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ON EMBEDDING OF THE MORSE–SMALE DIFFEOMORPHISMS
IN A TOPOLOGICAL FLOW

V. Z. Grines, E. Ya. Gurevich, and O. V. Pochinka UDC 517.938

Abstract. This review presents the results of recent years on solving of the Palis problem on finding
necessary and sufficient conditions for the embedding of Morse–Smale cascades in topological flows.
To date, the problem has been solved by Palis for Morse–Smale diffeomorphisms given on manifolds
of dimension two. The result for the circle is a trivial exercise. In dimensions three and higher new
effects arise related to the possibility of wild embeddings of closures of invariant manifolds of saddle
periodic points that leads to additional obstacles for Morse–Smale diffeomorphisms to be embedded in
topological flows. The progress achieved in solving of Palis’s problem in dimension three is associated
with the recently obtained complete topological classification of Morse–Smale diffeomorphisms on three-
dimensional manifolds and the introduction of new invariants describing the embedding of separatrices
of saddle periodic points in a supporting manifold. The transition to a higher dimension requires the
latest results from the topology of manifolds. The necessary topological information, which plays key
roles in the proofs, is also presented in the survey.
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1. Statement of the Problem and History of the Issue

The dynamical systems with continuous (flows) and discrete (cascades) time are closely connected.
Thus, if the flow on the manifold Mn has a global secant, then its properties are mostly defined by
the properties of Poincaré map on this secant. The numerical methods of solving the differential
equations naturally give mappings with discrete time. One of the indicators of the adequacy of
numerical modeling consists in the fact that the resulting cascade is topologically conjugated to a
shift per time unit along the trajectories of the original flow. In the papers [19, 20] it is shown that
the Runge–Kutta discretization of the system of n ≥ 2 differential equations defining the Morse–Smale
flow without periodic trajectories (structurally stable stream with finite nonwandering set) on a disc,
for a sufficiently small value of the discretization step, defines a discrete dynamical system topologically
conjugated to a shift per time unit along the trajectories of the original flow. This means that the
resulting discrete dynamical system is embedded in the topological flow.

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics.
Fundamental Directions), Vol. 66, No. 2, Proceedings of the Crimean Autumn Mathematical School-Symposium,
2020.
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Study of the connection between the cascades and streams leads to the classical problem of finding
conditions for the embedding of diffeomorphisms (or homeomorphisms) in the flow. Let Mn be a
smooth connected closed manifold of dimension n. Recall that a Cm-flow (m ≥ 0) on the manifold
Mn is a family of Cm-diffeomorphisms Xt : Mn → Mn continuously depending on t ∈ R, and such
that X0(x) = x and Xt(Xs(x)) = Xt+s(x) for all s, t ∈ R, x ∈ Mn. A C0-flow is also called a
topological flow.

We say that the diffeomorphism f :Mn →Mn of a closed manifold Mn is embedded in Cm-flow if
f is the shift per time unit along the trajectories of some Cm-flow Xt (f = X1) given on Mn.

Since the flow defines the isotopy connecting the shift per time unit along the trajectories and the
identity mapping, then the diffeomorphisms nonisotopic to the identity are not embedded in any flows.
Thus, the set of cascades is significantly richer than the set of shifts per time unit along the flows
trajectories. In [40] it is proven that the set of Cr-diffeomorphisms (r ≥ 1) embedded in C1-flow
is a subset of the first category in Diff r(Mn). By [9], the set of C2-diffeomorphisms embedded in
C1-smooth flow is nowhere dense in the space of Morse–Smale diffeomorphisms.

At the same time, for any diffeomorphism Mn there exists an open in Diff 1(Mn) set of diffeomor-
phisms embedded in the topological flow. This fact follows from the following reasoning. By [46] on
each manifold there exists a Morse function, such that its gradient flow can be arbitrarily approxi-
mated by the Morse–Smale flow Xt without closed trajectories. The shift per time unit X1 along the
trajectories of such flow is a Morse–Smale diffeomorphism, which, by [39, 41], are structurally stable.
Hence, there exists a neighborhood U(X1) ⊂ Diff 1(Mn) such that any diffeomorphism f ∈ U(X1)
is topologically conjugated to X1 by some homeomorphism h, thus f is embedded in the topological
flow h−1Xth.

Recall what the diffeomorphism f given on closed manifold Mn is called Morse–Smale diffeomor-
phism if its nonwandering set Ωf is finite and consists of hyperbolic periodic points, and for any two
points p, q ∈ Ωf the intersection of the stable manifold W s

p of the point p and nonstable manifold W u
q

of the point q is transversal. Next we everywhere consider the Morse–Smale diffeomorphisms class
G(Mn) preserving the orientation on orientable manifolds.

In the paper by Palis [39] there are stated the following necessary conditions for the embedding of
a Morse–Smale diffeomorphism f :Mn →Mn in the topological flow:

(1) the nonwandering set Ωf coincides with the set of stable points;
(2) the restriction of the diffeomorphism f on every invariant manifold of every fixed point p ∈ Ωf

preserves its orientation;
(3) if for different saddle points p, q ∈ Ωf the intersection W s

p ∩W u
q is not empty, then it doesn’t

contain the compact components of the connection.

In further consideration we call conditions (1)–(3) to be the Palis conditions.
In [39] it is also shown that for n = 2 these conditions are sufficient (see Theorem 5.1). Also

there is stated the problem of generalization of this result onto the case of higher dimension (note
that from [18] it follows that the necessary and sufficient conditions of the embedding of Morse–
Smale diffeomorphism of circle in the flow coincides with the first Palis condition). The Palis problem
was exhaustively solved in dimension three in works [26, 45]; for the higher dimension it was solved
only partially, for a class of Morse–Smale diffeomorphisms without the heteroclinic intersections given
on sphere, see [24]. The present survey is devoted to the presentation of these results and related
topological problems.

2. Properties of the Morse–Smale Diffeomorphisms and the Related Notation

We recall some facts related to the dynamics of Morse–Smale diffeomorphisms, which will be mul-
tiply used in further sections.

Let f : Mn → Mn be a diffeomorphism. The point x ∈ Mn is called the nonwandering point of
the diffeomorphism f if for each its neighborhood U and any natural number N there is such n0 ∈ Z
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that |n0| ≥ N and fn0(U) ∩ U �= ∅. Obviously, the periodic point is nonwandering. According to the
definition of a Morse–Smale diffeomorphism its nonwandering set coincides with the set of periodic
points.

The periodic point p of periodm of diffeomorphism f is called hyperbolic if the differential Dfm(p) :
TpM

n → TpM
n considered as the linear mapping of the tangent space TpM

n into itself doesn’t have
the eigenvalues modulo one. Due to Grobman–Hartman theorem [28–30], in a neighborhood of a hy-
perbolic periodic point p the diffeomorphism fm is topologically conjugated to a linear diffeomorphism

defined by the Jacobi matrix
(
∂fm

∂x

)∣∣∣
p
.

From here we obtain that for a hyperbolic periodic point p there exist so called stable manifoldW s
p =

{x∈Mn : lim
n→+∞ d(fkm(x), p) = 0} and nonstable manifold W u

p = {x∈Mn : lim
n→+∞ d(f−kmp(x), p) = 0},

where d is a metric on Mn. The nonstable and stable manifolds are called the invariant manifolds.
The number j equal to the number of eigenvalues of Jacobi matrix modulo larger than two and,
correspondingly, coinciding with the dimension of nonstable manifold dimW u

p , is called the Morse
index of the hyperbolic point p. Then the dimension of the stable manifold can be calculated with the
formula dimW s

p = n− j.

Everywhere further we denote as Ωj
f , j ∈ {0, . . . , n} the set of hyperbolic periodic points of the

diffeomorphism f with Morse index j. The point with Morse index 0 < j < n is called saddle, the
others are called nodal, while nodal point with the index 0 is called sink, and with the index n source.

