the μ∨-weight

subspace of a G-module V is denoted V (μ∨).

2.2. Elliptic zastava. We recall some results of [Gai] about various ver-

sions of zastava on a curve. From now on we always consider an elliptic curve

E. We fix a degree zero T -torsor KT on E. It gives rise to a collection of line

bundles Kμ∨ on E associated to characters μ∨ : T → C×.

Definition 2.2.1.

(1) Given α ∈ Λpos, we define the compactified elliptic zastava Zα
K as the

moduli space of the following data:

(a) a G-bundle FG on E;

(b) a T -bundle LT of degree −α on E;

(c) for any dominant weight λ∨ ∈ Λ∨+, a nonzero morphism from

the associated vector bundle ξλ
∨
: Vλ∨

F → Kλ∨ ;

(d) for any λ∨ ∈ Λ∨+, a sheaf embedding ηλ
∨
: Lλ∨ ↪→Vλ∨

F , subject to

the following conditions:

(i) the collection of sheaf embeddings Lλ∨ ↪→ Vλ∨

F satisfies

the Plücker relations, i.e. defines a degree α generalized

B-structure in FG;

(ii) the collection of morphisms Vλ∨

F →Kλ∨ satisfies the Plücker

relations, i.e. defines a generalized K-twisted U−-structure

in FG;

(iii) the composition Lλ∨ ↪→ Vλ∨

F � Kλ∨ is not zero for any

λ∨, i.e. the above generalized B- and U−-structures are

generically transversal.

(2) The elliptic zastava Zα
K ⊂ Zα

K is an open subspace given by the extra

condition that the morphisms ξλ
∨
: Vλ∨

F → Kλ∨ are surjective, i.e. the

corresponding twisted U−-structure is genuine, not generalized.

(3) The open elliptic zastava
◦
Zα
K ⊂ Zα

K is given by the extra condition that

the embeddings ηλ
∨
: Lλ∨ ↪→ Vλ∨

F are embeddings of vector bundles,

i.e. Lλ∨ is a line subbundle in Vλ∨

F for any λ∨ ∈ Λ∨+. In other words,

the corresponding B-structure is genuine, not generalized.

(4) The factorization morphism πα : Zα
K → Eα associates to the data of

zastava the I-colored zero divisor D ∈ Eα such that for any λ∨ ∈ Λ∨+,

the zero divisor of the composition Lλ∨ → Vλ∨
F → Kλ∨ equals 〈D,λ∨〉.

(5) The Cartan torus T acts on Zα
K by rescaling the morphisms in (c)

above: for t ∈ T we set t(ξλ
∨
) := λ∨(t) · ξλ∨ . This action factors

through the adjoint quotient T ad.
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Remark 2.2.2. The moduli stack Zα
K is actually a finite type scheme,

irreducible of dimension 2|α|, see e.g. [Gai, §4, §7.2]. The open subscheme
◦
Zα
K ⊂ Zα

K is smooth. The scheme Zα
K can be nonreduced in general, cf.

[FeMa, Example 2.13] for G = SL(5). This example features a formal arc

scheme, but according to the Grinberg-Kazhdan theorem and [D, §4.4] it

implies that an appropriate (rational) zastava space Zα for G = SL(5) is

nonreduced as well. Finally, the rational zastava Zα and the elliptic zastava

Zα
K are isomorphic locally in the étale topology.

In §3 we will consider the variety (Zα
K)red equipped with the reduced scheme

structure.

Remark 2.2.3. In §6 we will need elliptic zastava for a reductive group

G. It is defined similarly to Definition 2.2.1 making use of the trick [Sch, §7]
with the help of a central extension 1 → Z → Ĝ → G → 1 such that Z

is a (connected) central torus in Ĝ, and the derived subgroup [Ĝ, Ĝ] ⊂ Ĝ is

simply connected. Namely, we apply Definition 2.2.1 to Ĝ instead of G itself.

The result is independent of the choice of Ĝ and gets rid of some undesirable

irreducible components that appear if we naively apply Definition 2.2.1 to G

itself.

Definition 2.2.4 is motivated by the notion of centered euclidean monopoles.

Definition 2.2.4. We have the Abel-Jacobi morphisms E(ai) → Picai E

and their product AJ: Eα →
∏

i∈I Pic
ai E. We denote the composed mor-

phism by

AJZ :
◦
Zα
K

πα

−→ Eα AJ−→
∏
i∈I

Picai E.

Given a collection D = (Di)i∈I ∈ Picai E, we define the reduced open elliptic

zastava D

◦
Z

α

K as AJ−1
Z (D)/T (stack quotient).

The reduced open elliptic zastava D

◦
Z

α

K is an irreducible stack.3 Let

α =
∑

i∈I aiαi. If ai = 0 for some i ∈ I, then all the zastava spaces Zα
K, Zα

K,
◦
Zα
K, D

◦
Z

α

K coincide with the corresponding zastava spaces for the derived

group of the corresponding Levi factor of G. If ai > 0 for all i ∈ I, then the

action of T ad on the open elliptic zastava
◦
Zα
K is effective, and the dimension

of D

◦
Z

α

K is 2|α| − 2 rkG.

Remark 2.2.5. Throughout the paper we will use a trivialization of the

canonical line bundle ωE . We fix this trivialization once and for all.

3Indeed, a general fiber of πα is isomorphic to G
|α|
m , hence irreducible. Any fiber of

AJ is irreducible as well. Finally, all the fibers of AJZ are smooth equidimensional by a
computation of the differential of AJZ . Hence any fiber of AJZ is irreducible.
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2.3. Example of G = SL(2) and Hilbert schemes. We denote by ω∨

the fundamental weight of G = SL(2), and we denote by α∨ = 2ω∨ the simple

root of G. We denote by α the simple coroot of G. We denote the total space

of the line bundle K−α∨ over E by SK−α∨ , and we denote the complement

to the zero section by
◦
SK−α∨ . These are algebraic surfaces equipped with

a projection to E. For a ∈ N, we denote Zaα
K simply by Za

K. We denote

by Hilba(SK−α∨ ) ⊃ Hilba(
◦
SK−α∨ ) the degree a Hilbert schemes of points on

the surfaces SK−α∨ ⊃
◦
SK−α∨ . We denote by Hilbatr(SK−α∨ ) ⊂ Hilba(SK−α∨ )

(resp. Hilbatr(
◦
SK−α∨ ) ⊂ Hilba(

◦
SK−α∨ )) the open transversal Hilbert subscheme

classifying all quotients of OS
K−α∨ (resp. of O ◦

S
K−α∨

) whose direct images to

E are also cyclic, i.e. are quotients of OE .

Thus we have projections

Hilbatr(
◦
SK−α∨ ) → Hilba(E) = E(a) ← Hilbatr(SK−α∨ ).

The transversal Hilbert scheme Hilbatr(SK−α∨ ) is canonically isomorphic to the

total space of the following vector bundle UK on E(a). Let q : E × E(a−1) →
E(a) be the addition morphism (aka the universal family over Hilba(E) =

E(a)). Then UK := q∗pr
∗
EK

−α∨ . We will also need another closely related

vector bundle on E(a). Namely, let Δ1,a−1 ⊂ E × E(a−1) be the incidence

divisor (note that the line bundle O(Δ1,a−1) on E×E(a−1) is isomorphic to the

normal bundle to the closed embedding E × E(a−1) ↪→ E × E(a), (x,D′) �→
(x, x + D′), see e.g. [P, Proposition 19.1]). We set TK := q∗(pr

∗
EK

−α∨ ⊗
O(Δ1,a−1)). Note that in case K is trivial, the corresponding vector bundle

T is nothing but the tangent bundle of E(a), and the corresponding vector

bundle U is dual to T, i.e. U 	 T∗ is the cotangent bundle of E(a).

Furthermore, we have the Abel-Jacobi morphism E(a) → Pica(E). For

an arbitrary line bundle K′ on E, we denote the composed morphism by

AJ: Hilbatr(
◦
SK′) → E(a) → Pica(E). For a line bundle D of degree a on

E, the fiberwise dilation action of C× on
◦
SK′ induces an action of C× on

AJ−1(D) ⊂ Hilbatr(
◦
SK′), and we define the reduced transversal Hilbert scheme

DHilbatr(
◦
SK′) as AJ−1(D)/C× (stack quotient).

Proposition 2.3.1.

(a) There are natural isomorphisms

◦
Z1
K

∼=
◦
SK−α∨ , Z1

K
∼= SK−α∨ , Z1

K
∼= P(K−α∨ ⊕ OE).

(b) For a ∈ N, the zastava space Za
K is naturally isomorphic to the total

space of the vector bundle TK on E(a).
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(c) For a ∈ N, D ∈ Pica(E), the reduced open zastava D

◦
Z

a

K is naturally

isomorphic to the reduced transversal Hilbert scheme DHilbatr(
◦
SK′) for K′ =

K−α∨ ⊗D.

Proof. By definition, Za
K is the moduli space of the data Lω∨ → Vω∨

F → Kω∨

such that the composition Lω∨ → Kω∨
is not zero. Here Vω∨

F is a vector bundle

on E of rank 2 with trivialized determinant, and Lω∨
is a line bundle of degree

−a. Hence the composition Lω∨
↪→ Kω∨

identifies Lω∨
with Kω∨

(−D) for an

effective divisor D on E of degree a. The trivialization of detVω∨

F makes Vω∨

F

canonically selfdual, so the dual of our data is K−ω∨ → Vω∨

F → L−ω∨
. In

particular, we obtain the sheaf embeddings

K−ω∨ ⊕Kω∨
(−D) = K−ω∨ ⊕ Lω∨

↪→ Vω∨

F ↪→ L−ω∨ ⊕Kω∨

= K−ω∨
(D)⊕Kω∨

.

In other words, Vω∨

F is a degree a upper modification ofK−ω∨⊕Kω∨
(−D) atD.

The open subvariety Za
K ⊂ Za

K is given by the open condition that the projec-

tion of Vω∨

F to Kω∨
is surjective, and the open subvariety

◦
Za
K ⊂ Za is given by

the extra open condition that the projection of Vω∨

F to K−ω∨
(D) is surjective.

Yet in other words, Za
K is the moduli space of a-dimensional OE-submodules

V ⊂ (K−ω∨
(D)/K−ω∨

) ⊕ (Kω∨
/Kω∨

(−D)), the open subvariety Za
K ⊂ Za

K is

given by the open condition that V is transversal to K−ω∨
(D)/K−ω∨

, and

the open subvariety
◦
Za
K ⊂ Za

K is given by the extra open condition that V is

transversal to Kω∨
/Kω∨

(−D).

If a = 1, then D is a single point x ∈ E, and the fiber of Z1
K over x ∈ E

is a projective line P
(
(K−ω∨

(x)/K−ω∨
)⊕ (Kω∨

/Kω∨
(−x))

)
. Hence Z1

K is the

projectivization of the rank 2 vector bundle K−ω∨ ⊗ TE ⊕Kω∨
over E. The

trivialization of the canonical line bundle ωE in Remark 2.2.5 gives rise to a

trivialization of the tangent line bundle TE , and we obtain an isomorphism

Z1
K

∼= P(K−ω∨ ⊕ Kω∨
) = P(K−α∨ ⊕ OE). Furthermore, a point of Z1

K over

x ∈ E can be viewed as the graph of a homomorphism from Kω∨

x to K−ω∨

x , so

Z1
K gets identified with the total space of the line bundle Hom(Kω∨

,K−ω∨
) =

K−α∨ . Finally, a point of
◦
Z1
K over x ∈ E can be viewed as the graph of an

isomorphism from Kω∨

x to K−ω∨

x . This completes our proof of (a).

Recall that the fiber of Hilbatr(SK−α∨ ) (respectively, of Hilbatr(
◦
SK−α∨ )) over

D ∈ E(a) is canonically isomorphic to HomOE
(OD,K−α∨/K−α∨(−D)) (re-

spectively, to IsomOE
(OD,K−α∨/K−α∨(−D))), where OD = OE/OE(−D).
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On the other hand, an a-dimensional OE-submodule V ⊂ (K−ω∨
(D)/K−ω∨

)⊕
(Kω∨

/Kω∨
(−D)) transversal to K−ω∨

(D)/K−ω∨
is the graph of a homomor-

phism

hV ∈ HomOE
(Kω∨

/Kω∨
(−D),K−ω∨

(D)/K−ω∨
)

= HomOE
(OD,K−α∨(D)/K−α∨).

Furthermore, V is also transversal to Kω∨
/Kω∨

(−D) iff hV is invertible.

Since OD is a cyclic OE-module with generator 1, a homomorphism hV ∈
HomOE

(OD,K−α∨(D)/K−α∨) is uniquely determined by hV (1), so that

HomOE
(OD,K−α∨(D)/K−α∨) = K−α∨(D)/K−α∨ ,

and the latter space is nothing but the fiber of the vector bundle TK at

D ∈ E(a). This completes the proof of (b).

We have just seen that the fiber of
◦
Za
K over D ∈ E(a) is canonically isomor-

phic to IsomOE
(OD,K−α∨(D)/K−α∨). If D runs over the fiber of the Abel-

Jacobi map over D = Kω∨ ⊗ L−ω∨
, then K−α∨(D)/K−α∨ 	 (K−α∨ ⊗ D)|D,

and the isomorphism is well defined up to a multiplicative constant. Hence

IsomOE
(OD,K−α∨(D)/K−α∨) 	 IsomOE

(OD, (K−α∨ ⊗D)|D), and the isomor-

phism is well defined up to a multiplicative constant. The latter space is the

fiber of Hilbatr(
◦
SK−α∨⊗D) over D. Finally, taking quotient by the action of C×

removes the ambiguity in the choice of the above isomorphism, and produces

the desired canonical isomorphism.

The above argument generalizes straightforwardly to the case of families

over a base B. For example, the isomorphism

IsomOE×B
(OD×B,K

−α∨(D ×B)/K−α∨)

	 IsomOE×B
(OD×B, (K

−α∨ ⊗D)|D×B)

is well defined up to O×
B .

This completes the proof of (c). �

3. Mirković construction

From now on we assume that G is simply laced. We choose an orientation

of the Dynkin diagram of G. We obtain a quiver Q with the set of vertices

Q0 = I, and the set of arrows Q1. For an arrow h = (i → j) we use the

standard notation j = i(h), i = o(h).
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3.1. Compactified zastava. For a T -torsorKT on E and i ∈ I, we define

a line bundle Ki on E associated to the simple root character α∨i : T → C×.

Given a collection of line bundles Ki, i ∈ I, and β =
∑

biαi ∈ Λpos, we

define a line bundle Kβ := �i∈IK
(bi)
i on Eβ =

∏
i∈I E

(bi). Here K
(bi)
i is

the descent of K�bi
i from Ebi to E(bi) obtained by passing to Sbi -invariant

sections on U (bi), where U ⊂ E is an affine open subset. Given β, γ ∈ Λpos

with β + γ = α, we consider the diagram

Eβ p←− Eβ × Eγ q−→ Eα,

where p is the projection, and q is the addition of colored effective divisors.

For i, j ∈ I we define Δβ,γ
ij ⊂ Eβ ×Eγ as the incidence divisor where a point

of color i in Eβ meets a point of color j in Eγ (the case j = i is allowed). We

also define Δβ
ij ⊂ Eβ as the divisor formed by configurations where a point of

color i meets a point of color j. We define the factorizable vector bundle Vα
K

on Eα as4

(3.1.1) V
α
K :=

⊕
β+γ=α

q∗

⎛⎝p∗
(
Kβ

(∑
i∈I

Δβ
ii −

∑
h∈Q1

Δβ
o(h) i(h)

))(∑
i∈I

Δβ,γ
ii

)⎞⎠ .

It contains two codimension 1 subbundles: Vα
K,low and V

α,up
K , where in the

above direct sum we omit summands corresponding to β = 0 (resp. γ = 0).

