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Abstract

We study the elliptic zastava spaces, their versions (twisted, Coulomb,
Mirkovié local spaces, reduced) and relations with monowalls moduli
spaces and Feigin-Odesskii moduli spaces of G-bundles with parabolic
structure on an elliptic curve.
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1. Introduction

1.1. Zastava spaces: General overview. Let G be an almost simple
simply connected algebraic group over C. Let us also fix a pair of opposite
Borel subgroups B, B_ whose intersection is a maximal torus 7. To a smooth
projective complex curve C, one can associate the zastava moduli space Z(C)
(the definition goes back to V. Drinfeld, see e.g. [BEGM]). It is the moduli
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space of G-bundles on C equipped with a generalized B-structure and a gener-
ically transversal U_-structure (here U_ stands for the unipotent radical of
B_). It is actually a scheme with infinitely many connected components num-
bered by the degrees of B-bundles. It has numerous applications in geometric
representation theory and especially in the geometric Langlands program (see
e.g. [GailBEF]).

The zastava space Z(C) is equipped with a morphism 7 to the colored
configuration space Confe(C) of C (it keeps track of the points of C' where
the B- and U_-structures fail to be transversal), and one of the key features
of Z(C) is its factorization structure over the configurations (locality over C).
It allows to define Z(C) for arbitrary smooth complex curve; not necessarily
projective: Z(C) is defined as the preimage 7! Confg(C) C Z(C) for a
smooth compactification C' O C.

A special role is played by three smooth curves carrying the structure of
1-dimensional complex algebraic groups: the additive group G,, the multi-
plicative group G,,, and an elliptic curve E. The open zastava Z (C)c z(C)
(given by the open condition that a B-structure is genuine as opposed to gen-
eralized) for these three curves play a prominent role in physics as various
versions of the monopole moduli spaces.

More precisely, the additive (or rational) open zastava are isomorphic
to the euclidean monopoles’ moduli spaces [J1[J2], while the multiplicative
(or trigonometric) open zastava are expected to be related to the periodic
monopoles’ moduli spaces [CK], and elliptic open zastava are expected to
be related to the doubly periodic monopoles’ (or monowalls’) moduli spaces
[CW]. Yet more precisely, the open zastava spaces are equipped with a natu-
ral T-action and a map to C*¥“ playing the role of the moment map. These
allow to define a sort of (quasi)-Hamiltonian reduction Z (C). The reduced
zastava in additive case is isomorphic to the moduli space of centered eu-
clidean monopoles; in multiplicative (resp. elliptic) case, the reduced zastava
is expected to be isomorphic to the moduli space of periodic monopoles (resp.
monowalls). The monopole moduli spaces come equipped with a natural hy-
perkéhler structure, and the zastava spaces carry the corresponding holomor-
phic symplectic structure that can be defined in modular terms and explicitly
computed in appropriate coordinates.

Furthermore, the euclidean monopole moduli spaces are known to be iso-
morphic to the Coulomb branches of 3-dimensional N = 4-supersymmetric
quiver gauge theories (for the Dynkin quiver of G; with symmetrizers if G
is not simply laced). See [BFN2| for a mathematically rigorous identifica-
tion of the Coulomb branch with Z (G,). Similarly, the K-theoretic Coulomb
branch can be identified with Z (Gyn), see [ET]. One of the main topics of the

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



ELLIPTIC ZASTAVA 185

present paper is an identification of Z (F) with an appropriate version of ellip-
tic Coulomb branch (whose rigorous mathematical definition is not formulated
yet). From this point of view, the above holomorphic symplectic structures on
open zastava arise from the natural quantizations of the Coulomb branches.
These quantizations are, respectively, the truncated shifted Yangians [BEN2],
the truncated shifted quantum affine algebras [FT|, and supposedly related
to the elliptic quantum groups.

Actually, the reduced elliptic open zastava Z (E) appeared in mathemat-
ics long ago in another disguise in the works of B. Feigin and A. Odesskii.
Namely, let us modify the definition of Z (E), replacing a U_-structure by a
UX-structure, where UX is a unipotent group scheme over F obtained from
U_ via twisting by a regular T-torsor Kp. Then the resulting reduced zastava
Z % (F) is isomorphic to the Feigin-Odesskil moduli space of complete flags in
the G-bundle Ind? K1 with a fixed isomorphism class of the associated graded
bundle. B. Feigin and A. Odesskii constructed a natural symplectic structure
on their moduli spaces (along with its quantization), and it turns out that
this symplectic structure coincides with the one of the previous paragraph.

In the remainder of this section we provide a more detailed overview of the
above topics along with some other aspects of our work, like Mirkovi¢ local
spaces needed for identification of various types of elliptic zastava.

1.2. Rational zastava and euclidean monopoles. We denote by B
the flag variety of G. Let A denote the cocharacter lattice of T'; since G
is assumed to be simply connected, this is also the coroot lattice of G. We
denote by Apos C A the sub-semigroup spanned by positive coroots.

It is well known that Ho(B,Z) = A and that an element oo € Hy(B,Z)
is representable by an effective algebraic curve if and only if o € Apes. The
(open) zastava Z% is the moduli space of maps C = P! — B of degree «
sending oo € P! to B_ € B. It is known [FKMM] that this is a smooth sym-
plectic affine algebraic variety, which can be identified with the hyperkahler
moduli space of framed G-monopoles on R? with maximal symmetry breaking
at infinity of charge « [JIl[J2]. Let us mention one more equivalent definition
of Z2: it is the moduli space of G-bundles on P! equipped with a B-structure
of degree o and a U_-structure transversal to the B-structure at oo € P'.

The zastava space is equipped with a factorization morphism 7 : 79 5 A“
with a simple geometric meaning: for a based map ¢ € 7 the colored divisor
7 () is just the pullback of the colored Schubert divisor D C B equal to
the complement of the open B-orbit in B. The morphism 7: 7% — A is
the Atiyah-Hitchin integrable system (with respect to the above symplectic
structure): all the fibers of 7¢ are Lagrangian.
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A system of étale birational coordinates on Z° was introduced in [FKMM].
Let us recall the definition for G = SL(2). In this case « is a times the simple
coroot, and 7% := Z° consists of all maps P! — P! of degree a which send co
to 0. We can represent such a map by a rational function £ where Q is a monic
polynomial of degree a and R is a polynomial of degree < a. Let wq, ..., w,
be the zeros of Q. Set y. = R(w,). Then the functions (y1, ..., Ya, W1, .., Wa)
form a system of étale birational coordinates on 4 ¢, and the above mentioned
symplectic form in these coordinates reads Quat = Y vy W

For general G the definition of the above coordinates is quite similar. In
this case given a point in 7% we can define polynomials R;, Q; where ¢ runs
through the set I of vertices of the Dynkin diagram of G, a = >_ a;«;, and

(1) Qi is a monic polynomial of degree a;,
(2) R; is a polynomial of degree < a;.

Hence, we can define (étale, birational) coordinates (y; ,,w; ) where i € I
and r = 1, ..., a;. Namely, w;, are the roots of Q;, and y;, = R;(w; ).
The Poisson brackets of these coordinates with respect to the above sym-
plectic form are as follows: {w; y, wjstrat = 0, {Wir, Yjs}rat = dY0ij0rsyj s,
{Yirs Yj s brat = (@, a\;)ﬁ for i # j, and finally {y; », Yi s }rat = 0. Here
) is a simple root, (,) is the invariant scalar product on (LieT)* such that
the square length of a short root is 2, and dY = (af, a}) /2.

Finally, let us mention that the zastava space 7% is isomorphic to the
Coulomb branch of a 3d N = 4 supersymmetric quiver gauge theory (for a
Dynkin quiver of G, with no framing; with symmetrizers for a nonsimply laced
G), see [BEN2/NW]J.

1.3. Trigonometric zastava and periodic monopoles. We have an
open subset G, C A% (colored divisors not meeting 0 € A'), and the trigono-
metric zastava is defined as the open subvariety 7% := (r9)~HGY) C Zo Tt
can be identified with a solution of a certain moduli problem on the irreducible
nodal curve of arithmetic genus 1 obtained by gluing the points 0,00 € P!,
see [FKR]. From this point of view it acquires a natural symplectic structure
with the corresponding bracket {, }trig. Note that {, }4rig is not the restriction
of {, }rat from éa, but rather its trigonometric version.

For example, when G = SL(2) and « is a times the simple coroot, the
Atiyah-Hitchin integrable system 7% : 7o — Al ig nothing but the classical
Toda lattice for GL(a), while its trigonometric version 7%: t7e = G can be
identified with the relativistic Toda lattice for GL(a), see [F'T} §2].

An explicit formula for {, }4uig in w, y-coordinates is obtained in [FKR].
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The composed morphism

t7e = go gl =7
(recall that I is the set of simple coroots of G) is the group valued moment
map of the Hamiltonian action of T on 7. The quotient of a level of this
moment map by the action of T is the reduced trigonometric zastava ‘ZO *: the
(quasi-)Hamiltonian reduction of tz7a.

It is likely that the reduced trigonometric zastava is isomorphic to the
moduli space of periodic monopoles (see e.g. [CK]) in one of its complex
structures (it has a natural hyperkihler structure, and among the S2-worth
of the underlying complex structures we need a generic one, in which this
moduli space is an affine variety). The corresponding holomorphic symplectic
structure on the moduli space of periodic monopoles matches the reduction
of {, }trig. Note an important difference with the rational case: the usual
zastava was isomorphic to the euclidean monopoles’ moduli space, and its
Hamiltonian reduction with respect to the T-action was isomorphic to the
centered monopole moduli space. In the periodic case the monopoles come
centered by definition.

Finally, the trigonometric zastava 7o is isomorphic to the K-theoretic
Coulomb branch of a 3d N = 4 supersymmetric quiver gauge theory (for a
Dynkin quiver of G, with no framing; with symmetrizers for a nonsimply laced
G), see [FT] for the simply laced case. The reduced trigonometric zastava TZ «
is isomorphic to the K-theoretic Coulomb branch where the gauge group must
be taken as the product of SL(V;) (as opposed to the product of GL(V;) for
the trigonometric zastava).

1.4. Elliptic zastava. The explicit formulas for {, },as and {, }irig look
like rational and trigonometric degenerations of the Feigin-Odesskii bracket
[FO] on the moduli space of G-bundles with a parabolic structure on an elliptic
curve. The goal of the present paper is to give a precise meaning to this
observation

For a T-bundle K¢ on an elliptic curve E we consider the moduli space
ZO% of the following data:

(a) a G-bundle F; on E,

(b) a B-structure ¢, on F¢ such that the induced T-bundle £ = Ind g,
has degree —a,

(c) a UX-structure ¢ _ on Fg generically transversal to . Here U is a
sheaf of unipotent groups locally isomorphic to U_, obtained from the trivial

1 This goal is achieved in Theorem [6.4.J] where we establish a symplectomorphism of the
Feigin-Odesskil moduli space with a reduced elliptic zastava space. Compare the formula
at the end of L7l with the one at the end of 1.2
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sheaf by twisting with T-bundle X (we view T as a subgroup of AutU_ via
the adjoint action).

The open elliptic zastava 2% is a smooth connected variety of dimension
2|a| equipped with an affine factorization morphism 7%: é:?c — E* to a con-
figuration space of E. It has a relative compactification (compactified elliptic
zastava)

78 ¢ 7y =5 B,
where we allow both a B-structure and a U*-structure to be generalized in
the sense of Drinfeld. There is also an intermediate version Zo% C Z&% C 732
(elliptic zastava) where only a B-structure is allowed to be generalized.

For example, when G = SL(2), X is trivial, and « is a times the simple
coroot, there is an isomorphism 2§ =~ TE@ with the total space of the
tangent bundle of the a-th symmetric power of E. Unfortunately, neither
TE nor its open subvariety éél{triv carries any natural Poisson structure.

1.5. Coulomb elliptic zastava. Similarly to the rational and trigono-
metric cases, one can consider the elliptic Coulomb branch of a 3d N = 4
supersymmetric quiver gauge theory for a Dynkin quiver of G with no fram-
ing. We restrict ourselves to the case of simply laced G E The elliptic Coulomb
branch is the (relative) spectrum of the equivariant Borel-Moore elliptic ho-
mology of a certain variety of triples. The theory of equivariant Borel-Moore
elliptic homology is not developed yet; it is to appear in a forthcoming work
of I. Perunov and A. Prikhodko. We sketch some results in §4l The resulting
elliptic Coulomb branch is denoted CZOJO‘CMV. It is equipped with a natural Pois-
son (in fact, symplectic) structure due to the existence of quantized elliptic
Coulomb branch.

For example, when G = SL(2), there is an isomorphism Cégcmv ~
Hilb{.(E x G,) with the transversal Hilbert scheme of the surface E x Gy,
(an open subvariety of the Hilbert scheme of points on E x G,, classifying
those subschemes whose projection to E is a closed embedding). Note that
we have an open embedding Hilb%,(E x G,,) C T*E@ into the total space
of the cotangent bundle of the a-th symmetric power of E. Contrary to the

rational and trigonometric cases, there is mo isomorphism Cégcmv o Zogctm of
the open elliptic zastava with the elliptic Coulomb branch.

Still, the elliptic Coulomb branch is not so much different from the elliptic
zastava. Namely, they can be both obtained by the Mirkovi¢ construction of
local spaces over (the configuration spaces of) E, see e.g. [MYZ, §2]. This
construction depends on a choice of a local line bundle; one choice gives rise to

the elliptic zastava; another gives rise to the elliptic Coulomb branch, see §31

2In the nonsimply laced case one should use the approach of [NW] with symmetrizers.
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Moreover, this way we can define the Coulomb elliptic zastava Cégo‘c depending
on an arbitrary 7T-bundle K7, not necessarily trivial.

1.6. Feigin-Odesskii moduli space. Another closely related moduli
space M (Fq,Lr) depending on a choice of a G-bundle Fg and a T-bundle
Lr on F classifies the B-structures ¢ on F¢ equipped with an isomorphism
Ind%(p —5 Lp. It can be equipped with a natural structure of a derived

stack with a (0-shifted) symplectic form, see §61 B. Feigin and A. Odesskif
construct in [FO] a Poisson structure on the moduli space Bunp of P-bundles
on E (where P is a parabolic subgroup of G). The above moduli spaces
M(F¢, Lr) coincide with certain symplectic leaves of Bung. For instance, if
G = SL(2), then M (F¢, L) is the moduli space of extensions of a line bundle
L~! by £ with a fixed isomorphism class of the resulting rank 2 bundle V.
If V5 is assumed to be stable, then M(Fg,L7) is a symplectic leaf of the
Feigin-Odesskil bracket on Bung.

If we fix a regular T-bundle X (this means that all the line bundles associ-
ated to the roots of G are nontrivial), take Fg = IndgﬂCT and deg L1 = —q,
then M (Fg, L) can be identified with a certain “quasi-Hamiltonian” reduc-
tion 4 Z ;2 of ég‘c Namely, the reduction is defined as the quotient with respect
to the natural T-action of a fiber over D € E' of the composed morphism

Ze = po 2y pl
(recall that I is the set of simple coroots of G).