Recall that n-ball (n-disk) is a manifold with boundary homeomorphic to the standard ball Bn =
{(x1, . . . , xn) ∈ R

n | x21+ . . .+x2n ≤ 1}. The sphere is the manifold Sn homeomorphic to the boundary
S
n−1 of ball Bn.
Due to the adjointness with the linear contraction, in the neighborhood of stable sink point p

there exists a closed n-ball Up ⊂ W s
p such that f(Up) ⊂ intUp and

⋂
k≥0

fk(Up) = p. Thus, the stable

hyperbolic sink point is the attractor of the diffeomorphism f in the sense of the following definition.
The closed f -invariant set A ⊂Mn is called an attractor of f if it has a compact neighborhood UA

such that f(UA) ⊂ intUA and A =
⋂
k≥0

fk(UA). The neighborhood UA is called attracting, and the

union
⋃
k≥0

f−k(UA) is called the basin of the attractor. The repeller is defined as the attractor for f−1.

For each periodic hyperbolic point p, the connection component �sp (�up) of W
s
p \ p (W u

p \ p) is called
the separatrix of the point p. For each subspace P ⊂ Ωf , we denote as W

u
P (W s

P ) the union of unstable
(stable) manifolds of all points of P.

The connection between the topology of the carrier manifold and the dynamical properties of Morse–
Smale diffeomorphisms in many ways is explained by the following fact (see [31, 46]).

Proposition 2.1. Let f : Mn → Mn be a Morse–Smale diffeomorphism. Then W u
p and W s

p are

smooth submanifolds of Mn diffeomorphic to R
j and R

n−j, respectively, for any periodic point p ∈ Ωf ,
and Mn =

⋃
p∈Ωf

W u
p =

⋃
p∈Ωf

W s
p .

However, the invariant manifolds of saddle periodic points of Morse–Smale diffeomorphism are the
submanifolds of Mn, their closures might have a complicated topological structure. For instance, we
have such behavior when the saddle point separatrix is embedded in heteroclinic intersections.

Let σ1, σ2 ∈ Ωf be different saddle periodic points of a Morse–Smale diffeomorphism f. The inter-
section of the invariant manifoldsW s

σ1
∩W u

σ2
, in case ofW s

σ1
∩W u

σ2
�= ∅, is called heteroclinic. Since the

invariant manifolds intersect transversally and each of W s
σ1
, W u

σ2
is a submanifold, then each connec-

tion component of heteroclinic intersection W s
σ1

∩W u
σ2

is also a submanifold. If dim
(
W s

σ1
∩W u

σ2

) ≥ 1,
then the connection component of such intersection is called the heteroclinic manifold. In particular,
if dim

(
W s

σ1
∩W u

σ2

)
= 1, then the heteroclinic manifold is called the heteroclinic curve.
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The asymptotic behavior of the unstable separatrix in general case is described with the following
proposition.

Proposition 2.2. Let f :Mn →Mn be a Morse–Smale diffeomorphism. Then

cl(�up) \ (�up ∪ p) =
⋃

r∈Ωf :�up∩W s
r �=∅

W u
r

for each unstable separatrix �up of periodic point p ∈ Ωf . In particular, if �up is a saddle separatrix, not
embedded in heteroclinic intersections, then cl(�uσ) \ (�uσ ∪ σ) = {ω}, where ω is a sink periodic point.
With that, if j = 1, then cl(�uσ) is the topologically embedded arc in Mn, and if j ≥ 2, then cl(�uσ) is
the sphere S

j topologically embedded in Mn.

3. Palis Conditions

In this section we prove the necessity of the Palis conditions for the embedding of Morse–Smale
diffeomorphism in the topological flow. This proof was proposed by Palis in [39].

Lemma 3.1 (necessary Palis conditions). Let f : Mn → Mn be a Morse–Smale diffeomorphism em-
bedded in the topological flow Xt. Then:

(1) the nonwandering set Ωf coincides with the set of fixed points;
(2) the restriction of the diffeomorphism f onto each invariant manifold of any fixed point p ∈ Ωf

preserves its orientation;
(3) if for different saddle points p, q ∈ Ωf the intersection W s

p ∩W u
q is not empty, then it doesn’t

contain compact connection components.
Proof.

1. Suppose that the set Ωf contains the periodic point p of periodmp greater than 1. Then the point
p belongs to the closed trajectory of the flow Xt, and all the points of this trajectory are periodic of
period mp for the flow Xt. But then all these points are periodic for the diffeomorphism f, which is the
shift per unit time along the flow Xt trajectories. That contradicts the finiteness of its nonwandering
set.

2. Since Ωf is hyperbolic, it follows that the invariant manifoldW u
p of an arbitrary fixed point p ∈ Ωf

either coincides with p, or is an open disc of dimension dimW u
p ∈ {1 . . . , n} smoothly embedded in

Mn. In case W u
p = p, by the definition f preserves the orientation of W u

p . Let dimW u
p > 0. Since f

in embedded in Xt, then W u
p is invariant relating to Xt. Thus the restriction Xt|Wu

p
of Xt onto W u

p

is an isotopy from the identity mapping to f |Wu
p
, thus f |Wu

p
is a mapping preserving the orientation.

3. Let the intersection W s
p ∩W u

q be not empty for different saddle points p, q ∈ Ωf and K be a

compact connection component of this intersection. Then K is invariant with relation to Xt and, thus,
invariant to the diffeomorphism f. Let x ∈ K, then the sequence {f i(x)}i∈Z contains a subsequence
converging to some point x∗ ∈ K. Thus x∗ in nonwandering, which is impossible since x∗ ∈W s

p .

The Fig. 1 shows the phase portraits of Morse–Smale diffeomorphisms. Their invariant manifolds
of saddle points: a) intersect over a noncompact curve; b) intersect over a countable set of compact
curves.

4. Embedding of Diffeomorphisms of Circle in the Flow

The unique closed one-dimensional manifold is the circle S
1.

Due to [18] the homeomorphism h : S1 → S
1 is embedded in the topological flow if and only if

one of the following three conditions is satisfied: 1) h has a fixed point, 2) h is periodic, 3) h has
a transitive orbit. From Proposition 2.1 it follows that if f is a Morse–Smale diffeomorphism, then
its nonwandering set in nonempty (and finite, by definition) and consists of source and sink periodic
points. For embedding in the flow it is necessary for f to preserve the orientation. Then if one of
periodic points is fixed, then all points of diffeomorphism f are fixed. Thus the necessary and sufficient
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Fig. 1. Intersections of the invariant manifolds of saddle points

condition for embedding of Morse–Smale diffeomorphism of the circle in the topological flow is that
at least one its periodic points is fixed. We give the independent proof of this fact.

Theorem 4.1. The Morse–Smale diffeomorphism f : S1 → S
1 is embedded in the topological flow if

and only if its nonwandering set Ωf consists of fixed points.

Proof. The necessity follows from the Palis condition (1). Let us prove the sufficiency. Let the space
Ωf consist of fixed points. We construct the flow Xt on circle such that f = X1.

The set of fixed points of the diffeomorphism f splits the circle S
1 into a finite number of open

arcs, each of which is f -invariant. Let l ∈ S
1 be one of such arcs. We define the flow Xt

l on l such
that f is the shift per time unit along the trajectories of the flow Xt

l . Let c ⊂ l be a compact arc
bounded by the points x ∈ l and f(x), then there exists a diffeomorphism ϕc : [1, 2] → c such that
ϕc(1) = x, ϕc(2) = f(x). Note that

⋃
i∈Z

f i(c) = l, thus for each point y ∈ l there is an integer iy such

that f iy(y) ∈ c.We define the homeomorphism ϕl : R+ → l with the relation ϕl(y) = 2−iyϕ−1
c (f iy(y)).

The homeomorphism ϕl conjugates the linear dilation a+(s) = 2s, s ∈ R+ with the restriction f |l
of f on l. The mapping a+ is embedded in the flow at+(s) = 2ts. Let Xt

l (y) = ϕl(a
t
+(ϕ

−1
l (y))), then

X1
l (y) = f |l.
We similarly define the flow on all arcs of the circle bounded by the neighboring fixed points and

define the flows in fixed points. As the result we obtain the flow Xt on the circle such that X1 = f.

5. Embedding of Morse–Smale Diffeomorphisms of Surfaces in the Flow

The following theorem is proved in [39] (see Theorem 4.2, p. 402).

Theorem 5.1 (Palis theorem). If diffeomorphism f ∈ G(M2) satisfies the Palis conditions, then it
is embedded in a topological flow.

Sketch of the proof. Note that for n = 2 the Palis condition (3) means that the invariant manifolds of
different saddle fixed points of diffeomorphism f : M2 → M2 do not intersect. In [39] for diffeomor-
phism f there was constructed a topological flow Xt, for which the shift per time unit f1 along the
trajectories coincides with f. The construction bases on the following steps.

