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Morse function is called strong if all its critical points have different critical values.

Given such a function f and a field F Barannikov constructed a pairing of some of the

critical points of f , which is now also known as barcode. With every Barannikov pair

(a.k.a. bar in the barcode), we naturally associate (up to sign) an element of F \ {0};
we call it Bruhat number. The paper is devoted to the study of these Bruhat numbers.

We investigate several situations where the product of all the numbers (some being

inversed) is independent of f and interpret it as a Reidemeister torsion. We apply our

results in the setting of one-parameter Morse theory by proving that generic path of

functions must satisfy a certain equation mod 2 (this was initially proven in [2] under

additional assumptions).

On the linear-algebraic level, our constructions are served by the following

variation of a classical Bruhat decomposition for GL(F). A unitriangular matrix is

an upper triangular one with 1s on the diagonal. Consider all rectangular matrices

over F up to left and right multiplication by unitriangular ones. Enhanced Bruhat

decomposition describes canonical representative in each equivalence class.
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Introduction

0.1 The context

In this paper, we study a certain invariant of a strong Morse function on a smooth

compact manifold (which is supposed to have no boundary most of the time). Recall

that a function is called Morse if all its critical points are nondegenerate. The function

is called strong if all its critical points have different critical values. Morse theory is a

classical branch of differential topology: one can extract a lot of topological information

about the manifold in terms of a Morse function. On the other hand, Morse functions

arise naturally in various situations and their properties are interesting in their own

right.

Recall that each critical point of a Morse function carries a number—its index.

The very 1st theorem of Morse theory states that one can find a CW-complex homotopy

equivalent to the manifold, which k-cells correspond to critical points of index k.

Suppose now that one is given not only a strong Morse function f on a manifold

M but also a field F. To such a data, Barannikov [4] associated a powerful combinatorial

structure on the set of critical points of f . Nowadays, it is also known as barcode and

serves as a well-established tool in applied and symplectic topology; see [16] for a recent

survey. This structure is a pairing of some critical points of neighboring indices. This

pairing does depend on the field F. For example, the number of unpaired critical points

of index k equals dim
F
Hk(M;F). Moreover, this pairing relies crucially on the fact the

function is strong, that is, critical points are linearly ordered. If one starts to change

a Morse function so that along the way it fails to be strong (i.e., two critical values

collide), the pairing changes. We call these pairs Barannikov pairs. We will sketch their

definition in the next subsection.

0.2 Bruhat numbers of a single function

To state our results concisely, we prefer to speak about oriented strong Morse functions.

Roughly, the Morse function f is called oriented if one has chosen orientation on all

the cells in the CW-complex constructed from it. This condition is both technical and

minor: one can always orient a Morse function. As usual in topology, this choice only

alters certain signs.

Our 1st result is not a theorem, but rather a construction. Namely, given an

oriented strong Morse function f on a manifold M and a field F, we naturally associate

a nonzero number with each Barannikov pair. Here, by number, we mean an element of
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F∗ = F \ {0}. We call these numbers “Bruhat numbers” of f over F. The reason is that

their construction is closely related to the classical Bruhat decomposition for GL(F).

This paper is devoted to the study of these numbers from different perspectives. The

1st thing to mention is that changing the orientation of f may only change signs of some

Bruhat numbers.

We will now sketch one of the possible constructions of both Barannikov pairs

and Bruhat numbers. It will utilize the choice of a Riemannian metric on M (the output

is independent of this choice). See Subsection 0.6 for links to alternative constructions.

Recall that if one chooses a generic Riemannian metric g on M, then they can consider a

Morse complex whose homology is isomorphic to the homology of M (this is a classical

construction, it has nothing to do with a field). It is a chain complex of free abelian

groups, formally spanned by critical points (points of index k are of degree k). Thus, the

Morse differential is nothing but an integer matrix: differential of a critical point x is

a linear combination of points of smaller index. The coefficient of the point y in this

linear combination is the number of antigradient flowlines from x to y, counted with

appropriate signs (thus, it is nonzero only if f (x) > f (y)). Since the function is strong,

the set of critical points is ordered by increasing of critical values. Next, we note that

choosing a different metric g′ results in a different matrix of Morse differential. More

precisely, these two matrices differ by a conjugation by unitriangular (i.e., triangular

with 1s on the diagonal) one. We treat this unitriangular matrix as that of a change

of basis of a complex. As a recollection, the class of a matrix of Morse differential up

to conjugation by a unitriangular matrix is a well-defined invariant of f (i.e., does not

depend on a metric). The corresponding classification problem is, however, very hard,

so we consider the coefficients in F. In such a case, we prove that every complex is

isomorphic, up to unitriangular change of basis, to the direct sum of 0 → F
×λ−→ F → 0

and 0 → F → 0. Generators of the former (which are themselves critical points) are

Barannikov pairs. The corresponding number λ is a Bruhat number on a pair.

Weak Morse inequalities state that the number of critical points of index k is

greater or equal to dimHk(M;Q). Let # Cr(f ) be the overall number of critical points of

f . It is easy to show that if # Cr(f ) = ∑
k dimHk(M;Q), then the Morse differential (w.r.t.

any metric) must be identically zero. The next statement is applicable when this is not

the case.

Corollary 0.1. Let f be an oriented strong Morse function on M. Suppose that # Cr(f ) >∑
k dimHk(M;Q). Then one can find two critical points x and y of neighboring indices

s.t. the number of antigradient flowlines from x to y, counted with appropriate signs, is
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the same for any generic Riemannian metric. This number is nonzero and equals some

Bruhat number of f over Q.

In Subsection 3.7, this statement is derived from Theorem 3.23 that says that

the matrix of a Morse differential of f w.r.t. any metric must obey certain restrictions.

These restrictions, in turn, are expressed in terms of Bruhat numbers and Barannikov

pairs. They are in the spirit of Bruhat decomposition; see the mentioned subsection

for the precise statement and example. Note that, in particular, we claim that at least

one Bruhat number over Q must be integer. For a general Bruhat number, this is false,

however.

0.3 Interplay with the theory of torsions

In Proposition 3.25, we prove that if F is either Q or Fp, then one can find a Morse

function that has any prescribed number λ ∈ F∗ as one of its Bruhat numbers; the

manifold M may be any with dim M � 4. Thus, one has no control over individual

Bruhat number—it may turn out to be any number. We propose, however, to consider

the alternating product of all the Bruhat numbers. The word alternating here means

that each Bruhat number is raised to the power ±1 depending on the parity of indices

of critical points involved in the corresponding Barannikov pair. The term is used in

analogy of Euler characteristic, which is the alternating sum of, say, cells in the CW-

complex. In the following statement, this product is considered up to sign.

Theorem 0.2. Let f be a strong Morse function on M and F be a field. Suppose that

Hk(M) = 0 for all 0 < k < dim M. Then the alternating product of all Bruhat numbers (as

an element from F∗/±1) is independent of f .

This is discussed in Subsections 4.1 and 5.5; in particular, we interpret this

alternating product as a certain kind of torsion. For example, if M = RPn and F = Q,

then this product equals ±2[n/2], where brackets denote the integral part.

We shall now quickly recall the notion of Reidemeister torsion of a manifold.

This is a purely algebro-topological invariant that itself has nothing to do with

Morse theory. Let π denote the fundamental group of M. Suppose one is given a one-

dimensional representation ρ : π → GL1(F) = F∗ over some field F. Then they may

be considered homology of M with coefficients twisted by ρ. If it vanishes, then they

may furthermore define the Reidemeister torsion of M w.r.t. ρ, which is an element
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of the quotient group F∗/±ρ(π). This invariant is useful for distinguishing homotopy

equivalent but non-homeomorphic manifolds, such as lens spaces.

We will now pour Morse theory into this setting. Suppose that now we are given

not only oriented strong Morse function f and a field F but also a one-dimensional

representation ρ : π → F∗. In this case, we construct twisted Barannikov pairs and

Bruhat numbers. In general, the alternating product of twisted Bruhat numbers may

well depend on f . The interesting case, however, is when one is able to define the

Reidemeister torsion, that is, when the twisted homology vanishes.

Theorem 0.3. Let f be a strong Morse function on a manifold M, F be a field,

and ρ : π → F∗ be a one-dimensional representation. Suppose that twisted homology

vanishes. Then the alternating product of twisted Bruhat numbers of f equals the

Reidemeister torsion of M. In particular, it is independent of f .

We also prove a non-acyclic analog of the above theorem (see Subsection 4.4).

0.4 One-parameter Morse theory

Let us now consider not a single strong Morse function but a generic path in the

space of all functions on M. All but finitely points on this path are themselves strong

Morse functions. However, after passing a function that fails to be strong and Morse

Barannikov pairs and Bruhat numbers change. Thanks to the genericity assumption on

the path it is possible to describe exactly the list of possible changes. For Barannikov

pairs this was done already in [4] (see also [14] and pictures in the survey [16]). We do the

same for Bruhat numbers on them; see Theorem 5.7 and 5.9. In particular, this gives a

proof of Theorem 0.2. Moreover, it enables us to prove the theorem of Akhmetev–Cencelj–

Repovs [2] in greater generality, which we shall now describe.