By the very construction, the Coulomb elliptic zastava CZO% is also equipped
with the factorization morphism 7: Cégo‘c — E%, and so we can define the
reduced Coulomb elliptic zastava % Z;Q in a similar way. The important dif-
ference with the usual elliptic zastava is that the Coulomb elliptic zastava
CZO:?C carries a symplectic form, and the above reduction is really a (quasi-
JHamiltonian reduction. In particular, the reduced Coulomb elliptic zastava

%Z 3; inherits a symplectic form.
The two main results of the present paper are as follows:
(A) The reduced elliptic zastava and reduced Coulomb elliptic zastava are
o o
isomorphic: 5 Zg %Z -+ for an appropriate choice of a T-bundle X/, de-
pending on K1 and on the level D of the “moment map” (Theorem B2.T]).
[sXe
(B) If X7 is regular, the composed isomorphism M (Ind$ K, L7) ) Zge =~
o
§ Z g is a symplectomorphism (Theorem G.4.T]).
It is also likely that the reduced elliptic zastava DZ;XC is isomorphic to the

moduli space of monowalls (doubly periodic monopoles) [CW]. The situation
is similar to the case of periodic monopoles: the monowalls come centered by
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definition. In the corresponding elliptic Coulomb branch of a quiver gauge
theory the gauge group must be taken as the product of SL(V;) (as opposed
to the product of GL(V;) for the nonreduced Coulomb elliptic zastava).

1.7. An explicit formula for the Feigin-Odesskii Poisson bracket.
We are finally in a position to address the problem of explicit computation of
the Feigin-Odesskii Poisson bracket. The Coulomb elliptic zastava Cég‘c comes
equipped with étale rational coordinates that are “trigonometric Darboux” for
its symplectic form by the very construction. The usual elliptic zastava also
carry étale rational coordinates (yi,r,wi,r)}é“ <% gimilar to the ones in 4.2
(but now w; , is a point of E). The reduced elliptic zastava (alias the Feigin-
Odesskii moduli space in the regular case) inherits these coordinates with the

following caveats:

(a) The w-coordinates are constrained: for each i €I the sum > 2 w; , €
F is fixed;

(b) The y-coordinates are homogeneous: only the ratios ;“'T/ are well
defined fori e I, 1 < r,r’ < a;.

i

Then the only nontrivial Poisson brackets arising from the Feigin-Odesskii
symplectic form are as follows:

Yir _ Yi,r Yi,r o Yi,r Yi,r! yj,'r
>wi,r - T 7wi,7"’ ) R
Yir! FO Yir Yir FO Yir Yip' Yjp’ FO
yi,r’ yj,'r‘
= b (g
Yip' Yjp

Wi =Wy, ) = (Wi —wj,p) = (Wi —wj ) +C (Wi _wj,p))

in case i # j are joined by an edge in the Dynkin diagram of G, and zero
otherwise (recall that we assume G simply laced). Here {(w) is the Weierstrafl
zeta function.

2. Elliptic zastava

2.1. A group G. Let G be an almost simple simply connected algebraic
group over C. We fix a pair of opposite Borel subgroups B, B_ whose intersec-
tion is a maximal torus T'. The unipotent radical of B (resp. B_) is denoted U
(resp. U_). Let A (resp. AY) denote the cocharacter (resp. character) lattice
of T'; since G is assumed to be simply connected, this is also the coroot lattice
of G. We denote by Apos C A the sub-semigroup spanned by positive coroots.
We say that a > 8 (for o, 8 € A) if &« — 8 € Apos. The simple coroots are
{ai}ier; the simple roots are {aY }ier; the fundamental weights are {w }icr.
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An irreducible G-module with a dominant highest weight \Y € AV* is de-
noted Vyv; we fix its highest vector vyv. For a weight ;¥ € AV the p'-weight
subspace of a G-module V is denoted V (u").

2.2. Elliptic zastava. We recall some results of [Gai| about various ver-
sions of zastava on a curve. From now on we always consider an elliptic curve
E. We fix a degree zero T-torsor K1 on E. It gives rise to a collection of line
bundles X on E associated to characters w:T — C*.

Definition 2.2.1.

(1) Given a € Ao, we define the compactified elliptic zastava 78‘{ as the
moduli space of the following data:
(a) a G-bundle F; on E;
(b) a T-bundle L7 of degree —a on F;
(c) for any dominant weight AY € AVT, a nonzero morphism from
the associated vector bundle & A Vév — fK’\V;
(d) for any N € AV*, a sheaf embedding n* : £’ ‘—>\7§F‘V, subject to
the following conditions:

(i) the collection of sheaf embeddings £» Vév satisfies
the Pliicker relations, i.e. defines a degree a generalized
B-structure in Fg;

(ii) the collection of morphisms ng — XN satisfies the Pliicker
relations, i.e. defines a generalized K-twisted U_-structure
in ng;

(iii) the composition LY o Vév — X is not zero for any
)\, ie. the above generalized B- and U_-structures are
generically transversal.

(2) The elliptic zastava Z§ C 7(;{ is an open subspace given by the extra
condition that the morphisms §)‘v : ng — KN are surjective, i.e. the
corresponding twisted U_-structure is genuine, not generalized.

(3) The open elliptic zastava Zoj'é C Z is given by the extra condition that
the embeddings 77>‘V: LA o ng are embeddings of vector bundles,
i.e. £ is a line subbundle in Vgr‘v for any A € AVT. In other words,
the corresponding B-structure is genuine, not generalized.

(4) The factorization morphism 7%: Z§- — E® associates to the data of
zastava the I-colored zero divisor D € E“ such that for any \¥ € AV™T,
the zero divisor of the composition o Vgrv NN equals (D, \V).

(5) The Cartan torus T' acts on Z$ by rescaling the morphisms in (c)
above: for t € T we set t(&Y) 1= A (t) - €. This action factors
through the adjoint quotient 724,
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Remark 2.2.2. The moduli stack 73‘( is actually a finite type scheme,
irreducible of dimension 2|«|, see e.g. [Gail §4, §7.2]. The open subscheme
Zo% C Z% is smooth. The scheme Z$ can be nonreduced in general, cf.
|[FeMal Example 2.13] for G = SL(5). This example features a formal arc
scheme, but according to the Grinberg-Kazhdan theorem and [Dl §4.4] it
implies that an appropriate (rational) zastava space Z¢ for G = SL(5) is
nonreduced as well. Finally, the rational zastava Z¢ and the elliptic zastava
Z% are isomorphic locally in the étale topology.

In §3lwe will consider the variety (Z§)req equipped with the reduced scheme
structure.

Remark 2.2.3. In 6 we will need elliptic zastava for a reductive group
G. It is defined similarly to Definition 221l making use of the trick [Schl §7]
with the help of a central extension 1 — Z — G — G — 1 such that
is a (connected) central torus in G, and the derived subgroup [G,G] C G is
simply connected. Namely, we apply Definition 2:2.] to G instead of G itself.
The result is independent of the choice of G and gets rid of some undesirable
irreducible components that appear if we naively apply Definition 2.22.1] to G
itself.

Definition 2:2.4lis motivated by the notion of centered euclidean monopoles.

Definition 2.2.4. We have the Abel-Jacobi morphisms E(%) — Pic% E
and their product AJ: E® — [[,.;Pic® E. We denote the composed mor-
phism by

iel

Alg: 2§ =5 B* 25 T Pic* E.
il

Given a collection D = (D;);cs € Pic* E, we define the reduced open elliptic
zastava ‘DZ?C as AJ,*(D)/T (stack quotient).

The reduced open elliptic zastava DZJ; is an irreducible stackﬁ Let
a =3 craia;. If a; = 0 for some i € I, then all the zastava spaces Z§., Z§,
ZO%, DZ;C coincide with the corresponding zastava spaces for the derived
group of the corresponding Levi factor of G. If a; > 0 for all i € I, then the
action of T2 on the open elliptic zastava ZOJO‘< is effective, and the dimension
of DZ; is 2|a| — 21k G.

Remark 2.2.5. Throughout the paper we will use a trivialization of the
canonical line bundle wg. We fix this trivialization once and for all.

3Indeed, a general fiber of 7 is isomorphic to G‘g‘, hence irreducible. Any fiber of
AlJ is irreducible as well. Finally, all the fibers of AJz are smooth equidimensional by a
computation of the differential of AJz. Hence any fiber of AJz is irreducible.
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2.3. Example of G = SL(2) and Hilbert schemes. We denote by w”
the fundamental weight of G = SL(2), and we denote by o = 2w" the simple
root of G. We denote by « the simple coroot of G. We denote the total space
of the line bundle X~ over E by Sy—ov, and we denote the complement
to the zero section by S._o . These are algebraic surfaces equipped with
a projection to E. For a € N, we denote 7‘53 simply by 73{. We denote
by Hilb*(Sg—-av) D Hilba(éx,uv) the degree a Hilbert schemes of points on
the surfaces Sy_ov D S . We denote by Hilb{, (Sy-av) C Hilb*(Sy—av)

(resp. Hilb{, (Sg—av) C Hilb*(Sg—av)) the open transversal Hilbert subscheme
classifying all quotients of OSK_QV (resp. of O g v) whose direct images to

E are also cyclic, i.e. are quotients of Og.
Thus we have projections

Hilb{ (Syc_ov ) — Hilb®(E) = E@ « Hilb% (Sy o).

The transversal Hilbert scheme Hilby, (S —av ) is canonically isomorphic to the
total space of the following vector bundle Ug on E(®). Let q: E x E(@=1) —
E(@ be the addition morphism (aka the universal family over Hilb®(FE) =
E(a)). Then Uyx = q*pr*EJC’av. We will also need another closely related
vector bundle on E(®). Namely, let A»*~!1 ¢ E x E(¢~1) be the incidence
divisor (note that the line bundle O(A%*~1) on Ex E(¢~1) is isomorphic to the
normal bundle to the closed embedding E x E(@~Y — E x E@  (z,D') —
(z,z + D'), see e.g. [Pl Proposition 19.1]). We set T := q*(pr}:JfK*av ®
O(Abe=1)). Note that in case X is trivial, the corresponding vector bundle
T is nothing but the tangent bundle of E(®), and the corresponding vector
bundle U is dual to T, i.e. U ~ T* is the cotangent bundle of E(®).

Furthermore, we have the Abel-Jacobi morphism E(® — Pic*(E). For
an arbitrary line bundle X’ on E, we denote the composed morphism by
AJ: Hilbfr(éx/) — E(@ — Pic*(E). For a line bundle D of degree a on
E, the fiberwise dilation action of C* on §j<j/ induces an action of C* on
AJTHD) C Hilbﬁr(éx/), and we define the reduced transversal Hilbert scheme
D@ﬁr(g’gg) as AJ7H(D)/C* (stack quotient).

Proposition 2.3.1.

(a) There are natural isomorphisms

o

Zx

o — A%

Sgc—avy Zje 2 Soc—av, Zhe ZP(K™Y @ Op).

II2

(b) For a € N, the zastava space Z is naturally isomorphic to the total
space of the vector bundle Ty on E(®).
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(¢) For a € N, D € Pic*(E), the reduced open zastava ngc is naturally

isomorphic to the reduced transversal Hilbert scheme DHilb‘tlr(g’gg) for X' =
K=" @ D.

Proof. By definition, 73{ is the moduli space of the data P V?}V — K
such that the composition £ — K¢ is not zero. Here V“Siv is a vector bundle
on F of rank 2 with trivialized determinant, and £+" is a line bundle of degree
—a. Hence the composition £¢ < K" identifies £~ with K  (—D) for an
effective divisor D on E of degree a. The trivialization of det V‘;rv makes V“Siv
canonically selfdual, so the dual of our data is K ng — £~ In
particular, we obtain the sheaf embeddings

K ek (-D) =K @ L Vv oo

=X (D)K.

In other words, V“Siv is a degree a upper modification of e (=D) at D.
The open subvariety Z% C Z% is given by the open condition that the projec-
tion of V;v to K is surjective, and the open subvariety Zogc C Z*“ is given by
the extra open condition that the projection of V‘}v to K= (D) is surjective.
Yet in other words, Z%C is the moduli space of a-dimensional O g-submodules
V C (K (D)/K) @ (K /K" (=D)), the open subvariety Z& C Z4 is
given by the open condition that V is transversal to K=« (D)/X~*", and
the open subvariety éﬁc C Z& is given by the extra open condition that V is
transversal to K¢ /X« (=D).

If a = 1, then D is a single point « € E, and the fiber of 7& over x € E
is a projective line ]P’((JC’”V (2)/K ") @ (K" JK (—))). Hence Z% is the
projectivization of the rank 2 vector bundle K @ Tg & KY over E. The
trivialization of the canonical line bundle wg in Remark gives rise to a
trivialization of the tangent line bundle T, and we obtain an isomorphism
7% =~ P(K @ X<') = P(K~* @& Op). Furthermore, a point of Z3 over
2 € E can be viewed as the graph of a homomorphism from JC;’V to IK;“’V, S0
Z3- gets identified with the total space of the line bundle Hom (K", K~+") =
K" Finally, a point of Zo_,}{ over x € F can be viewed as the graph of an
isomorphism from fK‘;v to K5 «’_ This completes our proof of (a).

Recall that the fiber of Hilbg, (Ss—ov ) (respectively, of Hilbgr(g’x_av )) over
D € E@ is canonically isomorphic to Homg, (Op, X~ /K=" (=D)) (re-
spectively, to Isomg, (Op, X~ /K=" (=D))), where Op = Op/Og(—D).
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On the other hand, an a-dimensional O g-submodule V C (X~«"(D)/X~*")®
(K" /K« (= D)) transversal to X+ (D)/K~" is the graph of a homomor-
phism

hy € Home, (K¢ /X¥ (=D), X~ (D)/X~*")
= Home,, (0p, X~ (D)/X ).

Furthermore, V is also transversal to X« /K%’ (—D) iff hy is invertible.
Since Op is a cyclic Og-module with generator 1, a homomorphism hy €
Homog, (Op, X~ (D)/X~*") is uniquely determined by hy (1), so that

Homg , (Op, K~ (D)/K~*") = K~ (D)/K ",

and the latter space is nothing but the fiber of the vector bundle Ty at
D € E@. This completes the proof of (b).

We have just seen that the fiber of ZO& over D € E(® is canonically isomor-
phic to Isome, (Op, K= (D)/K~*"). If D runs over the fiber of the Abel-
Jacobi map over D = K" @ £, then K~ (D)/X~*" ~ (X~ @ D)|p,
and the isomorphism is well defined up to a multiplicative constant. Hence
Isomg , (Op, K=" (D)/K~*") ~ Isome , (Op, (K~ @D)|p), and the isomor-
phism is well defined up to a multiplicative constant. The latter space is the
fiber of Hilbgr(gjc_av o) over D. Finally, taking quotient by the action of C*
removes the ambiguity in the choice of the above isomorphism, and produces
the desired canonical isomorphism.

The above argument generalizes straightforwardly to the case of families
over a base B. For example, the isomorphism

Isomo,,, , (Opxs, K~ (D x B)/X™")
~ ISOIHoExs(ODxBa (:K_ozv ® 'D)|D><B)

is well defined up to O}.
This completes the proof of (c). O

3. Mirkovié construction

From now on we assume that G is simply laced. We choose an orientation
of the Dynkin diagram of G. We obtain a quiver ) with the set of vertices
Qo = I, and the set of arrows Q1. For an arrow h = (i — j) we use the
standard notation j = i(h), i = o(h).
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3.1. Compactified zastava. For a T-torsor K on F and i E 1, we define
a line bundle X; on E associated to the simple root character o : T — C*.
Given a collection of line bundles X;, ¢ € I, and 8 = Eblal € Apos, We
define a line bundle X? := @ie[j{,&bi) on Ef = [Licr E®) . Here Kl(bi) is
the descent of fK?bi from E% to E(®) obtained by passing to Sp,-invariant
sections on U, where U C E is an affine open subset. Given 3,7 € Apos
with 5+« = «, we consider the diagram

EP 2 EP x BV S RO,

where p is the projection, and q is the addition of colored effective divisors.
For i,j € I we define Afj’” C EP x E7 as the incidence divisor where a point
of color i in E® meets a point of color j in E7 (the case j = i is allowed). We
also define Afj C EP as the divisor formed by configurations where a point of
color 7 meets a point of color j. We define the factorizable vector bundle V§.
on K¢ a

(311 V= @ a | p (KDALY Al (DA
B+y=a iel heQ: il

It contains two codimension 1 subbundles: V§ . and V", where in the
above direct sum we omit summands corresponding to 8 = 0 (resp. v = 0).