1. From the hyperbolic conditions and the Palis conditions (1)-(2) it follows that for each saddle
point p ∈ Ωf there exists a neighborhood up and a homeomorphism hp : up → R

2 such that f |up =

h−1
p bhp|up , where b(x, y) = (1/2x, 2y) is a linear homeomorphism of the plane. The mapping b is

embedded in the flow bt(x, y) = ((1/2)tx, 2ty), thus the restriction of the diffeomorphism f onto up is
embedded in the topological flow gtp = h−1

p bthp|up . Suppose that v = {(x, y) ∈ R
2| x2y2 ≤ 1, |x| ≤ 1,

|y| ≤ 2}, vp = h−1
p (v), Vp =

⋃
i∈Z

f i(vp). We assign to each point M ∈ Vp the number n ∈ Z such

that fn(M) ⊂ vp and define the flow Gt
p on Vp with the relation Gt

p(M) = f−n(gtp(f
n(M))). We call

a neighborhood Vp the linearizing neighborhood of a saddle point p. Obviously, one can choose such
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Fig. 2. Modification of disc D

linearizing neighborhoods that Vp ∩ Vq = ∅ for each saddle points p �= q. We denote as Gt the flow on
the union of all linearizing neighborhoods, which coincides with Gt

p for each saddle point p.
2. Let ω be a sink fixed point of the diffeomorphism f. From the hyperbolicity of the point ω it

follows that there exists a smoothly embedded disc D ⊂W s
ω such that ω ⊂ intD, f(D) ⊂ intD.

Denote as �1ω, . . . , �
k
ω the set of all separatrices of saddle points from W s

ω, and as V 1
ω , . . . , V

k
ω the

components of the connection of linearizing neighborhoods from W s
ω such that �iω ⊂ V i

ω for all i ∈
{1, . . . , k}. Without loss of generality suppose that the boundary of the disc D is transversal to all
separatrices of saddle points of f from W s

ω (one can always achieve this with small movements), and
transversal to the trajectories of the flow Gt∩W s

ω due to continuity. Then the intersection ∂D∩ ⋃
p∈Ω1

f

Vp

consists of finite number of compact arcs. Then one can choose a disc D̃ ⊂ W s
ω with the following

properties:

(1) ω ⊂ int D̃, f(D̃) ⊂ int D̃,

(2) for all i ∈ {1, . . . , k} the intersection V i
ω ∩ (D̃ \ f(int D̃) consists of exactly one strip.

The Fig. 2 roughly shows the process of modification of disc D into disc D̃, the boundary of which
intersects with each separatrix from the set �1ω, . . . , �

k
ω and only at one point.

Then the restriction of the flow Gt onto D̃\f(int D̃)∩ ⋃
p∈Ω1

f

Vp can be naturally completed to the flow

gtω in this set. The flow can be additionally defined on set W s
ω \ω =

⋃
i∈Z

f i(D̃ \f(int D̃)) as follows. For

each pointM ∈W s
ω\ω, we put in correspondence an integer number n such that fn(M) ⊂ D̃\f(int D̃)

and set gtω(M) = f−n(Gt(fn(M)). Now for the construction of the required flow Xt we finally need
to define the flow constructed from the flows Gt, Gt

ω , in fixed source and sink points.

6. Embedding of Morse–Smale Diffeomorphisms of 3-Dimensional Manifolds in the
Flow

6.1. 3-dimensional effects. As turned out, for dimension n = 3 there is an additional obstacle
for Morse–Smale diffeomorphism to be embedded in topological flow. The obstacle is the possibil-
ity to wildly embed the separatrices of the saddle points, see Fig. 3. The first examples of such
diffeomorphisms were constructed in [3, 43, 44].

Let us recall the definition of wild manifolds. Let Mn be a topological manifold of dimension n ≥ 3
and Nk ⊂ intMn be a compact topological manifold on dimension k < n with nonempty boundary.
By [10], the manifold Nk is called locally flat at the point x ∈ Nk if there exist a neighborhood
U(x) ⊂ Mn of x and a homeomorphism ϕ : U(x) → R

n such that ϕ(Nk ∩ U(x)) ⊂ R
k, where R

n is

873



(b)(a)

Fig. 3. Diffeomorphisms with wildly embedded separatrices

a Euclidean space, and R
k ⊂ R

n is a hyperplane of dimension k. If the manifold Nk is locally flat at
each point, then it is called locally flat. Note that in the latter case Nk is a submanifold of Mn. If Nk

is not locally flat at least at one point x ∈ Nk, then it is called wild in Mn, and x is called a wildness
point.

The right part of Fig. 3 shows a phase portrait of the diffeomorphism f ∈ G(S3), for which the
closure of two-dimensional separatrix is a wild sphere. One of one-dimensional separatrices of fixed
saddle point σ (containing a sink point ω2 in its closure) is a wild arc.

The main obstacle to generalizing the proof of Theorem 5.1 for dimension n = 3 is that in the
general case a neighborhood of a sink point ω doesn’t contain a ball with the properties analogical

to the properties of disc D̃. Thus for a diffeomorphism with the phase portrait on the left part of
Fig. 3, the boundary of each ball containing a sink point ω2 intersects with the separatrix on the
saddle σ containing the point ω2 in its closure in at least three points. For the diffeomorphism f with
a phase portrait on the right part of Fig. 3, in the neighborhood of a point ω there exists a ball D the
boundary of which intersects with each separatrix from W s

ω in one point only. But there doesn’t exist
a fibration of a ring D \ int f(D) into segments, which would contain the arcs of these one-dimensional
separatrices as fibers. Thus the restriction of such diffeomorphisms onto stable manifolds of sink
points is not embedded in the topological flows, for which the one-dimensional separatrices containing
these sink points in closure would coincide with the flow trajectories. With that, by the results of
Kuperberg [35], the wild arc might be a trajectory of a topological flow on 3-manifold.

For more precise understanding of embedding the diffeomorphisms from the class G(M3) into the
topological flow we give several definitions.

We call the set F ⊂ R
n the standard one-dimensional pencil if it consists of a finite number of rays

with the initial point O(0, . . . , 0). We call the subset F ⊂ R
n endowed with the induced topology and

homeomorphic to F, a one-dimensional pencil. With that a pencil F is called tame, if there exists
such homeomorphism H : Rn → R

n that H(F ) = F; otherwise a pencil F is called wild.
A particular case of a one-dimensional pencil in an arc. The first examples of wild arcs in R

3 were
constructed by Artin and Fox in 1948 (see [1]). Note that the tameness of each element of the pencil
included into the pencil F ⊂ R

3 does not guarantee that the whole pencil will be tame. For example,
in [16] they construct an instance of so called mildly wild one-dimensional pencil, i.e., such wild pencil
that any pencil in it with a lesser number of arcs is tame.

Let α be a source point of the diffeomorphism f ∈ G(M3). We denote as Lα the union of all one-
dimensional stable separatrices of saddle points of the diffeomorphism f belonging to W u

α . Suppose
Fα = Lα ∪ α and call Fα a pencil of one-dimensional stable separatrices.

We call a pencil of one-dimensional stable separatrices Fα tame if there exists a homeomorphism
hα : W u

α → R
3, which maps Fα onto a standard tame pencil. Otherwise we say that the pencil of

separatrices Fα is called wild. If a tame (wild) pencil Fα contains only one separatrix, then we call it
tame (wild).
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Fig. 4. Phase portraits of diffeomorphisms from class G(S3) not embedded in any topo-
logical flows: a) a diffeomorphism with all tame pencils of one-dimensional separatri-
ces, but Fω is a nontrivial pencil; b) a diffeomorphism with all trivial pencils of one-
dimensional separatrices.