Let {ft} be a generic path on functions on M, that is, ft is a function from M

to R for each t ∈ [−1, 1]. To such a path one associates a Cerf diagram. It is a subset

of [−1, 1] × R consisting of points (t, x) s.t. x is a critical value of ft. Practically, it is

a set of plane arcs that start and end either at cusps or at vertical lines t = ±1. The

only possible singularities of a Cerf diagram are cusps and simple transversal self-

intersections. By orienting all the functions in a path, one may associate a sign with

each cusp. The parity of negative cusps is a well-defined invariant of a path {ft}, that

is, it does not depend on the orientations. Another invariant of a path is a number of

self-intersections of its Cerf diagram (i.e., the number points t0 s.t. ft0
is not strong). In

the following statement, we consider functions on a cylinder M = N × [0, 1], which is a
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manifold with boundary (here, N is a closed manifold). Adaptation of Morse theory to

manifolds with boundary is well known. We stress out that by a function on a cylinder,

we mean a function g : N × [0, 1] → [0, 1] s.t. g−1(0) = N × {0} and g−1(1) = N × {1}.

Corollary 0.4. Let {ft} be a generic path of functions on a cylinder N × [0, 1] s.t. both

f−1 and f1 have no critical points. Let X be the number of self-intersections of its Cerf

diagram and C be the number of negative cusps. Then one has

X+ C = 0 (mod 2).

In [2], this statement was proved under additional assumptions on N. In

Subsection 5.6, we derive this corollary from a more general Theorem 5.14.

0.5 Related work

Barannikov pairs were introduced in [4] (see [16] for a recent survey). A close idea of

construction of Bruhat numbers over Q appeared independently in [30]. In [43], the

authors prove a theorem analogous to Barannikov’s in the setting of complexes over the

Novikov field, which is useful in symplectic topology. Translation of Bruhat numbers

to this setting is a current work in progress. Reidemeister torsion in the setting of

Morse–Novikov theory is studied in [25–27]. Morse theory plays an important role in

the definition of higher Reidemeister torsion due to Igusa and Klein (see, e.g., [28]). See

also the recent work [3] for the application of torsion-theoretic techniques in contact

topology.

0.6 Organization of the paper

The 1st two sections provide an algebraic foundation for the further Morse-theoretical

results. Namely, in Section 1, we do the necessary linear algebra and emphasize

connection with the Bruhat decomposition. In Section 2, similar in spirit constructions

are presented in the realm of homological algebra over a field. Section 3– 5 contain (but

not exhausted by) results described in, respectively, Subsections 0.2– 0.4.

The paper contains many constructions and we therefore use a special environ-

ment for them. The text after the word construction describes input and output. The

actual algorithm is placed between signs � and �. By default, construction does not

involve any choices, that is, output depends only on the input. If it is not the case, we

indicate this explicitly.
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Barannikov pairs together with Bruhat numbers are called B-data for brevity.

These data can be extracted from an (oriented) strong Morse function in several ways.

The thorough way is via the enhanced complexes, and in order to proceed with it, one

has to understand the main results of Section 1 and 2 (proofs may be safely omitted).

The quick way is more elementary, does not require any enhancements and is given in

Remark 3.3. So the curious reader might use the following scheme:

1) read the formal definition of B-data in Subsection 2.3;

2) read Subsection 3.1 and Remark 3.3;

3) continue reading results in Section 3– 5.

The main results are formulated exclusively in terms of Bruhat numbers and Barannikov

pairs (so again, no enhancements needed). However, in order to understand their proofs,

one has to take the thorough way.

1 Enhanced Vector Spaces

In this section, we define and study enhanced vector spaces—a notion that we rely on

in Section 2. All the constructions lie within the scope of linear algebra. Moreover, our

main statement here (Lemma 1.7) may be formulated exclusively in terms of matrices,

which is done right below (Lemma 1.2). Later, in Section 2, we proceed similarly in the

setting of chain complexes over a field.

1.1 Formulation of results

In this subsection, we introduce main definitions of this section and formulate the main

Lemma 1.7.

We start with the coordinate formulation. Let n and m be two natural numbers

fixed once and for all throughout this section. Fix also a base field F, all matrices are

assumed to be over it.

Let Tn be the group of unitriangular matrices, that is, upper triangular n × n

matrices with ones on the diagonal. The group Tn × Tm acts on the set Matn,m of all

n × m matrices: X �→ AXB−1. Since one has commuting actions of both Tn and Tm,

the orbit space is usually denoted as Tn\Matn,m/Tm. Note that two n × m matrices lie

in the same Tn orbit if and only if one can be obtained from another by a successive

performing of the following elementary operation: add to one row a scalar multiple of

another one, provided that the latter has higher index than the former. The analogous
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elementary operation for Tm is addition of a multiple of column with lower index to that

with higher index.

Definition 1.1. An n × m matrix is called a rook matrix if in every row and in every

column there is at most one nonzero entry.

Lemma 1.2. Every orbit in Tn\Matn,m/Tm contains exactly one rook matrix.

The classical Bruhat decomposition is obtained from the above statement in two

steps:

1) restrict to the case n = m, and consider only nondegenerate square matrices;

2) replace Tn by an upper triangular group.

Keeping in mind the slightly greater level of generality, we propose the term “enhanced

Bruhat decomposition” (see, however, [6], which inspired this word choice). Note that

rook matrix stores, in particular, the set of elements from F∗, in contrast to the matrix of

permutation in the classical case. We call these elements “Bruhat numbers”. The proof of

Lemma 1.2, however, goes along the classical lines. See [21] for an in-depth discussion.

Remark 1.3. Several intermediate decompositions between the classical Bruhat

decomposition and enhanced Bruhat decomposition gathered attention in the literature.

In [24], the condition on the square matrix to be invertible was dropped. In fact, the

scope of this paper is broader in terms that the author considers other algebraic groups

besides GLn. Next, in [15], the authors consider rectangular matrices of arbitrary size.

We will now introduce the main notion of the present section. Several basic

facts about it will be presented further in Subsections 1.2 and 1.4. Often, Bruhat

decomposition is proven using inductive arguments. We tried to refrain from those

during the course of this section (or, at least, hide them under the carpet of explicit

constructions).

Definition 1.4. Let V be a vector space over F. An enhancement � on a vector space V

is a choice of two structures:

1) a full flag on V, that is, a sequence of subspaces 0 = V0 ⊂ V1 ⊂ . . . ⊂
Vdim V = V s.t. dim(Vs/Vs−1) = 1, s ∈ {1, . . . , dim V};

2) a nonzero element �s in a one-dimensional vector space Vs/Vs−1, s ∈
{1, . . . , dim V}.
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A vector space V with an enhancement will be called an enhanced vector space and

denoted as (V, �).

Enhanced vector spaces are called affine flags in [17].

Definition 1.5. Let (V, �) and (W, μ) be two enhanced vector spaces, and let ϕ : V
∼−→ W

be an isomorphism of vector spaces. We say that ϕ is an isomorphism of enhanced

vector spaces if

1) ϕ(Vs) = Ws;

2) ϕ̃s(�s) = μs, where

ϕ̃s : Vs/Vs−1 → Ws/Ws−1

is a map of quotient vector spaces induced by ϕ.

Remark 1.6. If (V, �) and (W, μ) are two enhanced vector spaces of the same

dimension, then one can always find an isomorphism (in the sense of Definition 1.5)

between them.

By a basis of a finite-dimensional vector space V, we will mean a linearly

ordered set of generators (zero vector space has empty set as its only basis). Given

a basis v = (v1, . . . , vdim V) of V, one constructs an enhanced vector space (V, �(v))

in the following straightforward way. For s ∈ {1, . . . , dim V}, set Vs := 〈v1, . . . , vs〉 and

�(v)s := ps(vs), where ps : Vs → Vs/Vs−1 is a standard projection. By a basis of an

enhanced vector space (V, �), we will mean a basis v of V s.t. the identity map is

an isomorphism of enhanced vector spaces (V, �) and (V, �(v)). Every enhanced vector

space can be equipped with a basis.

The next lemma is equivalent to Lemma 1.2.

Lemma 1.7. Let (V, �) and (W, μ) be two enhanced vector spaces and A : V → W be

a linear map. There exists a basis v (resp. w) of an enhanced vector space (V, �) (resp.

(W, μ)) s.t. the matrix of A in these bases is a rook matrix. Moreover, this rook matrix is

uniquely defined.

The change of basis in (V, �) (resp. (W, μ)) results in multiplication of matrix

of A by a matrix from Tdim V (resp. Tdim W ). So, Lemma 1.7 describes orbits in

Tdim W\Matdim W,dim V/Tdim V .
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We will stick to the above formulation. It is possible to state the same without

appealing to any bases whatsoever; this is done in Subsection 1.3.

Remark 1.8. Consider the rook matrix from Lemma 1.7. Remove all zero rows and zero

columns from it to obtain a nondegenerate square matrix. Let d ∈ F∗ be its determinant

(by convention, determinant of an empty matrix is one). The number d will be important

later since it will serve as a building block for the definition of torsion of strong Morse

function (see Subsections 2.10 and 4.1).

Consider now the partial case when (W, μ) = (V, �) and A is an isomorphism.

In this case, the number d is nothing but its determinant. Thus, d may be viewed as a

generalization of determinant in the enhanced setting.

Remark 1.9. If the field K is an extension of F, then one may consider A as a map

between vector spaces over K. Itis plain to see that rook matrix would not change

after this operation. Indeed, multiplication of matrices only involves additions and

multiplications.

Usually, what we are given in topological setup is a matrix over Z (note that this

is not the case in Subsections 4.2 and 4.3). We then choose some field F and merely

consider this matrix over this field. It follows from the previous paragraph that it is

enough to consider only Q and Fp.