The factorization structure is a canonical isomorphism for any decomposi-
tion a = a’+a”, between the pullbacks of V¢ and Vg‘é XV%‘CN to (B x E"”)disj
(an open subset of EY x B formed by all the pairs of configurations where
all the points of the first configuration are distinct from all the points of the
second one). In particular, the rank of V§ equals 2lel and the pullback of Vi
to (I, £)disj is canonically isomorphic to @ief((Ki@OE)gai)\(Hiel B )i
(here v = 37,y aje). Let p*: ([[ic; E%)aisi — Ei; stand for the unrami-
fied Galois cover with Galois group So = [],c; Sa, (the product of symmetric
groups). Then the vector bundle M;c;((K; @& Op)He) (Tic; B )ai CATTIES @
natural S,-equivariant structure, and

a; Sa
VUC‘E(?NJ ( ¢ Kier (K @ OE)lz Y (ITier E“i)disj)

Thus the projectivization P(K;c; ((K; &0 5)8%)) |(IT,e, Bi)as; CONtains the
product of ruled surfaces (P'-bundles over E) [],.; P(K; & O0p)* (ILe Vaieg
(Segre embedding). Hence PV§|ge = contains

([TPx: © 0p)*

iel

(ITier B )disj)/Sa~

40ur definition looks different from [MYZ], §§2.4.1, 2.4.2]. This is due to a dualization,
cf. Lemma 3221
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Definition 3.1.1 (I. Mirkovié).

(a) Mirkovié compactified zastava MTZ$- is defined as the closure of

(e @ 0p)"

i€l

(ITier E%)aisj ) /Sa

in PV (with the reduced closed subscheme structure).

(b) The upper (resp. lowﬁr) boundary 8upMir73<_(resp. Dow™Z%) is de-
fined as the intersection M‘-ng‘c NPVE™ (resp. MTZ§ NPV ). o

(¢) Mirkovié zastava MZ$ is defined as the open subscheme in MrZ§
obtained by removing the upper Oboundary aupMiTZgg.

(d) Mirkovié open zastava MZ§. is defined as the open subscheme in M"Z5:
obtained by further removing the lower boundary 810WM“73‘<.

Returning to the usual compactified zastava (Definition Z2.1]), we set
(3.1.2) K o= K

Then the factorization property of zastava along with Proposition 223T|(a)
gives rise to a canonical isomorphism

Z5 gy, = (]I P @ 0p)

disj
i€l

(Hiel Eai)diSj)/S‘x'

Thus we obtain a birational isomorphism ©°: Mir?g‘( -5 732.

Theorem 3.1.2 (I. Mirkovié, [MYZ, 2.4.6]). The birational isomorphism
©° extends to a reqular isomorphism ©: Mir?ﬁ% = (73‘()red with the compact-
ified zastava equipped with the reduced scheme structure. Moreover, © restricts
to the same named isomorphisms MZ§ —= (Z%)rea and also Mirég‘c - ég‘c

Proof. For the readers’ convenience we sketch a proof. We consider a
twisted version Grpp x of the Beilinson-Drinfeld Grassmannian: the mod-
uli space of |a|-tuples of points in E, and G-bundles F; on E equipped with
a rational isomorphism o: F¢g --» Indg.’KT regular away from the above |a|-
tuple. The product of symmetric groups S, C S|4 acts on Grpp i, and
we denote by Gr p,x the categorical quotient (partially symmetrized twisted
Beilinson-Drinfeld Grassmannian). The generically transversal generalized B-
and twisted U_-structures in the data of zastava define a generic isomorphism
Fo --» Ind%ﬂCT; this way we obtain a closed embedding Z$ — Gr DX

We consider the corresponding closed embedding of the T-fixed point sub-
schemes (Z4)" < (Grgp )" One can construct an isomorphism (Z§ )" ~
L] Btv—a EB x E7. Furthermore, one can identify the restriction of the ample
determinant line bundle £ on Grip, 4 to the connected component EPxEY C

(Z$)T with the line bundle p* (fK_B( — D er Aﬁ + 2 heq, Af(h) i(h))>, cf.
IMYZ], Proposition 2.4.1].
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Now consider the restrictions q.£ — qx (2|750<) — Qs (1}\(7?{ )T>, where
q: GI%’DJ{ — FE“ is the natural projection. Next, q.£ — qx (2\(7?{)T) is
surjective since it equals another composition of q.£ — q. (Sl(Gr‘st x)T) —
ds (2|(7(;<)T) that is surjective e.g. by |Z]. Hence restriction rg: q. (2\7?) —
A« (2|(7(;<)T) is surjective_as well.

The restriction of q to Z§ is the factorization morphism 7*. By factoriza-
tion, a general fiber of 7@ is isomorphic to a product of projective lines, and

the restriction of £ to a general fiber is isomorphic to the exterior product
of line bundles Op1(1). Hence the restriction rg to the T-fixed points is an

isomorphism over the generic point of E®. If the coherent sheaf qs. (2\7(;{ )
were torsion free, rg would be injective, and hence an isomorphism. How-
ever, the direct image q. (£|75,%) does have torsion (essentially due to the
nonreducedness of the compactified zastava, cf. Remark 2:2.7]).

We denote by Ty C q. (2|73< ) the torsion subsheaf. We impose the rela-
tions Ty on the image of the projective embedding of 73% into P(q.£). The

resulting closed subscheme of 752 is denoted (1)73‘(. The fixed point sub-
schemes ((VZ5)T and (Z%)T coincide since the latter one is reduced. Hence

the restriction r1: q. (£|<1)7f;<) — g« (£|(7§XC)T) is surjective. We denote by
T1 C g« (2\(1)73{) the torsion subsheaf. We impose the relations 77 on the

image of the projective embedding of (1)78‘{ into P(q.£). The resulting closed
subscheme of (V7. is denoted P Z§..
Continuing like this we obtain a chain of closed subschemes

By the noetherian property of Z$. this chain stabilizes with certain closed
subscheme to be denoted (‘”)7(;{ C 73’(. If this subscheme is not reduced,

we apply the above procedure to (1)73‘{ = ((w)73’<)red to obtain its closed

subscheme ET;)?%. Continuing like this we obtain a chain of closed subschemes

(7% > E;’?‘;’C » Eg;”?gg Dl
By the noetherian property of (“)78‘{ this chain stabilizes with certain re-

duced closed subscheme to be denoted 223782 C 7% Since Ei;?ﬁg and 7(;{

coincide over the generic point of £, the subscheme 5237‘9’( must coincide

with (Z% )rea. The restriction morphism 7o : Q. (2|<oc)7a) — Qs (2\(7(;{)T)
(00)Z
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is surjective. By construction, q <£(m)7a ) is torsion free, o ro, is an iso-
(00)? %

morphism. Thus §§)7g‘< is embedded into PV%, and must coincide there with
the closure of its generic fiber, i.e. with Mir?g’C. O

3.2. Example of type A; for trivial X a la Mirkovié. Recall the setup
and notation of §2.31 We assume X is trivial and denote 7‘51( by Z® for short.
The argument in the proof of Proposition Z.3.1)(a) defines an embedding of Z¢
into the symmetrized version Grgy,(z) g of Beilinson-Drinfeld Grassmannian
of G = SL(2) of degree a, cf. [Gail §4, §7.2]. We consider the determinant
(velatively very ample) line bundle £ on Grgy,2) g and its restriction to ze.
The projection Z¢ — E(®) is denoted by 7%. We claim that there is a natural
isomorphism

(r12) = @ a.(p" (050 (A")(A"))
b+c=a

(notation of §3.1)). Indeed, let (Z%)T be the fixed point subscheme of Z¢.
Then (Z°)" = |y o E® x E©): to D, € E®), D, € E© we associate the
a-dimensional vector subspace

Vp,.p. = O06(Dy) /0 ® Op(=Dy)/Op(—=Dy — D.)
C (Og(D)/Og)® (Og/Or(—D))

(notation of the proof of Proposition 2331)(a)) and denote the corresponding

rank 2 vector bundle on F by V“Siv. The restriction to fixed points induces an

isomorphism 72€ — 7 (L] (Zayr), see e.g. [MYZ, §2.4]. The fiber £y.v is
F

det 'RI(E, V‘t}v) by definition, so that the fiber £v,, , equals

det 'H°(E,05(Dy)/0g) @ det ' H°(E,0p(—Dy)/Og(—Dy — D,))
®det H*(E,0p/Op(—Dy — D.)) = det’H°(E, 05 /Og(—Dy))

(we are making use of the trivialization of w g in Remark 220 and of the Serre
duality to identify det™' H(D,Op(D)) with det H(D,Op)). The latter line
is canonically isomorphic to the fiber of w%m at Dy € E®. We conclude
that 7¢€ = @y ., 9(P*wh). Furthermore, the dual vector bundle of
q*(p*w%(b)) is qs (p*wgfb) (Ab’c)) by the relative Grothendieck-Serre duality
for q since A%¢ is the ramification divisor of q. Finally, w;J?b) = Opm (AY).
3.3. Example of type A, for trivial X a la Mirkovié. In this section
I consists of two vertices 4,j connected by a single arrow ¢ — j, and a =
a; +a;. We assume X is trivial and denote Z$- by Z for short. We consider
the embedding of Z“ into the Beilinson-Drinfeld Grassmannian Grgp(3), g2 of
degree 2, cf. [Gail §4, §7.2]. We consider the determinant (relatively very
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ample) line bundle £ on Grgy,(s), g2 and its restriction to Z%. The projection
7% — E x E is denoted by 7. We have

(m22)Y = 0% 5 © Opxp(—Aij).

X

Indeed, let (Z*)T be the fixed point subscheme of Z%. Then (Z%)T is isomor-
phic to the disjoint union of 4 copies of £ x E. Namely, let vy, vs,v3 denote
the standard basis in the tautological representation of SL(3) (so that T acts
diagonally). Let us think of points of Z* C Grgp,(3),p2 as of vector bundles
V on E identified with Ogv, ® Ogve ® Ogvs away from points z;,z; € E.
Then: the first copy of E X E consists of V = Ogv; ® Ogvs @ Ogos; the second
copy of E x E consists of V = Og(z;)v1 ® Og(—z;)ve ® Ogvs; the third copy
of E x E consists of V = Ogv1 @ Op(x;)vs ® Op(—x,)vs; the fourth copy of
E x E consists of V = Og(z;)v1 & Op(z; — x;)ve @ Op(—z;)vs.

The restriction to fixed points induces an isomorphism 7¢¢ —
T (L] (Zayr), see e.g. [MYZ, §2.4]. The fiber Ly is det'RT(E,V) by def-
inition. The restriction of £ to the first three copies of E x F is trivial, while
the restriction of £ to the fourth copy of E x E is Ogxg(Aij).

3.4. Example of type A; for regular X. We consider the situation
complementary to the one of §3.2t we assume that K2 is nontrivial. The
open elliptic zastava of degree a is the moduli space Zog{ of line subbundles
L C K@K of degree —a. In other words, ZO& is the moduli space of
triples (£, s € HY(E,£L71'K), t € H*(E,£L~*K~1)) such that s and ¢ have no
common zeros, viewed up to common rescaling. The factorization morphism
T Zogc — E@ associates to (£,s,t) the zero divisor D of 5. We set ' :=
t/s € H(E,X~2(D)), a regular section that does not vanish on D. We can
also view Zog{ as the moduli space of triples (£, D,t"). We have an embedding

!/
Yy = (é tl) K r'eX(-D) =K oK.

We consider the determinant line bundle £ on Z‘}C whose fiber at (£, D,t') is
det ™" HO(E, Coker(Yy)). Consider the dual map T),: X '@ X — X~1(D)®
K. Then H°(E, Coker(Y,/)) gets identified with an a-dimensional subspace in
Hp = HY(E,(X~Y(D)/X~1) & (X/X(—D))). This defines an embedding of
Zogc into a relative Grassmannian over E(*). The closure of Zogc in this relative
Grassmannian is nothing but the compactified zastava 7‘3’{. The determinant
line bundle £ extends to the same named line bundle on 73{. The fixed point
subscheme (ch)T (with respect to the Cartan torus T C SL(2)) is finite over
E(@) | and the restriction morphism

(3.4.1) el — 7T::(£|(?3<)T)

is an isomorphism.
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We set Vi, = Py, .—, 9« (p* ((IK*?)(b) (Ab)) (Ab’c)> (notation of §3.2)).
We also consider a line bundle M on E(®) with the fiber det ' H°(D,X|p)
over D € E®. We will need the following well known result.

Lemma 3.4.1. For any b > 0, there is an isomorphism w];(zb) ~ Opw (AP).

Proof. We were unable to locate a reference, so we give a proof. Let
p: E* — E® be the natural symmetrization morphism. We have a natu-
b p*w};(lb) vanishing on the union of diagonals in E°. Thus,
if v is a global nonvanishing differential on F, then s = pj A --- A pjv can
E(lb) (here p,: E* — E is the projection
to the r-th factor). A local computation shows that s comes from a global
section of w;J(Qb) vanishing on A®. This gives the required isomorphism. [l

ral map w

be viewed as a global section of p*w

Now we are in a position to identify the direct image of the determinant
line bundle.
Lemma 3.4.2. We have an isomorphism Wf(ﬂ\(zk)T) ~*M® (Vgcﬂ)\/.

Proof. For every splitting D = Dy, + D, into the sum of effective divisors
of degrees b, ¢, we have a T-fixed point in 7‘91{ corresponding to the subspace

HO(E, (K71(Dy) /K1) @ (K(=Dy)/X(~D)))

C H°(E,(X~1(D)/X™") ® (X/X(~D))) = Hp.

This gives rise to an isomorphism q: |_|b+c:a E® x plo =, (7&)T, where
mq =q.

In order to calculate q..£, note that by the Serre duality on D;, we have
HY(E,X™H(Dy)/X™Y) = H*(Dy, XK~ (Ds)|p,) = H*(Dp, wp,®K(=Ds)|p,)""

Furthermore, by adjunction we have wp, ~ wg(Dy)|p, =~ Or(Ds)|p,. Thus
we get a natural isomorphism det ™" HO(E, K~ (Dy,) /KX ~') ~det H*(Dy, K| p, ).
The exact sequence

0 — K(—Dy)/K(—D) = K/K(—=D) — K/K(—Dp) — 0
gives rise to an isomorphism
det ' HY(E,K(—Dy)/X(—D)) =~ det *H°(D,X|p) ® det H*(Dy, X|p,)-
Hence we deduce an isomorphism
a*L|(p,,p,) = det "H*(D,K|p) @ det> H°(Dy, K| p, ).

In other words,

QL ~ p*det’wpm , wpK @ q*M,
where wge @ Dp — E® is the universal divisor, and wg: ©, — F is the
natural projection, while M = det™? WE) T K.
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From the natural isomorphisms
det wge) ,wpX ~ Nmg, /g (wpX) ® det wrw ,Op, ~ x® @ Wge,

we deduce an isomorphism q*£ ~ @*M ® p* ((9{2)(b) ® w%(b)). Summing up
over all decompositions b+ ¢ = a we get an isomorphism

Wf(£|(7;{)T) ~*M® @ Q*P*((j@)(b) ®wha)-
b+c=a

Using relative Serre duality for q and an isomorphism of the relative dualizing
sheaf for q with O ) e (A%€) we get an isomorphism

\%
(q*p* (x)® e wé(b))> ~q.p" (K2 @ wy?,)) (A).

