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The simplest nonsingular flows on closed orientable 3-manifolds are studied. We es-

tablish that each class of topological equivalence of the simplest nonsingular flow on a

lens consists of an infinite set of topological conjugacy classes. We obtain necessary

and sufficient conditions for the topological conjugacy of the flows under consideration.
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1 Introduction and Formulation of the Results

Flows f t, f ′t : M → M on a manifold M are topologically equivalent if there exists a homeomor-

phism h : M → M mapping the trajectories of the flow f t to trajectories of the flow f ′t with

preservation of the motion direction along trajectories. Two flows are said to be topologically

conjugate if h◦f t = f ′t◦h, i.e., h maps trajectories to trajectories, preserving not only direction,

but also the time of motion along the trajectory.

In this paper, we consider the so-called nonsingular Morse–Smale flow (NMS-flow) f t given

on closed orientable 3-manifolds M3. The nonwandering set of such a flow consists of finitely

many periodic hyperbolic orbits. In a neighborhood of a hyperbolic periodic orbit, the flow is

topologically conjugate to a suspension over some linear diffeomorphism of the plane given by
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a matrix with positive determinant and real eigenvalues different from 1 in modulus (cf. for

example, [3, Theorem 4.2, 4.3]). If both eigenvalues are larger (less) than 1 in modulus, then

the corresponding periodic orbit is called repelling (attracting); in the opposite case, it is called

a saddle.

Since the underlying manifold M3 is the union of stable (unstable) manifolds of all its

periodic orbits (cf., for example, [5, Theorem 2.2]), the NMS-flow f t necessarily has at least one

attracting periodic orbit and at least one repelling periodic orbit. The NMS-flow f t : M3 → M3

is the simplest if its wandering set consists exactly of two periodic orbits: attracting c+ and

repelling c−. We denote by S the class of such flows. As established in [1], all manifolds

admitting flows in the class S are lens spaces and, as proved in [4], on each lens space there are

exactly two classes of topological conjugacy of the simplest flows (cf. Figure 1) except for the

3-sphere S
3 and the projection spaces RP 3 where the equivalence class is single. We recall that

the lens space is a three-dimensional manifold Lp,q = V+ ∪j V− obtained as a result of gluing

two copies of the solid torus V+ = V, V− = V along some homeomorphism j : ∂V+ → ∂V− such

that j∗(〈0, 1〉) = 〈p, q〉.

Figure 1. Examples of topologically nonequivalent flows on S
2 × S

1.

In this paper, we establish that each equivalence class of the simplest nonsingular flow on

a lens consists of an infinite set of classes of topological conjugacy. In addition, we establish

necessary and sufficient conditions for the topological conjugacy of the flows under consideration.

We describe the results in more detail.

Let f t ∈ S be a nonsingular flow with two limit cycles: stable c+ and unstable c− cycles of

periods T+ and T− respectively. In Section 3, we show that with each flow f t we can associate

a continuous function ̂δ : T2 → S
1 such that ̂δ(0, 0) = 0, whereas the induced homomorphism

̂δ∗ : Z2 → Z is surjective and its kernel is nontrivial. Then on the torus T2 there exist generators

α and β with the intersection index 1 and such that ̂δ∗(〈α〉) = 1 and ̂δ∗(〈β〉) = 0. Moreover, the

homotopy type 〈β〉 = 〈q, p〉 of the curve β is uniquely determined from the above conditions.

We denote by A the set of functions with these properties.

Two functions ̂δ, ̂δ′ ∈ A are equivalent if there exists a homeomorphism ̂θ : T2 → T
2 such
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that the induced isomorphism is given by the matrix

̂θ∗ =
(±1 0

k 1

)

, k ∈ Z,

preserving the homotopy class of the torus meridian, and ̂δ′(̂θ(s, �)) − ̂δ′(̂θ(0, 0)) = ̂δ(s, �) for

(s, l) ∈ S
1 × S

1. We denote by [̂δ] the equivalence class of ̂δ.

The main result of the paper is proved in Section 4 and is formulated as follows.

Theorem 1.1. Flows f t, f ′t ∈ S are topologically conjugated if and only if

(1) T± = T ′±,

(2) [̂δ] = [̂δ′],

(3) p = p′, q ≡ ±q′ (mod p).

Necessary and sufficient conditions for the topological conjugacy of flows in the considered

class on the lens S2 × S
1 were earlier obtained in [2].