Similarly one defines a tame (wild) pencil of one-dimensional nonstable separatrices Fω consisting of
a sink point ω and all one-dimensional nonstable separatrices Lω of saddle points of diffeomorphism f
from W s

ω.
The Fig. 3, a) shows that the one-dimensional separatrix coming to a sink point ω2 is a wild arc,

and a pencil of separatrices coming to a sink ω in Fig. 3, b), is a mildly wild pencil.
As turned out, the necessary condition of embedding of the diffeomorphism f ∈ G(M3) in the flow

is even stronger than the tameness property. This condition uses the linear dilation of the Euclidean
space R

3 defined by the formula A(x1, x2, x3) = (2x1, 2x2, 2x3).
A pencil of one-dimensional separatrices Fα is called trivial if there exists a homeomorphism Hα :

W u
α → R

3 such that f |
Wu

α
= H−1

α AHα|Wu
α
and Hα(Fα) is a standard one-dimensional pencil. Similarly

one can define a trivial pencil of one-dimensional separatrices Fω.
From the reasoning above it is obvious that the triviality of all pencils of one-dimensional separatrices

is a necessary condition for diffeomorphism f ∈ G(M3) to embed in topological flow (a strict proof
of this fact is similar to the proof of Proposition 6.1, which we state below). It was a surprising
fact that if we add the condition that all pencils of one-dimensional separatrices of saddle points of
a diffeomorphism f ∈ G(M3) are trivial, it does not give sufficient conditions for its embedding in
topological flow. An example illustrating this fact was constructed in [45], with the phase portrait
shown in Fig. 4, b). The Fig. 4, a) shows a phase portrait of the diffeomorphism of class G(S3) with
all pencils of one-dimensional separatrices being tame, although having a nontrivial pencil.

6.2. A scheme of a diffeomorphism. The solution to Palis problem in case n ≥ 3 was possi-
ble due to the significant progress in solving the topological classification problem for Morse–Smale
diffeomorphisms. In papers [3–8, 44] by Bonatti, Grines, Pochinka, Pécou, Medvedev and Lauden-
bach these was introduced a new complete topological invariant for Morse–Smale diffeomorphisms
on 3-manifolds called a scheme of a diffeomorphism and the problem of realization of all classes of
topological conjugation was solved. Due to this it was possible to state necessary and sufficient condi-
tions for Morse–Smale diffeomorphism to be embedded in the topological flow. These conditions are
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expressed in a quite compact and natural condition on the scheme of a diffeomorphism. In order to
state this conditions explicitly we firstly give the definition of a scheme of a diffeomorphism.

Recall that we denote as Ωi
f a set of fixed points of the Morse–Smale diffeomorphism f :M3 →M3

with nonstable manifolds of dimension i ∈ {0, 1, 2, 3}. We denote the class of such Morse–Smale
diffeomorphisms preserving the orientation as G(M3).

Represent the manifold M3 as the union of three sets Af = (
⋃

σ∈Ω1
f

W u
σ ) ∪Ω0

f , Rf = (
⋃

σ∈Ω2
f

W s
σ) ∪ Ω3

f

and Vf =Mn\(Af∪Rf ). From [27] it follows that the sets Af , Rf , Vf are connected, Af is an attractor,
Rf is a repeller, and Vf consists of wandering orbits of the homeomorphism f coming from Rf to Af .

Denote as V̂f = Vf/f the set of orbits of action f on Vf . It is known that V̂f is a manifold, and a

natural projection p
f
: Vf → V̂f is a covering projection. With that a covering projection p

f
induces

an epimorphism η
f
: π1(V̂f ) → Z, which assigns an integer m to a homotopy class [c] ∈ π1(V̂f ) such

that a curve c lifted to Vf connects a point x with fm(x).

Let L̂s
f =

⋃
σ∈Ω1

f

p
f
(W s

σ \ σ), L̂u
f =

⋃
σ∈Ω2

f

p
f
(W u

σ \ σ).

Definition 6.1. The set Sf = (V̂f , L̂
s
f , L̂

u
f , ηf ) is called a scheme of a diffeomorphism f ∈ G(M3).

Definition 6.2. The schemes Sf and Sf ′ of diffeomorphisms f, f ′ ∈ G(M3) are called equivalent if

there exists a homeomorphism ϕ̂ : V̂f → V̂f ′ such that ϕ̂(L̂s
f ) = L̂s

f ′ , ϕ̂(L̂u
f ) = L̂u

f ′ and ηf = η
f ′ ϕ̂∗.

In the papers [4, 8] the following fact is proven.

Statement 6.1. The diffeomorphisms f, f ′ ∈ G(M3) are topologically conjugated if and only if their
schemes are equivalent.

6.3. Necessary and sufficient conditions for Morse–Smale diffeomorphisms of 3-mani-
folds to embed in the flow. To state the conditions for the diffeomorphism f ∈ G(M3) to embed
in topological flow we define the standard scheme.

Set g
f
=

|Ω1
f∪Ω2

f |−|Ω0
f∪Ω3

f |+2

2 , where |P | stands for the cardinality of P. Denote by Sg
f
an orientable

closed surface of genus g
f
and set Vgf = Sg

f
× R, V̂gf = Sg

f
× S

1.

Define the flow At
g
f
on Vgf with the relation At

g
f
(x, s) = (x, s + t), where x ∈ Sg

f
, s ∈ R. By

construction we have V̂gf = Vgf/A1
g
f
. Denote a natural projection by pg

f
: Vgf = V̂gf .

Definition 6.3. The scheme Sf of a diffeomorphism f ∈ G(M3) is called trivial if there exists a

homeomorphism ψ̂
f
: V̂f → V̂gf such that for each connected component λ̂ of L̂s

f ∪ L̂u
f there exists a

simple closed arc cλ̂ ⊂ Sg
f
such that ψ̂

f
(λ̂) = cλ̂ × S

1.

In [26, 45] the following fact is proven.

Theorem 6.1. The diffeomorphism f ∈ G(M3) is embedded in a topological flow if and only if its
scheme is trivial.

Let us give a sketch of the proof of Theorem 6.1, splitting it into two statements.

Proposition 6.1. Let the diffeomorphism f ∈ G(M3) be embedded in a topological flow. Then its
scheme Sf is trivial.

Sketch of the proof. If the diffeomorphism f is embedded in a topological flow Xt (f = X1), then the
nonwandering set Ωf of the diffeomorphism f coincides with the equilibrium state of the flow Xt.
Here the stable (nonstable) manifold of any fixed point p ∈ Ωf coincides with the stable (nonstable)
manifold of the corresponding equilibrium state of the flow Xt.
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Denote by Xt
f the restriction of the flow Xt onto Vf . From the construction of Vf it follows that for

each point x ∈ Vf the embeddings lim
t→+∞Xt

f (x) ∈ Af and lim
t→−∞Xt

f (x) ∈ Rf hold. Thus, for each point

p, q ∈ Vf there exist neighborhoods Up, Uq ⊂ Vf and a constant T > 0 such that Xt
f (Up) ∩Uq = ∅ for

all |t| > T. Thus from [17, Theorem 3] it follows that the flow Xt
f is parallelizable, i.e., there exists a set

Σf ⊂ Vf and a homeomorphism ξf : Vf → Σf × R such that
⋃
t∈R

Xt
f (Σf ) = Vf and ξf (X

t
f (z)) = (z, t)

for all z ∈ Σf , t ∈ R. This gives that Σf is a deformation retract of Vf . From [34, Theorem III.4, IV.3;
p. 56, 69] it follows that the topological dimension of Σf equals 2. Then by [48, Theorem 2] Σf is a
manifold without the boundary. Thus, Σf is a closed orientable surface. Denote as ρ

f
the genus of

this surface. We show now that ρ
f
= g

f
.

By the construction the surface Σf divides the manifold into two parts, with their closures denoted
by PAf

, PRf
, and supposing that Af ⊂ intPAf

, Rf ⊂ intPRf
. Moreover, the attractor Af is a

deformation retract of PAf
and thus, Af and PAf

have the same homotopy type and the same Euler
characteristic. With that χ(PAf

) = 1 − ρf , since PAf
is a 3-manifold with the boundary Σf and

χ(Af ) = |Ω0
f | − |Ω1

f |, since Af is a CW-complex consisting of |Ω0
f | 0-cells and |Ω1

f | 1-cells. Thus,

|Ω0
f |−|Ω1

f | = 1−ρ
f
. From similar reasoning for the attractor obtain that |Ω3

f |−|Ω1
f | = 1−ρ

f
. Summing

two last equalities, we obtain that |Ω0
f |−|Ω1

f |+|Ω3
f |−|Ω2

f | = 2−2ρ
f
. From here, ρ

f
=

|Ω1
f∪Ω2

f |−|Ω0
f∪Ω3

f |+2

2
and, hence, ρ

f
= g

f
.