Finally, using the isomorphism w];?b) ~ O (A?) of LemmaBZ1] we identify
the RHS with the corresponding summand in Vg._,.

The lemma is proved. O

3.4.1. Identification of 7‘5{ with Mirkovié¢ zastava. From Lemma
we obtain an embedding of 73{ into P (MV ® V‘;C,g) ~ P (Vg{,z). We
want to calculate this morphism explicitly away from the diagonals.

First, we find an explicit inverse of the isomorphism (B41]) over an étale
open in E@. In particular, we will work away from the diagonals. Also,
we consider the pullback of the corresponding schemes and vector bundles to
E® (but we will keep the same notations for the base change from E@ to
E*). Let D = wy + -+ - + w, with all the points distinct. For every subset
NcC{l,...,a} we set

Dy = wy, Hy:=H(E, (X" (Dy)/X"") @ (X(~Dy)/X(~D))) C Hp.
reN

To Hy we associate a section Oy of the determinant line bundle on the Grass-
mannian Gr(a, Hp) vanishing precisely over the set of subspaces that are not
transversal to Hy. Namely, for a subspace S C Hp, the value of 6y at S is
the determinant of the composition of natural maps S — Hp — Hp/Hx.
Thus 6y is a section of the line bundle with fibers det(Hp/Hy) ® det™'(S).
Note that det(Hp) is canonically trivialized due to Serre duality between
H°(D,X~1(D)|p) and H°(D,X|p), so we can view 0y as a global section of
£ R @Wha det ™ (Hy) on Z§.

Note that Hyx and Hjy are transversal iff 3 = {1,...,a}X. Thus 6x(H3) =0
for 3# {1,...,a} ~\ R. On the other hand, Ox(H{1, .. .a}x) € LlH, .0 ®

detfl(HN) is the determinant of the isomorphism Hyq  ,3<x 5 Hp/Hxy.

.....
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Hence the composition
@ det(Hy) % o, (%)= @ det™'(Hy)
RC{1,...,a} NC{1,...,a}

is an isomorphism that is a direct sum of the isomorphisms

apx): det(Hy) — det™ " (Hy).

,,,,,

It follows that the canonical embedding of Z% into the projectivization of

v
(wE<a)*(2|73<)) ~ @Nc{ly..,a} det(Hy) is the morphism

6 (Hy)
Ze Yhp | P der(Hy) —>( Gy () Pl @@ det(Hy)
RC{1,...,a} RC{1,...,a}

(where we use the duality 63(Hyq,.. o}x) = 011, a3 x(Hr)).
3.4.2. Explicit form of the identification of Lemma [3.4.2l Now we
are in a position to calculate the isomorphism of Lemma [3.4.2] over a point

(w1, ...,w,) € E*. This isomorphism takes form
(3.4.2) @ det ™' (Hy) ~ <®J< 1|wr> T (@ IKQwT> .
NC{1,...,a} NC{1,...,a} \rex

Note that Hy = @D, X (w;)

Wy 2 @T’QN :K:"wr/v 50

det ™ (Hy) ~ (@fK —w,) |wr> ® [ QK M,

reN r/gN
~ (éxl w,,) ® <®9C2(—wr) w,,) :
r=1 ren

One can check that the isomorphism ([3.4.2)) is obtained from ([B.4.3)) by taking
the direct sum over X C {1,...,a} and making use of the trivializations of
Wa, > WE(Wr)|w, =~ Op(w,)|w,. Hence the dual isomorphism to 42 is
induced by the natural isomorphisms

det(Hy) ~ (@x 1|wr> ® | Q) Klu,, | ~ (éﬂ%) ® <® ﬂ<2|wr> :

reN R reN

(3.4.3)

Thus the image of a point ¢ = (£, s,t) € égc inP (®Nc{1,...,a} X, 5{’2|W)
is obtained by first taking the point

—1
(9{1,...,a}\N(30)) ep @ det(H{l,...,a}\N)
NC{1,...,a}
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and then applying the natural isomorphisms detfl(H{l)_”’a}\N) > det(Hy)
to each component.
Finally, let us calculate the values of 6,

,,,,,

a}-x at a point ¢ = (£,s,t) €
Zogc By definition, the corresponding point of the Grassmannian Gr(a, Hp)
is the image of the map

(D, X|p) L HY(D, X~1(D)|p & X|p) = Hp.

Thus the value of 0 . 1. x is given by the determinant of the composition

t',1 _
H(D,X|p) D, Hp - Hp/H, . ayx = EBK Y, @ @ Kluw,
reX r'EN
that is equal to

011,...apx(t) = [ ] Resu, (t') € QK 2|,

ren reX
~det " 'H(D,X|p) ® det ™! (Hi1,...apn)-

Therefore, the corresponding point in the projectivization of

P Rx 7,

NC{1,...,a} TEN

(i.e. in MirZog‘<|E(a)\A) is the point with the homogeneous coordinates

(H Res,,. (t’)) :
ren RC{1,...,a}

It is easy to see that this is nothing but the image under Segre embedding of
the point

(3.4.4) (1:Resy, (t),..., (1: Resy, (t)).

3.5. Coulomb zastava. In this section we modify the construction of
3.1l In Theorem [£.2.1] we will show that the resulting zastava space is iso-
morphic to the elliptic Coulomb branch of a quiver gauge theory (for the
Dynkin quiver @ of G) when all the line bundles X; are trivial.

We define the factorizable vector bundle U§. on E as

(3.5.1) U := @ A [ P*KP @ O ion ( Z AfEZ)i(h))
By=a he@

It contains two codimension 1 subbundles: Uf ., and U™, where in the
above direct sum we omit summands corresponding to 8 = 0 (resp. v = 0).

As in 371 IP’U%E(«%SJ_ contains (Hiel P(X; & Op)% (e, E“i)disj)/soc-
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Definition 3.5.1.

(a) Coulomb compactified zastava ©Z$- is defined as the closure of

([P © 0p)*

icl

(nigz Eai)disj)/sﬂ’

in PUS (with the reduced closed subscheme structure).

(b) The upper (resp. lower) boundary 0up,© Z% (resp. Oiow© Z%-) is defined
as the intersection “Z§ NPUL™ (resp. “Z§ NPUS 1)

(c) Coulomb zastava ©Z$ is defined as the open subscheme in ©Z$- ob-
tained by removing the upper boundary 9., Z-.

(d) Coulomb open zastava Cégo‘c is defined as the open subscheme in ©Z$
obtained by further removing the lower boundary 810WC7‘9’<.

3.6. Example of type A; a la Coulomb. Inside the symmetrized ver-
sion Grgy,(z),pe) of Beilinson-Drinfeld Grassmannian of G = GL(2) of de-
gree a, we consider the moduli space M® of locally free rank 2 subsheaves
W C Ogv; ® Ogvy such that length((OEv1 @ OEvg)/W) = a. We consider
the determinant (relatively very ample) line bundle £ on Grgy,2) ge) and its
restriction to M®. The projection M® — E(®) is denoted by 7% We have

(me8)Y =wply ® @ O g
b+c=a
(notation of §3.1)). Indeed, let T C GL(2) be the diagonal Cartan torus in the
basis v1,ve of C2, and let (M?)T be the fixed point subscheme of M¢. Then
(M = Jpsoa E® x E©): to D, € E®), D. € E© we associate

\/\7[)17)[)C = OE(—Db)Ul (&) OE(_DC)UQ C Ogv1 ® Ogvs.

The restriction to fixed points induces an isomorphism 7% £ — 7% (&|(pza)r).

The fiber £4¢ is det ' RT'(E, W) by definition, so that the fiber Lwp, b, =
det(Og/Og(—Dy)) ® det(Og/Og(—D,)). The latter line is canonically iso-
morphic to the fiber of wpw R wge at (Dy, D.) € E® x E© We conclude
that 7€ = @y, —, A (WE® x g ). Furthermore, the dual vector bundle of
A (WE®) x B ) 1S . (wg(lb) B (A>€)) by the relative Grothendieck-Serre du-
ality for q since A% is the ramification divisor of q. Finally, w];(lb) ><E(C)(Abvc) =
q*wg(la), and we are done by the projection formula.

Generalizing the above example, for a line bundle X on E of degree 0,
we consider the moduli space Mg of locally free rank 2 subsheaves W C
K @ K~ such that length((KX &KX ~')/W) = a. The same argument as above
provides an isomorphism 07& ~ M. Here the Dynkin graph consists of

the unique vertex i, and in the definition of C?‘;C we set K; = K~ = K2,
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Furthermore, let ]\0452 C M be the open subspace formed by all W C X @
K1 transversal to both X and X~!. Then the isomorphism “Z% ~ M

restricts to an isomorphism CZO& ~ 1\04% Finally, the argument in the proof
of Proposition [Z3Ib) establishes an isomorphism

(3.6.1) CZ8 ~ MG ~ Hilb? (Sgc—2).

3.7. Example of type A, a la Coulomb. In this section I consists of
two vertices 7, j connected by a single arrow ¢ — j, and o = «; + a;. Then

Ug{ =0gXOg® (Kz gOE)(A”) ® Og &:K] o K; &:Kj,

a 4-dimensional vector bundle on F x E. The Coulomb compactified zastava
0732 C PU% is the zero locus of the section s of

Synt' (Ug)" @ (5 K K;5)(Aqy))
defined as follows. First, we set
V% =0pRO0gaXK;KO0pd0pRK; dK;,XK; = (0@ K;) X (O & K;).

Then Syn?('U%)Y ® (X; X X;) has a canonical section o defined as follows.
Let w;,w; be local nonvanishing sections of Og, and let u;, u; be local non-
vanishing sections of X L fK;l. Then

o = ((wi Bwy) - (u; Buy) — (w; Bg) - (u; B wy)) © (w; vy By uj?h).

We have a tautological embedding
Syn ('Us)" @ (K; BK;) < Syn? (Us)" @ ((Ki K K;)(Aij))

(arising from Opxr — Opxr(A4j)), and s is defined as the image of o under
this embedding.

Thus the family “Z$ C PUY — E x E has fibers P* x P! C P? (smooth
quadrics) away from the diagonal A;; C F x E that degenerate to P? Up: P? C
P? (singular reducible quadrics) over the diagonal A;;.

We choose an analytic neighbourhood W of a point e € E with coordinate
w, and trivialize the line bundles

(TR Ow)(—=Ai) lwxw, (Ow X K;1)|W><W, (x;* ®5<;1)\wa

compatibly. We denote the coordinates along fibers of these trivialized line
bundles by y;,y;, yi; respectively. Then “Z§|w«w C W x W x A3 is cut out
by a single equation y;y; — yi; (w1 — w2) = 0 and an open condition y;; # 0.
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4. Elliptic Coulomb branch of a quiver gauge theory

In this section we discuss the elliptic analogue of the construction [BFNI]
of the Coulomb branch of a gauge theory. This construction made use of
equivariant Borel-Moore homology of a certain variety of triples, and we re-
place the Borel-Moore homology with its elliptic version. The results of this
section are not used in the rest of the paper, and serve as a motivation only.
We consider a quiver @ = (Qg, Q1) with the set of vertices Qp and the set of
arrows Q1. We use the following notation for the Laurent series field and the
Taylor series ring: F = C((¢)) D C[t] = O.

4.1. Basics. Let V = ®;cq,Vi, W = ®icq, Wi be finite dimensional Q-
graded complex vector spaces. The group G = GL(V) = [[;co, GL(Vi) acts
naturally on N = p,o, Hom(W;, Vi) & @B ;_, j)eo, Hom(V;, V;). The con-
struction of [BENI] §2(i)] associates to this representation of G the variety of
triples R contained in an infinite rank vector bundle T over Grg. We consider
the equivariant elliptic Borel-Moore homology ring Hecﬁ (R).

A few words about the latter notion are in order. A theory of G-equivariant
elliptic cohomology with values in quasicoherent sheaves of algebras over the
moduli space of semistable G-bundles over E was proposed in [Grol|GKV].
After the proposal of [Gro|GKV], quite a few foundational papers appeared
establishing the basic properties of equivariant elliptic cohomology. We will
use [Gan] as a reference. For one thing, we restrict ourselves to a product
of general linear groups G since the centralizers of commuting pairs in G are
connected, and the base change in equivariant elliptic cohomology holds true
[Ganl, Theorem 4.6, Corollary 4.10].

Now the equivariant elliptic Borel-Moore homology er‘g (X) is defined as
W-invariants in the Cartan torus equivariant elliptic Borel-Moore homology,
and these in turn are defined by descent from the usual equivariant Borel-
Moore homology or the equivariant homological K-theory as in [Ganl §3.3].
The details of the construction are to appear in a forthcoming work of I. Pe-
runov and A. Prikhodko.

We set a; = dimV;, so that a = Zier a;a; € Apos is a positive coroot
combination of the Kac-Moody Lie algebra g with Dynkin diagram ). Then
the equivariant elliptic cohomology ngoe(pt) = Opa, where E* =[], Ef(ai),
The equivariant elliptic Borel-Moore homology HeGE‘z (R) is a quasicoherent
sheaf of commutative O go-algebras by construction of [BENT §3]. Its relative
spectrum is denoted M&* = M4(G,N): the elliptic Coulomb branch. By
construction, M‘EM is equipped with an affine morphism I7 : Mecf“] — B,

4.2. Compactified elliptic Coulomb branch. From now on we assume
that @ is an oriented Dynkin diagram of an almost simple simply connected
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simply laced complex algebraic group G. We also assume that W = 0. We
will denote Q¢ by I to match the notation of §§2 and [Bl

As in [BEN2| §3(ii)], we consider the subalgebra HSQ(R1) ¢ HS2(R)
(homology supported over the positive part of the affine Grassmannian Gr‘g C
Grg), and its relative spectrum Mge“' 1, pe. By construction, we have an
open embedding M¢c C J\/[eca’+ of varieties over E%.

As in [BFN2| Remark 3.7], we define a certain support multifiltration
F.er? (R*) numbered by the monoid AJ,, of nonnegative integral combi-
nations of positive roots of G. The (multi)projective spectrum of its Rees
algebra is denoted ﬁecuz the compactified elliptic Coulomb branch. By con-
struction, it is equipped with a projective morphism I7 : ﬁecu — E<. Also we
have an open embedding MZ?MF C Mec?[ of varieties over E?.

By definition,

G +y G +
FZie[ ay Heﬁ? (:R ) - @ Heg(z (:Rzz'el Wib, )
AposdB=3 bia;<a

(elliptic homology of the preimage in Rt of all the fundamental Go-orbits
in Gré; here w; , stands for the n-th fundamental coweight of GL(V;); in
particular, w; o = 0 and w; o, = (1,...,1)). All the fundamental Go-orbits

in Gr¢ are closed; more precisely, GrGL(V,) 2 Gr(n, a;) (the Grassmannian of
n-dimensional subspaces in V;). We have

Hé%(wp) (Gr(bi7 ai)) = Q«(Opon x plai-v0)
(the sheaf of elliptic cohomology on E(%!) notation of §3.1)), and dually,

Hecz%(vi’O) (Gr(bi’ai)) = (q*(oE(bi)XE(aq‘,*bq‘,)))v

(elliptic homology). It follows that for 8 < « and v := o — 8 we have

\

HSR (Riezwzﬁi) =19 (OEB < Z Af{Z)i(h)))
he@y

(notation of 3.1} note that the divisor Afj"y in E# x E7 is the pullback of the
corresponding divisor in E?%, so that the twisting and pushforward commute
by the projection formula). The twisting arises from the elliptic analogue
of [BENI, Theorem 4.1] and localization in elliptic homology, reducing the
calculation to the toric case.