The key point of the proof of Theorem 1.1 is the existence of a unique f t-invariant two-

dimensional foliation in a neighborhood of a periodic orbit of the flow established in Lemma 2.1.

The proof of the existence of infinite set of topologically non-conjugate flows in one equivalence

class of f t ∈ S it follows from the following theorem proved in Section 5.

Theorem 1.2. For any positive numbers T+ and T− and any function ̂δ ∈ A there exists a

flow f t ∈ S with the corresponding parameters on the lens space Lp,q.

2 Existence of Unique f t-Invariant Two-Dimensional
Projection of Foliations in Neighborhood of Periodic Orbit

Let f t ∈ S be a nonsingular flow with two limit cycles: stable c+ and unstable c− cycles

of periods T+ and T− respectively. We set K+ = W s
c+ = M3 \ c− and K− = W u

c− = M3 \ c+.
We define the flow At : R

3 → R
3 by the formula At(x1, x2, x3) = (x1, x2, x3 + t) and the

homeomorphism g± : R3 → R
3 by the formula

g±(x1, x2, x3) =
(x1
2
,
x2
2
, x3 − T±

)

.

We set G± = {gn± : n ∈ Z} (cf. Figure 2) and Π± = R
3/G±. We denote by q± : R3 → Π± the

natural projection and by at± the flow induced by the flow A±t on Π±. By construction, the

flow at± has a unique periodic orbit c̃±.
Proposition 2.1 (cf. [3]). There exists a homeomorphism η± : K± → Π± conjugating the

flows f t|K± and at±.

Lemma 2.1. For any flow f t ∈ S there exists a unique f t-invariant two-dimensional

foliation Ξ± on K± whose fibres ξ± are secant lines of trajectories of the flows f t|K± and

fT±(x) ∈ ξ±, f t(x) /∈ ξ±, 0 < t < T±, if x ∈ ξ±.

Proof. For the sake of definiteness we consider a stable cycle. The case of unstable cycles

is treated in the same way.
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Figure 2. Flow At. Action of the homeomorphism g+.

We first note that the existence of at least one foliation Ξ+ with required properties follows

from linearization. Indeed, let χ = {x3 = c, c ∈ R} be a foliation on R
3 that is formed by

horizontal planes χ̃+ = q+(χ), Ξ+ = η−1
+ (χ̃+) (cf. Figure 3). Let us prove the uniqueness of

the foliation Ξ+.

Figure 3. Invariant foliations χ and Ξ±.

Let Ξ+ and ̂Ξ+ be two foliations on K+ possessing the required properties. Then χ =

q−1
+ η+(Ξ+) and χ̂ = q−1

+ η+(̂Ξ+) are two foliations in R
3, invariant under the flow At. We

consider the annulus κ = {(x1, x2, 0) ∈ R
3 | 1 � x21 + x22 � 2} in R

3. Let κ̂ be an annulus on a
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fibre of the foliation χ̂ passing through the origin and consisting of points of the intersection of

this fibre with trajectories passing through points of the annulus κ. We denote by θ : κ → κ̂ the

homeomorphism sending a point r ∈ κ to a point of the intersection of trajectories of At passing

through r and the annulus κ̂. Since the foliations are invariant under the flow At and under the

homeomorphism g+, we conclude that the homeomorphism θ is extended to a homeomorphism

θ : R3 → R
3 such that θ(χ) = χ̂, θAt = Atθ, g+θ = θg+. Then the homeomorphism θ takes the

form

θ(x1, x2, x3) = (σ(x1, x2, x3), ς(x1, x2, x3), ˜ψ(x1, x2, x3)),

where σ, ς, ψ are continuous mappings. Since the trajectories of the flow At are invariant under

the mapping θ, we have σ(x1, x2, x3) = x1, ς(x1, x2, x3) = x2, and the condition θAt = Atθ

implies
˜ψ(x1, x2, x3 + t) = ˜ψ(x1, x2, x3) + t.

We write ˜ψ(x1, x2, x3) in the form ˜ψ(x1, x2, x3) = x3 + ψ(x1, x2, x3). Then

x3 + t+ ψ(x1, x2, x3 + t) = x3 + ψ(x1, x2, x3) + t

and, consequently,

ψ(x1, x2, x3 + t) = ψ(x1, x2, x3), t ∈ R.