The factorization structure is a canonical isomorphism for any decomposi-

tion α = α′+α′′, between the pullbacks of Vα
K and Vα′

K �Vα′′

K to (Eα′×Eα′′
)disj

(an open subset of Eα′ ×Eα′′
formed by all the pairs of configurations where

all the points of the first configuration are distinct from all the points of the

second one). In particular, the rank of Vα
K equals 2|α|, and the pullback of Vα

K

to (
∏

i∈I E
ai)disj is canonically isomorphic to �i∈I((Ki⊕OE)

�ai)|(∏i∈I Eai )disj

(here α =
∑

i∈I aiαi). Let pα : (
∏

i∈I E
ai)disj → Eα

disj stand for the unrami-

fied Galois cover with Galois group Sα =
∏

i∈I Sai
(the product of symmetric

groups). Then the vector bundle �i∈I((Ki ⊕ OE)
�ai)|(∏i∈I Eai )disj carries a

natural Sα-equivariant structure, and

V
α
K|Eα

disj
=
(
pα∗ �i∈I ((Ki ⊕ OE)

�ai)|(∏i∈I Eai )disj

)Sα .

Thus the projectivization P
(
�i∈I ((Ki⊕OE)

�ai)
)
|(∏i∈I Eai )disj contains the

product of ruled surfaces (P1-bundles over E)
∏

i∈I P(Ki⊕OE)
ai |(∏i∈I Eai )disj

(Segre embedding). Hence PVα
K|Eα

disj
contains(∏

i∈I

P(Ki ⊕ OE)
ai |(∏i∈I Eai )disj

)
/Sα.

4Our definition looks different from [MYZ, §§2.4.1, 2.4.2]. This is due to a dualization,
cf. Lemma 3.4.2.
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Definition 3.1.1 (I. Mirković).

(a) Mirković compactified zastava MirZα
K is defined as the closure of(∏

i∈I

P(Ki ⊕ OE)
ai |(∏i∈I Eai )disj

)
/Sα

in PVα
K (with the reduced closed subscheme structure).

(b) The upper (resp. lower) boundary ∂up
MirZα

K (resp. ∂low
MirZα

K) is de-

fined as the intersection MirZα
K ∩ PV

α,up
K (resp. MirZα

K ∩ PVα
K,low).

(c) Mirković zastava MirZα
K is defined as the open subscheme in MirZα

K

obtained by removing the upper boundary ∂up
MirZα

K.

(d) Mirković open zastava Mir
◦
Zα
K is defined as the open subscheme in MirZα

K

obtained by further removing the lower boundary ∂low
MirZα

K.

Returning to the usual compactified zastava (Definition 2.2.1), we set

(3.1.2) Ki := K−α∨i .

Then the factorization property of zastava along with Proposition 2.3.1(a)

gives rise to a canonical isomorphism

Zα
K|Eα

disj

∼=
(∏
i∈I

P(Ki ⊕ OE)
ai |(∏i∈I Eai )disj

)
/Sα.

Thus we obtain a birational isomorphism Θ◦ : MirZα
K

∼��� Zα
K.

Theorem 3.1.2 (I. Mirković, [MYZ, 2.4.6]). The birational isomorphism

Θ◦ extends to a regular isomorphism Θ: MirZα
K

∼−−→ (Zα
K)red with the compact-

ified zastava equipped with the reduced scheme structure. Moreover, Θ restricts

to the same named isomorphisms MirZα
K

∼−−→ (Zα
K)red and also Mir

◦
Zα
K

∼−−→
◦
Zα
K.

Proof. For the readers’ convenience we sketch a proof. We consider a

twisted version GrBD,K of the Beilinson-Drinfeld Grassmannian: the mod-

uli space of |α|-tuples of points in E, and G-bundles FG on E equipped with

a rational isomorphism σ : FG
∼��� IndGTKT regular away from the above |α|-

tuple. The product of symmetric groups Sα ⊂ S|α| acts on GrBD,K, and

we denote by GrαBD,K the categorical quotient (partially symmetrized twisted

Beilinson-Drinfeld Grassmannian). The generically transversal generalized B-

and twisted U−-structures in the data of zastava define a generic isomorphism

FG
∼��� IndGTKT ; this way we obtain a closed embedding Zα

K ↪→ GrαBD,K.

We consider the corresponding closed embedding of the T -fixed point sub-

schemes (Zα
K)T ↪→ (GrαBD,K)T . One can construct an isomorphism (Zα

K)T 	⊔
β+γ=α Eβ ×Eγ . Furthermore, one can identify the restriction of the ample

determinant line bundle L on GrαBD,K to the connected component Eβ×Eγ ⊂
(Zα

K)T with the line bundle p∗
(
K−β

(
−
∑

i∈I Δ
β
ii +

∑
h∈Q1

Δβ
o(h) i(h)

))
, cf.

[MYZ, Proposition 2.4.1].
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Now consider the restrictions q∗L → q∗
(
L|Zα

K

)
→ q∗

(
L|(Zα

K
)T

)
, where

q : GrαBD,K → Eα is the natural projection. Next, q∗L → q∗
(
L|(Zα

K
)T

)
is

surjective since it equals another composition of q∗L → q∗
(
L|(GrαBD,K)T

)
→

q∗
(
L|(Zα

K
)T

)
that is surjective e.g. by [Z]. Hence restriction r0 : q∗

(
L|Zα

K

)
→

q∗
(
L|(Zα

K
)T

)
is surjective as well.

The restriction of q to Zα
K is the factorization morphism πα. By factoriza-

tion, a general fiber of πα is isomorphic to a product of projective lines, and

the restriction of L to a general fiber is isomorphic to the exterior product

of line bundles OP1(1). Hence the restriction r0 to the T -fixed points is an

isomorphism over the generic point of Eα. If the coherent sheaf q∗

(
L|Zα

K

)
were torsion free, r0 would be injective, and hence an isomorphism. How-

ever, the direct image q∗
(
L|Zα

K

)
does have torsion (essentially due to the

nonreducedness of the compactified zastava, cf. Remark 2.2.2).

We denote by T0 ⊂ q∗

(
L|Zα

K

)
the torsion subsheaf. We impose the rela-

tions T0 on the image of the projective embedding of Zα
K into P(q∗L). The

resulting closed subscheme of Zα
K is denoted (1)Zα

K. The fixed point sub-

schemes ((1)Zα
K)T and (Zα

K)T coincide since the latter one is reduced. Hence

the restriction r1 : q∗
(
L|(1)Zα

K

)
→ q∗

(
L|(Zα

K
)T

)
is surjective. We denote by

T1 ⊂ q∗

(
L|(1)Zα

K

)
the torsion subsheaf. We impose the relations T1 on the

image of the projective embedding of (1)Zα
K into P(q∗L). The resulting closed

subscheme of (1)Zα
K is denoted (2)Zα

K.

Continuing like this we obtain a chain of closed subschemes

Zα
K ⊃ (1)Zα

K ⊃ (2)Zα
K ⊃ · · · .

By the noetherian property of Zα
K this chain stabilizes with certain closed

subscheme to be denoted (∞)Zα
K ⊂ Zα

K. If this subscheme is not reduced,

we apply the above procedure to (1)Z
α
K :=

(
(∞)Zα

K

)
red

to obtain its closed

subscheme
(∞)
(1) Zα

K. Continuing like this we obtain a chain of closed subschemes

(∞)Zα
K ⊃ (∞)

(1) Zα
K ⊃ (∞)

(2) Zα
K ⊃ · · · .

By the noetherian property of (∞)Zα
K this chain stabilizes with certain re-

duced closed subscheme to be denoted
(∞)
(∞)Z

α
K ⊂ Zα

K. Since
(∞)
(∞)Z

α
K and Zα

K

coincide over the generic point of Eα, the subscheme
(∞)
(∞)Z

α
K must coincide

with (Zα
K)red. The restriction morphism r∞ : q∗

(
L|(∞)

(∞)
Zα

K

)
→ q∗

(
L|(Zα

K
)T

)
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is surjective. By construction, q∗

(
L|(∞)

(∞)
Zα

K

)
is torsion free, so r∞ is an iso-

morphism. Thus
(∞)
(∞)Z

α
K is embedded into PVα

K, and must coincide there with

the closure of its generic fiber, i.e. with MirZα
K. �

3.2. Example of type A1 for trivial K à la Mirković. Recall the setup

and notation of §2.3. We assume K is trivial and denote Za
K by Za for short.

The argument in the proof of Proposition 2.3.1(a) defines an embedding of Za

into the symmetrized version GrSL(2),E(a) of Beilinson-Drinfeld Grassmannian

of G = SL(2) of degree a, cf. [Gai, §4, §7.2]. We consider the determinant

(relatively very ample) line bundle L on GrSL(2),E(a) and its restriction to Za.

The projection Za → E(a) is denoted by πa. We claim that there is a natural

isomorphism

(πa
∗L)

∨ 	
⊕

b+c=a

q∗

(
p∗(OE(b)(Δb)

)
(Δb,c)

)
(notation of §3.1). Indeed, let (Za)T be the fixed point subscheme of Za.

Then (Za)T =
⊔

b+c=a E
(b) × E(c): to Db ∈ E(b), Dc ∈ E(c) we associate the

a-dimensional vector subspace

VDb,Dc
:= OE(Db)/OE ⊕ OE(−Db)/OE(−Db −Dc)

⊂ (OE(D)/OE)⊕ (OE/OE(−D))

(notation of the proof of Proposition 2.3.1(a)) and denote the corresponding

rank 2 vector bundle on E by Vω∨

F . The restriction to fixed points induces an

isomorphism πa
∗L

∼−−→ πa
∗(L|(Za)T ), see e.g. [MYZ, §2.4]. The fiber LVω∨

F
is

det−1RΓ(E,Vω∨

F ) by definition, so that the fiber LVDb,Dc
equals

det−1H0
(
E,OE(Db)/OE

)
⊗ det−1H0

(
E,OE(−Db)/OE(−Db −Dc)

)
⊗ detH0

(
E,OE/OE(−Db −Dc)

)
= det2H0

(
E,OE/OE(−Db)

)
(we are making use of the trivialization of ωE in Remark 2.2.5 and of the Serre

duality to identify det−1 H0(D,OD(D)) with detH0(D,OD)). The latter line

is canonically isomorphic to the fiber of ω2
E(b) at Db ∈ E(b). We conclude

that πa
∗L =

⊕
b+c=a q∗(p

∗ω2
E(b)). Furthermore, the dual vector bundle of

q∗(p
∗ω2

E(b)) is q∗
(
p∗ω−2

E(b)(Δ
b,c)

)
by the relative Grothendieck-Serre duality

for q since Δb,c is the ramification divisor of q. Finally, ω−2
E(b) = OE(b)(Δb).

3.3. Example of type A2 for trivial K à la Mirković. In this section

I consists of two vertices i, j connected by a single arrow i → j, and α =

αi+αj . We assume K is trivial and denote Zα
K by Zα for short. We consider

the embedding of Zα into the Beilinson-Drinfeld Grassmannian GrSL(3),E2 of

degree 2, cf. [Gai, §4, §7.2]. We consider the determinant (relatively very
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ample) line bundle L on GrSL(3),E2 and its restriction to Zα. The projection

Zα → E × E is denoted by πα. We have

(πα
∗L)

∨ = O⊕3
E×E ⊕ OE×E(−Δij).

Indeed, let (Zα)T be the fixed point subscheme of Zα. Then (Zα)T is isomor-

phic to the disjoint union of 4 copies of E × E. Namely, let v1, v2, v3 denote

the standard basis in the tautological representation of SL(3) (so that T acts

diagonally). Let us think of points of Zα ⊂ GrSL(3),E2 as of vector bundles

V on E identified with OEv1 ⊕ OEv2 ⊕ OEv3 away from points xi, xj ∈ E.

Then: the first copy of E×E consists of V = OEv1⊕OEv2⊕OEv3; the second

copy of E ×E consists of V = OE(xi)v1 ⊕OE(−xi)v2 ⊕OEv3; the third copy

of E × E consists of V = OEv1 ⊕ OE(xj)v2 ⊕ OE(−xj)v3; the fourth copy of

E × E consists of V = OE(xi)v1 ⊕ OE(xj − xi)v2 ⊕ OE(−xj)v3.

The restriction to fixed points induces an isomorphism πα
∗L

∼−−→
πα
∗ (L|(Zα)T ), see e.g. [MYZ, §2.4]. The fiber LV is det−1RΓ(E,V) by def-

inition. The restriction of L to the first three copies of E ×E is trivial, while

the restriction of L to the fourth copy of E × E is OE×E(Δij).

3.4. Example of type A1 for regular K. We consider the situation

complementary to the one of §3.2: we assume that K2 is nontrivial. The

open elliptic zastava of degree a is the moduli space
◦
Za
K of line subbundles

L ⊂ K ⊕ K−1 of degree −a. In other words,
◦
Za
K is the moduli space of

triples (L, s ∈ H0(E,L−1K), t ∈ H0(E,L−1K−1)) such that s and t have no

common zeros, viewed up to common rescaling. The factorization morphism

πa :
◦
Za
K → E(a) associates to (L, s, t) the zero divisor D of s. We set t′ :=

t/s ∈ H0(E,K−2(D)), a regular section that does not vanish on D. We can

also view
◦
Za
K as the moduli space of triples (L, D, t′). We have an embedding

Υt′ =

(
1 t′

0 1

)
: K−1 ⊕K(−D) → K−1 ⊕K.

We consider the determinant line bundle L on
◦
Za
K whose fiber at (L, D, t′) is

det−1 H0(E,Coker(Υt′)). Consider the dual map Υ∨
t′ : K

−1⊕K ↪→ K−1(D)⊕
K. Then H0(E,Coker(Υt′)) gets identified with an a-dimensional subspace in

HD := H0
(
E, (K−1(D)/K−1)⊕ (K/K(−D))

)
. This defines an embedding of

◦
Za
K into a relative Grassmannian over E(a). The closure of

◦
Za
K in this relative

Grassmannian is nothing but the compactified zastava Za
K. The determinant

line bundle L extends to the same named line bundle on Za
K. The fixed point

subscheme
(
Za

K

)T
(with respect to the Cartan torus T ⊂ SL(2)) is finite over

E(a), and the restriction morphism

(3.4.1) πa
∗L → πa

∗(L|(Za
K)

T )

is an isomorphism.
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We set Va
K−2 =

⊕
b+c=a q∗

(
p∗
(
(K−2)(b)

(
Δb

))(
Δb,c

))
(notation of §3.2).

We also consider a line bundle M on E(a) with the fiber det−1 H0(D,K|D)

over D ∈ E(a). We will need the following well known result.

Lemma 3.4.1. For any b > 0, there is an isomorphism ω−2
E(b) 	 OE(b)(Δb).

Proof. We were unable to locate a reference, so we give a proof. Let

p : Eb → E(b) be the natural symmetrization morphism. We have a natu-

ral map ω−1
Eb → p∗ω−1

E(b) vanishing on the union of diagonals in Eb. Thus,

if v is a global nonvanishing differential on E, then s = p∗1 ∧ · · · ∧ p∗bv can

be viewed as a global section of p∗ω−1
E(b) (here pr : E

b → E is the projection

to the r-th factor). A local computation shows that s2 comes from a global

section of ω−2
E(b) vanishing on Δb. This gives the required isomorphism. �

Now we are in a position to identify the direct image of the determinant

line bundle.

Lemma 3.4.2. We have an isomorphism πa
∗(L|(Za

K)
T ) 	 M⊗

(
Va

K−2

)∨
.

Proof. For every splitting D = Db +Dc into the sum of effective divisors

of degrees b, c, we have a T -fixed point in Za
K corresponding to the subspace

H0
(
E, (K−1(Db)/K

−1)⊕ (K(−Db)/K(−D))
)

⊂ H0
(
E, (K−1(D)/K−1)⊕ (K/K(−D))

)
= HD.

This gives rise to an isomorphism q̃ :
⊔

b+c=a E
(b) × E(c) ∼−−→

(
Za

K

)T
, where

πaq̃ = q.

In order to calculate q̃∗L, note that by the Serre duality on Db we have

H0(E,K−1(Db)/K
−1) = H0(Db,K

−1(Db)|Db
) 	 H0(Db,ωDb

⊗K(−Db)|Db
)∨.

Furthermore, by adjunction we have ωDb
	 ωE(Db)|Db

	 OE(Db)|Db
. Thus

we get a natural isomorphism det−1H0(E,K−1(Db)/K
−1)	detH0(Db,K|Db

).

The exact sequence

0 → K(−Db)/K(−D) → K/K(−D) → K/K(−Db) → 0

gives rise to an isomorphism

det−1H0(E,K(−Db)/K(−D)) 	 det−1H0(D,K|D)⊗ detH0(Db,K|Db
).