All in all, we obtain a canonical isomorphism Fy> _ oy HEQ(RY) = (U*)Y
(notation of §3.5 where we set U := U for trivial line bundles K; = Og).
It induces a morphism ©: ﬁeca — PU*.
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Theorem 4.2.1.

(a) O is a closed embedding, and its image is ©Z® (where we set ©Z* :=
CZs. for trivial line bundles X; = O ).
(b) The isomorphism O: ﬁecu = €72 restricts to the same named iso-

morphism of the open subvarieties MECM”L = ¢z,

(c) The isomorphism ©: M&* == CZ% restricts to the same named iso-
morphism of the open subvarieties M‘EM ~, Cga,

Proof. We consider the usual equivariant Borel-Moore homology ring
HEO(R*). The argument in the proof of [BENI, Proposition 6.8] demon-
strates that this ring is generated by EBAposaﬂ:E bioi<a Hfo (Riia _— ) It
follows that the corresponding Rees algebra is generated by F? S ot Go(RT).
Since the elliptic cohomology coincides with the usual cohomology locally in
the analytic topology of E¢, it follows that the Rees algebra of HGG&? (RT) is
generated by Fy~ v HSZCE (RT). Hence O is a closed embedding. The im-
age of @ over the complement to diagonals in E® is readily identified with
(ILe (B x Py (e, Bi)a; )/ Sa- We conclude that the image of the closed
embedding © coincides with “Z“. This completes the proof of (a), (b) and
(c) follow immediately. O

5. Reduced elliptic zastava
5.1. Poisson structure. According to §3.5] 078‘( contains an open
smooth subvariety Uy = ([;c; P(K; ® Og)* (ies Boi)aw;)/Sa- It has a
covering Uy = [[;c; P(Ki @ Op)*|([1,., B*i)a;» an open subvariety of the
product of the ruled surfaces U, := [[;c; P(X; ® Og)?. Each ruled surface
P(X; @ Og) contains an open subvariety §9< (notation of §2.3). The canon-

ical class of §g< is trivial, and the trivialization is defined uniquely by our
choice of trivialization of the canonical bundle wg, see Remark In
other words, g’gci carries a canonical symplectic form wg,. More explicitly,
we can trivialize K; étale locally and choose a function w on E such that dw
is the trivialization of wgr (Remark Z2.5). Let (w,y) be the corresponding
étale local coordinates on So'xi such that y is invertible. We define the Poisson
bracket setting {y, x}x, = y. For this bracket we have {f(w)y, w}x, = f(w)y.
It follows that the brackets on the intersections of coordinate patches are all
compatible, so they give rise to a global bracket arising from a symplectic
form Qg .
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Note that g, is invariant with respect to the action of C* by fiberwise
dilations. Note also that the symplectic structure on é’g@ extends as a Pois-
son structure to P(X; ® Og) (vanishing along the zero and infinite sections).
Finally, the product Poisson structure on U, is clearly S,-invariant, so by
descent we obtain a Poisson structure on U, to be denoted {, }§.

It is likely that the Poisson structure {,}% on U, extends as a Poisson
structure to the Coulomb compactified zastava 073‘{. However, the proof
would require the normality property of 078‘{ that we do not know at the
moment. Instead we restrict to an open subset U; C U, removing the 0 and
oo sections of the surface P(KX; @ Op).

Proposition 5.1.1. The Poisson structure {, }$ on U extends to a Pois-
son structure {, }sc on Coulomb open zastava CZO% C ©Zs.. Moreover the
latter Poisson structure is symplectic.

Proof. The construction of Coulomb zastava being local, we can restrict
our consideration to ©Z% |y« where W is an analytic open subset of E with
a global coordinate w whose differential dw coincides with the trivialization
of wr (Remark Z2.5)); thus we fix an open analytic embedding W < Al
We can also trivialize all the line bundles X;|y. Combining Theorem 211
with [BEN2, Theorem 3.1] we obtain an isomorphism between Cég‘dwa and
Zoa|Wa. Here Z® — A® is the usual open zastava studied in [BFN2]. In
particular, the smoothness of zZe implies the smoothness of CZO%

In order to check that the rational Poisson structure {, }§ is symplectic
on the Coulomb open zastava, it suffices to do this over the generic points of
diagonals in E* (equivalently, over the generic points of diagonals in W¢).
The factorization isomorphism

CZ%l(EBXE“’)disj = ( ZSBC X CZ;{)'(EHXEV)disj

is Poisson by construction. Hence it suffices to check the symplectic property
of the Poisson structure over the generic points of diagonals in E” (equiva-
lently, over the generic points of diagonals in W#) for |3| = 2.

There are 3 cases to consider. If 5 = o; + o, and 4, j are not connected
by an arrow, there is nothing to check. If 8 = o; 4+ o, and 4, j are connected
by an arrow i — 7, then the Coulomb open zastava over W# with its Poisson
structure is nothing but the restriction of the rational open zastava 78 (for the
group SL(3)) with its Poisson structure to W5. The latter one is symplectic
e.g. by [FKMM]. More precisely, comparing (the last line of) §8.7 with e.g.
IBEN2, Remark 2.2] we get an explicit identification between the Coulomb
open zastava CZO§3<|WQ and the rational open zastava Zoﬁ|Wa sending {, }?C
to the standard Poisson structure on ZOB\Wa. If 8 = 2«;, the identification
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of 3.0l and §2.3] between CZOJ’BC and the corresponding Hilbert scheme sends
{ }gc to the standard Poisson (symplectic) structure on the Hilbert scheme.
This completes the proof of the proposition. O

5.2. Hamiltonian reduction. We assume that a; > 0 for any i € I.
Let 7% act on X; via the homomorphism oY : 724 — C* and the fiberwise
dilation action of C* on X;. Clearly, this action extends to a fiberwise action
on P(X; @ Og). Furthermore, for any decomposition « = 8 + 7 (where 8 =
Zie 7 bi;), the fiberwise action of T2d on K, induces its action on K? and

hence on the vector bundle q. (p*ﬂCﬁ ® Ops«mv ( Zhte Af(’z) i(h))) . Clearly,
the resulting actions of 724 on U® (see §5.1)) and on PUS

This way CZO:?C acquires an effective Hamiltonian action of 734,
We have the Abel-Jacobi morphisms E(%) — Pic* E and their product
AJ: E* — []..,; Pic* E. We denote the composed morphism by

Eg,_. are compatible.
J

iel

AJz: €78 — B* — [ Pic™ E.
i€l

Given a collection D = (D;);c; € Pic* E, we define the reduced Coulomb open
o
zastava §Zqc as AJ,*(D)/T (stack quotient, cf. Definition EZ2Z4). It inherits

o o
a Poisson structure from CZ%, symplectic on the smooth locus of % Ly

Theorem 5.2.1. For D = (D;);c; € Pic™ E, the reduced open zastava
DZ;XC 18 natumllgé isomorphic to the reduced Coulomb open zastava %ch,,
where K, =K% @ D; ® ®h€Ql,i_o(h) DIUIL)

The proof will be given in §5.4] after some preparatlon Throughout the
proof we will make use of the identification M”ZO‘ = Zj( of Theorem
Thus we will compare two types of reduced zastava constructed from the
Dynkin quiver @ (as opposed to the group G). Roughly speaking the idea
of the proof is as follows. Before the reduction, both types of zastava spaces
are closures of the images of certain Segre embeddings into projective bundles
over the configuration space. The key idea is to check that after restricting
to the Abel-Jacobi fibers the two projective bundles become isomorphic up
to a twist and the Segre images correspond to each other. This identification
is based on certain calculations with line bundles over the Abel-Jacobi fibers
performed in Lemmas [£.2.3 and £.2.4]

Note that AJ_l(D) is isomorphic to the product of projective spaces
[Lics P%~1. Hence for a sequence of integers v = (n;);c; we have a line
bundle O() = Rie;Opa, 1 (n;) on AJH(D).
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Proposition 5.2.2. Forany 8 =),c;bic; < o we set by :==b;—> 3, ,;bj,
and (' =3, Vi Then we have an isomorphism
* B B B,
q« | P (W(Z% - Z Ao(h)i(h)))(z Aiiw) ‘AJ—l(D)
icl heQy icl
~ * B,
~ q | PR @ O0pacp (D Al i) ‘ ®0(F)-

-1
heQ: ATTHD)

The proposition follows from the projection formula and Lemmas [5.2.3]
and 524 We denote by X?7 the preimage q~'(AJ ' (D)). Its projection to
EP (resp. to AJ71(D)) will be denoted by p (resp. by q). We will also need
some partial desymmetrizations of X#7. Namely, we have Ef = Elfl /Sg, and
we will identify E!8l with [Licr Hf«:l E; ., where E; , is a copy of E. We denote
by X817 25 X8 the cartesian product X2V X gsy g (EIPl x E7). For any
i eI, r<b,, the composite morphism X% — EIfl x Ev — B x B
factors through p; ,: XIBly 5 xone—ai E; . x E“~%. Finally, recall the
line bundle D? := &ielﬂ)gbi) on Ef = [],c; E®). Here @Z(.bi) is the descent
of DZ&” from E% to E(®i),

Lemma 5.2.3.

(a) We have an isomorphism of line bundles on X5 :

bs: P (D)2 q O(B) = p* (oEB > Aﬁ)) ® Oxon (> ALY).
iel iel

(b) We can choose a collection of isomorphisms ¢g. in (a) satisfying the
following factorization property:

1<r<b;
p*(bﬁﬁ = ® pzr¢ai,a—ai
il
away from the preimage of all the diagonals in E<.

Proof. (a) It suffices to construct the desired isomorphism when I con-
sists of a single element. So we will write E(®), E(¢) E() in place of EP, E7, E©.
We denote by E 2 Ex X 25 X = X0 the projections. We con-
sider the projections of the universal divisors E &2 9, Te®Q B®) and
E &2 9, T B, We keep the notations ®, C E x X D D, for the
pullbacks to X of the universal divisors over E(® and E(9). We fix a point
e € E. Tt defines divisors Y;, ¢ E® | Y, c E( Y, ¢ E@ formed by all the
configurations of points on £ meeting e.
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We have an isomorphism of line bundles on F x X:
(5.2.1) Opxx(Dp+D.) ~prD pxq*0(1).
More precisely, we have a canonical isomorphism

(5.2.2) Tp: OEXX(:Db + :DC) = pECD ® p}q*OEW (Ya).

Indeed, for any x € X the restrictions of both sides to E x {z} are isomorphic.
Thus, there exists a line bundle £Lx on X such that Opxx(Dp + D) =
D ® pxLx. To determine £Lx we consider the restrictions to e x X and
use the canonical isomorphisms

OEXX(©b)|e><X = W*E(b)OE(b) (Yb)a OEXX(E)C)‘eXX = W*E(C)OE<c) (Yc)a

4" Op@ (Ya) = Ope (Yp) B Ope (Vo).
Since wge) 1 Dp — E®) ig finite flat, we have the norm morphism
Nmg, /pw : Pic(Dy) = Pic(E®).
For any line bundle X on E we have an isomorphism
(5.2.3) K®) ~ Nmg, /g (@pX).
Indeed, we can cover E with open affine charts U; such that Ui(b) cover E(®),
and K|y, is trivial. Then we claim that both sides are given by the same

transition functions. In effect, this follows from the fact that for a regular
function w on a smooth affine curve C' = Spec(A), one has

Nmg, /oo (wiu) = u®" € Synt'(A),
where C &€ D¢ — C® is the universal divisor. The latter claim easily

reduces to the case when u is the coordinate on the affine line.
We denote by w: ®; — X the natural projection. We have an isomorphism

(5.2.4) Ox(A®D) ~ detw,0p, ® det '@, (Opxx (—De)|o,)-

Indeed, one can identify A(®):(¢) with the locus where the morphism of vector
bundles on X, w, (OEXx(—ﬁDc)bb) — w,.0p, fails to be an isomorphism.
Passing to determinants we get (5.2.4)).

Recall that for any finite flat morphism f: Y — Z and a line bundle £ on
Y we have an isomorphism

(5.2.5) detf,£ ~ Nmy,,(£) @ det f,Oy.
We have to construct an isomorphism

(526) Gr.et (DY) © q'O) = prw, (ADO)
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Recall that P*Q}E@) ~ w,0p,, and hence p*wpe) ~ det w,Op,. The triv-
ialization of wg (see Remark [Z2.7]) induces an isomorphism of Ogx x (D)o,
and the relative canonical line bundle for w: ©, — X. Hence, using (5.2.1))
along with the relative Grothendieck-Serre duality for w, we get an isomor-
phism on F x X:

@, (0(—De)lo,) ~ @i ((OExx(Dp) @ pp D' @M )|p,)
~ @, ((prD @ M)lo,)",
where M = p%,q*O(1). Since M|p, ~ w*q*O(1), we get an isomorphism
det ™', (Opxx (—D¢)|o,) ~ det(w. (ppDlo,) ® q*O(1))
~ detw. (pDlo,) ® 4"O(D).
Using (B.2.5]), we can rewrite this as
det '@, (0(-D.)|p,) =~ Nmp, ,x (ppD) ® detw,0p, ® q*O(b).

Plugging this into (BZ4]) we get
O(A®()) ~ Nmy, /x (ppD) ® det’w.0p, ® q*O(b)
~ Nmgy, /x(pgD) ® P*w2E<b) ®q*O(b),

which gives rise to the desired isomorphism ([B.2:6]) by the virtue of (23).

This completes the proof of (a).

(b) The isomorphism ([E22) can be viewed as a way to choose a section
sp,ps of D vanishing on D + D’ for (D, D’) € X. Away from the diagonals,
writing D = wy +- - - +wp, we have a collection of restrictions (sp, ps|w, )1<r<b
defining an isomorphism H°(D,Og(D)|p) = @izl D|w,. Hence, the tensor
product of these restrictions defines an isomorphism det H°(D, Og(D)|p) =

®ﬁ=1 Dl|w,. More precisely, away from all the diagonals, the isomorphism 7
of (522) gives rise to an isomorphism

Op: detw*OExx(’Db)bb = detw*(p*E@bb) X q*OE(a) (bYa).

Then over X%(¢) (notation introduced right before Lemma 23] we have an
equality

b
(5.2.7) prop = ®p;f01.
r=1

Indeed, let us consider the pullbag}«: of 7, under Idg xp: E X Xb’(i) —- ExX.
Away from the diagonals we have Dy, := (Idg xp)~}(Dp) = |_|fq=1 Dy(r), where
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Dy(r) == (Idg xp,)~1(D1). Note that the projection Dy(r) — X" is an
isomorphism. Hence,

(IdE Xp)*OEXX(E)b”@b(T) = (IdE Xpr)*oExx(Qlﬂﬁb(T).
But for any r =1, ..., b we have
(Idg xp) 7|5,y = (IdE X pr) ™71

(note that we can ignore ©. since we are working away from diagonals). In
effect, both sides have the same restrictions to e € F.

Now p*w.Orxx(Dp)|o, decomposes into a direct sum of the line bundles
(Idg xp)*Opxx (D)l5, () on Dy(r) ~ X" 5o taking the determinant of

p*w.Ty|p, corresponds to taking the product of restrictions to ’)51,(7") over
r=1,...,0b.