Remark 1.10. In Lemma 1.7, bases v and w themselves need not be unique.

1.2 Construction of a rook matrix

In this subsection, we associate a rook matrix to a given map between enhanced vector

spaces. In Subsection 1.4, we will show that this is the same matrix as the one addressed

in Lemma 1.7.

We will need the following construction as a preliminary step.

Construction 1.11. Let (V, �) be an enhanced vector space and A : V � W be

a surjective map of vector spaces. We will now construct an induced enhancement

on W.

� For s ∈ {1, . . . , dim V}, define ϕs to be the composition
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Take any s s.t. dim Im ϕs = dim Im ϕs−1 + 1, and denote this number by t. Set Wt to be

Im ϕs. This defines a full flag on W, that is, a vector space Wt for any t ∈ {1, . . . , dim W}.
We now need to produce an element μt in the vector space Wt/Wt−1; this vector space

coincides with Im ϕs/Im ϕs−1. Define μt to be ϕ̃s(�s), where

ϕ̃s : Vs/Vs−1 ∼−→ Im ϕs/Im ϕs−1

is an isomorphism of quotient vector spaces induced by ϕs. We have obtained an

enhanced vector space (W, μ). �

The following proposition will be used later in Subsection 1.4.

Proposition 1.12. Let (V, �) be an enhanced vector space and A : V � W be a surjective

map of vector spaces. Construction 1.11 produces an enhanced vector space (W, μ). We

claim that for any basis of (W, μ), one can find a basis of (V, �) s.t. A maps each basis

element to either zero or another basis element.

Proof. We continue using notations from Construction 1.11. Let w = (w1, . . . , wdim W)

be the given basis of (W, μ). Take any s ∈ {1, . . . , dim V}. The difference dim Im ϕs −
dim Im ϕs−1 is either zero or one. In the former case, set vs to be any vector from

(Vs \ Vs−1) ∩ Ker A s.t. its class in Vs/Vs−1 coincides with �s. In the latter case, set vs

to be any preimage of wdim Im ϕs
under A. It is straightforward to check that the basis

(v1, . . . , vdim V) satisfies the desired property. �

Construction 1.19 and Proposition 1.20 are analogous statements for the

case of injective map. In order to proceed to the construction of a rook matrix,

we need two more definitions. For a nonzero element v ∈ V of an enhanced

vector space (V, �), we define, first, a function ht(v) (stands for height) to be

minimal s s.t. v ∈ Vs. Second, we define a function cf(v) (stands for coefficient)

to be equal to λ ∈ F∗ := F \ {0} s.t. p(v) = λ�ht(v), where p is a projection

Vht(v) � Vht(v)/Vht(v)−1.

Construction 1.13. Given a map A : V → W between enhanced vector spaces (V, �)

and (W, μ), we will now construct a rook matrix R of size (dim W) × (dim V).

� Fix any s ∈ {1, . . . , dim V}. Consider a surjective map Ls : W � W/A(Vs−1), and use

Construction 1.11 to get an enhanced vector space (W/A(Vs−1), μ̃). Consider now an
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element Ã(�s) ∈ W/A(Vs−1), where

Ã : Vs/Vs−1 → W/A(Vs−1)

is a map of quotient vector spaces induced by the restriction A|Vs . If Ã(�s) = 0, then

the sth column of R is set to be zero. Otherwise, let λ and t′ be respectively coefficient

and height of Ã(�s). Let t ∈ {1, . . . , dim W} be the only number satisfying the condition

dim Ls(W
t) = dim Ls(W

t−1) + 1 = t′. Finally, we set Rt,s to be λ and all the other entries

in the sth column of R to be zero.

What is left to check is that in each row of R there is at most one nonzero entry.

Suppose Rt,s �= 0, then for any representative v of �s, one has A(v) ∈ Wt \ Wt−1. This

implies that for any s′ > s we have dim Ls′(Wt) = dim Ls′(Wt−1). Thus, Rt,s′ = 0. �

Remark 1.14. The fact that the entry Rt,s of a rook matrix R is nonzero has

the following characterization (we thank the anonymous referee for suggesting this

characterization), which may be easier to digest. Namely, Rt,s �= 0 if and only if s isAQ5

the smallest number satisfying the following condition: for any vector v from Vs \ Vs−1,

the height ht(A(v)) equals t.

1.3 Terminological digression

In this subsection, we introduce a bit of terminology that will be useful for understand-

ing the content of Section 2.

Let X and Y be two sets and ∼ be an equivalence relation on X. If a map g : X → Y

is constant on the equivalence classes, then we say that g(x) is an invariant of some

element x ∈ X. If, moreover, the induced map g̃ : X/∼ → Y is a bijection of sets, then we

say that g(x) is a full invariant.

Our next goal is to introduce a certain equivalence relation on the set of maps

between fixed enhanced vector spaces. By an automorphism of an enhanced vector

space (V, �), we will mean an isomorphism from (V, �) to itself (see Definition 1.5).

We say that two maps A and B between enhanced vector spaces (V, �) and (W, μ) are

equivalent if there exists an automorphism C1 (resp. C2) of (V, �) (resp. (W, μ)) s.t.

C2AC1 = B.

Remark 1.15. Note that A and B are equivalent if and only if there exist bases va

and vb of (V, �) and bases wa and wb of (W, μ) s.t. the matrix of A in bases va and wa

coincides with the matrix of B in bases vb and wb.
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Note that Construction 1.13 provides an invariant of a map between enhanced

vector spaces considered up to equivalence. This invariant takes values in the set of

rook matrices. It will follow from Subsection 1.4 that Lemma 1.7 can be reformulated as

follows.

Lemma 1.16. Let (V, �) and (W, μ) be two fixed enhanced vector spaces and A : V → W

be some linear map. Then the corresponding rook matrix provided by Construction 1.13

is a full invariant of a map considered up to equivalence.

1.4 Proof of the main Lemma 1.7

In this subsection, we prove Lemma 1.7 (see Subsection 1.1 for a context). First, we prove

the partial case when the map in question is an isomorphism. Second, we derive the

general statement from it.

First of all, recall the lemma itself.

Lemma 1.7. Let (V, �) and (W, μ) be two enhanced vector spaces and A : V → W be

a linear map. There exists a basis v (resp. w) of an enhanced vector space (V, �) (resp.

(W, μ)) s.t. the matrix of A in these bases is a rook matrix. Moreover, this rook matrix is

uniquely defined.

We will now deduce uniqueness from the existence. Suppose the map A is rep-

resented by a rook matrix R in some bases v and w. Then one checks straightforwardly

that the Construction 1.13 produces the same matrix R as an output. Therefore, R is an

invariant of a map A and we are done. The rest of this subsection is devoted to proving

the existence part.

The next proposition is a partial case that will be used later.

Proposition 1.17. Let (V, �) and (W, μ) be two enhanced vector spaces and A : V
∼−→ W

be an isomorphism. There exists a basis v (resp. w) of an enhanced vector space (V, �)

(resp. (W, μ)) s.t. the matrix of A in these bases is a rook matrix.

Proof. By a jump of a function g : {0, . . . , N} → Z�0, where N ∈ Z�0, we will mean a

number x > 0 s.t. g(x) = g(x − 1) + 1. Fix any s ∈ {1, . . . , dim V}. Consider now a function

x �→ dim(A(Vs) ∩ Wx), for x ∈ {0, . . . , dim W} (recall that dim V = dim W). It has exactly

s jumps. Moreover, every jump of a function x �→ dim(A(Vs−1) ∩ Wx) is also a jump of

the function under consideration. Therefore, the latter function has exactly one “new”
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jump, call it t. It follows from the fact that t is a jump that A(Vs) ∩ (Wt \ Wt−1) �= ∅; take

any element w from this set. It follows from the fact that t is actually a new jump that

A−1(w) ∈ Vs \ Vs−1.

By performing the above operation for all possible s, we construct a basis of

W and, by taking a preimage, a basis of V. The end of the preceding paragraph implies

that after appropriate reordering and rescaling these bases are bases of enhanced vector

spaces (V, �) and (W, μ). The statement follows. �

Remark 1.18. This is a known proof of the Bruhat decomposition for GLn adapted to

our enhanced setting.

Construction 1.19. Let (W, μ) be an enhanced vector space and A : V ↪→ W be an

injective map of vector spaces. We will now construct an induced enhancement on V.

� For s ∈ {1, . . . , dim W}, define ϕs to be the composition

Take any s s.t. dim Ker ϕs = dim Ker ϕs−1 + 1 (call this number t). Set Vt to be Ker ϕs.

This defines a full flag on V, that is, a vector space Vt for any t ∈ {1, . . . , dim V}. We

now need to produce an element �t in the vector space Vt/Vt−1, which coincides with

Ker ϕs/Ker ϕs−1. By identifying V with Im A, we say that Ker ϕs ⊂ Ws. Define �t to be

α−1(μs), where

α : Ker ϕs/Ker ϕs−1
∼−→ Ws/Ws−1

is an isomorphism of quotient vector spaces induced by the mentioned inclusion. We

have obtained an enhanced vector space (V, �). �

Proposition 1.20. Let (W, μ) be an enhanced vector space and A : V ↪→ W be an

injective map of vector spaces. Construction 1.19 produces an enhanced vector space

(V, �). We claim that for any basis of (V, �), one can find a basis of (W, μ) s.t. A maps

each basis element to another basis element.