Hence we deduce an isomorphism

q̃∗
L|(Db,Dc) 	 det−1H0(D,K|D)⊗ det2H0(Db,K|Db

).

In other words,

q̃∗L 	 p∗ det2�E(b)∗�
∗
EK⊗ q∗M,

where �E(b) : Db → E(b) is the universal divisor, and �E : Db → E is the

natural projection, while M = det−1 �E(a)∗�
∗
EK.
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From the natural isomorphisms

det�E(b)∗�
∗
EK 	 NmDb/E(b)(�∗

EK)⊗ det�E(b)∗ODb
	 K(b) ⊗ ωE(b) ,

we deduce an isomorphism q̃∗L 	 q∗M ⊗ p∗((K2)(b) ⊗ ω2
E(b)

)
. Summing up

over all decompositions b+ c = a we get an isomorphism

πa
∗(L|(Za

K)
T ) 	 M⊗

⊕
b+c=a

q∗p
∗((K2)(b) ⊗ ω2

E(b)

)
.

Using relative Serre duality for q and an isomorphism of the relative dualizing

sheaf for q with OE(b)×E(c)(Δb,c) we get an isomorphism(
q∗p

∗((K2)(b) ⊗ ω2
E(b)

))∨
	 q∗p

∗((K−2)(b) ⊗ ω−2
E(b)

)(
Δb,c

)
.

Finally, using the isomorphism ω−2
E(b) 	 OE(b)(Δb) of Lemma 3.4.1, we identify

the RHS with the corresponding summand in Va
K−2 .

The lemma is proved. �
3.4.1. Identification of Za

K with Mirković zastava. From Lemma

3.4.2 we obtain an embedding of Za
K into P

(
M∨ ⊗ Va

K−2

)
	 P

(
Va

K−2

)
. We

want to calculate this morphism explicitly away from the diagonals.

First, we find an explicit inverse of the isomorphism (3.4.1) over an étale

open in E(a). In particular, we will work away from the diagonals. Also,

we consider the pullback of the corresponding schemes and vector bundles to

Ea (but we will keep the same notations for the base change from E(a) to

Ea). Let D = w1 + · · · + wa with all the points distinct. For every subset

ℵ ⊂ {1, . . . , a} we set

Dℵ :=
∑
r∈ℵ

wr, Hℵ := H0
(
E, (K−1(Dℵ)/K

−1)⊕ (K(−Dℵ)/K(−D))
)
⊂ HD.

To Hℵ we associate a section θℵ of the determinant line bundle on the Grass-

mannian Gr(a,HD) vanishing precisely over the set of subspaces that are not

transversal to Hℵ. Namely, for a subspace S ⊂ HD, the value of θℵ at S is

the determinant of the composition of natural maps S → HD → HD/Hℵ.

Thus θℵ is a section of the line bundle with fibers det(HD/Hℵ) ⊗ det−1(S).

Note that det(HD) is canonically trivialized due to Serre duality between

H0(D,K−1(D)|D) and H0(D,K|D), so we can view θℵ as a global section of

L⊗�∗
E(a) det

−1(Hℵ) on Za
K.

Note thatHℵ andHג are transversal iff ג = {1, . . . , a}�ℵ. Thus θℵ(Hג) = 0

for ג �= {1, . . . , a} � ℵ. On the other hand, θℵ(H{1,...,a}�ℵ) ∈ L|H{1,...,a}�ℵ ⊗
det−1(Hℵ) is the determinant of the isomorphism H{1,...,a}�ℵ

∼−−→ HD/Hℵ.
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Hence the composition⊕
ℵ⊂{1,...,a}

det(Hℵ)
(θℵ)−−−→ �E(a)∗

(
L|Za

K

)
→

⊕
ℵ⊂{1,...,a}

det−1(Hℵ)

is an isomorphism that is a direct sum of the isomorphisms

θℵ(H{1,...,a}�ℵ) : det(Hℵ) → det−1(Hℵ).

It follows that the canonical embedding of Za
K into the projectivization of(

�E(a)∗
(
L|Za

K

))∨
	
⊕

ℵ⊂{1,...,a} det(Hℵ) is the morphism

Za
K

(θℵ)−−−→ P

⎛⎝ ⊕
ℵ⊂{1,...,a}

det−1(Hℵ)

⎞⎠ (
θ−1
{1,...,a}�ℵ(Hℵ)

)
−−−−−−−−−−−−→ P

⎛⎝ ⊕
ℵ⊂{1,...,a}

det(Hℵ)

⎞⎠
(where we use the duality θ∗ℵ(H{1,...,a}�ℵ) = θ{1,...,a}�ℵ(Hℵ)).

3.4.2. Explicit form of the identification of Lemma 3.4.2. Now we

are in a position to calculate the isomorphism of Lemma 3.4.2 over a point

(w1, . . . , wa) ∈ Ea. This isomorphism takes form

(3.4.2)
⊕

ℵ⊂{1,...,a}
det−1(Hℵ) 	

(
a⊗

r=1

K−1|wr

)
⊗

⊕
ℵ⊂{1,...,a}

(⊗
r∈ℵ

K2|wr

)
.

Note that Hℵ =
⊕

r∈ℵ K
−1(wr)|wr

⊕
⊕

r′ �∈ℵ K|wr′ , so

det−1(Hℵ) 	
(⊗

r∈ℵ
K(−wr)|wr

)
⊗

⎛⎝⊗
r′ �∈ℵ

K−1|wr′

⎞⎠
	
(

a⊗
r=1

K−1|wr

)
⊗
(⊗

r∈ℵ
K2(−wr)|wr

)
.

(3.4.3)

One can check that the isomorphism (3.4.2) is obtained from (3.4.3) by taking

the direct sum over ℵ ⊂ {1, . . . , a} and making use of the trivializations of

ωwr
	 ωE(wr)|wr

	 OE(wr)|wr
. Hence the dual isomorphism to (3.4.2) is

induced by the natural isomorphisms

det(Hℵ) 	
(⊗

r∈ℵ
K−1|wr

)
⊗

⎛⎝⊗
r′ �∈ℵ

K|wr′

⎞⎠ 	
(

a⊗
r=1

K|wr

)
⊗
(⊗

r∈ℵ
K−2|wr

)
.

Thus the image of a point ϕ = (L, s, t) ∈
◦
Za
K in P

(⊕
ℵ⊂{1,...,a}

⊗
r∈ℵ K

−2|wr

)
is obtained by first taking the point

(
θ{1,...,a}�ℵ(ϕ)

)
∈ P

⎛⎝ ⊕
ℵ⊂{1,...,a}

−1

det(H{1,...,a}�ℵ)

⎞⎠
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and then applying the natural isomorphisms det−1(H{1,...,a}�ℵ)
∼−−→ det(Hℵ)

to each component.

Finally, let us calculate the values of θ{1,...,a}�ℵ at a point ϕ = (L, s, t) ∈
◦
Za
K. By definition, the corresponding point of the Grassmannian Gr(a,HD)

is the image of the map

H0(D,K|D)
(t′,1)−−−→ H0(D,K−1(D)|D ⊕K|D) = HD.

Thus the value of θ{1,...,a}�ℵ is given by the determinant of the composition

H0(D,K|D)
(t′,1)−−−→ HD → HD/H{1,...,a}�ℵ 	

⊕
r∈ℵ

K−1|wr
⊕
⊕
r′ �∈ℵ

K|wr′ ,

that is equal to

θ{1,...,a}�ℵ(t
′) =

∏
r∈ℵ

Reswr
(t′) ∈

⊗
r∈ℵ

K−2|wr

	 det−1H0(D,K|D)⊗ det−1(H{1,...,a}�ℵ).

Therefore, the corresponding point in the projectivization of⊕
ℵ⊂{1,...,a}

⊗
r∈ℵ

K−2|wr

(i.e. in Mir
◦
Za
K|E(a)�Δ) is the point with the homogeneous coordinates(∏

r∈ℵ
Reswr

(t′)

)
ℵ⊂{1,...,a}

.

It is easy to see that this is nothing but the image under Segre embedding of

the point

(3.4.4)
(
1 : Resw1

(t′)
)
, . . . ,

(
1 : Reswa

(t′)
)
.

3.5. Coulomb zastava. In this section we modify the construction of

§3.1. In Theorem 4.2.1 we will show that the resulting zastava space is iso-

morphic to the elliptic Coulomb branch of a quiver gauge theory (for the

Dynkin quiver Q of G) when all the line bundles Ki are trivial.

We define the factorizable vector bundle Uα
K on Eα as

(3.5.1) U
α
K :=

⊕
β+γ=α

q∗

⎛⎝p∗Kβ ⊗ OEβ×Eγ

( ∑
h∈Q1

Δβ,γ
o(h) i(h)

)⎞⎠ .

It contains two codimension 1 subbundles: Uα
K,low and U

α,up
K , where in the

above direct sum we omit summands corresponding to β = 0 (resp. γ = 0).

As in §3.1, PUα
K|Eα

disj
contains

(∏
i∈I P(Ki ⊕ OE)

ai |(∏i∈I Eai )disj

)
/Sα.
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Definition 3.5.1.

(a) Coulomb compactified zastava CZα
K is defined as the closure of(∏

i∈I

P(Ki ⊕ OE)
ai |(∏i∈I Eai )disj

)
/Sα

in PUα
K (with the reduced closed subscheme structure).

(b) The upper (resp. lower) boundary ∂up
CZα

K (resp. ∂low
CZα

K) is defined

as the intersection CZα
K ∩ PU

α,up
K (resp. CZα

K ∩ PUα
K,low).

(c) Coulomb zastava CZα
K is defined as the open subscheme in CZα

K ob-

tained by removing the upper boundary ∂up
CZα

K.

(d) Coulomb open zastava C
◦
Zα
K is defined as the open subscheme in CZα

K

obtained by further removing the lower boundary ∂low
CZα

K.

3.6. Example of type A1 à la Coulomb. Inside the symmetrized ver-

sion GrGL(2),E(a) of Beilinson-Drinfeld Grassmannian of G = GL(2) of de-

gree a, we consider the moduli space Ma of locally free rank 2 subsheaves

W ⊂ OEv1 ⊕ OEv2 such that length
(
(OEv1 ⊕ OEv2)/W

)
= a. We consider

the determinant (relatively very ample) line bundle L on GrGL(2),E(a) and its

restriction to Ma. The projection Ma → E(a) is denoted by πa. We have

(πa
∗L)

∨ = ω−1
E(a) ⊗

⊕
b+c=a

q∗OE(b)×E(c)

(notation of §3.1). Indeed, let T ⊂ GL(2) be the diagonal Cartan torus in the

basis v1, v2 of C2, and let (Ma)T be the fixed point subscheme of Ma. Then

(Ma)T =
⊔

b+c=a E
(b) × E(c): to Db ∈ E(b), Dc ∈ E(c) we associate

WDb,Dc
:= OE(−Db)v1 ⊕ OE(−Dc)v2 ⊂ OEv1 ⊕ OEv2.

The restriction to fixed points induces an isomorphism πa
∗L

∼−−→ πa
∗(L|(Ma)T ).

The fiber LW is det−1RΓ(E,W) by definition, so that the fiber LWDb,Dc
=

det(OE/OE(−Db)) ⊗ det(OE/OE(−Dc)). The latter line is canonically iso-

morphic to the fiber of ωE(b) �ωE(c) at (Db, Dc) ∈ E(b) ×E(c). We conclude

that πa
∗L =

⊕
b+c=a q∗(ωE(b)×E(c)). Furthermore, the dual vector bundle of

q∗(ωE(b)×E(c)) is q∗
(
ω−1

E(b)×E(c)(Δ
b,c)

)
by the relative Grothendieck-Serre du-

ality for q since Δb,c is the ramification divisor of q. Finally, ω−1
E(b)×E(c)(Δ

b,c)=

q∗ω−1
E(a) , and we are done by the projection formula.

Generalizing the above example, for a line bundle K on E of degree 0,

we consider the moduli space Ma
K of locally free rank 2 subsheaves W ⊂

K⊕K−1 such that length
(
(K⊕K−1)/W

)
= a. The same argument as above

provides an isomorphism CZa
K 	 Ma

K. Here the Dynkin graph consists of

the unique vertex i, and in the definition of CZa
K we set Ki = K−α∨ = K−2.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

206 M. FINKELBERG, M. MATVIICHUK, AND A. POLISHCHUK

Furthermore, let
◦
Ma

K ⊂ Ma
K be the open subspace formed by all W ⊂ K ⊕

K−1 transversal to both K and K−1. Then the isomorphism CZa
K 	 Ma

K

restricts to an isomorphism C
◦
Za
K 	

◦
Ma

K. Finally, the argument in the proof

of Proposition 2.3.1(b) establishes an isomorphism

(3.6.1) C
◦
Za
K 	

◦
Ma

K 	 Hilbatr(
◦
SK−2).

3.7. Example of type A2 à la Coulomb. In this section I consists of

two vertices i, j connected by a single arrow i → j, and α = αi + αj . Then

U
α
K = OE � OE ⊕ (Ki � OE)(Δij)⊕ OE � Kj ⊕Ki � Kj ,

a 4-dimensional vector bundle on E ×E. The Coulomb compactified zastava
CZα

K ⊂ PUα
K is the zero locus of the section s of

Sym2(Uα
K)∨ ⊗

(
(Ki � Kj)(Δij)

)
defined as follows. First, we set

′
U

α
K := OE �OE ⊕Ki �OE ⊕OE �Kj ⊕Ki �Kj = (OE ⊕Ki)� (OE ⊕Kj).

Then Sym2(′Uα
K)∨ ⊗ (Ki � Kj) has a canonical section σ defined as follows.

Let wi, wj be local nonvanishing sections of OE , and let ui, uj be local non-

vanishing sections of K−1
i ,K−1

j . Then

σ =
(
(wi � wj) · (ui � uj)− (wi � uj) · (ui � wj)

)
⊗ (w−1

i u−1
i � w−1

j u−1
j ).

We have a tautological embedding

Sym2(′Uα
K)∨ ⊗ (Ki � Kj) ↪→ Sym2(Uα

K)∨ ⊗
(
(Ki � Kj)(Δij)

)
(arising from OE×E ↪→ OE×E(Δij)), and s is defined as the image of σ under

this embedding.

Thus the family CZα
K ⊂ PUα

K → E × E has fibers P1 × P1 ⊂ P3 (smooth

quadrics) away from the diagonal Δij ⊂ E×E that degenerate to P2∪P1 P2 ⊂
P3 (singular reducible quadrics) over the diagonal Δij .

We choose an analytic neighbourhood W of a point e ∈ E with coordinate

w, and trivialize the line bundles(
(K−1

i � OW )(−Δij)
)
|W×W ,

(
OW � K−1

j

)
|W×W ,

(
K−1

i ⊗K−1
j

)
|W×W

compatibly. We denote the coordinates along fibers of these trivialized line

bundles by yi, yj , yij respectively. Then C
◦
Zα
K|W×W ⊂ W ×W ×A3 is cut out

by a single equation yiyj − yij(w1 − w2) = 0 and an open condition yij �= 0.
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4. Elliptic Coulomb branch of a quiver gauge theory

In this section we discuss the elliptic analogue of the construction [BFN1]

of the Coulomb branch of a gauge theory. This construction made use of

equivariant Borel-Moore homology of a certain variety of triples, and we re-

place the Borel-Moore homology with its elliptic version. The results of this

section are not used in the rest of the paper, and serve as a motivation only.

We consider a quiver Q = (Q0, Q1) with the set of vertices Q0 and the set of

arrows Q1. We use the following notation for the Laurent series field and the

Taylor series ring: F = C((t)) ⊃ C�t� = O.

4.1. Basics. Let V = ⊕i∈Q0
Vi, W = ⊕i∈Q0

Wi be finite dimensional Q0-

graded complex vector spaces. The group G = GL(V ) =
∏

i∈Q0
GL(Vi) acts

naturally on N =
⊕

i∈Q0
Hom(Wi, Vi) ⊕

⊕
(i→j)∈Q1

Hom(Vi, Vj). The con-

struction of [BFN1, §2(i)] associates to this representation of G the variety of

triples R contained in an infinite rank vector bundle T over GrG. We consider

the equivariant elliptic Borel-Moore homology ring HGO

e		 (R).