Each two-dimensional separatrix λ of diffeomorphism f is the union of the trajectories of the flow
Xt

f homeomorphic to S
1×R. Then there exists a simple closed curve γ

λ
⊂ Σf such that ξf (λ) = γ

λ
×R.

And then there exists a homeomorphism hf : Σf → Sg
f
such that c

λ
= hf (γλ

) is a simple smooth

closed curve for each two-dimensional separatrix λ. Define a homeomorphism ψ
f
: Vf → Vg

f
by the

relation ψ
f
(Xt

f (z)) = At
g
f
(hf (z)). By the construction the homeomorphism ψ

f
conjugates the flowsXt

f

and At
g
f
, and its shifts per time unit. With that ψ

f
(λ) = c

λ
×R. By the construction V̂g

f
= Vg

f
/A1

g
f
.

Then the homeomorphism ψ̂
f
= pg

f
ψ

f
p−1
f

: V̂f → V̂g
f
satisfies the condition of Definition 6.3. Thus,

a scheme Sf is trivial. This completes the proof of the proposition.

Proposition 6.2. Let a scheme Sf of a diffeomorphism f ∈ G(M3) be trivial. Then f is embedded
in a topological flow.

Scheme of the proof. Construct a topological flow X̃t on the manifold M3. The shift per time unit of
this flow is topologically conjugated with the diffeomorphism f by a homeomorphism h : M3 → M3.
From here it follows that the diffeomorphism f is embedded in a topological flow Xt = hX̃th−1.

The construction of the topological flow is conducted similarly to [5] (see also [6] for more details)
as the solution of the problem of realizing topological conjugacy classes of diffeomorphisms. We give
the main steps in the construction.

Step 1. From the definition of the trivial scheme it follows that there exists such homeomorphism
ψ

f
: Vf → Vg

f
that:

(1) f |Vf
= ψ−1

f
A1

g
f
ψ

f
, where A1

g
f
is a time unit shift on the flow At

g
f
;

(2) for each two-dimensional separatrix λ of the diffeomorphism f there exists a simple smooth
closed arc c

λ
on the surface Sg

f
such that ψ

f
(λ) = c

λ
× R.

Recall that Ls
f , L

u
f is a union of all stable, (correspondingly, nonstable) two-dimensional separatrices

of the diffeomorphism f. Set Ls = ψ
f
(Ls

f ) and L
u = ψ

f
(Lu

f ). For the set of cylinders Lδ = λδ1 ∪ · · · ∪
λδ
lδ
, δ ∈ {s, u}, denote by N(Lδ) = N(λδ1) ∪ · · · ∪ N(λδ

lδ
) the set of their pairwise disjoint smooth

tubular neighborhoods such that N(λδi ) = Kδ
i ×R, where Kδ

i ⊂ Sg
f
is a smooth two-dimensional ring

for each i = 1, . . . , lδ .
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Consider a subspace N = {(x1, x2, x3) : (x21+x22)x23 < 1} in R
3 and define a flow Bt by Bt(x1, x2, x3)

= (2−tx1, 2
−tx2, 2

tx3). Set N̂
s = (N \Ox3)/B1. By the construction the manifold N̂ s is diffeomorphic

to K × R, where K is a standard two-dimensional ring. Then there exists a diffeomorphism μsi :
N(λsi ) → (N \ Ox3) conjugating the flows At

g
f
|N(λs

i )
and Bt|N\Ox3

. Denote by μs : N(Ls) → (N \
Ox3)× Zls a diffeomorphism composed of the diffeomorphisms μs1, . . . , μ

s
ls . Set Q

s = Vg
f

⋃
μs
(N × Zls).

Then the topological space Qs is a smooth connected orientable 3-manifold without the boundary.
Set Q̄s = (Vg

f
) ∪ (N × Zls) and denote by ps : Q̄s → Qs a natural projection. Set ps,1 = ps |Vg

f
,

ps,2 = ps |N×Zls
. Then the flow Ỹ t

s on the manifold Qs is defined by

Ỹ t
s (x) =

{
ps,1(A

t
g
f
(p−1

s,1
(x))), x ∈ ps,1(Vg

f
);

ps,2(B
t(p−1

s,2
(x))), x ∈ ps,2(N × {i}), i ∈ Zls .

By the construction the nonwandering set of the flow Ỹ t
s consists of ls fixed hyperbolic saddle point

with Morse index equal to one.
Step 2. Denote again by L

u, N(Lu) the images of these sets relating to the projection ps . Set

N̂u = (N \ Ox3)/(B1)−1. Then there exists a diffeomorphism μui : N(λui ) → (N \ Ox3) conjugating

the flows Ỹ t
s |N(λu

i )
and B−t|N\Ox3

for each i = 1, . . . , lu. Denote by μu : N(Lu) → (N \ Ox3) × Zlu

the diffeomorphism composed of the diffeomorphisms μu1 , . . . , μ
u
lu . Set Q

u = Qs
⋃
μu
(N ×Zlu). Then the

topological space Qu is a smooth connected orientable 3-manifold without the boundary.
Set Q̄u = Qs ∪ (N × Zlu) and denote by pu : Q̄u → Qu a natural projection. Set pu,1 = pu|Qs ,

pu,2 = pu |N×Zlu
. Then the flow Ỹ t

u on the manifold Qu is defined by the formula

Ỹ t
u(x) =

{
pu,1(Ỹ

t
s (p

−1
u,1

(x))), x ∈ pu,1(Q
s);

pu,2(B
−t(p−1

u,2
(x))), x ∈ pu,2(N × {i}), i ∈ Zlu .

By the construction the nonwandering set of the flow Ỹ t
u consists of ls fixed hyperbolic saddle point

with Morse index equal to one and lu fixed hyperbolic saddle point with Morse index equal to two.
Step 3. Set Rs = Qu \W s

Ω
Ỹ t
u

and denote by ρs1, . . . , ρ
s
ns the connected components of Rs. Define

the topological flow Dt on R
3 by Dt(x1, x2, x3) = (2−tx1, 2

−tx2, 2
−tx3). Then each component of ρsi

is diffeomorphic to S
2 ×R and the flow Ỹ t

u |ρsi is smoothly conjugated to the flow Dt|R3\O via a diffeo-

morphism νsi . Denote by νs : Rs → (R3 \Ox3)× Zns a diffeomorphism composed of diffeomorphisms
νs1 , . . . , ν

s
ns . SetM s = Qu

⋃
νs
(R3×Zns). Then the topological spaceM s is a smooth connected orientable

3-manifold without the boundary.
Set M̄ s = Qu ∪ (R3 × Zns) and denote by qs : M̄ s → M s a natural projection. Set qs,1 = qs |Qu ,

qs,2 = qs |R3×Zns . Then the flow X̃t
s on M s is defined by

X̃t
s(x) =

{
qs,1(Ỹ

t
u(q

−1
s,1

(x))), x ∈ qs,1(Q
u);

qs,2(B
−t(q−1

s,2
(x))), x ∈ qs,2(R

3 × {i}), i ∈ Zns.

By the construction the nonwandering set of the flow X̃t
s consists of l

s fixed hyperbolic stable points
with Morse index equal to one, lu fixed hyperbolic stable points with Morse index equal to two, and
ns fixed hyperbolic sink points.

Step 4. Set Ru =M s \W u
Ω

X̃t
s

and denote by ρu1 , . . . , ρ
u
nu the connection components of set Ru. Then

each component ρui is diffeomorphic to S
2 × R and the flow X̃t

s|ρui is smoothly conjugated with the

flow D−t|R3\O by the diffeomorphism νui . Denote by νu : Ru → (R3 \ Ox3) × Znu a diffeomorphism

composed of diffeomorphisms νu1 , . . . , ν
u
nu . Set Mu = M s

⋃
νu
(R3 × Znu). Then the topological set Mu

is a smooth connected closed orientable 3-manifold.
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Set M̄u = M s ∪ (R3 × Znu) and denote by qu : M̄u → Mu a natural projection. Set qu,1 = qu |Ms ,

qu,2 = qu |R3×Znu . Then the flow X̃t
u on the manifold Mu is defined by

X̃t
u(x) =

{
qu,1(X̃

t
s(q

−1
u,1

(x))), x ∈ qu,1(M s);

qu,2(B
−t(q−1

u,2
(x))), x ∈ qu,2(R

3 × {i}), i ∈ Znu.