Proof. We continue using notations from Construction 1.19. Let v = (v1, . . . , vdim V) be

a given basis of (V, �). Take any s ∈ {1, . . . , dim W}. The difference

dim Ker ϕs − dim Ker ϕs−1 is either zero or one. In the former case, set ws to be any

vector from Ws \ Ws−1 s.t. its class in Ws/Ws−1 coincides with μs. In the latter case,

set ws to be A(vdim Ker ϕs
). It is straightforward to check that the basis (w1, . . . , wdim W)

satisfies the desired property. �
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Proof of Lemma 1.7. Uniqueness is shown in the beginning of the present subsection.

To show the existence, consider the composition of three maps:

V � V/Ker A
∼−→ Im A ↪→ W.

Induce enhancement on V/Ker A from V via Construction 1.11 and on Im A from W via

Construction 1.19. Apply Proposition 1.17 to the middle map to obtain bases ṽ and

w̃ of its source and target, respectively. Apply now Proposition 1.12 to the basis ṽ to

get a basis v of V. Apply Proposition 1.20 to the basis w̃ to get a basis w of W. By

construction, bases v and w are the desired ones. �

1.5 On a matrix of a map between enhanced vector spaces

In this subsection, we give several properties of a matrix of a map between enhanced

vector spaces, written in appropriate basis.

Construction 1.21. Let R be a rook n × m matrix. We will now define a subset T (R) of

a set Matn,m of all n × m matrices.

�Let M ∈ Matn,m be a matrix. We say that its entry Mi,j is covered if there exists

a pair of indices (i′, j′) s.t. the following two conditions hold:

1) Ri′,j′ �= 0,

2) (i < i′ AND j � j′) OR (i � i′ AND j > j′).

The matrix M is said to be in T (R) if the following two conditions hold:

1) if the entry Mi,j is not covered and Ri,j = 0, then it equals zero,

2) if the entry Mi,j is not covered and Ri,j �= 0, then Mi,j = Ri,j. �

Here is an example, for F = Q, of the matrix R and the general form of a matrix M from

the set T (R):

R =

⎛
⎜⎜⎜⎜⎝

0 0 4

3 0 0

0 0 0

0 2 0

⎞
⎟⎟⎟⎟⎠ , M =

⎛
⎜⎜⎜⎜⎝

∗ ∗ ∗
3 ∗ ∗
0 ∗ ∗
0 2 ∗

⎞
⎟⎟⎟⎟⎠ .

In the case of classical Bruhat decomposition analogous set is nothing but a Bruhat cell.

The next proposition is straightforward and well known in the classical case.
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Proposition 1.22. Let (V, �) and (W, μ) be two enhanced vector spaces and A : V → W

be some linear map. Let also v (resp. w) be some basis of enhanced vector space (V, �)

(resp. (W, μ)). Then the matrix of A in the bases v and w belongs to T (R), where R is a

rook matrix from Lemma 1.7.

The next statement links properties of integral matrix (considered up to unitri-

angular change of basis) and its enhanced Bruhat decomposition over Q. Let Matn,m(Z)

be the set of all n × m matrices over Z. In what follows, we will sometimes view it as

a subset of matrices over F = Q without mentioning this explicitly. Let also Tn(Z) be

the group of unitriangular matrices over Z. The group Tn(Z) × Tm(Z) acts on the set

Matn,m(Z). The next proposition follows from Proposition 1.22.

Proposition 1.23. Consider M ∈ Matn,m(Z). Then any element M ′ from the orbit

Tn(Z) · M · Tm(Z) lies in the set T (R), where R is a rook matrix over F = Q associated

with M.

As a corollary, one gets that at least one nonzero entry of R is integer. It also

follows that there is at least one pair of indices (i, j) s.t. the entry M ′
i,j is the same for

any M ′ from the mentioned orbit.

1.6 Geometric approach to enhancements

In this subsection, we briefly present geometric viewpoint on enhancements. All the

proofs here are straightforward and left to the reader.

Recall that for an affine subspace A of a vector space V, the set {a − b | a, b ∈ A}
is a vector subspace of V, which is called the direction of A. We denote it by

−→
A . The

following definition is equivalent to Definition 1.4.

Definition 1.24. Let V be a vector space over F. An enhancement � on a vector space

V is a choice of dim V affine subspaces {�1, . . . , �dim V} s.t.

1) dim �s = s − 1 for s ∈ {1, . . . , dim V},
2) Span(�s) = −−→�s+1 (by convention, �dim V+1 = V).

It follows that all the affine subspaces {�1, . . . , �dim V} are disjoint. In terms of

Definition 1.4, each affine subspace is a full preimage of a distinguished element in the

one-dimensional quotient space along the quotient map.
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Let (V, �) be an enhanced vector space. Its dual V∗ is naturally enhanced as well.

By definition, the dual enhancement on V∗ is a collection of affine subspaces

Uni(�s) = {ξ ∈ V∗ | ξ(�s) = 1}

for all s; we call them unificator spaces in analogy with annihilator spaces. Note that

dim Uni(�s) = dim V − s. Note also that dual flag to

0 = −→�1 ⊂ . . . ⊂ −−−→�dim V ⊂ V,

which by definition consists of annihilators

0 = Ann(V) ⊂ Ann(−−−→�dim V) ⊂ . . . ⊂ Ann(−→�1) = V∗

coincides with the flag

0 = −−−−−−−−→
Uni(�dim V) ⊂ −−−−−−−−−→

Uni(�dim V−1) ⊂ . . . ⊂ −−−−−→
Uni(�1) ⊂ V∗.

We will now present a (geometric) reformulation of Construction 1.19. Namely,

if W ⊂ V is a linear subspace of an enhanced vector space (V, �), then the collection of

affine subspaces {�s ∩ W} (for all possible s, but empty intersections must be excluded)

is an enhancement on the vector space W.

We now turn to a reformulation of Construction 1.11. Namely, given an enhanced

vector space (V, �) and a surjective map A : V � W, we will construct an induced

enhancement on W. First, consider the dual map A∗ : W∗ ↪→ V∗, which is an injection.

Since V∗ is naturally enhanced, its subspace W∗ is enhanced as well. By identifying W

with its double dual W∗∗, we get an induced enhancement on W.

2 Enhanced Complexes

In this section, we define and study enhanced complexes—an algebraic object that will

carry a certain information about a strong Morse function (see Subsection 3.5). All the

constructions lie within the scope of homological algebra of chain complexes over a

field. They are similar in spirit to those in Section 1. The purpose is that enhanced

complex is a useful algebraic container that stores some information about a strong

Morse function; see Section 3.
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2.1 Definition of an enhanced complex

In this subsection, we define the object of study of this section.

Definition 2.1. Let C be a (chain) complex of vector spaces,

Cn+1 = 0 → Cn
∂n−→ . . .

∂1−→ C0 → 0 = C−1.

An enhancement � on a complex C is an enhancement (C•, �) on a vector space C• :=
⊕n

j=0Cj satisfying the condition that each Cs• is a subcomplex of C (we will therefore

write Cs instead of Cs• in order to stress the structure of a complex). A complex with an

enhancement will be called an enhanced complex and denoted as (C, �).

We call the number n the dimension of C and denote it by dim C.

Remark 2.2.

1. Recall that the aforementioned condition amounts to the following two:

1. Cs is decomposed into the direct sum of graded components ⊕kCs
k s.t.

Cs
k ⊂ Ck for k ∈ {0, . . . , n};

2. ∂k(Cs
k) ⊂ Cs

k−1 for k ∈ {1, . . . , n}.
2. By Construction 1.19 the vector space Ck is also enhanced.

Remark 2.3. For an enhanced complex (C, �), the set {1, . . . , dim C•} is Z�0-graded: the

degree deg s of s is given by the only degree in which the complex Cs/Cs−1 is nonzero.

Definition 2.4. Let (C, �) and (D, μ) be two enhanced complexes, and let ϕ : C ∼−→ D be

an isomorphism of complexes. We say that ϕ is an isomorphism of enhanced complexes

if the induced map C• → D• is an isomorphism of enhanced vector spaces (C•, �) and

(D•, μ).

We say that two enhanced complexes are isomorphic if there is an isomorphism

between them (compare Remark 1.6).

Remark 2.5. As we will show in Section 3, a strong Morse function (together with

suitable orientations) gives rise to an enhanced complex (over any field F), which is

well-defined up to isomorphism.

2.2 Enhancement on H•(C)

In this subsection, we construct enhancement on a homology of a certain class of

complexes, which includes enhanced ones.
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For any complex C denote by H•(C) the direct sum ⊕jHj(C). Let (C, �) be an

enhanced complex. Then, for any s, the vector space H•(Cs, Cs−1) is one-dimensional with

a preferred generator of degree deg s given by a class of relative chain �s ∈ Cs/Cs−1.

Construction 2.6. Let C be a filtered (possibly infinite-dimensional) complex over a

field F, 0 = C0 ⊂ . . . ⊂ CN = C. Suppose that for any s vector space H•(Cs, Cs−1) is one-

dimensional with a chosen generator hs. We will now construct an enhancement on a

homology vector space H•(C).