A few words about the latter notion are in order. A theory of G-equivariant

elliptic cohomology with values in quasicoherent sheaves of algebras over the

moduli space of semistable G-bundles over E was proposed in [Gro, GKV].

After the proposal of [Gro,GKV], quite a few foundational papers appeared

establishing the basic properties of equivariant elliptic cohomology. We will

use [Gan] as a reference. For one thing, we restrict ourselves to a product

of general linear groups G since the centralizers of commuting pairs in G are

connected, and the base change in equivariant elliptic cohomology holds true

[Gan, Theorem 4.6, Corollary 4.10].

Now the equivariant elliptic Borel-Moore homology HGO

e		 (X) is defined as

W -invariants in the Cartan torus equivariant elliptic Borel-Moore homology,

and these in turn are defined by descent from the usual equivariant Borel-

Moore homology or the equivariant homological K-theory as in [Gan, §3.3].
The details of the construction are to appear in a forthcoming work of I. Pe-

runov and A. Prikhodko.

We set ai = dimVi, so that α =
∑

i∈Q0
aiαi ∈ Λpos is a positive coroot

combination of the Kac-Moody Lie algebra g with Dynkin diagram Q. Then

the equivariant elliptic cohomology He		
GO

(pt) = OEα , where Eα =
∏

i∈I E
(ai).

The equivariant elliptic Borel-Moore homology HGO

e		 (R) is a quasicoherent

sheaf of commutative OEα -algebras by construction of [BFN1, §3]. Its relative
spectrum is denoted Me		

C = Me		
C (G,N): the elliptic Coulomb branch. By

construction, Me		
C is equipped with an affine morphism Π : Me		

C → Eα.

4.2. Compactified elliptic Coulomb branch. From now on we assume

that Q is an oriented Dynkin diagram of an almost simple simply connected
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simply laced complex algebraic group G. We also assume that W = 0. We

will denote Q0 by I to match the notation of §§2 and 3.

As in [BFN2, §3(ii)], we consider the subalgebra HGO

e		 (R
+) ⊂ HGO

e		 (R)

(homology supported over the positive part of the affine Grassmannian Gr+G ⊂
GrG), and its relative spectrum M

e		,+
C

Π−→ Eα. By construction, we have an

open embedding MC ⊂ M
e		,+
C of varieties over Eα.

As in [BFN2, Remark 3.7], we define a certain support multifiltration

F•H
GO

e		 (R
+) numbered by the monoid Λ∨

pos of nonnegative integral combi-

nations of positive roots of G. The (multi)projective spectrum of its Rees

algebra is denoted Me		
C : the compactified elliptic Coulomb branch. By con-

struction, it is equipped with a projective morphism Π : Me		
C → Eα. Also we

have an open embedding M
e		,+
C ⊂ Me		

C of varieties over Eα.

By definition,

F∑
i∈I α∨i

HGO

e		 (R
+) =

⊕
Λpos�β=

∑
biαi≤α

HGO

e		

(
R+∑

i∈I �i,bi

)
(elliptic homology of the preimage in R+ of all the fundamental GO-orbits

in Gr+G ; here �i,n stands for the n-th fundamental coweight of GL(Vi); in

particular, �i,0 = 0 and �i,ai
= (1, . . . , 1)). All the fundamental GO-orbits

in Gr+G are closed; more precisely, Gr
�i,n

GL(Vi)
∼= Gr(n, ai) (the Grassmannian of

n-dimensional subspaces in Vi). We have

He		
GL(Vi,O)

(
Gr(bi, ai)

)
= q∗(OE(bi)×E(ai−bi))

(the sheaf of elliptic cohomology on E(ai), notation of §3.1), and dually,

H
GL(Vi,O)
e		

(
Gr(bi, ai)

)
=
(
q∗(OE(bi)×E(ai−bi))

)∨
(elliptic homology). It follows that for β ≤ α and γ := α− β we have

HGO

e		 (R
+∑

i∈I �i,bi
) =

⎛⎝q∗

(
OEβ×Eγ

( ∑
h∈Q1

Δβ,γ
o(h) i(h)

))⎞⎠∨

(notation of §3.1; note that the divisor Δβ,γ
ij in Eβ ×Eγ is the pullback of the

corresponding divisor in Eα, so that the twisting and pushforward commute

by the projection formula). The twisting arises from the elliptic analogue

of [BFN1, Theorem 4.1] and localization in elliptic homology, reducing the

calculation to the toric case.

All in all, we obtain a canonical isomorphism F∑
i∈I α∨i

HGO

e		 (R
+) = (Uα)∨

(notation of §3.5, where we set Uα := Uα
K for trivial line bundles Ki = OE).

It induces a morphism Θ : Me		
C → PUα.
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Theorem 4.2.1.

(a) Θ is a closed embedding, and its image is CZα (where we set CZα :=
CZα

K for trivial line bundles Ki = OE).

(b) The isomorphism Θ : Me		
C

∼−−→ CZα restricts to the same named iso-

morphism of the open subvarieties M
e		,+
C

∼−−→ CZα.

(c) The isomorphism Θ : Me		
C

∼−−→ CZα restricts to the same named iso-

morphism of the open subvarieties Me		
C

∼−−→ C
◦
Zα.

Proof. We consider the usual equivariant Borel-Moore homology ring

HGO
∗ (R+). The argument in the proof of [BFN1, Proposition 6.8] demon-

strates that this ring is generated by
⊕

Λpos�β=
∑

biαi≤α HGO
∗

(
R+∑

i∈I �i,bi

)
. It

follows that the corresponding Rees algebra is generated by F∑
i∈I α∨i

HGO
∗ (R+).

Since the elliptic cohomology coincides with the usual cohomology locally in

the analytic topology of Eα, it follows that the Rees algebra of HGO

e		 (R
+) is

generated by F∑
i∈I α∨i

HGO

e		 (R
+). Hence Θ is a closed embedding. The im-

age of Θ over the complement to diagonals in Eα is readily identified with(∏
i∈I(E×P1)ai |(∏i∈I Eai )disj

)
/Sα. We conclude that the image of the closed

embedding Θ coincides with CZα. This completes the proof of (a), (b) and

(c) follow immediately. �

5. Reduced elliptic zastava

5.1. Poisson structure. According to §3.5, CZα
K contains an open

smooth subvariety Uα :=
(∏

i∈I P(Ki ⊕ OE)
ai |(∏i∈I Eai )disj

)
/Sα. It has a

covering Ũα :=
∏

i∈I P(Ki ⊕ OE)
ai |(∏i∈I Eai )disj , an open subvariety of the

product of the ruled surfaces Uα :=
∏

i∈I P(Ki ⊕ OE)
ai . Each ruled surface

P(Ki ⊕ OE) contains an open subvariety
◦
SKi

(notation of §2.3). The canon-

ical class of
◦
SKi

is trivial, and the trivialization is defined uniquely by our

choice of trivialization of the canonical bundle ωE , see Remark 2.2.5. In

other words,
◦
SKi

carries a canonical symplectic form ωKi
. More explicitly,

we can trivialize Ki étale locally and choose a function w on E such that dw

is the trivialization of ωE (Remark 2.2.5). Let (w, y) be the corresponding

étale local coordinates on
◦
SKi

such that y is invertible. We define the Poisson

bracket setting {y, x}Ki
= y. For this bracket we have {f(w)y, w}Ki

= f(w)y.

It follows that the brackets on the intersections of coordinate patches are all

compatible, so they give rise to a global bracket arising from a symplectic

form ΩKi
.
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Note that ΩKi
is invariant with respect to the action of C× by fiberwise

dilations. Note also that the symplectic structure on
◦
SKi

extends as a Pois-

son structure to P(Ki ⊕ OE) (vanishing along the zero and infinite sections).

Finally, the product Poisson structure on Uα is clearly Sα-invariant, so by

descent we obtain a Poisson structure on Uα, to be denoted {, }αK.

It is likely that the Poisson structure {, }αK on Uα extends as a Poisson

structure to the Coulomb compactified zastava CZα
K. However, the proof

would require the normality property of CZα
K that we do not know at the

moment. Instead we restrict to an open subset U◦
α ⊂ Uα removing the 0 and

∞ sections of the surface P(Ki ⊕ OE).

Proposition 5.1.1. The Poisson structure {, }αK on U◦
α extends to a Pois-

son structure {, }K on Coulomb open zastava C
◦
Zα
K ⊂ CZα

K. Moreover the

latter Poisson structure is symplectic.

Proof. The construction of Coulomb zastava being local, we can restrict

our consideration to CZα
K|Wα where W is an analytic open subset of E with

a global coordinate w whose differential dw coincides with the trivialization

of ωE (Remark 2.2.5); thus we fix an open analytic embedding W ↪→ A1.

We can also trivialize all the line bundles Ki|W . Combining Theorem 4.2.1

with [BFN2, Theorem 3.1] we obtain an isomorphism between C
◦
Zα
K|Wα and

◦
Zα|Wα . Here

◦
Zα → Aα is the usual open zastava studied in [BFN2]. In

particular, the smoothness of
◦
Zα implies the smoothness of C

◦
Zα
K.

In order to check that the rational Poisson structure {, }αK is symplectic

on the Coulomb open zastava, it suffices to do this over the generic points of

diagonals in Eα (equivalently, over the generic points of diagonals in Wα).

The factorization isomorphism

C
◦
Zα
K|(Eβ×Eγ)disj 	 (C

◦
Zβ
K × C

◦
Zγ
K)|(Eβ×Eγ)disj

is Poisson by construction. Hence it suffices to check the symplectic property

of the Poisson structure over the generic points of diagonals in Eβ (equiva-

lently, over the generic points of diagonals in W β) for |β| = 2.

There are 3 cases to consider. If β = αi + αj , and i, j are not connected

by an arrow, there is nothing to check. If β = αi + αj , and i, j are connected

by an arrow i → j, then the Coulomb open zastava over W β with its Poisson

structure is nothing but the restriction of the rational open zastava
◦
Zβ (for the

group SL(3)) with its Poisson structure to W β. The latter one is symplectic

e.g. by [FKMM]. More precisely, comparing (the last line of) §3.7 with e.g.

[BFN2, Remark 2.2] we get an explicit identification between the Coulomb

open zastava C
◦
Zβ
K|Wα and the rational open zastava

◦
Zβ |Wα sending {, }βK

to the standard Poisson structure on
◦
Zβ |Wα . If β = 2αi, the identification
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of §3.6 and §2.3 between C
◦
Zβ
K and the corresponding Hilbert scheme sends

{, }βK to the standard Poisson (symplectic) structure on the Hilbert scheme.

This completes the proof of the proposition. �
5.2. Hamiltonian reduction. We assume that ai > 0 for any i ∈ I.

Let T ad act on Ki via the homomorphism α∨i : T
ad → C× and the fiberwise

dilation action of C× on Ki. Clearly, this action extends to a fiberwise action

on P(Ki ⊕ OE). Furthermore, for any decomposition α = β + γ (where β =∑
i∈I biαi), the fiberwise action of T ad on Ki induces its action on Kβ and

hence on the vector bundle q∗

(
p∗Kβ ⊗ OEβ×Eγ

(∑
h∈Q1

Δβ,γ
o(h) i(h)

))
. Clearly,

the resulting actions of T ad on Uα (see §5.1) and on PUα
K|Eα

disj
are compatible.

This way C
◦
Zα
K acquires an effective Hamiltonian action of T ad.

We have the Abel-Jacobi morphisms E(ai) → Picai E and their product

AJ: Eα →
∏

i∈I Pic
ai E. We denote the composed morphism by

AJZ : C
◦
Zα
K → Eα →

∏
i∈I

Picai E.

Given a collectionD = (Di)i∈I ∈ Picai E, we define the reduced Coulomb open

zastava C
D

◦
Z

α

K as AJ−1
Z (D)/T (stack quotient, cf. Definition 2.2.4). It inherits

a Poisson structure from C
◦
Zα
K, symplectic on the smooth locus of C

D

◦
Z

α

K.

Theorem 5.2.1. For D = (Di)i∈I ∈ Picai E, the reduced open zastava

D

◦
Z

α

K is naturally isomorphic to the reduced Coulomb open zastava C
D

◦
Z

α

K′ ,

where K′
i := K−α∨i ⊗Di ⊗

⊗
h∈Q1:i=o(h) D

−1
i(h).

The proof will be given in §5.4 after some preparation. Throughout the

proof we will make use of the identification Mir
◦
Zα
K

∼=
◦
Zα
K of Theorem 3.1.2.

Thus we will compare two types of reduced zastava constructed from the

Dynkin quiver Q (as opposed to the group G). Roughly speaking the idea

of the proof is as follows. Before the reduction, both types of zastava spaces

are closures of the images of certain Segre embeddings into projective bundles

over the configuration space. The key idea is to check that after restricting

to the Abel-Jacobi fibers the two projective bundles become isomorphic up

to a twist and the Segre images correspond to each other. This identification

is based on certain calculations with line bundles over the Abel-Jacobi fibers

performed in Lemmas 5.2.3 and 5.2.4.

Note that AJ−1(D) is isomorphic to the product of projective spaces∏
i∈I P

ai−1. Hence for a sequence of integers ν = (ni)i∈I we have a line

bundle O(ν) = �i∈IOPai−1(ni) on AJ−1(D).
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Proposition 5.2.2. For any β =
∑

i∈I biαi ≤ α we set b′i := bi−
∑

j→i bj,

and β′ :=
∑

i∈I b
′
iαi. Then we have an isomorphism

q∗

⎛⎝p∗
(
Kβ

(∑
i∈I

Δβ
ii −

∑
h∈Q1

Δβ
o(h) i(h)

))(∑
i∈I

Δβ,γ
ii

)⎞⎠ ∣∣∣
AJ−1(D)

	 q∗

⎛⎝p∗K′β ⊗ OEβ×Eγ

( ∑
h∈Q1

Δβ,γ
o(h) i(h)

)⎞⎠ ∣∣∣
AJ−1(D)

⊗ O(β′).

The proposition follows from the projection formula and Lemmas 5.2.3

and 5.2.4. We denote by Xβ,γ the preimage q−1(AJ−1(D)). Its projection to

Eβ (resp. to AJ−1(D)) will be denoted by p (resp. by q). We will also need

some partial desymmetrizations of Xβ,γ . Namely, we have Eβ = E|β|/Sβ, and

we will identify E|β| with
∏

i∈I

∏bi
r=1Ei,r, whereEi,r is a copy of E. We denote

by X |β|,γ ρ−→ Xβ,γ the cartesian product Xβ,γ ×Eβ×Eγ (E|β| ×Eγ). For any

i ∈ I, r ≤ bi, the composite morphism X |β|,γ → E|β| × Eγ → Ei,r × Eα−αi

factors through ρi,r : X
|β|,γ → Xαi,α−αi ⊂ Ei,r × Eα−αi . Finally, recall the

line bundle Dβ := �i∈ID
(bi)
i on Eβ =

∏
i∈I E

(bi). Here D
(bi)
i is the descent

of D�bi
i from Ebi to E(bi).

Lemma 5.2.3.

(a) We have an isomorphism of line bundles on Xβ,γ :

φβ,γ : p
∗(Dβ)⊗ q∗O(β)

∼−−→ p∗

(
OEβ

(∑
i∈I

Δβ
ii

))
⊗ OXβ,γ

(∑
i∈I

Δβ,γ
ii

)
.

(b) We can choose a collection of isomorphisms φβ,γ in (a) satisfying the

following factorization property:

ρ∗φβ,γ =

1≤r≤bi⊗
i∈I

ρ∗i,rφαi,α−αi

away from the preimage of all the diagonals in Eα.

Proof. (a) It suffices to construct the desired isomorphism when I con-

sists of a single element. So we will write E(b), E(c), E(a) in place of Eβ, Eγ, Eα.

We denote by E
pE←− E × X

pX−→ X := X(b),(c) the projections. We con-

sider the projections of the universal divisors E
�E←− Db

�
E(b)−→ E(b) and

E
�E←− Dc

�
E(c)−→ E(c). We keep the notations Db ⊂ E × X ⊃ Dc for the

pullbacks to X of the universal divisors over E(b) and E(c). We fix a point

e ∈ E. It defines divisors Yb ⊂ E(b), Yc ⊂ E(c), Ya ⊂ E(a) formed by all the

configurations of points on E meeting e.
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We have an isomorphism of line bundles on E ×X:

(5.2.1) OE×X(Db +Dc) 	 p∗ED⊗ p∗Xq∗O(1).