This means that the mapping ψ is independent of x3. We set ψ(x1, x2, x3) = ψ(x1, x2). Thus,

θ has the form θ(x1, x2, x3) = (x1, x2, x3 + ψ(x1, x2)). Since

g+θ = θg+, g+(x1, x2, x3) =
(1

2
x1,

1

2
x2, x3 − T+

)

,

we have

x3 + ψ
(x1
2
,
x1
2

)

− T+ = x3 + ψ(x1, x2)− T

and, consequently,

ψ
(x1
2
,
x2
2

)

= ψ(x1, x2).

We show that, in this case, ψ(x1, x2) is a constant. Indeed, assume that (x1, x2) ∈ R
2 and

(xn1 , x
n
2 ) = ψ(x1/2

n, x2/2
n), n ∈ N. Since ψ(x1/2, x2/2) = ψ(x1, x2), we have ψ(xn1 , x

n
2 ) =

ψ(x1, x2) for every natural n. Since the mapping ψ is continuous, the sequence of constants

ψ(x1/2
n, x2/2

n) converges to ψ(0, 0) and ψ(x1, x2) = ψ(0, 0) for every (x1, x2) ∈ R
2. Thus,

θ(x1, x2, x3) = (x1, x2, x3 + b), where b is a constant. Consequently, θ(χ) = χ. Since θ(χ) = χ̂,

we have χ̂ = χ.

3 Function ̂δ ∈ A Corresponding to Flow f t ∈ S

For x = (x1, x2, x3) ∈ (R3 \Ox3) we denote

||x|| =
√

x21 + x22, s =
( x1
||x|| ,

x2
||x||

)

∈ S
1, l = T+ log2 ||x|| ∈ R, r = log2 ||x|| −

x3
T+

∈ R

and define the mapping μ+ : R3 \Ox3 → S
1 ×R

2 by μ+(x1, x2, x3) = (s, l, r). We introduce the

homeomorphism γ+ : S1 × R
2 → S

1 × R
2 by the formula γ+(s, l, r) = (s, l − T+, r) and the flow

Bt : S1 × R
2 → S

1 × R
2 by the formula

Bt(s, r, l) =
(

s, l, r − t

T+

)
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(cf. Figure 4). A direct calculation shows that μ+g+ = γ+μ+ and μ+A
t = Btμ+.

Figure 4. Action of the mapping μ+, flows A
t and Bt.

We set Γ+ = {γn+, n ∈ Z}. Then (S1 × R
2)/Γ+ = T

2 × R and the natural projection

p+ : S1 × R
2 → T

2 × R induces the flow bt+ : T2 × R → T
2 × R by the formula

bt+(s, �, r) =
(

s, �, r − t

T+

)

, s, � ∈ S
1.

A direct calculation shows that the foliation μ+(χ) has the form

μ+(χ) =
{

(s, l, r) ∈ S
1 × R

2 : r =
l

T+
+ r0

}

r0∈[0,1)
.

We set F+ = p+(μ+(χ)). By construction, the flows f t|K+\c+ and bt+ are topologically conjugate

via the homeomorphism j+ = p+q
−1
+ η+ : K+ \ c+ → T

2 × R. Similarly, the flow f t|K−\c− is

topologically conjugate to the flow bt− : T2 × R → T
2 × R given by

bt−(s, �, r) =
(

s, �, r +
t

T−

)

, s, � ∈ S
1,

via a homeomorphism j− : K− \ c− → T
2 × R similar to j+. Moreover, the foliation μ−(χ) has

the form

μ−(χ) =
{

(s, l, r) ∈ S
1 × R

2 : r =
l

T−
+ r0

}

r0∈[0,1)
.

We set F− = p−(μ−(χ)) and introduce the mapping Φ: T2 × R → T
2 × R by the formula

Φ = j−j−1
+ . Without loss of generality we assume that T+ � T−. Otherwise, the further

consideration can be performed for the mapping Φ−1. Then the homeomorphism Φ topologically

conjugates the flows bt+ and bt−. Hence the fibres of Φ(F+) are invariant under shifts

(s, �, r) 	→
(

s, �, r +
T+

T−

)

.
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We introduce the homeomorphism γ : T2 × R → T
2 × R by the formula

γ(s, �, r) =
(

s, �, r +
T+

T−

)

and set Γ = {γn, n ∈ Z}. Then (T2 × R)/Γ = T
3 and the natural projection v : T2 × R → T

3

induces a foliation ̂F+ = v(Φ(F+)) such that each its fibre is a two-dimensional torus and

̂F+ = {(s, �, ρ) ∈ T
3 : ρ = ̂δ(s, �) + ρ0}ρ0∈S1 ,

where ̂δ : T2 → S
1 is a continuous function such that ̂δ(0, 0) = 0, the induced homomorphism