� First, we will construct a filtration on H•(C). For s ∈ {0, . . . , N}, let ιs : H•(Cs) → H•(C) be

a map induced by inclusion. Define the subset H (which stands for homology) of the set

{1, . . . , N} to be the set of all s s.t. dim Im ιs = dim Im ιs−1 + 1. Let si be the ith element of

H (counting from 1) and s0 be zero. The sequence of subspaces 0 = Im ιs0
⊂ Im ιs1

⊂ . . . ⊂
Im ιsdimH•(C)

= H•(C) is a full flag on H•(C) (follows from considering the exact sequence

of a pair (Cs, Cs−1) for all s). To complete the construction of enhancement, we will now

produce an element from Im ιsi
/Im ιsi−1

for a given i ∈ {1, . . . , dimH•(C)}. We denote si by s

for convenience. Let deg s denote the degree in which the graded vector spaceH•(Cs, Cs−1)

is nonzero (this notation is coherent with the case when C is an enhanced complex).

Consider the following diagram, with horizontal line being a portion of a long

exact sequence of a pair (Cs, Cs−1):

We write ιs both for a map H•(Cs) → H•(C) and for its restriction to Hdeg s(Cs). It follows

from the definition of H that dim Coker θ = 1; therefore, Ker p∗ is a proper subspace of

Hdeg s(Cs), which in turn implies that p∗ is surjective. Denote by p−1∗ (hs) any preimage of

hs; it is defined up to elements from Ker p∗ � Im θ . Finally, the desired element is a class

of ιs(p
−1∗ (hs)) in the quotient space Im ιs/Im ιs−1 � Im ιs/Im ιsi−1

(mind that Im ιsi−1 =
Im ιsi−1

); it is well defined. �

Remark 2.7. Note that to a flag space of H•(C) of dimension d, one can associate a

number s ∈ {1, . . . , N} as the unique solution of equation dim Im ιs = dim Im ιs−1 + 1 = d.

In other words, this is the smallest s such that given flag space is contained in the image

of ιs.
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If one is given a nonzero vector v in the enhanced vector space H•(C), then they

may consider the flag space of least possible dimension containing v (its dimension is

ht(v)). Combining this with the previous paragraph, one can associate a number s with

a vector v. We will make use of this association in Subsection 2.4.

For a detailed treatment of the mentioned long exact sequence, see [29]. Without

taking �s into account, it was first considered in [31]. This preferred generator appeared

independently in [30]. We denote obtained enhancement as (H•(C), �H). Specializing

the above discussion to a fixed degree k (and thus having deg si = k), we get an

enhanced vector space (Hk(C), �Hk
); one may check that this is the same enhancement

as the one induced by inclusion Hk(C) ↪→ H•(C) via Construction 1.19. Note that the

above procedure also gives enhancement on H•(Cs) for any s (it will be crucial in what

follows).

Remark 2.8. The reason for the chosen level of generality is that one may take the

input to be a complex of singular chains on a manifold equipped with a Morse function.

The filtration is then given by the sublevel sets. See Subsection 3.5, where B-data

(described below in Subsection 2.4) is extracted from the function this way.

Remark 2.9. In the case when C is an enhanced complex, one may check that the

following alternative construction produces the same enhancement on H•(C). Consider

the map ∂ : C• → C•. Induce enhancements on Ker ∂ and Im ∂ via Construction 1.19.

Induce enhancement on Ker ∂/Im ∂ = H•(C) via Construction 1.11.

2.3 Definition of B-data

In this subsection, we introduce a certain data, called B-data, which will be used as

a container that stores information about enhanced complex (and, eventually, about a

Morse function). The actual process of extraction is given in Subsection 2.4. The letter

B stands simultaneously for Barannikov, Bruhat, and barcode.

B-data consists of the following parts.

i) A nonnegative integer N along with a Z�0-grading on a set {1, . . . , N}, denoted

by deg.

ii) Decomposition of {1, . . . , N} into the union of three disjoint sets U, L, H (these

letters stand for upper, lower, and homological, for the reasons described

below).
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iii) Bijection b : U
1−1−−→ L of degree −1 w.r.t. the grading. Map b must satisfy

b(s) < s.

iv) A function λ : U → F∗. We write λs for its value on s ∈ U.

We call the image of λ “Bruhat numbers” of an enhanced complex (see the proof of

Theorem 2.17 for the explanation). Two numbers s and b(s) are said to form a Barannikov

pair (or simply a pair). Itis convenient to think of each Bruhat number as being “written”

on a Barannikov pair. Roughly speaking, B-data is a decomposition of some subset of

{1, . . . , N} into Barannikov pairs (the rest of the elements are homological). Each pair

consists of an upper element and a lower one and carries a Bruhat number. In other

words, B-data is a grading on {1, . . . , N} together with a finite sequence of rook matrices

{Rk} over F (see Definition 1.1), where Rk is of size (#{s| deg s = k − 1}) × (#{s| deg s = k})
and Rk−1Rk = 0.

Figure 1 gives an example of B-data over Q and describes pictorial format, which

we will use in future. Elements of the set {1, . . . , N} are drawn as dots, from bottom to

top, pairs correspond to segments. Either to the left or to the right of a middle of a

segment, we write a Bruhat number. The degree of an element is written either above or

below this element, whatever is more convenient. In the example N = 8, degree of 1 is 0,

degree of 2, 3, 4 and 6 is 1 and degree of 5, 7, 8 is 2. Next, U = {4, 5, 7, 8}, L = {1, 2, 3, 6},
H = ∅. Bruhat numbers are 6, 3, 2, 4 (i.e., values of λ on 4,5,7,8, respectively). The map b

is defined by the segments. Finally, two rook matrices are

R1 =
(
0 0 6 0

)
, R2 =

⎛
⎜⎜⎜⎜⎝

0 0 4

3 0 0

0 0 0

0 2 0

⎞
⎟⎟⎟⎟⎠ .

2.4 Extraction of B-data

In this subsection, we will extract a B-data from an enhanced complex. These data are

invariant under isomorphisms. In Subsection 2.5, we show that these data are in fact

a full invariant of an enhanced complex considered up to isomorphism (in a sense of

Subsection 1.3).

Remark 2.10. The extraction of B-data is done in the same way for the (more general)

case of a complex C that satisfies conditions of Construction 2.6 (compare Remark 2.8).

Indeed, one has to merely replace the symbol [�s] with hs. In this case, however, we
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Fig. 1.

do not claim that that data are a full invariant; we do not even define any equivalence

relation on the set of such complexes.

Let (C, �) be an enhanced complex. We will now construct a B-data. In the future,

we will refer to it as a B-data of (C, �) and use the same letters N, U, L, H, b and λ for its

ingredients when necessary. We continue using notations introduced in Subsections 2.1

and 2.2. Let δ : Hdeg s(Cs, Cs−1) → Hdeg s−1(Cs−1) be the connecting homomorphism. To

begin with, set N to be the number of filtration components (counting from zero), and set

the grading on {1, . . . , N} to be the one defined in Remark 2.3. Now, for each s ∈ {1, . . . , N}
s.t. δ([�s]) �= 0, do the following.

1) Put s in U.

2) For any t ∈ {1, . . . , s − 1}, let ιs−1
t : Hdeg s(Ct) → Hdeg s(Cs−1) be the map

induced by inclusion. Now choose the only t s.t. dim Im ιs−1
t = dim Im ιs−1

t−1 +
1 = ht(δ([�s])) (the function ht(·) here is taken w.r.t. the enhancement

on Hdeg s−1(Cs−1) constructed from Cs−1). See Remark 2.7 for an informal

meaning of such a t. Put this t in L.

3) Set λ(s) := cf(δ([�s])) w.r.t. the same enhancement.

4) Set b(s) := t.

Using diagram chasing similar to that in Construction 2.6, one verifies that such an

operation is well defined in a sense that, first, each number will be put somewhere

at most once and, second, that b enjoys desired properties; see [29]. Those numbers in
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{1, . . . , N} that were not put anywhere by this operation are put in H. The extraction of

B-data i)–iv) is over, itis plain to see that it is invariant under isomorphisms.

Remark 2.11. Here is another way to extract a B-data out of an enhanced complex.

Apply Lemma 1.7 to a differential ∂k : Ck → Ck−1 viewed as a map between enhanced

vector spaces (see Remark 2.2). This will give a sequence {Rk} of rook matrices and thus

weare done. Although this way is shorter, we find it less instructive.

Another approach is to use spectral sequence of a filtered (actually, enhanced)

complex.

Remark 2.12. We will now give a yet another way to extract a B-data. This way is even

quicker than the one described in Remark 2.11 and even less instructive. Let s > t be two

numbers from {1, . . . , N} s.t. deg s = deg t + 1. Let X be the image of [�s] ∈ Hdeg s(Cs, Cs−1)

under the composition map

Hdeg s(Cs, Cs−1)
δ−→ Hdeg t(Cs−1) → Hdeg t(Cs−1, Ct−1).

Let now Y be the image of [�t] ∈ Hdeg t(Ct, Ct−1) under the map Hdeg t(Ct, Ct−1) →
Hdeg t(Cs−1, Ct−1) induced by inclusion. If X = λY �= 0, then s and t form a Barannikov

pair and the corresponding Bruhat number is λ. The proof is a straightforward diagram

chasing.

Again, arguing as in Construction 2.6, one can show that #{s ∈ H| deg s = k} =
dimHk(C). We stress that everything except λ was essentially constructed in [4], while

homological language was first used in [31]. A close idea of construction of Bruhat

numbers over Q appeared independently in [30].

Remark 2.13. Consider once again the portion of a long exact sequence of a pair

(Cs, Cs−1):

Since the middle term is one-dimensional, there are two cases possible.