More precisely, we have a canonical isomorphism

(5.2.2) τb : OE×X(Db +Dc)
∼−−→ p∗ED⊗ p∗Xq∗OE(a)(Ya).

Indeed, for any x ∈ X the restrictions of both sides to E×{x} are isomorphic.

Thus, there exists a line bundle LX on X such that OE×X(Db + Dc) =

p∗ED ⊗ p∗XLX . To determine LX we consider the restrictions to e × X and

use the canonical isomorphisms

OE×X(Db)|e×X
∼= �∗

E(b)OE(b)(Yb), OE×X(Dc)|e×X
∼= �∗

E(c)OE(c)(Yc),

q∗OE(a)(Ya) ∼= OE(b)(Yb) � OE(c)(Yc).

Since �E(b) : Db → E(b) is finite flat, we have the norm morphism

NmDb/E(b) : Pic(Db) → Pic(E(b)).

For any line bundle K on E we have an isomorphism

(5.2.3) K(b) 	 NmDb/E(b)(�∗
EK).

Indeed, we can cover E with open affine charts Ui such that U
(b)
i cover E(b),

and K|Ui
is trivial. Then we claim that both sides are given by the same

transition functions. In effect, this follows from the fact that for a regular

function u on a smooth affine curve C = Spec(A), one has

NmDC/C(b)(�∗
Cu) = u⊗n ∈ Symn(A),

where C
�C←− DC → C(b) is the universal divisor. The latter claim easily

reduces to the case when u is the coordinate on the affine line.

We denote by� : Db → X the natural projection. We have an isomorphism

(5.2.4) OX(Δ(b),(c)) 	 det�∗ODb
⊗ det−1�∗

(
OE×X(−Dc)|Db

)
.

Indeed, one can identify Δ(b),(c) with the locus where the morphism of vector

bundles on X, �∗
(
OE×X(−Dc)|Db

)
→ �∗ODb

fails to be an isomorphism.

Passing to determinants we get (5.2.4).

Recall that for any finite flat morphism f : Y → Z and a line bundle L on

Y we have an isomorphism

(5.2.5) detf∗L 	 NmY/Z(L)⊗ detf∗OY .

We have to construct an isomorphism

(5.2.6) φb,c : p
∗(D(b))⊗ q∗O(b)

∼−−→ p∗ω−2
E(b)(Δ

(b),(c)).
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Recall that p∗Ω1
E(b) 	 �∗ODb

, and hence p∗ωD(b) 	 det�∗ODb
. The triv-

ialization of ωE (see Remark 2.2.5) induces an isomorphism of OE×X(Db)|Db

and the relative canonical line bundle for � : Db → X. Hence, using (5.2.1)

along with the relative Grothendieck-Serre duality for �, we get an isomor-

phism on E ×X:

�∗
(
O(−Dc)|Db

)
	 �∗

(
(OE×X(Db)⊗ p∗ED

−1 ⊗M−1)|Db

)
	 �∗

(
(p∗ED⊗M)|Db

)∨
,

where M = p∗Xq∗O(1). Since M|Db
	 �∗q∗O(1), we get an isomorphism

det−1�∗
(
OE×X(−Dc)|Db

)
	 det

(
�∗(p

∗
ED|Db

)⊗ q∗O(1)
)

	 det�∗(p
∗
ED|Db

)⊗ q∗O(b).

Using (5.2.5), we can rewrite this as

det−1�∗
(
O(−Dc)|Db

)
	 NmDb/X(p∗ED)⊗ det�∗ODb

⊗ q∗O(b).

Plugging this into (5.2.4) we get

O(Δ(b),(c)) 	 NmDb/X(p∗ED)⊗ det2�∗ODb
⊗ q∗O(b)

	 NmDb/X(p∗ED)⊗ p∗ω2
E(b) ⊗ q∗O(b),

which gives rise to the desired isomorphism (5.2.6) by the virtue of (5.2.3).

This completes the proof of (a).

(b) The isomorphism (5.2.2) can be viewed as a way to choose a section

sD,D′ of D vanishing on D +D′ for (D,D′) ∈ X. Away from the diagonals,

writing D = w1+ · · ·+wb, we have a collection of restrictions (sD,D′ |wr
)1≤r≤b

defining an isomorphism H0(D,OE(D)|D) ∼=
⊕b

r=1D|wr
. Hence, the tensor

product of these restrictions defines an isomorphism detH0(D,OE(D)|D) ∼=⊗b
r=1 D|wr

. More precisely, away from all the diagonals, the isomorphism τb
of (5.2.2) gives rise to an isomorphism

σb : det�∗OE×X(Db)|Db

∼−−→ det�∗(p
∗
ED|Db

)⊗ q∗OE(a)(bYa).

Then over Xb,(c) (notation introduced right before Lemma 5.2.3) we have an

equality

(5.2.7) ρ∗σb =
b⊗

r=1

ρ∗rσ1.

Indeed, let us consider the pullback of τb under IdE ×ρ : E×Xb,(c) → E×X.

Away from the diagonals we have D̃b := (IdE ×ρ)−1(Db) =
⊔b

r=1 D̃b(r), where
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D̃b(r) := (IdE ×ρr)
−1(D1). Note that the projection D̃b(r) → Xb,(c) is an

isomorphism. Hence,

(IdE ×ρ)∗OE×X(Db)|D̃b(r)
∼= (IdE ×ρr)

∗OE×X(D1)|D̃b(r)
.

But for any r = 1, . . . , b we have

(IdE ×ρ)∗τb|D̃b(r)
= (IdE ×ρr)

∗τ1

(note that we can ignore Dc since we are working away from diagonals). In

effect, both sides have the same restrictions to e ∈ E.

Now ρ∗�∗OE×X(Db)|Db
decomposes into a direct sum of the line bundles

(IdE ×ρ)∗OE×X(Db)|D̃b(r)
on D̃b(r) 	 Xb,(c), so taking the determinant of

ρ∗�∗τb|Db
corresponds to taking the product of restrictions to D̃b(r) over

r = 1, . . . , b.

It follows that the isomorphisms (5.2.6) can be chosen in a factorizable

fashion away from all the diagonals, that is satisfying

ρ∗φb,c =
b⊗

r=1

ρ∗rφ1,a−1.

Indeed, we replace O(1) on AJ−1(D) ∼= Pa−1 ⊂ E(a) by the isomorphic line

bundle OE(a)(Ya)|AJ−1(D) and use the canonical isomorphism (5.2.2). Going

through the construction of isomorphisms (5.2.6) restricted to the complement

of all the diagonals, we see that each step is factorizable, the first step being

dealt with in (5.2.7). The key point in the other steps is that the base change of

the relative divisor Db over X with respect to Xb,(c) → X becomes a disjoint

union of b points. So the determinant of the push-forward decomposes as

tensor product, as well as the norm of a line bundle, etc. Note finally that

the isomorphism (5.2.4) reduces to the identity away from the diagonals.

This completes the proof of (b). �
In Lemma 5.2.4 it will be convenient to use the notation pi : E

β × Eγ →
E(bi) and qi : E

β × Eγ → E(ai) for the compositions of p,q with the projec-

tions to the respective i-th factors.

Lemma 5.2.4.

(a) We have an isomorphism of line bundles on Xβ,γ :

ψβ,γ :
⊗
i∈I

p∗
i

( ⊗
h∈Q1:o(h)=i

(
D−1

i(h)

)(bi))⊗
⊗
h∈Q1

q∗
i(h)

(
O

P
ai(h)−1(−bo(h))

)
∼−−→ OXβ,γ

(
−

∑
h∈Q1

Δβ
o(h) i(h) −

∑
h∈Q1

Δβ,γ
o(h) i(h)

)
.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

216 M. FINKELBERG, M. MATVIICHUK, AND A. POLISHCHUK

(b) We can choose a collection of isomorphisms ψβ,γ in (a) satisfying the

following factorization property:

ρ∗ψβ,γ =

1≤r≤bo(h)⊗
h∈Q1

ρ∗o(h),rψαo(h),α−αo(h)

away from the preimage of all the diagonals in Eα.

Proof. (a) It suffices to construct the desired isomorphism when I consists

of two vertices connected by an arrow as follows: i → j. We denote by

Dbi ,Dbj ,Dci ,Dcj ⊂ E×X the relative divisors pulled back from the universal

divisors over the corresponding symmetric powers of E (here X = Xβ,γ). We

denote by � : Dbi → X the natural projection: a natural projection which is

a finite flat morphism of degree bi. Similarly to (5.2.4), we have isomorphisms

OX(−Δβ
ij) 	 det−1�∗ODbi

⊗ det�∗
(
OE×X(−Dbj )|Dbi

)
	 NmDbi

/X

(
OE×X(−Dbj )|Dbi

)
,

OX(−Δβ,γ
ij ) 	 det−1�∗ODbi

⊗ det�∗
(
OE×X(−Dcj )|Dbi

)
	 NmDbi

/X

(
OE×X(−Dcj )|Dbi

)
.

Thus, we have an isomorphism

OX(−Δβ
ij −Δβ,γ

ij ) 	 NmDbi
/X

(
OE×X(−Dbj −Dcj )|Dbi

)
.

Using the isomorphism (recall the projections E
pE←− E ×X

pX−→ X)

OE×X(Dbj +Dcj ) 	 p∗EDj ⊗ p∗Xq∗O(0, 1)

together with (5.2.3), we get an isomorphism

NmDbi
/X

(
OE×X(−Dbj −Dcj )|Dbi

)
	 NmDbi

/X(p∗ED
−1
j )⊗ q∗O(0,−bi)

	 p∗((D−1
j )(bi) � OE(ci)

)
⊗ q∗O(0,−bi),

and (a) follows.

The proof of (b) is similar to the one of Lemma 5.2.3(b). It is still enough

to consider the case when I consists of two vertices connected by an arrow

i → j. We construct a factorizable collection of ψβ,γ in stages. At the first

step we note that there is an evident morphism � : Xβ,γ → Xbiαi,ciαi+(bj+cj)αj

(addition of j-colored divisors), and we choose ψβ,γ as �∗ψbiαi,ciαi+(bj+cj)αj
.

So it suffices to construct a factorizable collection of ψβ,γ for the particular

case when β is a multiple of αi.
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Next, we have a cartesian diagram

Xαi,γ
′ ρi,r←−−−− X |biαi|,γ −−−−→ Ebi × Eγ

ρ

⏐⏐� ⏐⏐�
Xbiαi,γ −−−−→ E(bi) × Eγ ,

where γ′ = γ + (bi − 1)αi. We have to choose our isomorphisms ψ so that

ρ∗ψbiαi,γ =
⊗bi

r=1 ρ
∗
i,rψαi,γ′ . To this end note thatXαi,γ

′ 	 E(c′i)×PΓ(E,Dj),

and we can take ψαi,γ′ to be the pullback of the universal section in the

space Γ
(
E × PΓ(E,Dj),Dj � O(1)

)
under the projection E(c′i) → E sending

D ∈ E(c′i) to the unique x ∈ E such that D + x ∼ Di.

The lemma is proved. �
5.3. Segre embeddings involved in the definition of zastava

spaces. Recall that both the zastava spaces we are interested in (Coulomb

and Mirković) are defined as closures of certain Serge embeddings in projec-

tive bundles over the configuration spaces. In this subsection we write down

the equations of the images of these Segre embeddings.

We redenote

Eβ p←− Eβ × Eγ q−→ Eα

by

Eβ pβ←−− Eβ × Eγ qβ

−−→ Eα

since β will vary. The ruled surface P(Ki⊕OE) → E will be denoted Pi → E.

We have the Segre embedding

(5.3.1)
(∏
i∈I

P ai
i

)
/Sα ↪→ P

(
�i∈I ((Ki ⊕ OE)

�ai)
)
/Sα.

For any vector bundle W over E we have an isomorphism P(W�a)/Sa 	
P(W(a)), where W(a) is the subsheaf of Sa-invariants in the pushforward of

W�a from Ea to E(a). Thus, the RHS of (5.3.1) is equal to P
(

�i∈I (Ki ⊕
OE)

(ai)
)
. Furthermore, we have a decomposition

�i∈I(Ki ⊕ OE)
(ai) =

⊕
β+γ=α

qβ
∗p

∗
βK

β

(recall that Kβ := �i∈IK
(bi)
i ). Thus we can rewrite the Segre map as

(5.3.2)
(∏
i∈I

P ai
i

)
/Sα ↪→ P

( ⊕
β+γ=α

qβ
∗p

∗
βK

β
)
.
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Let (wi,r)
1≤r≤ai

i∈I be a collection of distinct points of E. Then the fiber of the

RHS of (5.3.2) at the corresponding point of Eα is the projectivization of

1≤r≤ai⊗
i∈I

(Ki ⊕ OE)|wi,r
=
⊕
ℵ

⊗
(i,r)∈ℵ

Ki|wi,r
,

where the summation runs over all the subsets ℵ of the set of pairs (i, r)1≤r≤ai

i∈I .

For si,r ∈ Ki|wi,r
the Segre embedding is given by

(
(si,r, 1)

1≤r≤ai

i∈I

)
�→

1≤r≤ai⊗
i∈I

(si,r, 1) =
( ⊗
(i,r)∈ℵ

si,r
)
ℵ.

The equations cutting out the image of Segre embedding can be formulated as

a certain factorization property of the sections’ collection (sℵ). More precisely,

let us consider a morphism

qℵ : Eℵ × Eγ → Eα,
(
(wi,r)(i,r)∈ℵ, D

)
�→

∑
(i,r)∈ℵ

wi,r +D,

where β :=
∑

(i,r)∈ℵ αi, and γ := α− β. Let also pℵ : E
ℵ × Eγ → Eℵ denote

the projection. Also, for any (i, r) ∈ ℵ we consider a morphism

ρi,r : E
ℵ×Eγ→Eαi×Eα−αi ,

(
(wi,r)(i,r)∈ℵ, D

)
�→(wi,r,

∑
(j,s)∈ℵ�{(i,r)}

wj,s+D).

Note that qαi ◦ρi,r = qℵ. Then we have natural morphisms of vector bundles

κℵ : q
β
∗p

∗
βK

β ↪→ qℵ
∗p

∗
ℵ �(i,r)∈ℵ Ki = qℵ

∗
( ⊗
(i,r)∈ℵ

ρ∗i,rp
∗
αi
Ki

)
,

κℵ :
⊗

(i,r)∈ℵ
(qαi

∗ p∗
αi
Ki) ↪→

⊗
(i,r)∈ℵ

(qαi
∗ ρi,r∗ρ

∗
i,rp

∗
αi
Ki)

=
⊗

(i,r)∈ℵ
(qℵ

∗ρ
∗
i,rp

∗
αi
Ki) → qℵ

∗
( ⊗
(i,r)∈ℵ

ρ∗i,rp
∗
αi
Ki

)
.

We are finally able to state the Segre equations on the sections’ collection

(sℵ). We assume that the section s∅ corresponding to the empty subset ℵ = ∅
is identically equal to 1 (this assumption is harmless since we are working in

the projectivization.) Then the equations read

(5.3.3) κℵ(sℵ) = κℵ(
⊗

(i,r)∈ℵ
si,r).
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5.4. Proof of Theorem 5.2.1. According to Proposition 5.2.2, the

summands in Vα
K|AJ−1(D) are isomorphic to the corresponding summands in

Uα
K′ |AJ−1(D) twisted by O(β′) where β′ depends linearly on β numbering the

summand. The isomorphism is given by the tensor product of isomorphisms

φβ,γ (Lemma 5.2.3(a)) and ψβ,γ (Lemma 5.2.4(a)). Comparing with the def-

inition of T ad-action in the first paragraph of §5.2, we see that the quotients(
PVα

K|AJ−1(D)

)
/T ad and

(
PUα

K′ |AJ−1(D)

)
/T ad coincide.

It remains to check that the closures of the images of Segre embeddings

correspond to each other under the above identification. Let X◦ stand for

the open subset of AJ−1(D) defined as the complement to all the diagonals

in Eα. The factorization properties of Lemma 5.2.3(b) and Lemma 5.2.4(b)

compared with the Segre equations (5.3.3) show that the isomorphism of the

previous paragraph restricted to X◦ respects the Segre embeddings.