It follows that the isomorphisms (5:2.0) can be chosen in a factorizable
fashion away from all the diagonals, that is satisfying

b
P dve = Q) prdra1-
r=1

Indeed, we replace O(1) on AJ~}(D) = P*~! ¢ E@ by the isomorphic line
bundle O ) (Ya)|[as-1(p) and use the canonical isomorphism (£.2.2)). Going
through the construction of isomorphisms (5.2.6]) restricted to the complement
of all the diagonals, we see that each step is factorizable, the first step being
dealt with in (B.2277)). The key point in the other steps is that the base change of
the relative divisor ®;, over X with respect to X*(¢) — X becomes a disjoint
union of b points. So the determinant of the push-forward decomposes as
tensor product, as well as the norm of a line bundle, etc. Note finally that
the isomorphism (524 reduces to the identity away from the diagonals.

This completes the proof of (b). d

In Lemma [5.2.4] it will be convenient to use the notation p;: E? x B —
E®) and q;: E? x EY — E(®) for the compositions of p, q with the projec-
tions to the respective i-th factors.

Lemma 5.2.4.

(a) We have an isomorphism of line bundles on X7 :

(LR ®P:( ® ('Dizflb))(bi)) ® ® qi*(h) (op“i(hrl(_bo(h)))

i€l heQq:0(h)=i heQy
~ Jé; Byy
— Oxﬁ,w<_ Z Ao(h) i(h) Z Ao(h)i(h))'
heQn heQ1
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b) We can choose a collection of isomorphisms in (a) satisfying the
By
following factorization property:

1<r<by(n)

p*wﬁﬂ = ® pZ(h),rwao(h)ﬂ—ao(m
heQ1

away from the preimage of all the diagonals in E<.

Proof. (a) It suffices to construct the desired isomorphism when I consists
of two vertices connected by an arrow as follows: ¢ — j. We denote by
Db, Db, De; s De; C Ex X the relative divisors pulled back from the universal
divisors over the corresponding symmetric powers of E (here X = X#7). We
denote by w: ©;, — X the natural projection: a natural projection which is
a finite flat morphism of degree b;. Similarly to (5.24]), we have isomorphisms

OX(—AZ) o~ det_lw*(‘)gbi ® detw, (OEXX(_ij”@b,;)
~ Nmy, /x (Opxx(—Dp,)|0,,);
OX(—AZF'Y) ~ det_lw*O@bi ® detw, (OEXx(—’ch)bbi)
~Nmp, /x (Opxx(—De;)|0,,)-
Thus, we have an isomorphism
OX(_AZ‘ — A?jﬁ) ~ Nm@bi/x (OEXX(_Dbj — ch)|®bi)'
Using the isomorphism (recall the projections F ZEpxx B x )
OEXX(gbj + ch) = p*EDj ®p}q*@(0, 1)

together with (5.2.3]), we get an isomorphism

Nmo, /x (Opxx(=Ds, —D¢,)lo,,) =~ Nmo, /x(pED; ") © q*0(0, —b;)
~p*(D; )P B Ogen) ® g 0(0, b)),

and (a) follows.

The proof of (b) is similar to the one of Lemma [52Z3|(b). It is still enough
to consider the case when I consists of two vertices connected by an arrow
i — j. We construct a factorizable collection of 13 ~ in stages. At the first
step we note that there is an evident morphism g: X277 — Xbiai.ciait(bjte;)a;
(addition of j-colored divisors), and we choose 5., as 0"V, a,,c;ai+(b;+c;)a; -
So it suffices to construct a factorizable collection of 15, for the particular
case when £ is a multiple of «;.
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Next, we have a cartesian diagram

Xy (P xlbiesly pbi o BY

| l

Xbiairy _ i) « E7,

where v/ = v+ (b; — 1)a;. We have to choose our isomorphisms 1 so that
P b0y = ®?f=1 Pi+WVa, - To this end note that X' ~ e xPT'(E,D;),
and we can take v, to be the pullback of the universal section in the
space I'(E x PI'(E, D), D; K O(1)) under the projection E() — E sending
D € E) to the unique x € E such that D 4+ z ~ D;.

The lemma is proved. O

5.3. Segre embeddings involved in the definition of zastava
spaces. Recall that both the zastava spaces we are interested in (Coulomb
and Mirkovié¢) are defined as closures of certain Serge embeddings in projec-
tive bundles over the configuration spaces. In this subsection we write down
the equations of the images of these Segre embeddings.

We redenote

Ef & EPx Ev S B
by
B
Ef &L P x B 4 B

since 8 will vary. The ruled surface P(X; ® Og) — FE will be denoted P; — E.
We have the Segre embedding
(5.3.1) (T1P)/Sa = P(Bicr (K © Op)™*))/Sa.

iel

For any vector bundle W over E we have an isomorphism P(W¥?)/S, ~
P(W(®), where W(®) is the subsheaf of S,-invariants in the pushforward of
W¥e from E® to E(@. Thus, the RHS of E3T) is equal to IP( Rier (K; @
OE)(‘“)). Furthermore, we have a decomposition

Hier(X; @ 0p)) = B alpyk”
Btr=a

(recall that K7 := &igKgbi)). Thus we can rewrite the Segre map as

(5.3.2) (11 2) /S —=B( €D alppx?).

el Bty=c
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Let (wi,r);érgai be a collection of distinct points of E. Then the fiber of the

RHS of (B32) at the corresponding point of E* is the projectivization of

iel N (i,r)ER

1<r<a;

where the summation runs over all the subsets X of the set of pairs (i,7);c7

For s;, € Ki|w, , the Segre embedding is given by
1<r<a;
(5 =) = @ (i) = () sir)ye
icl (i,r)ER

The equations cutting out the image of Segre embedding can be formulated as
a certain factorization property of the sections’ collection (sy). More precisely,
let us consider a morphism

qN: _EN x BV — E'Oz, ((wi,T)(i,T)EN7D) — Z Wi, r +D,
(z,r)EN

where 3 := Z(z‘,r)eN a;, and v := a — 3. Let also px: EX x EY — E denote
the projection. Also, for any (i,7) € X we consider a morphism

Pigr: ENXE'Y—>EQ1" XEaiaiv ((wi,T)(i,T)ENvD)H(wiﬁa Z wj,s+D)~
(4,s)ER~{(i,m)}

Note that g o p; , = q®. Then we have natural morphisms of vector bundles

rn: @lPpK? = PR M men Ki = ( Q) p,phKi),
(i,r)EN

S ® (qfipzig{i) — ® (qgipi,r*Pf,rpZifKi)

(3,r)ER (i,r)eR
= Q) (@, e %) = ( QR pphKi).
(i,r)en (i,r)ER

We are finally able to state the Segre equations on the sections’ collection
(sx). We assume that the section sy corresponding to the empty subset X =
is identically equal to 1 (this assumption is harmless since we are working in
the projectivization.) Then the equations read

(533) KN(SN) = J{N( ® Si,'r)-

(i,7)ERN
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5.4. Proof of Theorem [(5.2.7]1 According to Proposition B.2.2] the
summands in V§ | AJ-1(D) are isomorphic to the corresponding summands in
US:|as-1(py twisted by O(8") where 8’ depends linearly on 3 numbering the
summand. The isomorphism is given by the tensor product of isomorphisms
¢8,4 (Lemma [5.23|(a)) and g, (Lemma 5.24(a)). Comparing with the def-
inition of T®-action in the first paragraph of §5.2) we see that the quotients
(PV%\AJA(D))/TM and (IP’[U?‘C,|AJfl(D))/T?‘°1 coincide.

It remains to check that the closures of the images of Segre embeddings
correspond to each other under the above identification. Let X° stand for
the open subset of AJ™*(D) defined as the complement to all the diagonals
in E*. The factorization properties of Lemma [(.2:3(b) and Lemma B.24(b)
compared with the Segre equations (.3.3]) show that the isomorphism of the
previous paragraph restricted to X° respects the Segre embeddings.

The theorem is proved.

6. Feigin-Odesskii moduli space

6.1. A symplectic moduli stack. We fix a G-bundle ¥ on E and a T-
bundle L7 of degree —a on E. We denote by M (F¢g, Lr) the moduli stack of
B-structures ¢ on Fg equipped with an isomorphism Indggo =5 L. It can be

upgraded to a derived stack equipped with a (0-shifted) symplectic structure.
Indeed, recall [PTVV] that both Bung and Buny (moduli stacks of G- and
T-bundles on E) carry the canonical 1-shifted symplectic structures. Further-
more, [Safi Example 4.11] equips the correspondence Bung — Bung x Bunp
with a canonical Lagrangian structure. Finally, the embeddings of stacky
points [Fg] = pt/Aut(Fg) — Bung and [L7] = pt/Aut(Lr) — Bunr are
equipped with the natural Lagrangian structures similarly to [HPL Theo-
rem 3.18]. We consider the homotopy fiber product

Mder(\rfrg,LT) —_— Bunp

(6.1.1) l l

[?G} X [LT] — Bung x Buny.

The truncation of M9 (F¢, L7) coincides with M (Fg, L7).

Now M4 (Fg, L) is a derived Lagrangian intersection and hence acquires
a O-shifted symplectic structure by [PTVV], cf. a similar construction [Spa]
for the base curve of genus 0.
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6.2. Tangent spaces. For a point ¢ in M9 (Fg, L), we denote by
t, «= b, — g, the vector bundles on E associated with the adjoint rep-
resentations of B (clearly, t, is trivial). The tangent complex at the cor-
responding point F¢ of Bung is RI'(E, g,[1]), and the tangent complex at
the corresponding point L7 of Buny is RI'(E, t,[1]), while the tangent com-
plexes at the corresponding stacky points [Fg] and [Lr] are the truncations
T<oRT'(E, g,[1]) and 7<oRT'(E,t,[1]) respectively. From (EII) we deduce
the homotopy fiber square

T,M(Fg, Lr) — RT(E,b,[1])

(6.2.1) l l

T<0RU(E, go[1] @ to[1]) —— RI(E, gy[1] @ t,[1]).

Hence the tangent space T, M der(Fg, L) is canonically isomorphic to the
total complex

(6.2.2)  T,M(Fg,Lr) = [RT(E,by[1]) = m50RI(E, g,[1] @ t,[1])].

Furthermore, we have an exact sequence of B-modules 0 — b — g&®t —
b — 0 and the corresponding exact sequence of associated vector bundles

(6.2.3) 0— b, = g, Dt, = b, —0.
Replacing the right column of (G.2)) by its cone RT'(E, b [1]), we can rewrite
(6.2.4) T,M(Fg, L) = [r<oRT(E, g, @ t,) — RT(E,b))].

On the other hand, the exact sequence ([G.23) is clearly selfdual, and the
Serre duality on E gives rise to a perfect pairing between the RHS of (6.2.2])
and (6Z4). This perfect pairing on T, M4°"(F¢, L) is nothing but the sym-
plectic structure of §6.11

Equivalently, at a smooth point ¢ in M9 (Fg, L7), the Poisson bivector
is defined using the differential ds of the second page of the hypercohomology
spectral sequence for the complex n, — g, — g,,/b, of vector bundles on FE.

Remark 6.2.1. The original definition of Feigin-Odesskii in [FO] is that
of the Poisson bivector on the (smooth points of) moduli stack of B-bundles
(or more generally P-bundles where P is a parabolic subgroup), which is
constructed similarly to our definition above. As we have discussed in §6.11
this Poisson bivector is a classical shadow of the 0-shifted Poisson structure on
Bunp associated with the natural Lagrangian structure on Bung — Bung X
Bungz. So the truncation of the smooth part of M9 (Fg, L) is a symplectic
leaf of the original Feigin-Odesskii Poisson structure.
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6.3. Regular induced case. We consider a special case when a G-bundle
F¢ is induced from a degree zero T-bundle Xp: Fo = Ind%fKT. Moreover,
we assume that K is regular, that is, for any root o € RV, the associated
line bundle X is nontrivial. Then for any dominant weight AY € AT the
corresponding vector bundle V)g‘v (associated to the irreducible G-module V)‘v)
canonically splits into direct sum of its weight components. In particular,
we have a projection §)‘v: V?}v — KN onto the lowest weight component
line bundle (associated to the character woA : T — C*). The collection of
f)‘v, A € AVt is subject to Pliicker relations. If we act on our data by an
automorphism of X1 given by an element ¢ € T, the projection & N will change
to N (t) - €, cf. Definition ZZIY(5). Since Aut(Ind$Kr) = T by regularity
of X (see e.g. [FEMW], Proposition 3.10] and [FrMol Theorem 4.1(i)]), the
collection of projections 5” : \73}v — KN subject to Pliicker relations is well
defined up to the action of T'.

Another piece of data in the definition of the Feigin-Odesskii moduli space
M(Fg,Lr) is the T-bundle Lr. For a fundamental weight w! we consider
the associated line bundle LWX, and we set D; := L9 @ K. We have
D, € Pic* E, where a = Y a;a; (recall that —a is the degree of £7). We set
D = (Di)ier-

We consider an open substack ]\;[der(lnd?.’KT,LT) C M (Ind$Kr, L)

A
given by the condition that the compositions LN o Vé}v 5—» KN never van-
ish identically. Ignoring the derived structure we obtain an open substack
M(Ind$Xr, £1) € M(Ind$Kr, L1).
Proposition 6.3.1. For a regular T-bundle Kr, we have a natural iso-
morphism

o ~ o G
DZJC = M(IHdT:KT7LT).

Proof. Comparing with Definitions 2.1 224 we see that the collec-
tion of projections 5)‘v : Vgrv — KN along with the collection of embeddings

LY < Vétv defines a point of reduced zastava DZ?{. Thus we obtain a mor-

phism T: M(IndgKT,LT) — DZ;. We have to check that Y is an isomor-
phism. To this end note that a twisted U_-structure on a G-bundle F defines a
filtration on the associated vector bundle ng for any dominant weight \Y. The
successive quotients of this filtration are of the form K** @ VX' (wop) for the
weights ¥ of the irreducible G-module VA The regularity condition on K
ensures that this filtration splits canonically, i.e. Vérv =D, K VA (wop?).
This collection of splittings defines a reduction of ¥ to T' C G, that is a
canonical isomorphism F & Ind?ﬂCT. This construction provides a morphism
®Zj< — J\%(Ind%fKT,LT) inverse to Y. O
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Remark 6.3.2. The conclusion of Proposition breaks down if K
is not regular. For example, if K¢ is trivial, and hence Fg is a trivial G-
bundle for G = SL(2), the LHS DZ(SXCMV contains a point corresponding to a
line subbundle £ C V in a rank 2 vector bundle V on E that is a nontrivial
extension of O with Og. But the RHS M(IndgﬂcT,LT) does not contain
such a point.

6.4. Comparison of symplectic structures. The reduced zastava
space DZ;XC carries a symplectic structure by Theorem [.2.1] and Proposi-
tion [T}, while the Feigin-Odesskif moduli space M (Ind$XKr, L) carries a
symplectic structure by §6.01 The rest of this Section is devoted to an iden-
tification of these two symplectic structures. Namely, let {, }5 denote the
Poisson bracket on DZ;; ~ %Z;y(, defined as the Hamiltonian reduction of
the bracket of Proposition BTl Let {, }ro denote the Poisson bracket on
M der(Indg.’KT, L) defined in §6.01 It restricts to the same named Poisson
bracket on the smooth open locus of M der(Ind$ Ky, L) where the derived
structure is trivial.

Theorem 6.4.1. The isomorphism of Proposition restricted to the
smooth open loci of DZ; and Z\?(IndgﬂCT,LT) takes the Poisson structure
{7 }iK' to {a }FO'

Remark 6.4.2. The stack ®Z?< can be upgraded to a derived stack
(p VA ?C)der by its very definition (since the Abel-Jacobi morphism AJy: ZO% —
[I;c; Pic* E is not smooth in general for rkG > 1, its level set acquires
a natural derived structure). Similarly, the stack of reduced Coulomb zas-
tava %Z; can be upgraded to a derived stack (§, Z)jc)der. The isomorphism
of Proposition can be upgraded to an isomorphism of derived stacks
(DZ;)dcr = Mdcr(lnngCT,LT). We also expect but cannot prove that the
isomorphism of Theorem [B.2.1] can be upgraded to an isomorphism of de-
rived stacks (QDZ?C)der = (%Z;)der. Thus we expect a symplectomorphism of
derived symplectic stacks (%Z?()dcr = Mder(lndng, Lr).