By the construction the nonwandering set of the flow X̃t
u consists of ls fixed hyperbolic saddle points

with Morse index equal to one, lu fixed hyperbolic stable points with Morse index equal to two, ns

fixed hyperbolic sink points and nu fixed hyperbolic source points.
Step 5. Set f̃ = X̃1

u. By the construction the diffeomorphism f̃ is a Morse–Smale diffeomorphism on

the manifold Mu and its reduction f̃ |Vf̃
is topologically conjugated with the diffeomorphism f |Vf

via

a homeomorphism. This homeomorphism maps two-dimensional separatrices of the diffeomorphism f̃
into two-dimensional separatrices of the diffeomorphism f preserving stability. Thus the schemes of
the diffeomorphisms f̃ and f are equivalent, and f̃ , f are topologically conjugated by Statement 6.1.
Thus Mu =M3 and X̃t = X̃t

u is the desired flow.

6.4. Connection between a scheme triviality condition and Palis condition. Let a scheme
of the diffeomorphism f ∈ G(M3) be trivial. We show that it gives the Palis condition.

1. Show that all saddle periodic points of the diffeomorphism f have period 1. Suppose that σ ∈ Ω2
f

is a saddle point of period mσ such that the diffeomorphism f |Wu
σ
preserves the orientation. Then

there exists such homeomorphism h : W u
σ → R

2 that hfmσ |Wu
σ
= a+h, where a+ : R2 → R

2 is a linear

mapping of the plane given by formula a+(x1, x2) = (2x1, 2x2). Set K = {(x1, x2)| 1 ≤ x21 + x22 ≤ 4}.
The ringK (h−1(K)) is a fundamental domain of the action of a+ (f) on R

2\{O} (
mσ−1⋃
i=0

W u
f i(σ)

\f i(σ)).

The orbit space R
2 \ {O}/a+ (λ̂uσ = (

mσ−1⋃
i=0

W u
f i(σ) \ f i(σ))/f = pf (

mσ−1⋃
i=0

W u
f i(σ) \ f i(σ)) of this action is

obtained by gluing the components of the boundary of the annulus K (h−1(K)) by diffeomorphism a+
(f). Since a+ preserves the orientation, then the manifold R

2 \{O}/a+ and, hence, λ̂uσ is diffeomorphic

to torus. Choose the arc l̃ on set h−1(K). This arc connects the points x and fmσ(x), which belong to

different connected components on the boundary of the annulus h−1(K). Then the closed arc l = pf (l̃)

is a loop on torus λ̂uσ, nonhomotopic to zero, and ηf ([pf (l)]) = mσ. Then from the condition on the

existence of the homeomorphism ψ̂
f
: V̂f → V̂g

f
such that ψ̂

f
(λ̂uσ) = cλ̂u

σ
× S

1 it follows that mσ = 1.

2. Show that the reduction of the diffeomorphism f on the invariant manifold of an arbitrary saddle
point preserves the orientation. From this condition it follows that each separatrix of an arbitrary
saddle point is invariant. It leads to the fact that each sink and source point are fixed, and each of
these points, by Proposition 2.1 and 2.2, is in the closure of a separatrix of the saddle point.

Let σ ∈ Ω2
f be a fixed saddle point such that a diffeomorphism f |Wu

σ
changes the orientation of W u

σ .

Then there exists a homeomorphism h : W u
σ → R

2 such that hf |Wu
σ
= a−h, where a− : R2 → R

2 is a

linear mapping of a plane given by formula a−(x1, x2) = (−2x1, 2x2). Then the orbit space R2\{O}/a−
(λ̂uσ = (W u

σ \σ)/f = pf (W
u
σ \σ)) is diffeomorphic to the Klein bottle, which contradicts to the triviality

of the scheme.
Let σ′ ∈ Ω1

f and f |Wu
σ′ change the orientation. Since f preserves the orientation, then f |W s

σ′ changes

the orientation of W s
σ′ . Apply the same reasoning to the point σ′ as to the point σ. As the result we

obtain that all saddle points of the diffeomorphism f ∈ G(M3) with trivial scheme are fixed, and the
reduction of the diffeomorphism f onto the invariant manifold of an arbitrary saddle point preserves
the orientation.

3. Let p, q be such fixed saddle points of the diffeomorphism f that W u
p ∩W s

q �= ∅. Show that the
intersection W u

p ∩W s
q doesn’t contain the compact connected components.
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Set λ̂up = pf (W
u
p \ p), λ̂sq = pf (W

s
q \ q). If p ∈ Ω1

f , q ∈ Ω2
f , then W u

p ⊂ Af , hence, the projection

of the manifold W s
q \ q doesn’t contain the points from W s

q ∩W u
p . Thus λ̂

s
p is non-compact, which

contradicts the fact that this set is homeomorphic to the torus (in the trivial scheme). If p ∈ Ω2
f , and

q ∈ Ω2
f , then by the condition there exist such closed arcs cp, cq ⊂ Sg

f
that ψ̂

f
(λ̂up) = cp × S

1 and

ψ̂
f
(λ̂sq) = cq×S

1. Hence, the projection of each connected component of the intersection W u
p ∩W s

q is a

set of type {x} × S
1, where x ∈ cp ∩ cq is a point. From the construction it follows that p−1

f ({x} × S
1)

is homeomorphic to the real line embed in Vf , hence, the intersection W u
p ∩W s

q does not contain the
compact components.

7. Sufficient Conditions of Morse–Smale Diffeomorphism to be Embedded in Flow
on Sphere of Dimension 4 and Higher

Denote by G∗(Sn) a class of Morse–Smale diffeomorphism preserving the orientation on sphere
Sn of dimension n ≥ 4 such that for each f ∈ G∗(Sn) the invariant manifolds of different saddle
points p, q ∈ Ωf do not intersect. Since there are no intersections of the invariant manifolds of
different periodic saddle points, the set of periodic saddle points of the diffeomorphism f ∈ G∗(Sn)
consists of points with invariant manifolds of dimension 1 and (n−1) only (see [23, Theorem 1.3], [24,
Proposition 4.2], and also [42, Lemma 2.2]).

Since we study the issue of the diffeomorphism f to embed in the topological flow, we suppose that
all points from Ωf are fixed (that implies that all Palis conditions for f ∈ G∗(Sn) are satisfied).

By Proposition 2.1 the invariant manifolds of periodic saddle points of any Morse–Smale diffeo-
morphism f : Mn → Mn are smooth submanifolds. Moreover, by Proposition 2.2, if a nonstable
separatrix �uσ of a saddle point σ does not intersect with any stable manifolds of saddle points distinct
from σ, then the closure cl �uσ of this separatrix consists of the separatrix itself, a point σ, and a sink
point ω. Thus the following statement holds.

Proposition 7.1. Let f ∈ G∗(Sn), and σ be its periodic saddle point. Then the set cl �uσ is a sphere
of dimension n− 1 if σ ∈ Ωn−1

f , and a compact arc if σ ∈ Ω1
f .

Unlike the dimension 3, the closures of the separatrices of saddle points of the diffeomorphism
f ∈ G∗(Sn) are topological submanifolds of the sphere Sn. This fact directly follows from the following
proposition.

Proposition 7.2.

(1) Let Nn−1 ⊂ intMn be a wild manifold, n ≥ 4, and B be a set of points such that Nn−1 is locally
flat at each point of Nn−1 \B. Then B in noncountable.

(2) Let l ∈ R
n be a wild arc, n ≥ 4. Then a set of its wildness points is more than countable.

(3) The pencil F ⊂ R
n, n ≥ 4, of tame arcs is tame1.

The first statement of Proposition 7.2 is the corollary of the results of Cantrell, Chernavskii and
Kirby2 (see [11], [15, Statement 3A.6]). The second and third statements of Proposition 7.2 follow
from [12, 13]. Note that [2] proves the existence of the wild arcs in the Euclidean space Rn of dimension
n ≥ 4 (but then these arcs by [12, 13] have more than countable number of wildness points).