The theorem is proved.

6. Feigin-Odesskĭı moduli space

6.1. A symplectic moduli stack. We fix a G-bundle FG on E and a T -

bundle LT of degree −α on E. We denote by M(FG,LT ) the moduli stack of

B-structures ϕ on FG equipped with an isomorphism IndTBϕ
∼−−→ LT . It can be

upgraded to a derived stack equipped with a (0-shifted) symplectic structure.

Indeed, recall [PTVV] that both BunG and BunT (moduli stacks of G- and

T -bundles on E) carry the canonical 1-shifted symplectic structures. Further-

more, [Saf, Example 4.11] equips the correspondence BunB → BunG × BunT
with a canonical Lagrangian structure. Finally, the embeddings of stacky

points [FG] = pt/Aut(FG) → BunG and [LT ] = pt/Aut(LT ) → BunT are

equipped with the natural Lagrangian structures similarly to [HP, Theo-

rem 3.18]. We consider the homotopy fiber product

(6.1.1)

Mder(FG,LT ) −−−−→ BunB⏐⏐� ⏐⏐�
[FG]× [LT ] −−−−→ BunG × BunT .

The truncation of Mder(FG,LT ) coincides with M(FG,LT ).

Now Mder(FG,LT ) is a derived Lagrangian intersection and hence acquires

a 0-shifted symplectic structure by [PTVV], cf. a similar construction [Spa]

for the base curve of genus 0.
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6.2. Tangent spaces. For a point ϕ in Mder(FG,LT ), we denote by

tϕ � bϕ ↪→ gϕ the vector bundles on E associated with the adjoint rep-

resentations of B (clearly, tϕ is trivial). The tangent complex at the cor-

responding point FG of BunG is RΓ(E, gϕ[1]), and the tangent complex at

the corresponding point LT of BunT is RΓ(E, tϕ[1]), while the tangent com-

plexes at the corresponding stacky points [FG] and [LT ] are the truncations

τ<0RΓ(E, gϕ[1]) and τ<0RΓ(E, tϕ[1]) respectively. From (6.1.1) we deduce

the homotopy fiber square

(6.2.1)

TϕM
der(FG,LT ) −−−−→ RΓ(E, bϕ[1])⏐⏐� ⏐⏐�

τ<0RΓ(E, gϕ[1]⊕ tϕ[1]) −−−−→ RΓ(E, gϕ[1]⊕ tϕ[1]).

Hence the tangent space TϕM
der(FG,LT ) is canonically isomorphic to the

total complex

(6.2.2) TϕM
der(FG,LT ) ∼=

[
RΓ(E, bϕ[1]) → τ≥0RΓ(E, gϕ[1]⊕ tϕ[1])

]
.

Furthermore, we have an exact sequence of B-modules 0 → b → g ⊕ t →
b∨ → 0 and the corresponding exact sequence of associated vector bundles

(6.2.3) 0 → bϕ → gϕ ⊕ tϕ → b
∨
ϕ → 0.

Replacing the right column of (6.2.1) by its cone RΓ(E, b∨ϕ[1]), we can rewrite

(6.2.4) TϕM
der(FG,LT ) ∼=

[
τ≤0RΓ(E, gϕ ⊕ tϕ) → RΓ(E, b∨ϕ)

]
.

On the other hand, the exact sequence (6.2.3) is clearly selfdual, and the

Serre duality on E gives rise to a perfect pairing between the RHS of (6.2.2)

and (6.2.4). This perfect pairing on TϕM
der(FG,LT ) is nothing but the sym-

plectic structure of §6.1.
Equivalently, at a smooth point ϕ in Mder(FG,LT ), the Poisson bivector

is defined using the differential d2 of the second page of the hypercohomology

spectral sequence for the complex nϕ → gϕ → gϕ/bϕ of vector bundles on E.

Remark 6.2.1. The original definition of Feigin-Odesskĭı in [FO] is that

of the Poisson bivector on the (smooth points of) moduli stack of B-bundles

(or more generally P -bundles where P is a parabolic subgroup), which is

constructed similarly to our definition above. As we have discussed in §6.1,
this Poisson bivector is a classical shadow of the 0-shifted Poisson structure on

BunB associated with the natural Lagrangian structure on BunB → BunG ×
BunT . So the truncation of the smooth part of Mder(FG,LT ) is a symplectic

leaf of the original Feigin-Odesskĭı Poisson structure.
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6.3. Regular induced case. We consider a special case when a G-bundle

FG is induced from a degree zero T -bundle KT : FG = IndGTKT . Moreover,

we assume that KT is regular, that is, for any root α∨ ∈ R∨, the associated

line bundle Kα∨ is nontrivial. Then for any dominant weight λ∨ ∈ Λ∨+ the

corresponding vector bundle Vλ∨

F (associated to the irreducible G-module V λ∨)

canonically splits into direct sum of its weight components. In particular,

we have a projection ξλ
∨
: Vλ∨

F � Kλ∨ onto the lowest weight component

line bundle (associated to the character w0λ
∨ : T → C×). The collection of

ξλ
∨
, λ∨ ∈ Λ∨+, is subject to Plücker relations. If we act on our data by an

automorphism ofKT given by an element t ∈ T , the projection ξλ
∨
will change

to λ∨(t) · ξλ∨ , cf. Definition 2.2.1(5). Since Aut(IndGTKT ) = T by regularity

of KT (see e.g. [FMW, Proposition 3.10] and [FrMo, Theorem 4.1(i)]), the

collection of projections ξλ
∨
: Vλ∨

F � Kλ∨ subject to Plücker relations is well

defined up to the action of T .

Another piece of data in the definition of the Feigin-Odesskĭı moduli space

M(FG,LT ) is the T -bundle LT . For a fundamental weight ω∨i we consider

the associated line bundle Lω∨
i , and we set Di := L−ω∨

i ⊗ Kω∨
i . We have

Di ∈ Picai E, where α =
∑

aiαi (recall that −α is the degree of LT ). We set

D = (Di)i∈I .

We consider an open substack
◦
Mder(IndGTKT ,LT ) ⊂ Mder(IndGTKT ,LT )

given by the condition that the compositions Lλ∨ ↪→ Vλ∨

F

ξλ
∨

� Kλ∨ never van-

ish identically. Ignoring the derived structure we obtain an open substack
◦
M(IndGTKT ,LT ) ⊂ M(IndGTKT ,LT ).

Proposition 6.3.1. For a regular T -bundle KT , we have a natural iso-

morphism

D

◦
Z

α

K
∼=

◦
M(IndGTKT ,LT ).

Proof. Comparing with Definitions 2.2.1, 2.2.4, we see that the collec-

tion of projections ξλ
∨
: Vλ∨

F � Kλ∨ along with the collection of embeddings

Lλ∨ ↪→ Vλ∨

F defines a point of reduced zastava D

◦
Z

α

K. Thus we obtain a mor-

phism Υ:
◦
M(IndGTKT ,LT ) → D

◦
Z

α

K. We have to check that Υ is an isomor-

phism. To this end note that a twisted U−-structure on a G-bundle F defines a

filtration on the associated vector bundle Vλ∨

F for any dominant weight λ∨. The

successive quotients of this filtration are of the form Kμ∨ ⊗V λ∨(w0μ
∨) for the

weights μ∨ of the irreducible G-module V λ∨ . The regularity condition on KT

ensures that this filtration splits canonically, i.e. Vλ∨

F
∼=
⊕

μ∨ Kμ∨⊗V λ∨(w0μ
∨).

This collection of splittings defines a reduction of F to T ⊂ G, that is a

canonical isomorphism F ∼= IndGTKT . This construction provides a morphism

D

◦
Z

α

K →
◦
M(IndGTKT ,LT ) inverse to Υ. �
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Remark 6.3.2. The conclusion of Proposition 6.3.1 breaks down if KT

is not regular. For example, if KT is trivial, and hence FG is a trivial G-

bundle for G = SL(2), the LHS D

◦
Z

α

Ktriv
contains a point corresponding to a

line subbundle L ⊂ V in a rank 2 vector bundle V on E that is a nontrivial

extension of OE with OE . But the RHS
◦
M(IndGTKT ,LT ) does not contain

such a point.

6.4. Comparison of symplectic structures. The reduced zastava

space D

◦
Z

α

K carries a symplectic structure by Theorem 5.2.1 and Proposi-

tion 5.1.1, while the Feigin-Odesskĭı moduli space
◦
M(IndGTKT ,LT ) carries a

symplectic structure by §6.1. The rest of this Section is devoted to an iden-

tification of these two symplectic structures. Namely, let {, }K′ denote the

Poisson bracket on D

◦
Z

α

K 	 C
D

◦
Z

α

K′ defined as the Hamiltonian reduction of

the bracket of Proposition 5.1.1. Let {, }FO denote the Poisson bracket on
◦
Mder(IndGTKT ,LT ) defined in §6.1. It restricts to the same named Poisson

bracket on the smooth open locus of
◦
Mder(IndGTKT ,LT ) where the derived

structure is trivial.

Theorem 6.4.1. The isomorphism of Proposition 6.3.1 restricted to the

smooth open loci of D

◦
Z

α

K and
◦
M(IndGTKT ,LT ) takes the Poisson structure

{, }K′ to {, }FO.

Remark 6.4.2. The stack D

◦
Z

α

K can be upgraded to a derived stack

(D
◦
Z

α

K)der by its very definition (since the Abel-Jacobi morphism AJZ :
◦
Zα
K →∏

i∈I Pic
ai E is not smooth in general for rkG > 1, its level set acquires

a natural derived structure). Similarly, the stack of reduced Coulomb zas-

tava C
D

◦
Z

α

K can be upgraded to a derived stack (CD
◦
Z

α

K)der. The isomorphism

of Proposition 6.3.1 can be upgraded to an isomorphism of derived stacks

(D
◦
Z

α

K)der ∼=
◦
Mder(IndGTKT ,LT ). We also expect but cannot prove that the

isomorphism of Theorem 5.2.1 can be upgraded to an isomorphism of de-

rived stacks (D
◦
Z

α

K)der ∼= (CD
◦
Z

α

K)der. Thus we expect a symplectomorphism of

derived symplectic stacks (CD
◦
Z

α

K)der ∼=
◦
Mder(IndGTKT ,LT ).

6.5. Compatibility of reduced zastava with Levi factors. Given a

subset J ⊂ I, we denote by G ⊃ LJ ⊃ T the corresponding Levi factor. For

α =
∑

i∈I aiαi, we define αJ :=
∑

i∈J aiαi. The factorization of zastava for a

decomposition α = αJ + αI�J is a birational isomorphism
◦
Zα
K

∼���
◦
ZαJ

K ×
◦
Z

αI�J

K .

Composing with the projection onto
◦
ZαJ

K we get a rational dominant mor-

phism
◦
Zα
K ���

◦
ZαJ

K .

Note that the derived subgroup L′
J = [LJ , LJ ] is also simply con-

nected, and we can consider its zastava space
◦
ZαJ

KJ
(L′

J), cf. Remark 2.2.3. Here
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KJ := (Ki)i∈J (recall that Ki = K−α∨i ). The natural morphism
◦
ZαJ

KJ
(L′

J ) →
◦
ZαJ

K is an isomorphism, and we will use it to identify these moduli spaces.

The rational dominant morphism
◦
Zα
K ���

◦
ZαJ

KJ
(L′

J ) induces a rational dom-

inant morphism of reduced zastava

ΠZ
J : D

◦
Z

α

K ��� DJ

◦
Z

αJ

KJ
(L′

J ).

Here DJ stands for (Di)i∈J .

Furthermore, the factorization property of Coulomb zastava similarly gives

rise to a rational dominant morphism C
◦
Zα
K ��� C

◦
ZαJ

KJ
(L′

J ) that in turn gives

rise to a rational dominant morphism of reduced Coulomb zastava

ΠC
J : C

D

◦
Z

α

K ��� C
DJ

◦
Z

αJ

KJ
(L′

J ).

Both morphisms ΠZ
J , ΠC

J are Poisson by construction.

6.6. Compatibility of Feigin-Odesskĭı moduli spaces with Levi

factors. For a degree zero regular T -bundle KT and J ⊂ I we consider the

Feigin-Odesskĭı moduli stack
◦
Mder

J (IndLJ

T KT ,LT ) for the Levi factor LJ . We

have a rational dominant morphism

ΠM
J :

◦
Mder(IndGTKT ,LT ) ���

◦
Mder

J (IndLJ

T KT ,LT )

constructed as follows.

Let PJ ⊃ B denote the corresponding parabolic subgroup, and let UJ de-

note the unipotent radical of PJ . Then the coinvariants V λ∨

UJ
carry a natural

action of LJ and form an irreducible LJ -module with lowest weight w0λ
∨ (and

with highest weight wJw0λ
∨). The natural projection V λ∨ → V λ∨

UJ
gives rise to

the projection ξλ
∨

J : Vλ∨

F → Vλ∨

F,UJ
. Composing with the embedding Lλ∨ ↪→ Vλ∨

F

we obtain a morphism Lλ∨ → Vλ∨

F,UJ
. However, this morphism is not necessar-

ily an embedding of a line subbundle; in general it is only an embedding of an

invertible subsheaf. Hence in general it gives rise to a generalized B-structure

in the LJ -bundle IndLJ

T KT . Thus we obtain a morphism

ΠM
J :

◦
Mder(IndGTKT ,LT ) → Mder

J (IndLJ

T KT ,LT )

to the Drinfeld closure of
◦
Mder

J (IndLJ

T KT ,LT ). The latter closure is defined

as the open substack in the homotopy fiber product of [IndLJ

T KT ] × [LT ]

and BunBJ
over BunLJ

× BunT (cf. (6.1.1)) given by the condition that the

generalized BJ -structure is generically transversal to the tautological UJ−-

structure in IndLJ

T KT .

It remains to check that ΠM
J is dominant, i.e. gives rise to the desired ratio-

nal morphism from
◦
Mder(IndGTKT ,LT ) to

◦
Mder

J (IndLJ

T KT ,LT ). This follows

from Lemma 6.6.1(b), i.e. compatibility of ΠM
J with ΠZ

J , along with the dom-

inance property of ΠZ
J .
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Comparing with construction of Poisson structure {, }FO in §§6.1 and 6.2

we see that ΠM
J is a Poisson morphism. Indeed, we have to check that for a

smooth point ϕ ∈
◦
M(IndGTKT ,LT ) such that ΠM

J is regular at ϕ, the Poisson

bivector PJ : T
∗
ΠM

J ϕ

◦
MJ (Ind

LJ

T KT ,LT ) → TΠM
J ϕ

◦
MJ (Ind

LJ

T KT ,LT ) equals the

composition dΠM
J ◦ PI ◦ (dΠM

J )∗. To this end note that we have a natural

projection of vector bundles on E:

Ξ: gϕ � (lJ )ϕ,

and the condition that ΠM
J is regular at ϕ guarantees that Ξ(bϕ) = (bLJ

)ΠM
J ϕ

and Ξ(nϕ) = (nLJ
)ΠM

J ϕ. Moreover, under the identification (6.2.2), the dif-

ferential

dΠM
J : Tϕ

◦
M(IndGTKT ,LT ) → TΠM

J ϕ

◦
MJ (Ind

LJ

T KT ,LT )

is induced by Ξ. Furthermore, under the identification (6.2.4), dΠM
J is also

induced by Ξ, provided we identify b∨ϕ with gϕ/nϕ. The Poisson property of

ΠM
J follows.

Lemma 6.6.1. The following diagrams commute:

(a)

D

◦
Z

α

K −−−−→
ΠZ

J

DJ

◦
Z

αJ

KJ
(L′

J)⏐⏐�� �
⏐⏐�

C
D

◦
Z

α

K′
ΠC

J−−−−→ C
DJ

◦
Z

αJ

K′
J
(L′

J ),

(b)

D

◦
Z

α

K −−−−→
ΠZ

J

DJ

◦
Z

αJ

KJ
(L′

J )⏐⏐�� �
⏐⏐�

◦
M(IndGTKT ,LT )

ΠM
J−−−−→

◦
MJ (Ind

LJ

T KT ,LT ).