6.5. Compatibility of reduced zastava with Levi factors. Given a
subset J C I, we denote by G D L; D T the corresponding Levi factor. For
o= Zie] a;a;, we define oy 1= ZieJ a;o;. The factorization of zastava for a
decomposition a = oy + s is a birational isomorphism

Composing with the projection onto ZO%’ we get a rational dominant mor-
phism ZO% --3 ZO%’

Note that the derived subgroup L, = [L,;,L,] is also simply con-
nected, and we can consider its zastava space Zy’ (L), cf. Remark[2.2.3] Here
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Ky = (Ki)ies (recall that K; = K~°7). The natural morphism ZO%J] (L) —
ZO?C" is an isomorphism, and we will use it to identify these moduli spaces.

The rational dominant morphism 2’?{ - ZO%S (L';) induces a rational dom-
inant morphism of reduced zastava

o o
Hff pLy —=> DJZKJ(LQ)-

Here D ; stands for (D;);c.

Furthermore, the factorization property of Coulomb zastava similarly gives
rise to a rational dominant morphism Cé% --» CZO_%’] (L) that in turn gives
rise to a rational dominant morphism of reduced Coulomb zastava

c.c 5% cS®
Iy 5Zy --» DJZXJ(L,J)~

Both morphisms I7T f ST ? are Poisson by construction.

6.6. Compatibility of Feigin-Odesskii moduli spaces with Levi
factors. For a degree zero regular T-bundle Ky and J C I we consider the
Feigin-Odesskil moduli stack ]\2{?‘” (Ind%ﬂ K, Lr) for the Levi factor L ;. We
have a rational dominant morphism

Y M (Ind$ %Ky, L) --» M (Ind2 Kr, £1)

constructed as follows.

Let P; D B denote the corresponding parabolic subgroup, and let U; de-
note the unipotent radical of P;. Then the coinvariants V&‘j carry a natural
action of L; and form an irreducible L j-module with lowest weight woA" (and
with highest weight w jwoA¥). The natural projection VY V,j\j gives rise to
the projection §§v : Vétv — V?‘;UJ. Composing with the embedding LN o V?J‘tv
we obtain a morphism P V?J‘ti v, However, this morphism is not necessar-
ily an embedding of a line subbundle; in general it is only an embedding of an
invertible subsheaf. Hence in general it gives rise to a generalized B-structure
in the L j-bundle Ind%" XK. Thus we obtain a morphism

Y M (Ind$ Ky, L) — M (Ind% K, L)

to the Drinfeld closure of ]\Zc}e‘"(Indé" Kr,Lr). The latter closure is defined
as the open substack in the homotopy fiber product of [Ind%’Krz] x [Lr]
and Bunp, over Bunz, x Bung (cf. (611]) given by the condition that the
generalized B j-structure is generically transversal to the tautological Uj;_-
structure in Ind:LF" K.

It remains to check that /7% is dominant, i.e. gives rise to the desired ratio-
nal morphism from M der(Ind$ Ky, L) to ]\;[f}cr(lnd%] Kr,Lr). This follows
from Lemmal[G.6.1i(b), i.e. compatibility of IT¥ with ITZ along with the dom-
inance property of IT f .
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Comparing with construction of Poisson structure {, } ro in §§6.11 and
we see that IT y is a Poisson morphism. Indeed, we have to check that for a
smooth point ¢ € J\%(Ind?ﬂ(rp, L) such that IT} is regular at ¢, the Poisson
bivector Pj: T;ywl\sz(IndéJfKT,ﬁT) — THy@MJ(InngJ{T,LT) equals the
composition dIT} o Py o (dII}")*. To this end note that we have a natural
projection of vector bundles on E:

E: 9o = ([J)goa

and the condition that IT} is regular at ¢ guarantees that Z(b,,) = (b, )y
and E(ny) = (nz,)zm,. Moreover, under the identification ([6.Z2), the dif-
ferential

dITY' - T, M(Ind§$Kr, £1) = Tppa , My (Indf? K, L)

is induced by Z. Furthermore, under the identification 6.2.4), dIT3 is also
induced by =, provided we identify bfa with g,/n,. The Poisson property of
I follows.

Lemma 6.6.1. The following diagrams commute:
o

o Qg
A —)HZ p,Z5x, (L)
J

o | |

C
c o HJ COQJ /
DZK/ DJZ(K{, (LJ)v

o o g
/
vl 0, L (L)
J

v |

]\;[(InngKT, LT) H—y> ]\Z](IHd%J:KT, LT)

Proof.  (a) Follows from the fact that the isomorphism of Theorem [E.2.7]
is compatible with factorization.

(b) Follows from the definition of factorization isomorphism, cf. the proof
of [BDE| Proposition 3.2]. O

6.7. Proof of Theorem for G = SL(2). The only vertex of the
Dynkin diagram is denoted by i. The corresponding simple root and fun-
damental weight are denoted simply by o' and w'. A regular T-bundle is
a line bundle X = K%  such that K, = K2 = K=" is nontrivial. We
fix a line bundle £ of degree —a, and we set D = L£'K. A point ¢ of
DZ Zc ~ M (K @ X1, L) is represented by a short exact sequence

)

0 £ D g0 gt 89y g1 g,
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The associated adjoint vector bundle has a 2-step filtration 0 C n, C b, C g,
with associated graded quotients n, ~ L2, b, /n, ~ End(L) ~ Op, g,/b, ~
L2, Tt gives rise to the connecting homomorphisms
§: HY(E,L7?) = HY(E,&nd(L)), H*(E,&nd(L)) — HY(E, L?).
If ¢ is a smooth point of J\OJ(fK @ X1 L), then the tangent space is
T,M(X &X', L) = Ker (H*(E,£~2) — H'(E, &nd(£)))/Cs o t,
and dually the cotangent space is
TEM(K @KL L) = ((Csot)t ¢ HY(B,£2))/H(E, End(L)).
Also, we have a splitting
(6.7.1) HO(E, L 'K)/Cs® HO(E, L™K~ 1) /Ct =5 T,M(X © X', L),
(w,0)— sop—tow.
Explicitly, given @ € Hom(£,X) and ¢ € Hom(£,X 1), we construct an
infinitesimal deformation (s.,t.) of (s,t): £ — K & KX~! over Clg]/(g?) as
Se=s+we: LXK, te.=t+4+pe: L — XL

6.7.1. Coordinates. Let D be the zero divisor of s € Hompg (£, X); we
assume that D is multiplicity free and we choose a numbering wy, ..., w, of
its points. The functions wy, ..., we_1: M(K®K ™!, L) — E are defined étale
locally (and w, is determined by wy, ..., w,—; since the sum Y ¢_ w, € F
is fixed).

We also fix a section u of £L=1K~1 with zeros disjoint from D and define
the homogeneous functions y, := £, : M(X & K~', L) — C*. Since the re-

duced zastava is a quotient by the G,,-action, only the ratios of y-coordinates
are well defined (étale locally). Alternatively, we can normalize ¢ in such a

way that >" | L], =1, and consider the resulting functions y1, ..., ya—1
together with wy, ..., w,_1 as étale local coordinates on ]\04(3{ @ X1 L).

The above normalization of ¢ is possible (the sum does not vanish identi-
cally) since £71K~! is not isomorphic to £~'XK, hence the restriction map
HOY(E,L71K~1) - C?, t+ t|p, is an isomorphism.

The tangent space to E(®) at D can be identified with H°(D,Og(D)|p) =
HY(E,0p — Og(D)) (the complex O — Og(D) lives in degrees 0,1). The
tangent vector corresponding to the infinitesimal deformation D, equal to the
zero divisor of the section s. (considered right after (6.1))) is given by the 1-
cocycle (0, 2). In other words, the corresponding element of H°(D,0g(D)|p)

is the polar part of —%. Note that this is the same as the polar part

of (sop—tow) ]

= Thus the tangent map to the factorization morphism
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]\04(9C @K NL) - E@, (s,t) = D, sends so o —tow to %,
where s’ is the nowhere vanishing section of £L~1K(—D) corresponding to s.
It means that the image of the tangent vector d/0w, under the composition

T,M(K @ X, L) — HY(E, £71K)/Cs
— HY(D, £7'%|p) L2125 10D, 0p(D)[p)

is the principal part of the unique (up to an additive constant) rational func-
tion on E that has a simple pole with residue 1 at w, and a simple pole
with residue —1 at w, and no other poles (we use the trivialization of wg,

see Remark 2.2.0).

Dually, dw, is the image of (1|, — 1|, ) under the composition

1/s'|p
Sl LN

H°(D,0g|D) HY(D,LX~Y(D)|p)

e, gD, £2(D)|p)/H(E, Or)
— HY(E, £?)/H°(E, Op),

where the last arrow is the connecting homomorphism for the short exact
sequence

0— L£? — L*(D) — L*(D)|p — 0.

The image of the tangent vector d/dy, under the composition

(6.7.2)
T,M(K @ X, L) — H(E, L' /Ct — H(D, £7'K Y p)/Ct|p

u|p t
ey (D, 0| p)/C=
u\'D

is 1|u, — 1|, (mod %|p). Indeed, at a point of ]\04(.7( @ K1, L) given by a
pair of maps (s,t) : £ — X & K™, the tangent vector 9/dy, is represented
by the linear term of the infinitesimal deformation (s.,t.): £ — K @& K1,
where s, = s, t.(w;) = t(w;) for ¢ # r,a, while t.(w,) = t(w,) + eu(w,), and
te(wq) = t(wg) — eu(w,). Restricting this linear term to D and dividing by
u|p, we obtain 1|, — 1w, -

6.7.2. Computation of the Feigin-Odesskii bracket. According to
the last paragraph of §6.2] the Feigin-Odesskii Poisson bracket is defined us-
ing the differential dy of the second page of the hypercohomology spectral
sequence for the complex

K20y @ K2 L2020,

(—t2,st,57)
_

L2 L2,
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Consider the commutative diagram

42 st.62 52 9t 12
PR S N N T R S NS
42 o / / 42
(673) LQ(D) (—t%,8"t,s"s) K_Q(D) ®0p & 52 (s's,2s5t,—t%) L2
J/ l(f(tlD)iao»O)
L2D)lp — L2(D)|p.

Weset H =g, =K 2®0pdXK?, H =K 2(D)®O0gdXK? One can show
by the diagram chase that the following diagram commutes:

Ker (H'(E, £2) — HY(E,})) —%— H(E,£2)/H(E, )
(6.7.4) T T
Ker (HY(D, £2(D)|p) — HY(E,})) —— H(E,3')/H"(E, ).

Recall that the Hamiltonian vector field h,. of dw;, is the image of 1|,,, — 1|,
under the composition

Ker (H'(E, £2) —» H'(E, }))  —2— H(E, £~2)/H(E, X)

HOD, 05|p) LDy Ker (HO(D, £2(D)|p) — H(E, 30).

Due to commutativity of (6.7.4)), we can replace this composition with
HO(E,£72)/H°(E, %)

H°(D,0g|p) D oy (H°(D, £*(D)|p) - H'(E,})) ——— HY(E,H’)/H°(E, ).
It follows that h, gives a section of £~2 divisible by s, say h, = s o o.
This means that in the splitting (@71), h, lies in the second summand. In
particular,
{wy, wp }po = 0 for any r,r'.
Furthermore, one can see from (G.7.3) that o is the section of £L~1K~! taking
value t|,,, at w, and —t|,, at wg. Composing this claim with (6772]) we get

{Yyry 2 yro =0 for v # 7', and {y,, w,}ro = Y.
The remaining brackets
{Yr,yr fFro = 0.
Indeed, we have proved that do sends the first summand of the splitting (G.7.1)

to the second one in the dual splitting. But the splitting is symmetric with
respect to swapping the roles of s and ¢ (and replacing the divisor D with the
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zero divisor of t). This shows that dy sends the second summand to the first
one, so the brackets of y-coordinates vanish.

6.7.3. Comparison with the reduced transversal Hilbert scheme.
According to Proposition [Z3T|¢), the reduced zastava is isomorphic to the re-
duced transversal Hilbert scheme D@bg(éw), where K’ := K} = K=" @D.
The symplectic structure wgy on the surface §g</ defined in §5.T] gives rise to a
symplectic structure on the transversal Hilbert scheme and on its reduction.
The corresponding bracket is denoted {, }5/. On the other hand, according
to B6.I), the (reduced) transversal Hilbert scheme is nothing but the (re-
duced) Coulomb open zastava, and this identification respects the Poisson
brackets.

To compare {, }5 with {, } o we match the local coordinates. We choose
a local trivialization 7 of X' = X} = £L71K~1. We denote by p: Ser — E
the projection. The corresponding local coordinate z on éx/ i8S 2 = Nean /DN,
where 17¢.,, is the tautological section of p*X’. On the étale open (3’3@)“ NA —
Hilba(,‘g'gc/) we have the induced local coordinates wy, ..., wq, 21, ..., 2q. We
have {z,,w,}x = z., and all the other brackets vanish.

On the reduced transversal Hilbert scheme D@ﬁr(égc) we have the con-
straint that wy; + --- 4+ w, is a fixed point of F. These coordinates clearly
match the same named coordinates on the reduced zastava of the previous
subsections.

Now recall that the identification of reduced zastava with the reduced
Hilbert scheme in Proposition 2231 c) is obtained in the following way. Given
a point of reduced zastava represented by ¢ = (s,t) we fix an isomorphism
s: Op(D) = D and consider the image of D x {1} C D x G,, under the

isomorphism

(§'t/8)‘DZ DXGm—NﬁquD

considered up to Gp,-action (X'|p stands for the total space of the line
bundle). Here we view t/s as a section of X=2(D). In fact, we can take
¢ = s, so that our point corresponds to the trivialization of X'|p given by
te HOE,L™1K~1) = HY(E, X').

But if we use a local section v € HO(E,£L71X!) as in §6.71] to define the
local trivialization 1 above, the value of the above coordinate z, at ¢ = (s, t)
equals ¢/u(w,). This coincides with the value of the coordinate y, of §6.7.11
at ¢. In other words, the identification of reduced zastava with reduced
transversal Hilbert scheme takes the (w, y)-coordinates to (w, z)-coordinates,
and the bracket {, }ro to {, }x.

This completes the proof of Theorem for G = SL(2).
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6.8. Proof of Theorem [ for G = SL(3). The vertices of the
Dynkin diagram are denoted by 1,j. A regular T-bundle X7 is specified
by the line bundles XK and X“ such that Ko = 3(2“’!9(*“’?, K =
K25 g , Koite] = K K9 are all nontrivial. We fix line bundles L; =
£ and L; = L4 of degrees —a;, —aj, we set @ = a;0y + aja; and D; =
LK, Dy = LK. Weset V = Vo = X0 @ X @ K9 =
K1 ®Ke ®Ks. A point ¢ of DZ;XC o ]\;[(InngKT,LT) is represented by a
complex

(s1,82,83) (t1,ta,t3) 1
(6.8.1) L Vv £t

Here s. € H(E, £; 'X.) and t4 € H°(E, 5{;1651) have no common zeros and
satisfy the equation sit; + soto + s3t3 =0 € HO(E, L;lﬂjfl). The associated
adjoint vector bundle

(6.8.2) 0, =020 P KX,
1<c£d<3

(traceless endomorphisms of V) has a 2-step filtration 0 C n, C b, C g, and
the Poisson bivector {, } ro comes from the differential dy of the second page
of the hypercohomology spectral sequence for the complex

(6.8.3) n, = gy — gq,/bw_

6.8.1. Coordinates. We use the morphisms Hf\f} and vaf} of §6.601 The
targets are the Feigin-Odesskii moduli spaces of type A; studied in §6.71 In
particular, the coordinates on them are defined in §6.7.1] and we define the
coordinates on DZ; ~ N (Ind$XK 7, L7) as the pullbacks of the coordinates
of §6.701 Thus we get the étale local coordinates w; 1, ..., w;q, (subject to
the condition that their sum in E is fixed), wj1, ..., wjq; (also subject to
the condition that their sum in E is fixed), ¥;1, - .., Yi,q; (homogeneous, i.e.
only the ratios are well defined), y; 1, ..., ¥j,a; (also homogeneous).