From Proposition 7.2, 7.1 it follows that the separatrices of saddle points of diffeomorphism f ∈
G∗(Sn) of dimension (n − 1) are tame spheres, and one-dimensional separatrices form tame pencils.
By the methods of [12] one can prove a stronger fact of triviality of the pencils of one-dimensional

1i.e., the Euclidean space R
n of dimension n ≥ 4 doesn’t contain mildly wild pencils.

2In [15] it is shown that Proposition 7.2 is the corollary of the results of Chernavskii and Kirby obtained independently
in 1968. Earlier in 1963, Cantrell obtained a less general statement, which can be stated as follows: if the sphere
Sn−1 ⊂ Sn, n ≥ 4, is wild and B is a set of points such that Sn−1 is locally flat at each point of the set Sn−1 \ B, then
B consists of more than one point (see [11]).
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Fig. 5. a) nontrivial arc; b) nontrivial link.

separatrices (see [21, Corollary 4.1]). But from here doesn’t follow the fact that all pencils of the
separatrices of dimension (n − 1) are tame and all diffeomorphisms from the class G∗(Sn) as n ≥ 4
embed in the topological flows. However, in [24] there is stated a duality between the embeddings of
the separatrices of dimension 1 and (n− 1) and the following theorem is proven.

Theorem 7.1. Any diffeomorphism f ∈ G∗(Sn), n ≥ 4, is embedded in topological flow.

To prove Theorem 7.1 we use the diffeomorphism scheme introduced below similarly to dimension 3.
We introduce the triviality of the scheme and give the main ideas to prove the fact that the scheme of
any diffeomorphism f ∈ G∗(Sn) is trivial. After we proved the triviality of the scheme, the proof of
the diffeomorphism f to be embedded in the topological flow is conducted completely similar to the
proof of Theorem 6.1.

We represent a sphere Sn as the union of sets Af = (
⋃

σ∈Ω1
f

W u
σ ) ∪ Ω0

f , Rf = (
⋃

σ∈Ωn−1
f

W s
σ) ∪ Ωn

f , and

Vf =Mn \ (Af ∪Rf ).

Denote by V̂f = Vf/f the orbit space of the action of f on Vf and by p
f
: Vf → V̂f a natural

projection. Set L̂s
f =

⋃
σ∈Ω1

f

p
f
(W s

σ \ σ), L̂u
f =

⋃
σ∈Ωn−1

f

p
f
(W u

σ \ σ).

Definition 7.1. A set Sf = (V̂f , L̂
s
f , L̂

u
f ) is called the scheme of a diffeomorphism f ∈ G∗(Sn).

Definition 7.2. Schemes Sf and Sf ′ of diffeomorphisms f, f ′ ∈ G∗(Sn) are called equivalent if there

exists such homeomorphism ϕ̂ : V̂f → V̂f ′ , that ϕ̂(L̂s
f ) = L̂s

f ′ and ϕ̂(L̂u
f ) = L̂u

f ′ .

In [23], in particular, the following statement is proven.

Statement 7.1. The diffeomorphisms f, f ′ ∈ G∗(Sn) are topologically conjugated if and only if their
schemes are equivalent.

Definition 7.3. The scheme Sf of diffeomorphism f ∈ G∗(Sn) is called trivial if there exists such

homeomorphism ψ̂
f
: V̂f → S

n−1 × S
1, that for each connection component λ̂ of the set L̂s

f ∪ L̂u
f there

is a smoothly embedded sphere Sn−2

λ̂
⊂ S

n−1 of dimension (n− 2) such that ψ̂
f
(λ̂) = Sn−2

λ̂
× S

1.

7.1. Auxiliary results. The following statement proven in [24] (see also elaborations in [25]),
summarizes the results obtained in [14, 32, 38, 47] related to the embeddings of the trivial codimension
(more than 3). Particularly, from these results follows that all locally flatly embedded closed arcs and
links (unions of the closed arcs) in R

n of dimension n ≥ 4, are trivial, i.e., are mapped by the
homeomorphism on the space onto arcs (unions of arcs), in the coordinate plane. The examples of a
nontrivial closed arc and a nontrivial link in R

3 are shown on the Fig. 5.
A simple closed arc β ∈ Mn is called a knot, and the image of the topological embedding e :

S1 ×Bn−1 →Mn such that e(S1 × {O}) = β, is called a tubular neighborhood of knot β.

Proposition 7.3. Let Mn be a topological neighborhood, with, probably, nonempty boundary ∂Mn,
and {βi}ki=1, {β′i}ki=1 be the families of pairwise disjoint simple closed arcs locally flatly embedded in

881



intMn such that for each i ∈ {1, . . . , k} the arcs βi, β
′
i are homotopical. Let {Nβi

}ki=1, {Nβ′
i
}ki=1 be

pairwise disjoint tubular neighborhoods of these arcs in intMn.
Then there exists a homeomorphism h : Mn → Mn such that h(βi) = β′i, h(Nβi

) = Nβ′
i
, i ∈

{1, . . . , k}, and h|
∂ Mn = id.

The main instrument to prove the triviality of the diffeomorphism scheme of the considered class is
surgery along the knots. As shown in Proposition 7.4, in dimensions 4 and higher such surgery doesn’t
change the topology of the manifold (which, as known, is wrong in 3-dimensional case).

Let Mn be a topological manifold with, probably, nonempty boundary, β ∈ intMn be a knot and
Nβ ⊂ intMn be its tubular neighborhood. We glue the manifolds Mn \ intNβ and B

n−1 × S
1 by an

arbitrary homeomorphism reversing the orientation ϕ : ∂Nβ → S
n−2 × S

1 and denote the obtained
manifold by Qn. We say that Qn is obtained from Mn by surgery along the knot β.

Proposition 7.4. Qn is homeomorphic to Mn.

Proof. Set N ′ = Mn \ intNβ , then Q
n = N ′⋃

ϕ
B
n−1 × S

1 and for all X ⊂ N ′ ∪ B
n−1 × S

1 we have a

natural projection π : X → Qn.
Let ψ = ϕ−1π−1|π(Sn−2×S1). By [36] the homeomorphism ψ is continued to the homeomorphism

Ψ : π(Bn−1 × S
1) → Nβ. Then the mapping H : Qn →Mn, defined by the relations

H(x) =

{
π−1(x) = x, x ∈ π(intN ′),
Ψ(x), x ∈ π(Bn−1 × S

1),

is the desired homeomorphism.

Let the fundamental group π1(M
n) of the manifoldMn be isomorphic to Z.We call the knot β ∈Mn

trivial if the homeomorphism e∗ : π1(β) → π1(M
n) induced by the embedding is an isomorphism.

From Proposition 7.3 we directly have the following statement.

Corollary 7.1. Let β ∈ S
n−1×S

1 be a trivial knot and Nβ be its tubular neighborhood. Then (Sn−1×
S
1) \ intNβ is homeomorphic to B

n−1 × S
1.

The latter corollary together with Proposition 7.4 gives the following statement.

Corollary 7.2. Let Qn
1 , . . . , Q

n
k+1, k ≥ 0, be pairwise disjoint manifolds homeomorphic to S

n−1 × S
1;

β1, . . . , β2k ⊂
k+1⋃
i=1

Qi be locally flat trivial knots such that:

(1) each manifold Qn
i contains at least one knot from the set β1, . . . , β2k;

(2) for each j ∈ {1, . . . , k} the knots β2j−1, β2j belong to different manifolds from Qn
1 , . . . , Q

n
k+1.

Let ψj : ∂Nβ2j−1
→ ∂Nβ2j

be a homeomorphism inverting the natural orientation, j ∈ {1, . . . , k+1},
and Qn be a manifold obtained from (

k+1⋃
j=1

Qn
j ) \ (

2k⋃
i=1

intNβi
) by gluing the components on the boundary

along the homeomorphisms ψ1, . . . , ψk+1.
Then Qn is homeomorphic S

n−1×S
1, and the projection of each manifold ∂ Nβ divides Qn into two

connection components, with each closure homeomorphic to B
n−1 × S

1.

7.2. Proof of the triviality of scheme of the diffeomorphism f ∈ G∗(Sn). Let f ∈ G∗(Sn).

Prove that the scheme Sf is trivial. By Proposition 7.3 it is sufficient to prove that the manifold V̂f is

homeomorphic to S
n−1×S

1 and each connection component of L̂u
f ∪ L̂s

f divides V̂f into two connection

components, the closures of which are homeomorphic to B
n−1 × S

1. Now we give the main idea of the
proof.
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Set ki = |Ωi
f |, i ∈ {0, 1, n−1, n}. Since the closures of all stable (nonstable) separatrices of dimension

(n−1) divide the support sphere Sn into disjoint sets, each containing exactly one sink (source) point,
then k0 = k1 + 1, kn = kn−1 + 1.