1) The map p∗ is surjective while δ is zero. This case was used in Construction

2.6.
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2) The map δ is injective while p∗ is zero. This case was used in the extraction

of B-data.

Remark 2.14. Let s and t be some elements from {1, . . . , N}. They form a Barannikov

pair (i.e., b(s) = t) if and only if the following equalities hold:

dimH•(Cs−1, Ct) = dimH•(Cs, Ct−1) = dimH•(Cs−1, Ct−1) − 1 = dimH•(Cs, Ct) − 1.

This can be proven either by diagram chasing similar to that in Construction 2.6 or by

Theorem 2.17 (see [13] and also [31]).

We will now take coordinate viewpoint, which will be useful in formulation of

the classificational Theorem 2.17 in Subsection 2.5. By a basis of a chain complex C, we

will mean a basis (c1, . . . , cdimC•) of a vector space C• s.t. each cs belongs to some Ck,

where k depends on s. By a basis of an enhanced complex (C, �), we will mean a basis c

of a chain complex (C, ∂) s.t. identity map is an isomorphism of enhanced vector spaces

(C•, �) and (C•, �(c)). Every enhanced complex can be equipped with a basis.

Vice versa, given a basis c of a chain complex C s.t. the span 〈c1, . . . , cs〉 is

a subcomplex (for each s ∈ {1, . . . , dim C•}), one may construct an enhanced complex

(C, �(c)) by declaring (C•, �) := (C•, �(c)).

Remark 2.15. Note that two enhanced complexes (C, �) and (D, μ) are isomorphic if

and only if the following holds:

1) dim C• = dimD• and the gradings on {1, . . . , dim C•} constructed from (C, �)

and (D, μ) coincide (see Remark 2.3);

2) there exist bases c of (C, �) and d of (D, μ) s.t. corresponding two matrices

of differentials coincide (compare Remark 1.15).

Definition 2.16. Let (C, �) be an enhanced complex and c be its basis. We call c a

Barannikov basis if the matrix of differential ∂k : Ck → Ck−1 in the basis c is a rook

matrix (for any k).

The set of rook matrices {Rk} of differentials ∂k does not depend on a particular

choice of a Barannikov basis. Indeed, this set is precisely the B-data, which is an

invariant of an enhanced complex. The purpose of Subsection 2.5 is to show that every
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enhanced complex admits a Barannikov basis. This will imply that B-data is a full

invariant of an enhanced complex considered up to isomorphism.

2.5 Classification of enhanced complexes

In this subsection, we prove the followingclassificational theorem.

Theorem 2.17. For every enhanced complex (C, �), there exists a Barannikov basis c.

Moreover, the matrix of ∂ is the same for any Barannikov basis.

Remark 2.18.

1. Barannikov basis itself need not be unique (compare Remark 1.10).

2. Put differently, one may say that B-data is a full invariant of an enhanced

complex considered up to isomorphism (see Subsection 1.3).

3. It is profitable to have a Barannikov basis at hand, since the complex takes

the simplest form possible and becomes tractable.

4. The case when the complex is not enhanced, but only filtered, was proven in

[4]. See also for an “ungraded” setting where a single upper triangular matrix

is considered.

5. The existence part of the theorem was observed independently in [37].

For a matrix X, we denote by X•,j its jth column and by Xi,• it’s ith row.

Proof of Theorem 2.17. Uniqueness follows from the existence and the fact that B-

data is invariant under isomorphisms (which is shown in Subsection 2.4). The rest is

devoted to proving the existence part.

Fix any k ∈ {0, . . . , dim C}. The differential ∂k : Ck → Ck−1 is a map of enhanced

vector spaces (Ck, �k) and (Ck−1, �k−1) (see Remark 2.2). Therefore, Lemma 1.7 produces,

in particular, a rook matrix X and a basis x of (Ck, �k). Analogously, applying Lemma 1.7

to ∂k+1, one obtains a rook matrix Y and another basis of (Ck, �k), call it y. Construct

now a third basis v of (Ck, �k) as follows.

Fix s ∈ {1, . . . , dim Ck}. Obviously at least one of three cases listed below holds.

On the other hand, it follows from ∂2 = 0 and proof of Lemma 1.7 that all three are

mutually exclusive. So, we define vs depending on which of them holds.

1) X•,s �= 0. Set vs := xs.

2) Ys,• �= 0. Set vs := ys.
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3) Both X•,s and Ys,• are zero. One is free to take either xs or ys as vs.

We have constructed a basis of (Ck, �k) for each k.

The last step is to construct a basis c of (C, �). Take any s ∈ {1, . . . , dim C•}. Let v

be a constructed basis of (Cdeg s, �deg s). Define cs to be vdim Cs
deg s

(see Remark 2.2). Finally,

by construction c is a Barannikov basis. �

Remark 2.19. Three mentioned cases correspond respectively to the fact that s belongs

to
1) U,

2) L,

3) H.

2.6 Z-Enhanced complexes

In this subsection, we introduce a certain analogue of an enhanced complex, which is

itself a complex of free abelian groups.

Definition 2.20. Let C be a (chain) complex of free abelian groups

Cn+1 = 0 → Cn
∂n−→ . . .

∂1−→ C0 → 0 = C−1.

A Z-enhancement � on a complex C is a choice of the following two structures.

1) A filtration

0 = C0 ⊂ . . . ⊂ CrkC• = C

of C by subcomplexes s.t. for each s ∈ {1, . . . , rk C•} the quotient complex

Cs/Cs−1 is isomorphic to Z concentrated in one degree.

2) A generator of Cs/Cs−1 � Z.

A complex with a Z-enhancement will be called a Z-enhanced complex and denoted as

(C, �).

The following notions and statements go in exactly the same manner as in the

honest enhanced case.

1) The definition of an isomorphism between two Z-enhanced complexes.

2) The definition of a basis of a Z-enhanced complex (recall that by a basis, we

always mean a linearly ordered set of generators). Matrix of differential ∂k
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in any basis is obviously integral, yet it will play important role in the end

of this subsection.

3) Every Z-enhanced complex can be equipped with a basis.

4) Let c = (c1, . . . , crkC•) be a basis of a complex of free abelian groups s.t.

1) for each s, the span 〈c1, . . . , cs〉 is a subcomplex;

2) the induced filtration satisfies the condition 1) from Definition 2.1.

2) Then one can construct a Z-enhanced complex (C, �(c)).

It follows directly from the definitions that if (C, �) is a Z-enhanced complex

then C ⊗ F is an enhanced complex over F. We denote it by (C ⊗ F, �).

Remark 2.21. An oriented strong Morse function on a manifold naturally gives rise

to a Z-enhanced complex. However, classifying such complexes up to isomorphism is

a transcendentally hard problem. So, following [4], we proceed by tensoring the given

complex by F for various fields. See Subsection 3.5.

The rest of this subsection is devoted to the interplay between properties

of Z-enhanced complex (C, �) and those of enhanced complex (C ⊗ Q, �). So we set

F = Q for the time being. Similar in spirit results are stated in Subsection 2.7 without

proofs.

Recall that B-data may be viewed as a sequence of rook matrices {Rk}; see

Subsection 2.3 and Remark 2.11. Recall also that in Subsection 1.5, we associated a

subset T (R) of matrices with a rook matrix R.

Proposition 2.22. Let c be any basis of a Z-enhanced complex (C, �). Then the matrix

of differential ∂k in this basis belongs to the set T (Rk), where Rk is a rook matrix from

the B-data of (C ⊗ Q, �).

Proof. Let D be a matrix of differential ∂k in some basis c of (C, �). After choosing

another basis c′ the matrix D gets multiplied by a unitriangular matrices (over Z) from

the left and from the right. The statement now follows from Proposition 1.23. �

See Subsection 1.5 for an example, which may be treated as a complex concen-

trated in two degrees. By a degree of a pair, we will mean degree of its lower point.

A Barannikov pair is called short if there are no pairs of the same degree that lie

inside it. Formally, (s, t) is a short pair if there is no pair (s′, t′) of the same degree

s.t. s > s′ > t′ > t.
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Corollary 2.23. Let (C, �) be a Z-enhanced complex. Bruhat number of (C⊗Q, �) on any

short pair is integer.

Proof. Take any short pair of degree, say, k − 1. Let Rk be a rook matrix from the B-

data of (C ⊗ Q, �). Short pairs correspond precisely to those nonzero entries of Rk that

are not covered (in the terminology of Subsection 1.5). The statement now follows from

Proposition 2.22. �

The next statement is a mere combination of the previous two.

Corollary 2.24. Let (C, �) be Z-enhanced complex, and let (s, t) be a short Barannikov

pair of (C ⊗ Q, �). Let also c be any basis of (C, �). Then element cs appears in the

differential of ct with the coefficient equal to Bruhat number on a pair (s, t). In

particular, this coefficient does not depend on c.

2.7 Bruhat numbers over the rationals

In this subsection, we state several facts about interplay between Z-enhanced complex

(C, �) and enhanced complex (C ⊗ Q, �). The proofs will be given elsewhere.

For an abelian group G, we denote by #G its order (provided that G is finite) and

by Tors G its torsion subgroup.