More explicitly, w; 1, ..., w; o, are the zeros of s1, while wj 1, ..., w; 4, are
the zeros of t3. We impose the genericity assumption that all the points w; 1,

s Wia;, Wi1, -, Wja, are distinct. Furthermore, we choose sections u; €
HO(E,L;'%y) and u; € HO(E,JCz_lﬁgl). We consider the open substack of
M(Ind?ﬂ(T,LT) specified by the condition that all the w’s are distinct and
also distinct from the zeros of u; and u;. Finally, y; ,» =

Wi,y Yjr =

S2 _2‘

U Uj Wi,r*
The only nonvanishing Feigin-Odesskil brackets of i-coordinates (resp. j-

coordinates) are {y; ,, Zi,}ro = Yir (resp. {yjr. Tjr}ro = yj,) since Hf‘f}

(resp. IT f‘;f}) is Poisson. It remains to compute the brackets of i-coordinates

with j-coordinates. This computation will occupy the rest of this Section.
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6.8.2. Brackets with w-coordinates. We extend the complex (6.83)
to a diagram
Hom((Ky ' @ K51)/L5,L5) = Hom(VY /L5, L5) = ny = gy
— g<p/b<p — g‘me(LZ,V/Ll) — f}{om(Li, (le @b :KQ)/LZ)
Note that we have isomorphisms of the line bundles (K5 @ K3')/L; =~

Lj—lﬂc;lﬂc;l and (K1 @ K2)/L; ~ L£;'K,Xy. Hence composing the first
three and the last three arrows in the above diagram we obtain a complex

A B ._
[4?5{29{3 — Gy — ’Ci 25(:1%2.
With respect to the decomposition (GE.82])

XK'k, @ K'K e XK'k
0, CO K'Ks @ K)'Ke @ K3'Ks
o KKy © K;'Ks @ K3'Ks,

the matrix elements of A (resp. B) are

0 0 0 —S8182 —8289 —S8382
—ti1ts —taots —itsts resp. 5151 5152 S$1S3
t1to tato tato 0 0 0
(notation of (6.8.1])).

Hence the first and the third rows do not contribute to the differential
dy of the second page of the hypercohomology spectral sequence, and this
differential equals the one for a simpler complex

(6.8.4)
L3%KoK 5

(=tits,—tats,—t3ts)

K1y @ Op © K3 10, SLLS125159), p—2g0 g¢)

In particular, the image of ds is always divisible by s;.

This implies {w; ,, wj,r }ro = {Wir, Yjr }ro = {Yi.r, Wi ro = 0 for any
r,r.

6.8.3. Type A; revisited. In order to compute {yi’r,yj’r/}po, we need
some preparation on the tangent bundle of the Levi Feigin-Odesskii moduli
space M{j}(lnd;“}fKT,LT).

Recall from §6.7] that

o Ly
THE\?}LPM{j} (IndT{’}IKT, LT)
= Ker (H(E,£;%K;'K3") — H'(E, &nd(£; 1)) /Cats,
T;;%}wz\%{j} (Ind% Ko, L)
= ((Ctats)™ C H'(E,L3K2K3)) /HO(E, End(L;1)).
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Splitting ([E7.1)) can be rewritten as follows:
(6.8.5)

— — — _ ~ o Ly
HO(E,L;'X;1)/Clta @ HO(E, L;1K5 1) /Cts Tng}wM{j}(IndT{”J{T,LT),

(@, 0) — t30 — t2w.
Applying Serre duality to the splitting ([E83]) of
T Mz (Ind " Ko, L),
we obtain the following splitting of TE%@M {j}(lnd;{”KT, Lr):

((C)* ¢ ' (B.4;%2)))

& ((Cta)* € H'(B,£,;%3))),
v — (vtz, —vta).

* y Lisy ~
(6.8.6) Tﬂg}wM{j}(IndT UKy, Lr) —

It will be useful to rewrite the first summand of the splitting (6.8.6) as

I{CS(tngt3 7)

Ker (HO (Dt £;%2(Dty) |y, ) HY(E, oE)).

This is done by dualizing the first summand of (G.83), using the pairing
between HO(E,L;1K51) and H°(Dy,, £;K2(Dt,)|p,,) given by the sum of
residues of the product (as always, we use the trivialization of wg in Re-
mark 225]). The identification

Res(tz\Dt3 -?7)

Ker (HO (Dt £;%2(Dsy) 5y, ) HY(E, OE))

-~ (((CtQ)L c Hl(E,Lijg))
is induced by the connecting homomorphism for the short exact sequence
(6.8.7) 0= LKz 25 £;Ko(Dy,) = £;Ka(D, ) |p,, — 0.

6.8.4. Brackets of y-coordinates: Cech cocycles. In order to com-
pute {y; r,Y;.~ } Fo, we need to compute the composition

t
Res(%h)t3 -7)

Ker <H0 (Dts, OE(DtS)‘Dtg) HI(E’ OE))

1
w5 Pt

—Z s Ker (HO (Diy, £X2(Dyy)|py,)

RCS(tQ‘DtS 7)

HY(EB, oE))

— Ker (H'(E, £3K,X3) — H'(E,0p)) &y HOE, £;72K1K2) /Cs1 5

Ip

— HO(B, £;71%,) /Csy ——245 HO(D,,, ODSI)/(CZ—Q
J

b

D,

where u;, u; were defined in §6.8.1] and d» comes from (C.84).
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We rewrite the above composition as follows:

(6.8.8) Ker (HO (Dis» O8(D1y) |y, ) HY(B, oE))
%‘Dt

2% Ker (HO (Dtg,LjKQ(Dt:s”Dtg)

Res(t2 ‘ Diy 7)

HY(E, oE))

— Ker (H'(E,£;X3) — H'(E,0)) Ly HO(E, £;72K,%K,)/Cs) 59

1
Lip,
— HY(E,£;'K,)/Csy ~5 H(D,,,0p,,)/C2

Uj

b

Ds,

where the second arrow is the connecting homomorphism coming from (6.8.7),
and dy is the differential in the hypercohomology spectral sequence of the
complex

(—t1,—t2,— (s151,5152,5183)
%

(6.8.9) £;%s ), KK @ 0 p &K K, L7295, K.

To perform computations with the first cohomology we introduce a Cech
cover of E by two opens Uy, := E'\ D, and Uy, := E \ D;,. We represent
dy;r, 1 < 17 < aj, as the element of HO(DtS,OE(Dt3)|Dt3) given by the

principal part of
to to
W Uj Wi ’LL]‘

Then the corresponding 1-cocycle in H'(E,£;X>) is given by a section f €

1

1
) 1
T — ’LUj’r wjya]. xr — wj,aj wj,a].

H°(U;, NUy,, £;%K5) having simple poles at points of D, (and perhaps some
other poles at Dy, that we do not care about) such that the principal part of

fat wj, is %|wa_3UJ and the principal part of f at wj,; is

—1
t 1
’LL]‘ W wjya]. xr — ’LUj’a].

while the principal parts of f at wj,  for r # 1’ # a; vanish. Furthermore,
we apply the left morphism in ([G.89) to the above 1-cocycle to obtain a 1-
cocycle (g1, 92,93) € H'(E,X{'K2 ® Op ® K3 'Ks), where g1 = —t1f, g» =
—tof, g3 = —t3f. Then g3 has no poles at Dy, and g has the principal

at w; ,, and the principal part [ £ L atw,,.
357 Us . T—Wj,a; 255
7,7

while the principal parts of go at w; . for r # r’ # a; vanish.

6.8.5. Brackets of y-coordinates: Weierstrafl (-function. Below we
write formulas in terms of the Weierstrafl zeta function ((x) (see e.g. [Pl
Appendix A]) which is defined on the uniformization of E. However, the linear
combinations we consider descend to rational functions on E. In particular,

part —

ﬁ| 1
uj Wi, r x—wj
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the function
ij,rqwj,aj (LE) = <(£E - wj,r) - C(.’b - wj,aj)
on E is a rational function with a simple pole at wj;, with residue 1 and a
simple pole at w; , with residue —1, regular away from wj ., wj ;-
Using this function we can express the 1-cocycle (g1, g, g3) as a coboundary
(91,95, 95) — (97, 95, g ) where (91,95, 95) € HO(Upy, K1 'K ® Op @ K3 'Kz)
and (g7, g%, 9%) € H(Uy,, X' Ko @ Op @ K3 'Ks). In particular, we have

12
gé =0, gé = (_ ) @wj,r,wj,a]»
Wi, r

Uy
Furthermore, by definition of dy in (G.8.38]), we have

do(f) = s1gl + 515205 + 0 (mod s152)

(note that da(f) is actually a regular section of LZ—_29<19C2 since s1t1 + Sotg =
—s3t3). Hence we have

t
da(f) = s1g1 — 518 <—2

Uj

> @wj,r7'wj,aj (HlOd 8182).
Wy, r

The composition with the last two arrows in (6.8.8]) annihilates the summand
529}, and we are left with

a;
_ (t_2 ) 3 (8_2
Uj lwy, 1 U;

Pairing this expression with dy; ,» we finally arrive at

®wj,'r'7wj,aj (wiﬁ’)'
Wi ot

(6-8~10) {yj,r, yi,r’}FO = —YjirYir (@wj,mwj,aj (wiﬂ”’) - ewj,mwj,aj (wi,ai))'
To be more precise, recall that our coordinates include wj 1, ..., wj q,—1, but
not w; ,. However, w; o, can be determined from w; 1, ..., W;q,—1 and the
constraint that Z??Zl w; - is fixed in E. The same applies to w;,,. Now,
instead of normalizing the y-coordinates by fixing their sum, let us view them
as homogeneous coordinates, so that only their ratios matter. From (6810)
one can deduce
{art Yhr) Wi Y
(6.8.11) “Yip' Yip? FO  Yip' Yjp
= (Wi = wjr) + (Wi —wjp)).

6.8.6. Comparison with the reduced Coulomb zastava. To compare

Wy r — wj,?") - C(wi,r/ - wj,p)

the bracket {, }5 on the reduced Coulomb zastava %Z?{, with the Feigin-
Odesskii bracket we write down the isomorphism of Theorem [5.2.1] explicitly
in coordinates. To this end we envoke the uniformization B: C — E =
C/(Z @ Zt). We denote by w the coordinate on C such that the trivialization
of wg given by dw coincides with the one of Remark 2225l We denote by 6(w)
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the theta-function of degree 1 for the lattice Z @ Z7 such that 8(0) = 0. We
use the standard trivialization of the pullback *D; such that [, 6(w—w,)
descends to a section of D; whenever Og (Y12, B(w;)) ~ D;.

The common part of the étale coordinate systems on Cégo‘c, and é% is formed
by (w”/,wﬂ):,::lla; (we now think of them as of points in C rather than
r=1,...,a;
r'=1,...,a;°’

their images in E). The additional coordinates on Zoj'é are (Yir,Yjr)
wy 15 Vi € Kilu, oy and K = K0, K; = K. The addi-

i,r

where y; v € K;
tional coordinates on CZO% are (%, zjr):,::lla;
K|, and K} = KDDL, K = K~4D;.

On the reduced zastava the w-variables are constrained to have a fixed
sum, while the y-variables (resp. z-variables) are homogeneous, i.e. only their
ratios are well defined. The isomorphism of Theorem [£.2.1] has form

!
, where z; . € sz‘|ww/v Zjr €

(6.8.12) Vit = Ziip Qi (Wi1s - oy Wisa, )Y (Wi s Wity -, Wa),
Yir = 2jr@ir(Wit, - Wy, ),

where ¥ (w; r;wj 1, ..., w;q,) descends to a section of D; (unique up to rescal-
ing) that vanishes at all the points wj1, ..., wj,;. Note that rescaling
Y(w; pr;wy 1, .., Wjq,) does not change the ratios y; 4 /i p, 50 the above trans-
formation is well defined. The exact definition of ¢;,, ®;, is not important
for our purposes (we observe only that ¢;, is a nonzero element of D~ ! lw, )
Thus we can take 1

a;
(Wi Wi, Wiay) = [ ] Owirr —w;,).
r=1

Now recall the coordinates y; ,» of §6.7.11 They depend on a choice of a
trivialization u of X;D; and are defined as y; ,» = 5|w, (recall that t is also
a section of K;D;). On the other hand, y; ,» = Res,, , %, where s is a section
of D; with zeros wj 1, ..., Wiq,, see (344). Hence

u
(6.8.13) Yig! = Yig - Resw, , —

(where we use the trivialization of wg, see Remark [Z25]). Using the uni-
formization PB: C — F and trivializing P*D; we can view u as a trivialization
of K;. Then we can write s(w) = [[%_, 6(w —w; ), so that ([.8.I3) becomes

B u('wi,r/)
Vo = G T B — i)

Thus viewing v as a trivialization of K; and combining this with our trivial-
ization of P*D; we can view z; ,» as actual coordinates taking values in C,
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and from (G.812) we get

aj
Yirr = 2o B (Wit wia,) [ O(wir = wy0),

r=1
Yjr = ZJ,T¢j,r(wj,17 e wj,aj)a
where once again, the exact form of ¢, ., qﬁ;- ,» is not important for our pur-
, ;
poses.
We get
o B’LUj,rw(wi,T’ ) wj,17 sy wj,a]‘) _
{yi,r’a yj,r}iK/ =Yir'Yjr: i - yi,r/yj,T'C(wiﬂ" _wjﬂ‘)'
w(wi,r’a Wiy, wj,aj)

This in turn implies
Yir' Yjr Yior'  Yjir
{ﬁ; yj7}9<’ = E : yjj(C(w“/ —wjr) — (Wi, — wyp)
= C(wi gy —wjy) + C(wipy — wjm))-
Comparing with ([G8II) we see that the brackets {, }%s and {, }ro match
on y-coordinates. It is easy to check that they also match on the brackets
involving w-coordinates.
This completes the proof of Theorem for G = SL(3).

6.9. Proof of Theorem [6.4.1] for arbitrary simply laced G. The
1<r<a;
el
are constrained, and y-coordinates are homogeneous). We have to compare
{f,9}ro and {f, g}x, where f is a coordinate function from the i-th group,

and g is a coordinate function from the j-th group (it may happen that i = j).

o
étale local coordinates on ., Zy are (w; ,, Yi,r) (as always, w-coordinates

We consider the Levi subgroup of rank 1 or 2 corresponding to the Dynkin
subdiagram on vertices ¢, j. The rational projection I7 to the corresponding
Levi zastava spaces being Poisson, it suffices to compare the brackets in ques-
tion for the Levi zastava spaces. This comparison was already made in §6.7]
for rank 1 and in §6.8] for rank 2.

This completes the proof of Theorem for arbitrary simply laced G.
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