Set V̂ω = (W s
ω \ ω)/f and V̂ =

⋃
ω∈Ω0

f

V̂ω. Since the sink points are hyperbolic, the manifold V̂ω is

homeomorphic to S
n−1 × S

1. Denote by β1, . . . , β2k1 the projections of one-dimensional separatrices

into V̂ . Since all separatrices are fixed, their projections are essential knots. Without loss of generality
suppose that the set of knots is numerated such that knots β2j−1, β2j are the projections of the one-
dimensional separatrices of the same saddle point σj ∈ Ω1

f , j ∈ {1, . . . , k1}.
From [46, Theorem 2.3, p. 753] it follows that each manifold V̂ s

ω contains at least one knot from
β1, . . . , β2k1 . Show that for each j ∈ {1, . . . , k1} knots β2j−1, β2j belong to different connected compo-

nents of V̂ . Indeed, if β2j−1, β2j ⊂ V̂ s
ω for j, ω, then cl W u

σj
= W u

σj
∪ ω is homeomorphic to a circle.

Since cl W s
σj

divides the sphere Sn into two connection components and intersects the circle clW u
σj

in

a point σj, when there is at least one point in clW s
σj

∩ clW u
σj

distinct from σj, which leads to infinite

number of nonwandering points and, hence, contradicts the definition of the diffeomorphism f.
Set U = {(x1, . . . , xn)| x21(x22 + · · · + x2n) ≤ 1} and define the diffeomorphism b : Rn → R

n by
b(x1, x2, . . . , xn) = (2x1,

1
2x2, . . . ,

1
2xn).

From hyperbolicity of the points σ ∈ Ω1
f it follows that there exist pairwise disjoint neighborhoods

{Nσ}σ∈Ω1
f
of these points and the homeomorphism χσ : Nσ → U such that f |Nσ = χ−1

σ bχσ. It is easy

to see that N̂u
σ = Nσ \W s

σ)/f consists of two connection components, each being homeomorphic to

B
n−1×S

1, and N̂ s
σ = Nσ \W u

σ )/f being homeomorphic to the direct product Sn−2×S
1× [−1, 1]. With

that the projection of a stable separatrix of σ coincides with the middle layer Sn−2×S
1×{0}. Denote

by πuσ : Nσ \W s
σ → N̂u

σ and πsσ : Nσ \W u
σ → N̂ s

σ the natural projections.

Denote by N2j−1, N2j the connection components of N̂u
σj

containing the knots β2j−1, β2j , respec-

tively. Set Kj = N̂ s
σj
, Tj = V̂ s

σj
, define the homeomorphism ψj : ∂N2j−1 ∪ ∂N2j → ∂Kj by ψj =

πsσ(π
u
σ)

−1 and denote by Ψ :
k1⋃
j=1

∂N2j−1∪∂N2j →
k1⋃
j=1

∂Kj such homeomorphism that Ψ|∂N2j−1∪∂N2j
=

ψj |∂N2j−1∪∂N2j
.

Since

Vf =

( ⋃

ω∈Ω0
f

V s
ω \

( ⋃

σ∈Ω1
f

V u
σ

))⋃( ⋃

σ∈Ω1
f

V s
σ

)
=

(
Vf \

( ⋃

σ∈Ω1
f

Nu
σ

))⋃( ⋃

σ∈Ω1
f

N s
σ

)
,

then

V̂f =

(
V̂f \

( ⋃

σ∈Ω1
f

N̂u
σ

))⋃
Ψ

( ⋃

σ∈Ω1
f

N̂ s
σ

)
=

(
V̂f \

( 2k1⋃
j=1

Nj

))⋃
Ψ

( k1⋃
j=1

Kj

)
.

Thus, the manifold V̂f is obtained from
⋃

ω∈Ω0
f

V̂ s
ω by surgery along the knots β1, . . . , β2k1 . By Corol-

lary 7.2 V̂f is homeomorphic to the direct product Sn−1 × S
1, and the projection of each connection

component of ∂Kj divides V̂f into two connection components, with each closure being homeomor-
phic to B

n−1 × S
1. Since the projection of a stable separatrix of point σj at ∂Kj and any connected

component of the boundary Kj reduce in Kj a direct product Sn−2×S
1× [0, 1], then the projection of

a stable separatrix of point σj at V̂f also divides V̂f into two connected components, with each closure
being homeomorphic to B

n−1 × S
1.
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Fig. 6. Disc Dp ⊂W s
p

On the other hand,

Vf =

( ⋃
α∈Ωn

f

V u
α \

( ⋃

σ∈Ωn−1
f

V s
σ

))⋃( ⋃

σ∈Ωn−1
f

V u
σ

)
=

(
Vf \

( ⋃

σ∈Ωn−1
f

N s
σ

))⋃( ⋃

σ∈Ωn−1
f

Nu
σ

)
.

Similarly to the previous reasoning we obtain that V̂f is obtained from
⋃

α∈Ωn
f

V̂ u
α by surgery along

the projections of stable one-dimensional separatrices of saddle points of diffeomorphism f. Each

component of L̂u
f divides V̂f into two connected components, with closure of each component being

homeomorphic to B
n−1 × S

1.

7.3. Discussion of the conditions of Theorem 7.1. If any of the conditions of Theorem 7.1 is
not satisfied, it allows to construct a counterexample to the statement of the theorem. The necessity
of the conditions i), ii) in Theorem 7.1 was shown in Lemma 3.1.

The condition that the support manifold is a sphere is not necessary, however in [49] there is an
instance of Morse–Smale diffeomorphism f0 :M

4 →M4 on manifold M4 different from sphere S4 and
satisfying the conditions i)–iii), but not embedded in the topological flow. The nonwandering set of the
diffeomorphism f0 consists of exactly three fixed points: a source, a sink and a saddle. The invariant
manifolds of this diffeomorphism have the dimension two, and each its closure is a wild sphere (see [49,
Theorem 4, it. 2]). Supposing that the diffeomorphism f0 is embedded in the topological flow Xt

0, then
the nonwandering set of this flow consists of three equilibrium states coinciding with the fixed points
of the diffeomorphism f0. Each state has a neighborhood in which the flow Xt

0 is locally topologically
equivalent to the linear flow with the eigenvalues, whose real part differs from zero.

By [50, Theorem 3] all such flows are topologically equivalent, and in [49] there is an example of
Morse–Smale flow from the considered class with all closures of invariant manifolds of saddle equilib-
rium states being tame spheres. Thus, the closures of invariant manifolds of the equilibrium states of
flow Xt

0 being the saddle of the diffeomorphism f0, are tame spheres. Thus we obtain a contradiction
with the construction of diffeomorphism f0. From [23, Theorem 1.3] it follows that if the invariant
manifolds of different saddle points of Morse–Smale diffeomorphism f : Sn → Sn do not intersect,
then its nonwandering set Ωf consists of points with the dimension of the nonstable manifold for each
point being in {0, 1, n−1, n}. In particular, this fact clarifies why isM4 not homeomorphic to a sphere.

In [37] there is an example of Morse–Smale diffeomorphism f1 : S4 → S4 satisfying the conditions
i)-ii) of Theorem, but not embedded into topological flow. The nonwandering set of the diffeomorphism
f1 consists of two sources, two sinks and two saddles p, q such that dimW s

p = dimW u
q = 3. With that
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the intersection W s
p ∩W u

q is not empty and its closure inW s
p is a wildly embedded open disc Dp with a

wildness point p.More precisely, for each ball B3 ⊂W s
p , for which p is an internal point, the intersection

of the boundary of this ball with the disc Dp consists of no less than three connection components
(see Fig. 6). The diffeomorphism f1 satisfies all conditions of Theorem 7.1 but iii). Similarly to the
proof of Proposition 6.1 it can be proved that there is no such topological flow in W s

p , for which disc
Dp is invariant, and the reduction of f1 onto W s

p is a shift per unit time. From here it follows that f1
is not embedded in the topological flow.
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