Proposition 2.25. Let (C, �) be a Z-enhanced complex. Let also s and t (s > t, both from

{1, . . . , rk C•}) be a Barannikov pair of enhanced complex (C ⊗ Q, �) with Bruhat number

λ ∈ Q∗. One then has

± λ = # TorsH•(Cs, Ct−1)

# TorsH•(Cs−1, Ct)
= # TorsHdeg t(Cs, Ct−1)

# TorsHdeg t(Cs−1, Ct)
.

Section 4 will interpret Bruhat numbers as a certain kind of Reidemeister

torsion. From this viewpoint, the given formula is of type “torsion=torsion”. For its

close relative, see [42, Theorem 4.7], proven in weaker generality by Milnor [34]. See also

[12] for similar in spirit statement in symplectic topology. We stress out that we place

no acyclicity condition on a complex C.

Proposition 2.26. Let (C, �) be a Z-enhanced complex. Then the following are equiva-

lent:

1) TorsH•(Cs, Ct) = 0 for all s > t (both from {1, . . . , rk C•});
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2) all the Bruhat numbers of (C ⊗ Q, �) equal to ±1;

3) the Z-enhanced complex (C, �) is isomorphic (in the sense of item 1) in the

list from Subsection 2.6) to the direct sum of complexes of two forms:

1) 0 → Z → 0 and

2) 0 → Z
∼−→ Z → 0.

2.8 Taking B-data commutes with taking sub- and quotient complexes

Given an enhanced complex (C, �) and two integers 0 � l � m � dim C•, consider a

quotient complex Cm/Cl; it inherits an enhancement. The goal of this subsection is to

provide a recipe on how to express B-data of this complex in terms of the initial one. To

this aim we, first, describe this recipe and, second, prove that it is correct.

Let us fix the notations first. The aforementioned enhanced complex will be

denoted as (C|ml , �|ml ). Let (U, L, H, b, λ) be a B-data associated with (C, �). Given l and m,

we will now define another B-data (U ′, L′, H ′, b′, λ′).
Set U ′ := {s ∈ U | l < s � m, b(s) > l} − l (by convention, subtracting an integer

l from a subset of integers yields another subset formed by differences with l of each

element individually), L′ := {s ∈ L | l < s � m, b−1(s) � m}− l, H ′ := {1, . . . , m− l}\ (U ′ �L′).
Define the grading on U ′ via its injection into U. Proceed similarly for L′ and H ′. For

s ∈ U ′, define

1) b′(s) := b(s + l) − l,

2) λ′(s) := λ(s + l).

Proposition 2.27. Let (C, �) be an enhanced complex and (U, L, H, b, λ) be its B-data.

For a given 0 � l � m � dim C•, the B-data of (C|ml , �|ml ) coincides with the data

(U ′, L′, H ′, b′, λ′) constructed above.

Proof. Take Barannikov basis of (C, �) that exists by Theorem 2.17. Its elements with

indices from l + 1 to m, when mapped to (C|ml , �|ml ), again form a Barannikov basis. The

statement follows. �

Remark 2.28. Informally, the B-data of (C|ml , �|ml ) is obtained from that of (C, �) by the

simplest procedure possible: one has to cut it from below and above at the given levels

l and m.

Remark 2.29. Although usage of Theorem 2.17 makes the proof shorter, it is still

possible to prove the above statement directly from the definitions.
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2.9 Torsion of a chain complex

In this subsection, we recall Milnor’s [34] definition of torsion of a based chain complex,

closely following [42].

Let v = (v1, . . . , vdim V) and v′ = (v′
1, . . . , v′

dim V) be two bases of a vector space V.

Denote by [v′/v] ∈ F∗ the determinant of a transition matrix from v to v′. We call two

bases v and v′ equivalent if [v′/v] = 1. Let us now be given an exact triple of vector

spaces 0 → U
ι−→ V

π−→ W → 0 along with bases u and w of U and W, respectively.

Construct a basis uw of V as follows. For a vector wi ∈ W, set π−1(wi) ∈ V to be any

lift w.r.t. π . Now set uw := (ι(u1), . . . , ι(udim U), π−1(w1), . . . , π−1(wdim W)). Equivalence

class of uw is independent of chosen lifts of wis.

Recall that for a chain complex (C, ∂), one defines boundaries Bk to be Im ∂k+1

and cycles Zk to be Ker ∂k. One then has two exact triples:

0 → Bk → Zk → Hk → 0, (1)

0 → Zk → Ck
∂k−→ Bk−1 → 0. (2)

Let us now be given bases ck of Ck and hk of Hk (for all admissible k). Choose

any basis bk of Bk. Construct, first, a basis bkhk of Zk via triple (1), and, second, a basis

bkhkbk−1 of Ck via triple (2). Define the torsion of C to be

τ(C) :=
dimC∏
k=0

[bkhkbk−1/ck](−1)k+1 ∈ F∗.

It is straightforward to show that τ(C) depends only on (C, ∂), equivalence class of ck

and that of hk (see [42]).

Remark 2.30. If one replaces basis ck with c′
k for some particular k then the torsion

gets multiplied by [c′
k/ck](−1)k+1

. The same goes for hk.

The rest of this subsection is devoted to the definition of torsion in terms of

determinant lines. It is only needed in Subsection 4.4

First, a couple of definitions from linear algebra. For a nonzero vector space V,

define its determinant line as det V := �dim VV; the determinant line of a zero vector

space is defined to be F. For an exact triple of vector spaces 0 → U → V → W → 0,

one can show the existence of a canonical isomorphism det V � det U ⊗ det W. A basis



OUP UNCORRECTED PROOF – FIRST PROOF, 18/11/2022, SPi

Enhanced Bruhat Decomposition and Morse Theory 31

v = (v1, . . . , vdim V) of V gives rise to a nonzero vector v1 ∧ . . . ∧ vdim ∈ det V, which we

denote by the same letter v, abusing the notation. Note that now the expression [v′/v]

can be viewed as a determinant of a transition matrix between two bases of det V; this

agrees with the definition given above.

Now, for a chain complex (C, ∂), define its determinant line as

det C :=
dimC⊗
k=0

det C(−1)k+1

k ,

where by C−1
k , we mean the dual vector space C∗

k. One similarly defines the determinant

line detH∗(C) of homology by treating homology as a complex with trivial differential.

By playing with exact triples (1) and (2), one can show the existence of a canonical

isomorphism ξ : det C � detH∗(C).

We will now utilize the bases ck of Ck and hk of Hk. By taking dual basis when

necessary, we obtain bases (i.e., nonzero vectors) of det C(−1)k+1

k for each k. Consequently,

we get a basis c of det C. Similarly, we get a basis h of detH∗(C). One can show that

τ(C) = [h/ξ(c)].

2.10 Torsion of an enhanced complex

In this subsection, we define and study torsion of an enhanced complex. In particular,

we calculate it in terms of B-data.

We continue using notations introduced in Subsection 2.9. Any two bases of a

given enhanced vector space (V, �) are equivalent. Analogously, for any two bases c and

c′ of an enhanced complex (C, �), one has equivalence between ck and c′
k, where by ck

we mean (here and further) an ordered subset of c corresponding to a basis of (Ck, �k)

(see Remark 2.2).

Let us now assemble all the pieces together. Let an enhanced complex (C, �) be

given. Choose any basis c of (C, �). Recall that by Subsection 2.2, we have an enhanced

vector space (Hk(C), �Hk
) for each k. Choose any basis hk of (Hk(C), �Hk

). Define the

torsion of an enhanced complex (C, �) to be the torsion of C w.r.t. bases ck and hk; denote

it by τ(C, �). This number is well defined since equivalence classes of both ck and hk are

well defined.

Remark 2.31. We stress out that τ(C, �) depends only on the enhancement on H•(C).

Bruhat numbers, however, depend on enhancement on H•(Cs) for various s.
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Remark 2.32. Some kind of interplay between filtration and torsion also appears in

[23, Appendix A].

Construction 2.33. Let (N, U, L, H, b) be a part of a B-data. We will now construct a

permutation σ of N elements.

�Note that b does not have anything to do with bi from the definition of torsion.

For a fixed k, the set U determines a subset of a set {1, . . . , #{s ∈ {1, . . . , N} | deg s = k}},
call it Uk. Define Lk and Hk similarly; the map b determines a bijection bk : Uk → Lk−1.

We will now define a permutation σk on #{s ∈ {1, . . . , N} | deg s = k} elements by writing

integers in a row. First, write down elements of Lk in increasing order. Second, write

down elements of Hk also in increasing order. Third, write down elements of Uk, but

this time in the order of increasing of bk(s), for s ∈ Uk.

For two permutations σ and π of length l and m, their (direct) sum σ + π

is defined as a permutation of l + m elements acting as σ on the 1st l elements

and as π on the last m elements. We define σ to be the sum σ0 + . . . + σn, where

n = maxs∈{1,...,N} deg s. �
The sign of a permutation σ will be denoted as (−1)σ .

Proposition 2.34. Let (C, �) be an enhanced complex and (U, λ) be a part of its B-data.

Let also σ be the permutation from Construction 2.33. We then have

τ(C, �) = (−1)σ
∏
s∈U

λ(s)(−1)deg s
.

Proof. Since any two bases of an enhanced vector space are equivalent, we may

calculate τ(C, �) in some Barannikov basis c, which exists by Theorem 2.17. We continue

using notations introduced in the beginning of this subsection. Choose basis hk to be

cs for all s ∈ H. Similarly, choose basis bk to be cs for all s ∈ L (the linear order on

both bases is induced from that on c). These choices yield a right-hand side by the very

definitions. �

Remark 2.35. In Remark 1.8, we associated a number d to any map of enhanced

vector spaces. It is straightforward to show that τ(C, �) is equal (up to a sign)

to the alternating product of such numbers for all maps ∂k : Ck → Ck−1 (see

Remark 2.2). Here, the word “alternating” means that one has take d−1 instead of d if k

is odd.
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The rest of this subsection is devoted to discussing torsion of an enhanced

complex in terms of determinant lines. It is only needed in Subsection 4.4. We continue

using notations introduced in Subsection 2.9.