̂δ∗ : Z2 → Z is surjective and its kernel is nontrivial, i.e., it is a subgroup isomorphic to Z with

a unique up to a sign generator. Then, on the torus T
2, there exist generators α and β with

the intersection index 1 such that the coordinates of their homotopy classes form a unimodular

matrix and ̂δ∗(〈α〉) = 1, ̂δ∗(〈β〉) = 0. Therefore, the homotopy type 〈β〉 = 〈q, p〉 of the curve β

is uniquely found. We denote by A the set of functions possessing the above properties. Two

functions ̂δ, ̂δ′ ∈ A are equivalent if there exists a homeomorphism ̂θ : T2 → T
2 such that the

induced isomorphism is given by the matrix

̂θ∗ =
(±1 0

k 1

)

, k ∈ Z,

and ̂δ′(̂θ(s, �))− ̂δ′(̂θ(0, 0)) = ̂δ(s, �). We denote by [̂δ] the equivalence class of ̂δ.

4 Proof of Theorem 1.1

Necessity. Let h : M3 → M3 be a homeomorphism conjugating flows f t, f ′t ∈ S . All

objects related to the flow f ′t are marked by the prime, by analogy with objects of the flow f t.

Then T± = T ′± and the homeomorphism h induces a homeomorphism h− : T2 × R → T
2 × R

conjugating the flows bt− and b′t−. Since the trajectories of the flows bt− and b′t− take the form

{(s, �)}×R, {(s′, �′)}×R, the homeomorphism h− determines the homeomorphism ̂θ : T2 → T
2

by the formula ̂θ(s, �) = (s′, �′), where h−({(s, �)} × R) = {(s′, �′)} × R. Since h− sends fibres

of the foliation F− to fibres of the foliation F ′−, the induced isomorphism is determined by the

matrix

̂θ∗ =
(±1 0

k 1

)

, k ∈ Z.

In turn, the homeomorphism h− induces a homeomorphism ̂h− : T3 → T
3 sending fibres of the

foliation ̂F+ to fibres of the foliation ̂F ′
+, which implies

̂δ′(̂θ(s, �))− ̂δ′(̂θ(0, 0)) = ̂δ(s, �).

Hence [̂δ] = [̂δ′]. Furthermore, ̂δ∗̂θ∗ = ̂δ′∗, consequently, ̂θ∗(〈β〉) = 〈β′〉, which implies

〈q′, p′〉
(±1 0

k 1

)

= 〈q, p〉.

Hence p = p′ and q ≡ ±q′ (mod p).

Sufficiency. Let the flows f t, f ′t ∈ S satisfy Conditions (1)–(3) of the theorem. We con-

struct a homeomorphism h : M3 → M3 conjugating the flows f t and f ′t. By Condition (2) there
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exists a homeomorphism ̂θ : T2 → T
2 realizing the equivalence of the functions ̂δ and ̂δ′. We

set ̂θ(s, �) = (s′, �′) and introduce the homeomorphism h− : T2 × R → T
2 × R by the formula

h−(s, �, r) = (s′, �′, r + �′ − �). Then h− transforms fibres of the foliations F− and Φ(F+) to

fibres of the foliations F ′− and Φ′(F ′
+) respectively. We set h = j−1

− h−j− : K− \ c− → K− \ c−.
By construction, the homeomorphism h− transforms fibres of the foliation Ξ± to fibres of the

foliation Ξ′± respectively. Since T± = T ′±, the homeomorphism h is uniquely extended on M3 to

the required homeomorphism conjugating the flows f t and f ′t.

5 Proof of Theorem 1.2

For given periods T± we construct the flows at± on Π±. For a given function ̂δ ∈ A we define

the homeomorphism Q : T2×R → T
2×R by the formula Q(s, �, r) = (s, �, r+T−̂δ(s, �)− �). We

setQ = q−p−1
− Qp+q

−1
+ : Π+\c̃+ → Π−\c̃− andM3 = Π+∪QΠ− and denote by ν : Π+
Π− → M3

the natural projection. Since 〈β〉 = 〈q, p〉, we have M3 ∼= Lp,q. Then the flow f t ∈ S is well

defined on M3 by the formulas f t
ν(Π+) = νat+(ν|Π+)

−1 and f t
ν(Π−) = νat−(ν|Π−)

−1. The theorem

is proved.
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