Proof. (a) Follows from the fact that the isomorphism of Theorem 5.2.1

is compatible with factorization.

(b) Follows from the definition of factorization isomorphism, cf. the proof

of [BDF, Proposition 3.2]. �
6.7. Proof of Theorem 6.4.1 for G = SL(2). The only vertex of the

Dynkin diagram is denoted by i. The corresponding simple root and fun-

damental weight are denoted simply by α∨ and ω∨. A regular T -bundle is

a line bundle K = Kω∨
such that Ki = K−2 = K−α∨ is nontrivial. We

fix a line bundle L of degree −a, and we set D = L−1K. A point ϕ of

D

◦
Z

a

K
∼=

◦
M(K⊕K−1,L) is represented by a short exact sequence

0 → L
(s,t)−−−→ K⊕K−1 (−t,s)−−−−→ L−1 → 0.
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The associated adjoint vector bundle has a 2-step filtration 0 ⊂ nϕ ⊂ bϕ ⊂ gϕ

with associated graded quotients nϕ 	 L2, bϕ/nϕ 	 End(L) 	 OE , gϕ/bϕ 	
L−2. It gives rise to the connecting homomorphisms

δ : H0(E,L−2) → H1(E,End(L)), H0(E,End(L)) → H1(E,L2).

If ϕ is a smooth point of
◦
M(K⊕K−1,L), then the tangent space is

Tϕ

◦
M(K⊕K−1,L) = Ker

(
H0(E,L−2) → H1(E,End(L))

)
/Cs ◦ t,

and dually the cotangent space is

T ∗
ϕ

◦
M(K⊕K−1,L) =

(
(Cs ◦ t)⊥ ⊂ H1(E,L2)

)
/H0(E,End(L)).

Also, we have a splitting

(6.7.1) H0(E,L−1K)/Cs⊕H0(E,L−1K−1)/Ct
∼−−→ Tϕ

◦
M(K⊕K−1,L),

(�, �) �→ s ◦ �− t ◦�.

Explicitly, given � ∈ Hom(L,K) and � ∈ Hom(L,K−1), we construct an

infinitesimal deformation (sε, tε) of (s, t) : L → K⊕K−1 over C[ε]/(ε2) as

sε = s+�ε : L → K, tε = t+ �ε : L → K−1.

6.7.1. Coordinates. Let D be the zero divisor of s ∈ HomE(L,K); we

assume that D is multiplicity free and we choose a numbering w1, . . . , wa of

its points. The functions w1, . . . , wa−1 :
◦
M(K⊕K−1,L) → E are defined étale

locally (and wa is determined by w1, . . . , wa−1 since the sum
∑a

r=1wr ∈ E

is fixed).

We also fix a section u of L−1K−1 with zeros disjoint from D and define

the homogeneous functions yr := t
u |wr

:
◦
M(K⊕K−1,L) → C×. Since the re-

duced zastava is a quotient by the Gm-action, only the ratios of y-coordinates

are well defined (étale locally). Alternatively, we can normalize t in such a

way that
∑a

r=1
t
u |wr

= 1, and consider the resulting functions y1, . . . , ya−1

together with w1, . . . , wa−1 as étale local coordinates on
◦
M(K ⊕ K−1,L).

The above normalization of t is possible (the sum does not vanish identi-

cally) since L−1K−1 is not isomorphic to L−1K, hence the restriction map

H0(E,L−1K−1) → Ca, t �→ t|D, is an isomorphism.

The tangent space to E(a) at D can be identified with H0(D,OE(D)|D) =

H1(E,OE → OE(D)) (the complex OE → OE(D) lives in degrees 0, 1). The

tangent vector corresponding to the infinitesimal deformation Dε equal to the

zero divisor of the section sε (considered right after (6.7.1)) is given by the 1-

cocycle (0, �s ). In other words, the corresponding element of H0(D,OE(D)|D)

is the polar part of −�
s . Note that this is the same as the polar part

of (s◦�−t◦�)
st . Thus the tangent map to the factorization morphism
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◦
M(K ⊕ K−1,L) → E(a), (s, t) �→ D, sends s ◦ � − t ◦ � to (s◦�−t◦�)|D

s′t|D ,

where s′ is the nowhere vanishing section of L−1K(−D) corresponding to s.

It means that the image of the tangent vector ∂/∂wr under the composition

Tϕ

◦
M(K⊕K−1,L) → H0(E,L−1K)/Cs

→ H0(D,L−1K|D)
1/s′|D−−−−→ H0(D,OE(D)|D)

is the principal part of the unique (up to an additive constant) rational func-

tion on E that has a simple pole with residue 1 at wr and a simple pole

with residue −1 at wa and no other poles (we use the trivialization of ωE ,

see Remark 2.2.5).

Dually, dwr is the image of (1|wr
− 1|wa

) under the composition

H0(D,OE |D)
1/s′|D−−−−→ H0(D,LK−1(D)|D)

1/t|D−−−→ H0(D,L2(D)|D)/H0(E,OE)

→ H1(E,L2)/H0(E,OE),

where the last arrow is the connecting homomorphism for the short exact

sequence

0 → L2 → L2(D) → L2(D)|D → 0.

The image of the tangent vector ∂/∂yr under the composition

(6.7.2)

Tϕ

◦
M(K⊕K−1,L) → H0(E,L−1K−1)/Ct → H0(D,L−1K−1|D)/Ct|D

1/u|D−−−−→ H0(D,OE |D)/C
t

u

∣∣∣
D

is 1|wr
− 1|wa

(mod t
u |D). Indeed, at a point of

◦
M(K ⊕ K−1,L) given by a

pair of maps (s, t) : L → K ⊕ K−1, the tangent vector ∂/∂yr is represented

by the linear term of the infinitesimal deformation (sε, tε) : L → K ⊕ K−1,

where sε = s, tε(wi) = t(wi) for i �= r, a, while tε(wr) = t(wr) + εu(wr), and

tε(wa) = t(wa) − εu(wa). Restricting this linear term to D and dividing by

u|D, we obtain 1|wr
− 1|wa

.

6.7.2. Computation of the Feigin-Odesskĭı bracket. According to

the last paragraph of §6.2, the Feigin-Odesskĭı Poisson bracket is defined us-

ing the differential d2 of the second page of the hypercohomology spectral

sequence for the complex

L2 (−t2,st,s2)−−−−−−−→ K−2 ⊕ OE ⊕K2 (s2,2st,−t2)−−−−−−−−→ L−2.
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Consider the commutative diagram

(6.7.3)

L2 (−t2,st,s2)−−−−−−−→ K−2 ⊕ OE ⊕K2 (s2,2st,−t2)−−−−−−−−→ L−2⏐⏐� ⏐⏐� ∥∥∥
L2(D)

(−t2,s′t,s′s)−−−−−−−−→ K−2(D)⊕ OE ⊕K2 (s′s,2st,−t2)−−−−−−−−→ L−2⏐⏐� ⏐⏐�(−(t|D)−2,0,0)

L2(D)|D L2(D)|D.

We set H := gϕ = K−2⊕OE ⊕K2, H′ := K−2(D)⊕OE ⊕K2. One can show

by the diagram chase that the following diagram commutes:

(6.7.4)

Ker
(
H1(E,L2) → H1(E,H)

) d2−−−−→ H0(E,L−2)/H0(E,H)!⏐⏐ s′s

!⏐⏐
Ker

(
H0(D,L2(D)|D) → H1(E,H)

)
−−−−→ H0(E,H′)/H0(E,H).

Recall that the Hamiltonian vector field hr of dwr is the image of 1|wr
−1|wa

under the composition

Ker
(
H1(E,L2) → H1(E,H)

) d2−−−−−−→ H0(E,L−2)/H0(E,H)
�⏐⏐

H0(D,OE |D)
1/s′t|D−−−−−−→ Ker

(
H0(D,L2(D)|D) → H1(E,H)

)
.

Due to commutativity of (6.7.4), we can replace this composition with

H0(E,L−2)/H0(E,H)

s′s
�⏐⏐

H0(D,OE |D)
1/s′t|D−−−−−−→ Ker

(
H0(D,L2(D)|D) → H1(E,H)

)
−−−−−−→ H0(E,H′)/H0(E,H).

It follows that hr gives a section of L−2 divisible by s, say hr = s ◦ �.

This means that in the splitting (6.7.1), hr lies in the second summand. In

particular,

{wr, wr′}FO = 0 for any r, r′.

Furthermore, one can see from (6.7.3) that � is the section of L−1K−1 taking

value t|wr
at wr and −t|wa

at wa. Composing this claim with (6.7.2) we get

{yr, xr′}FO = 0 for r �= r′, and {yr, wr}FO = yr.

The remaining brackets

{yr, yr′}FO = 0.

Indeed, we have proved that d2 sends the first summand of the splitting (6.7.1)

to the second one in the dual splitting. But the splitting is symmetric with

respect to swapping the roles of s and t (and replacing the divisor D with the
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zero divisor of t). This shows that d2 sends the second summand to the first

one, so the brackets of y-coordinates vanish.

6.7.3. Comparison with the reduced transversal Hilbert scheme.

According to Proposition 2.3.1(c), the reduced zastava is isomorphic to the re-

duced transversal Hilbert scheme DHilbatr(
◦
SK′), where K′ := K′

i = K−α∨ ⊗D.

The symplectic structure ωK′ on the surface
◦
SK′ defined in §5.1 gives rise to a

symplectic structure on the transversal Hilbert scheme and on its reduction.

The corresponding bracket is denoted {, }K′ . On the other hand, according

to (3.6.1), the (reduced) transversal Hilbert scheme is nothing but the (re-

duced) Coulomb open zastava, and this identification respects the Poisson

brackets.

To compare {, }K′ with {, }FO we match the local coordinates. We choose

a local trivialization η of K′ = K′
i = L−1K−1. We denote by p :

◦
SK′ → E

the projection. The corresponding local coordinate z on
◦
SK′ is z = ηcan/p

∗η,

where ηcan is the tautological section of p∗K′. On the étale open (
◦
SK′)a�Δ →

Hilba(
◦
SK′) we have the induced local coordinates w1, . . . , wa, z1, . . . , za. We

have {zr, wr}K′ = zr, and all the other brackets vanish.

On the reduced transversal Hilbert scheme DHilbatr(
◦
SK′) we have the con-

straint that w1 + · · · + wa is a fixed point of E. These coordinates clearly

match the same named coordinates on the reduced zastava of the previous

subsections.

Now recall that the identification of reduced zastava with the reduced

Hilbert scheme in Proposition 2.3.1(c) is obtained in the following way. Given

a point of reduced zastava represented by ϕ = (s, t) we fix an isomorphism

ς : OE(D)
∼−−→ D and consider the image of D × {1} ⊂ D × Gm under the

isomorphism

(ς · t/s)|D : D ×Gm
∼−−→ K′|D

considered up to Gm-action (K′|D stands for the total space of the line

bundle). Here we view t/s as a section of K−2(D). In fact, we can take

ς = s, so that our point corresponds to the trivialization of K′|D given by

t ∈ H0(E,L−1K−1) = H0(E,K′).

But if we use a local section u ∈ H0(E,L−1K−1) as in §6.7.1 to define the

local trivialization η above, the value of the above coordinate zr at ϕ = (s, t)

equals t/u(wr). This coincides with the value of the coordinate yr of §6.7.1
at ϕ. In other words, the identification of reduced zastava with reduced

transversal Hilbert scheme takes the (w, y)-coordinates to (w, z)-coordinates,

and the bracket {, }FO to {, }K′ .

This completes the proof of Theorem 6.4.1 for G = SL(2).
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6.8. Proof of Theorem 6.4.1 for G = SL(3). The vertices of the

Dynkin diagram are denoted by i, j. A regular T -bundle KT is specified

by the line bundles Kω∨
i and Kω∨

j such that Kα∨i = K2ω∨
i K−ω∨

j , Kα∨j =

K2ω∨
jK−ω∨

i , Kα∨i+α∨j = Kω∨
i Kω∨

j are all nontrivial. We fix line bundles Li =

Lω∨
i and Lj = Lω∨

j of degrees −ai,−aj , we set α = aiαi + ajαj and Di =

L−1
i Kω∨

i , Dj = L−1
j Kω∨

j . We set V = Vω∨
i = Kω∨

i ⊕ Kω∨
j−ω∨

i ⊕ K−ω∨
j =:

K1 ⊕ K2 ⊕ K3. A point ϕ of D

◦
Z

α

K
∼=

◦
M(IndGTKT ,LT ) is represented by a

complex

(6.8.1) Li
(s1,s2,s3)−−−−−−→ V

(t1,t2,t3)−−−−−−→ L−1
j .

Here sc ∈ H0(E,L−1
i Kc) and td ∈ H0(E,K−1

d L−1
j ) have no common zeros and

satisfy the equation s1t1 + s2t2 + s3t3 = 0 ∈ H0(E,L−1
i L−1

j ). The associated

adjoint vector bundle

(6.8.2) gϕ = O⊕2
E ⊕

⊕
1≤c�=d≤3

KcK
−1
d

(traceless endomorphisms of V) has a 2-step filtration 0 ⊂ nϕ ⊂ bϕ ⊂ gϕ, and

the Poisson bivector {, }FO comes from the differential d2 of the second page

of the hypercohomology spectral sequence for the complex

(6.8.3) nϕ → gϕ → gϕ/bϕ.

6.8.1. Coordinates. We use the morphisms ΠM
{i} and ΠM

{j} of §6.6. The
targets are the Feigin-Odesskĭı moduli spaces of type A1 studied in §6.7. In

particular, the coordinates on them are defined in §6.7.1, and we define the

coordinates on D

◦
Z

α

K
∼=

◦
M(IndGTKT ,LT ) as the pullbacks of the coordinates

of §6.7.1. Thus we get the étale local coordinates wi,1, . . . , wi,ai
(subject to

the condition that their sum in E is fixed), wj,1, . . . , wj,aj
(also subject to

the condition that their sum in E is fixed), yi,1, . . . , yi,ai
(homogeneous, i.e.

only the ratios are well defined), yj,1, . . . , yj,aj
(also homogeneous).

More explicitly, wi,1, . . . , wi,ai
are the zeros of s1, while wj,1, . . . , wj,aj

are

the zeros of t3. We impose the genericity assumption that all the points wi,1,

. . . , wi,ai
, wj,1, . . . , wj,aj

are distinct. Furthermore, we choose sections ui ∈
H0(E,L−1

i K2) and uj ∈ H0(E,K−1
2 L−1

j ). We consider the open substack of
◦
M(IndGTKT ,LT ) specified by the condition that all the w’s are distinct and

also distinct from the zeros of ui and uj . Finally, yi,r = s2
ui
|wi,r

, yj,r = t2
uj
|wj,r

.

The only nonvanishing Feigin-Odesskĭı brackets of i-coordinates (resp. j-

coordinates) are {yi,r, xi,r}FO = yi,r (resp. {yj,r, xj,r}FO = yj,r) since ΠM
{i}

(resp. ΠM
{j}) is Poisson. It remains to compute the brackets of i-coordinates

with j-coordinates. This computation will occupy the rest of this Section.
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6.8.2. Brackets with w-coordinates. We extend the complex (6.8.3)

to a diagram

Hom((K−1
2 ⊕K−1

3 )/Lj ,Lj) → Hom(V∨/Lj ,Lj) → nϕ → gϕ

→ gϕ/bϕ → Hom(Li,V/Li) → Hom(Li, (K1 ⊕K2)/Li).

Note that we have isomorphisms of the line bundles (K−1
2 ⊕ K−1

3 )/Lj 	
L−1

j K−1
2 K−1

3 and (K1 ⊕ K2)/Li 	 L−1
i K1K2. Hence composing the first

three and the last three arrows in the above diagram we obtain a complex

L2
jK2K3

A−→ gϕ
B−→ L−2

i K1K2.

With respect to the decomposition (6.8.2)

gϕ ⊂
K−1

1 K1 ⊕ K−1
2 K1 ⊕ K−1

3 K1

⊕ K−1
1 K2 ⊕ K−1

2 K2 ⊕ K−1
3 K2

⊕ K−1
1 K3 ⊕ K−1

2 K3 ⊕ K−1
3 K3,

the matrix elements of A (resp. B) are⎛⎝ 0 0 0

−t1t3 −t2t3 −t3t3
t1t2 t2t2 t3t2

⎞⎠ resp.

⎛⎝−s1s2 −s2s2 −s3s2
s1s1 s1s2 s1s3
0 0 0

⎞⎠
(notation of (6.8.1)).

Hence the first and the third rows do not contribute to the differential

d2 of the second page of the hypercohomology spectral sequence, and this

differential equals the one for a simpler complex

(6.8.4)

L2
jK2K3

(−t1t3,−t2t3,−t3t3)−−−−−−−−−−−−−→ K−1
1 K2 ⊕OE ⊕K−1

3 K2
(s1s1,s1s2,s1s3)−−−−−−−−−−→ L−2

i K1K2.

In particular, the image of d2 is always divisible by s1.

This implies {wi,r, wj,r′}FO = {wi,r, yj,r′}FO = {yi,r, wj,r′}FO = 0 for any

r, r′.

6.8.3. Type A1 revisited. In order to compute {yi,r, yj,r′}FO, we need

some preparation on the tangent bundle of the Levi Feigin-Odesskĭı moduli

space
◦
M{j}(Ind

L{j}
T KT ,LT ).

Recall from §6.7 that

TΠM
{j}ϕ

◦
M{j}(Ind

L{j}
T KT ,LT )

= Ker
(
H0(E,L−2

j K−1
2 K−1

3 ) → H1(E,End(L−1
j ))

)
/Ct2t3,

T ∗
ΠM

{j}ϕ

◦
M{j}(Ind

L{j}
T KT ,LT )

=
(
(Ct2t3)

⊥ ⊂ H1(E,L2
jK2K3)

)
/H0(E,End(L−1

j )).
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Splitting (6.7.1) can be rewritten as follows:
(6.8.5)

H0(E,L−1
j K−1

2 )/Ct2 ⊕H0(E,L−1
j K−1

3 )/Ct3
∼−−→ TΠM

{j}ϕ

◦
M{j}(Ind

L{j}
T KT ,LT ),

(�, �) �−→ t3�− t2�.

Applying Serre duality to the splitting (6.8.5) of

TΠM
{j}ϕ

◦
M{j}(Ind

L{j}
T KT ,LT ),

we obtain the following splitting of T ∗
ΠM

{j}ϕ

◦
M{j}(Ind

L{j}
T KT ,LT ):

(6.8.6)
T ∗
ΠM

{j}ϕ

◦
M{j}(Ind

L{j}
T KT ,LT )

∼−−→

(
(Ct2)

⊥ ⊂ H1(E,LjK2))
)

⊕
(
(Ct3)

⊥ ⊂ H1(E,LjK3))
)
,

υ �−→ (υt3,−υt2).

It will be useful to rewrite the first summand of the splitting (6.8.6) as

Ker
(
H0

(
Dt3 ,LjK2(Dt3)|Dt3

) Res(t2|Dt3
·?)

−−−−−−−−→ H1(E,OE)
)
.

This is done by dualizing the first summand of (6.8.5), using the pairing

between H0(E,L−1
j K−1

2 ) and H0(Dt3 ,LjK2(Dt3)|Dt3
) given by the sum of

residues of the product (as always, we use the trivialization of ωE in Re-

mark 2.2.5). The identification

Ker
(
H0

(
Dt3 ,LjK2(Dt3)|Dt3

) Res(t2|Dt3
·?)

−−−−−−−−→ H1(E,OE)
)

∼−−→
(
(Ct2)

⊥ ⊂ H1(E,LjK2)
)

is induced by the connecting homomorphism for the short exact sequence

(6.8.7) 0 → LjK2
t3−→ LjK2(Dt3) → LjK2(Dt3)|Dt3

→ 0.

6.8.4. Brackets of y-coordinates: Čech cocycles. In order to com-

pute {yi,r, yj,r′}FO, we need to compute the composition

Ker
(
H0

(
Dt3 ,OE(Dt3)|Dt3

) Res(
t2
uj

|Dt3
·?)

−−−−−−−−−→ H1(E,OE)
)

1
uj

|Dt3−−−−−→ Ker
(
H0

(
Dt3 ,LjK2(Dt3)|Dt3

) Res(t2|Dt3
·?)

−−−−−−−−→ H1(E,OE)
)

→ Ker
(
H1(E,L2

jK2K3) → H1(E,OE)
) d2−→ H0(E,L−2

i K1K2)/Cs1s2

→ H0(E,L−1
i K2)/Cs2

1
ui

|Ds1−−−−−→ H0(Ds1 ,ODs1
)
/
C
s2
uj

∣∣∣
Ds1

,

where ui, uj were defined in §6.8.1, and d2 comes from (6.8.4).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

232 M. FINKELBERG, M. MATVIICHUK, AND A. POLISHCHUK

We rewrite the above composition as follows:

(6.8.8) Ker
(
H0

(
Dt3 ,OE(Dt3)|Dt3

) Res(
t2
uj

|Dt3
·?)

−−−−−−−−−→ H1(E,OE)
)

1
uj

|Dt3−−−−−→ Ker
(
H0

(
Dt3 ,LjK2(Dt3)|Dt3

) Res(t2|Dt3
·?)

−−−−−−−−→ H1(E,OE)
)

→ Ker
(
H1(E,LjK2) → H1(E,OE)

) d2−→ H0(E,L−2
i K1K2)/Cs1s2

→ H0(E,L−1
i K2)/Cs2

1
ui

|Ds1−−−−−→ H0(Ds1 ,ODs1
)
/
C
s2
uj

∣∣∣
Ds1

,

where the second arrow is the connecting homomorphism coming from (6.8.7),

and d2 is the differential in the hypercohomology spectral sequence of the

complex

(6.8.9) LjK2
(−t1,−t2,−t3)−−−−−−−−−→ K−1

1 K2⊕OE⊕K−1
3 K2

(s1s1,s1s2,s1s3)−−−−−−−−−−→ L−2
i K1K2.

To perform computations with the first cohomology we introduce a Čech

cover of E by two opens Ut2 := E �Dt2 and Ut3 := E �Dt3 . We represent

dyj,r, 1 ≤ r < aj , as the element of H0(Dt3 ,OE(Dt3)|Dt3
) given by the

principal part of

1

x− wj,r

∣∣∣
wj,r

−
(
t2
uj

∣∣∣
wj,r

)(
t2
uj

∣∣∣
wj,aj

)−1
1

x− wj,aj

∣∣∣
wj,aj

.

Then the corresponding 1-cocycle in H1(E,LjK2) is given by a section f ∈
H0(Ut2 ∩ Ut3 ,LjK2) having simple poles at points of Dt3 (and perhaps some

other poles at Dt2 that we do not care about) such that the principal part of

f at wj,r is 1
uj
|wj,r

1
x−wj,r

and the principal part of f at wj,aj
is

−
(
t2
uj

∣∣∣
wj,r

)(
t2

∣∣∣
wj,aj

)−1
1

x− wj,aj

,

while the principal parts of f at wj,r′ for r �= r′ �= aj vanish. Furthermore,

we apply the left morphism in (6.8.9) to the above 1-cocycle to obtain a 1-

cocycle (g1, g2, g3) ∈ H1(E,K−1
1 K2 ⊕ OE ⊕K−1

3 K2), where g1 = −t1f, g2 =

−t2f, g3 = −t3f . Then g3 has no poles at Dt3 , and g2 has the principal

part −t2
uj

|wj,r

1
x−wj,r

at wj,r, and the principal part

(
t2
uj

∣∣∣
wj,r

)
1

x−wj,aj
at wj,aj

,

while the principal parts of g2 at wj,r′ for r �= r′ �= aj vanish.

6.8.5. Brackets of y-coordinates: Weierstraß ζ-function. Below we

write formulas in terms of the Weierstraß zeta function ζ(x) (see e.g. [P,

Appendix A]) which is defined on the uniformization of E. However, the linear

combinations we consider descend to rational functions on E. In particular,
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the function

Θwj,r,wj,aj
(x) := ζ(x− wj,r)− ζ(x− wj,aj

)

on E is a rational function with a simple pole at wj,r with residue 1 and a

simple pole at wj,aj
with residue −1, regular away from wj,r, wj,aj

.

Using this function we can express the 1-cocycle (g1, g2, g3) as a coboundary

(g′1, g
′
2, g

′
3)− (g′′1 , g

′′
2 , g

′′
3 ) where (g′1, g

′
2, g

′
3) ∈ H0(Ut3 ,K

−1
1 K2 ⊕ OE ⊕K−1

3 K2)

and (g′′1 , g
′′
2 , g

′′
3 ) ∈ H0(Ut2 ,K

−1
1 K2 ⊕ OE ⊕K−1

3 K2). In particular, we have

g′3 = 0, g′2 =

(
t2
uj

∣∣∣
wj,r

)
Θwj,r,wj,aj

.

Furthermore, by definition of d2 in (6.8.8), we have

d2(f) = s21g
′
1 + s1s2g

′
2 + 0 (mod s1s2)

(note that d2(f) is actually a regular section of L−2
i K1K2 since s1t1 + s2t2 =

−s3t3). Hence we have

d2(f) = s21g
′
1 − s1s2

(
t2
uj

∣∣∣
wj,r

)
Θwj,r,wj,aj

(mod s1s2).

The composition with the last two arrows in (6.8.8) annihilates the summand

s21g
′
1, and we are left with

−
(
t2
uj

∣∣∣
wj,r

) ai∑
r′=1

(
s2
ui

∣∣∣
wi,r′

)
Θwj,r,wj,aj

(wi,r′).

Pairing this expression with dyi,r′ we finally arrive at

(6.8.10) {yj,r, yi,r′}FO = −yj,ryi,r′
(
Θwj,r,wj,aj

(wi,r′)−Θwj,r,wj,aj
(wi,ai

)
)
.

To be more precise, recall that our coordinates include wi,1, . . . , wi,ai−1, but

not wi,ai
. However, wi,ai

can be determined from wi,1, . . . , wi,ai−1 and the

constraint that
∑ai

r′=1 wi,r′ is fixed in E. The same applies to wj,aj
. Now,

instead of normalizing the y-coordinates by fixing their sum, let us view them

as homogeneous coordinates, so that only their ratios matter. From (6.8.10)

one can deduce

(6.8.11)

{yi,r′

yi,p′
,
yj,r
yj,p

}
FO

=
yi,r′

yi,p′
· yj,r
yj,p

(
ζ(wi,r′ − wj,r)− ζ(wi,r′ − wj,p)

− ζ(wi,p′ − wj,r) + ζ(wi,p′ − wj,p)
)
.

6.8.6. Comparison with the reduced Coulomb zastava. To compare

the bracket {, }K′ on the reduced Coulomb zastava C
D

◦
Z

α

K′ with the Feigin-

Odesskĭı bracket we write down the isomorphism of Theorem 5.2.1 explicitly

in coordinates. To this end we envoke the uniformization P : C → E =

C/(Z⊕Zτ ). We denote by w the coordinate on C such that the trivialization

of ωE given by dw coincides with the one of Remark 2.2.5. We denote by θ(w)
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the theta-function of degree 1 for the lattice Z ⊕ Zτ such that θ(0) = 0. We

use the standard trivialization of the pullback P∗Dj such that
∏aj

r=1 θ(w−wr)

descends to a section of Dj whenever OE

(∑aj

r=1 P(wi)
)
	 Dj .

The common part of the étale coordinate systems on C
◦
Zα
K′ and

◦
Zα
K is formed

by (wi,r′ , wj,r)
r=1,...,aj

r′=1,...,ai
(we now think of them as of points in C rather than

their images in E). The additional coordinates on
◦
Zα
K are (yi,r′ , yj,r)

r=1,...,aj

r′=1,...,ai
,

where yi,r′ ∈ Ki|wi,r′ , yj,r ∈ Kj |wj,r
, and Ki = K−α∨i , Kj = K−α∨j . The addi-

tional coordinates on C
◦
Zα
K are (zi,r′ , zj,r)

r=1,...,aj

r′=1,...,ai
, where zi,r′ ∈ K′

i|wi,r′ , zj,r ∈
K′

j |wj,r
, and K′

i = K−α∨iDiD
−1
j , Kj = K−α∨jDj .

On the reduced zastava the w-variables are constrained to have a fixed

sum, while the y-variables (resp. z-variables) are homogeneous, i.e. only their

ratios are well defined. The isomorphism of Theorem 5.2.1 has form

yi,r′ = zi,r′φi,r′(wi,1, . . . , wi,ai
)ψ(wi,r′ ;wj,1, . . . , wj,aj

),(6.8.12)

yj,r = zj,rφj,r(wj,1, . . . , wj,aj
),

where ψ(wi,r′ ;wj,1, . . . , wj,aj
) descends to a section ofDj (unique up to rescal-

ing) that vanishes at all the points wj,1, . . . , wj,aj
. Note that rescaling

ψ(wi,r′ ;wj,1, . . . , wj,aj
) does not change the ratios yi,q/yi,p, so the above trans-

formation is well defined. The exact definition of φi,r′ , φj,r is not important

for our purposes (we observe only that φi,r′ is a nonzero element of D−1
i |wi,r′ ).

Thus we can take

ψ(wi,r′ ;wj,1, . . . , wj,aj
) =

aj∏
r=1

θ(wi,r′ − wj,r).

Now recall the coordinates yi,r′ of §6.7.1. They depend on a choice of a

trivialization u of KiDi and are defined as yi,r′ =
t
u |wi,r′ (recall that t is also

a section of KiDi). On the other hand, yi,r′ = Reswi,r′
t
s , where s is a section

of Di with zeros wi,1, . . . , wi,ai
, see (3.4.4). Hence

(6.8.13) yi,r′ = yi,r′ · Reswi,r′
u

s

(where we use the trivialization of ωE , see Remark 2.2.5). Using the uni-

formization P : C → E and trivializing P∗Di we can view u as a trivialization

of Ki. Then we can write s(w) =
∏ai

r′=1 θ(w−wi,r′), so that (6.8.13) becomes

yi,r′ = yi,r′ ·
u(wi,r′)

θ′(0)
∏

p�=r′ θ(wi,r′ − wi,p)
.

Thus viewing u as a trivialization of Ki and combining this with our trivial-

ization of P∗Di we can view zi,r′ as actual coordinates taking values in C,
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and from (6.8.12) we get

yi,r′ = zi,r′φ
′
i,r′(wi,1, . . . , wi,ai

)

aj∏
r=1

θ(wi,r′ − wj,r),

yj,r = zj,rφ
′
j,r(wj,1, . . . , wj,aj

),

where once again, the exact form of φ′
i,r′ , φ

′
j,r is not important for our pur-

poses.

We get

{yi,r′ , yj,r}K′ = yi,r′yj,r·
∂wj,r

ψ(wi,r′ ;wj,1, . . . , wj,aj
)

ψ(wi,r′ ;wj,1, . . . , wj,aj
)

= yi,r′yj,r·ζ(wi,r′−wj,r).

This in turn implies{yi,r′

yi,p′
,
yj,r
yj,p

}
K′

=
yi,r′

yi,p′
· yj,r
yj,p

(
ζ(wi,r′ − wj,r)− ζ(wi,r′ − wj,p)

− ζ(wi,p′ − wj,r) + ζ(wi,p′ − wj,p)
)
.

Comparing with (6.8.11) we see that the brackets {, }K′ and {, }FO match

on y-coordinates. It is easy to check that they also match on the brackets

involving w-coordinates.

This completes the proof of Theorem 6.4.1 for G = SL(3).

6.9. Proof of Theorem 6.4.1 for arbitrary simply laced G. The

étale local coordinates on D

◦
Z

α

K are (wi,r, yi,r)
1≤r≤ai

i∈I (as always, w-coordinates

are constrained, and y-coordinates are homogeneous). We have to compare

{f, g}FO and {f, g}K′ , where f is a coordinate function from the i-th group,

and g is a coordinate function from the j-th group (it may happen that i = j).

We consider the Levi subgroup of rank 1 or 2 corresponding to the Dynkin

subdiagram on vertices i, j. The rational projection Π to the corresponding

Levi zastava spaces being Poisson, it suffices to compare the brackets in ques-

tion for the Levi zastava spaces. This comparison was already made in §6.7
for rank 1 and in §6.8 for rank 2.

This completes the proof of Theorem 6.4.1 for arbitrary simply laced G.
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