Choose any basis of enhanced complex (C, �), and consider the corresponding

element c ∈ det C. Obviously, c does not depend on the chosen basis. Next, by

Subsection 2.2, we have an enhanced vector space (Hk(C), �Hk
) for each k. Choose any

basis of (Hk(C), �Hk
) for each k, and consider the corresponding element h� ∈ detH∗(C).

Obviously, h� does not depend on the chosen bases (but it does depend on the

enhancement � on C). The next proposition now follows straightforwardly from the

discussion in Subsection 2.9.

Proposition 2.36. Let (C, �) be an enhanced complex. Let also c ∈ det C and h� ∈
detH∗(C) be two elements constructed from it as above. Then,

ξ(c) = h�

τ (C, �)
,

where ξ : det C � detH∗(C) is a canonical isomorphism.

3 Morse Theory

In the 1st part of this section, we introduce, after necessary preparations, a construc-

tion that associates an enhanced complex over F with a strong Morse function (see

Subsection 3.5). This justifies a thorough study of enhanced complexes in the previous

section. We then proceed to discuss various properties of Bruhat numbers of a given

strong Morse function. The majority of results translates readily to the setting of

discrete Morse theory in a sense of Forman [18]; as in the smooth case, the strongness

assumption on a function is crucial and must be satisfied.

3.1 Setup

In this subsection, we recall basic notions of Morse theory and fix appropriate

notations, setting the stage for our results.

Let M be a smooth closed manifold fixed once and for all throughout this

section. Recall that a smooth function f : M → R is called Morse if all its critical points

are nondegenerate. A smooth function is called strong if all its critical points have

different critical values. Fix a strong Morse function f on M once and for all throughout

this section. For a ∈ R, the subspace Ma := {x ∈ M | f (x) � a} is called a sublevel set.
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Morse’s idea was to track how the homotopy type of Ma changes while a grows

from −∞ to +∞. This is performed by investigating the critical points of f , the set of

which is denoted by Cr(f ) ⊂ M. Since f is strong those are in bijection with critical

values of f (this set is finite because of the compactness of M). Keeping this bijection

in mind, we will freely switch between points and values without mentioning this

explicitly. The set Cr(f ) is Z�0-graded by index of a critical point, the degree of c ∈ Cr(f )

is denoted by deg c. Though itis more natural to say “index of critical point”, we will

mostly say “degree” in order to be consistent with Section 2. The set of all critical points

of degree k is denoted by Crk(f ). Note that the set Cr(f ) is also naturally linearly ordered;

we denote by cs ∈ Cr(f ) (for s ∈ {1, . . . , # Cr(f )}) its sth element w.r.t. this order. By ε, we

will mean a sufficiently small positive real number.

It follows from foundational results of Morse theory, which we recall in

Subsection 3.4 that for c ∈ Cr(f ), one has Hdeg c(M
f (c)+ε, Mf (c)−ε;Z) � Z. We say that

a critical point is oriented if the generator of this free abelian group of rank one is

chosen. A strong Morse function is called oriented if all its critical points are oriented

(see Subsection 3.3 for a discussion).

It will be convenient to fix the set of real numbers rs (for s ∈ {0, . . . , # Cr(f )}) s.t.

r0 < f (c1) < r1 < . . . < f (c# Cr(f )) < r# Cr(f ).

Such numbers are called regular values.

Fix a field F once and for all. All the chain complexes and homologies are

assumed to be over F unless stated otherwise. If the group of coefficients is given

explicitly, it goes after a semicolon, for example, H2(M;Z).

3.2 B-Data associated with a strong Morse function

In this subsection, we present and discuss the following construction.

Construction 3.1. Let f be an oriented strong Morse function on M and F be a field.

We will now construct a B-data.

�Since Cr(f ) is linearly ordered, it is in natural bijection with {1, . . . , N}; define

the grading on the latter by that on the former. The manifold M is filtered, as a

topological space, by subspaces

∅ = Mr0 ⊂ Mr1 ⊂ . . . ⊂ MrN = M.
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Moreover, for each s ∈ {1, . . . , N}, the space Mrs is homotopy equivalent to Mrs−1

with a single cell of dimension deg s attached. Since f is oriented, the one-

dimensional vector space Hdeg s(M
rs , Mrs−1) � Hdeg s(M

rs , Mrs−1 ;Z) ⊗ F � F has a

preferred basis o ⊗ 1, where o is a generator of Hdeg s(M
rs , Mrs−1 ;Z) � Z. Therefore,

the complex of singular chains on M (with coefficients in F) satisfies conditions

of Construction 2.6 and we are able to extract a B-data as in Subsection 2.4 (see

Remark 2.10). �
In particular, we have just constructed enhancement on a homology vector space

H•(M) as well as on H•(Mrs) for all s. We call the image of λ “Bruhat numbers” of

oriented Morse function; the same goes for the Barannikov pairs (or, briefly, pairs).

Informally, Construction 3.1 decomposes some critical points (equivalently, values) of f

into Barannikov pairs. Moreover, it associates a Bruhat number (i.e., an element of F∗)

with each pair (see Subsection 2.4). Points cs ∈ Cr(f ) s.t. s ∈ H are called homological

critical points. The number of homological points of index k equals dimHk(M) (see

Subsection 2.4). Analogously, points from U (resp. L) are called upper (resp. lower).

We stress out that we have not yet considered any finite-dimensional approxima-

tion of filtered complex of singular chains on M; we will do so in Subsections 3.4

and 3.5.

Remark 3.2. Changing the orientation of some critical point cs ∈ Cr(f ) alters the

B-data as follows. First, the decomposition into pairs stays the same. Second, if cs is

homological, then the whole B-data stays the same. Otherwise, if cs belongs to some

pair, then the Bruhat number on this pair gets multiplied by −1. Therefore, canonically

we can associate Bruhat numbers to pairs only up to a sign.

Remark 3.3. We will now present an alternative way to associate B-data with an

oriented strong Morse function (and a field). This way is quick and does not make use of

any sort of enhancement whatsoever. Let x and y be two critical points s.t. f (x) > f (y)

and ind x − 1 = ind y = k. Consider the fundamental class of the attaching sphere

for x, it lives in Hk(Mf (x)−ε). Let X be its image under the natural map Hk(Mf (x)−ε) →
Hk(Mf (x)−ε, Mf (y)−ε). Consider now an attaching disk for y. It has a relative fundamental

class, which lives in Hk(Mf (y)+ε, Mf (y)−ε). Let Y be its image under the natural map

Hk(Mf (y)+ε, Mf (y)−ε) → Hk(Mf (x)−ε, Mf (y)−ε) induced by inclusion. Critical points x and y

form a Barannikov pair with Bruhat number λ if and only if X = λY �= 0. An illustration

for k = 1 is given in Figure 2.

This is a reformulation of Remark 2.12 in the geometric setup.
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Fig. 2. To Remark 3.3. Classes X and Y are drawn in bold. Dotted dome depicts an attaching 2-disk

for x.

A close idea of construction of Bruhat numbers over Q appeared independently

in [30]; in particular, considerations from Remark 3.3 are present there.

Remark 3.4. The original Barannikov’s construction [4] produces the same set of pairs.

To see this, one should combine Remark 2.18 and results from Subsection 3.5. See also

[16] for a topological data analysis perspective.

We conclude this subsection by several remarks. The construction of homologi-

cal critical points goes back to Lyusternik and Shnirelman. Note that this construction

implies weak Morse inequalities: # Crk(f ) � dimHk(M;F) for any field F. See also [44]

for the innovative fruitful applications of similar ideas in symplectic topology.

Remark 2.14 translates to topological setting as follows. The condition for two

critical values a and b to form a Barannikov pair is equivalent to

dimH•(Ma−ε, Mb+ε) = dimH•(Ma+ε, Mb−ε) = dimH•(Ma−ε, Mb−ε) − 1

= dimH•(Ma+ε, Mb+ε) − 1.

See [13] and also [31].
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3.3 A digression on oriented Morse functions

In this subsection, we give an alternative definition of an oriented Morse function (see

Subsection 3.1).

Let Q be a quadratic form on a vector space V over R. Consider a vector subspace

L ⊂ V of maximal dimension (this dimension is called negative inertia index of Q) such

that the restriction Q|L is negative-definite. One can show that the space {L} of all such

vector subspaces is contractible. Therefore, since any covering of a contractible space

is trivial, the space of all such oriented subspaces has two contractible components.

Note that a particular choice of a component determines an orientation of L (as a vector

space).

Now, given a Morse function f and any its critical point p, one may consider

a vector space TpM and a Hessian Hessp(f ) on it. Function f is called oriented if, for

every critical point p, one of the two mentioned components is chosen. One may check

that there is a canonical correspondence between this definition and the one given in

Subsection 3.1.

3.4 CW-Complex associated with a strong Morse function

In this subsection, we briefly recall the classical results from Morse theory, following

[33], in order to fix the notations needed further in Subsection 3.5.

Theorem 3.5. Let f be an oriented strong Morse function on a closed manifold M.

Then there exists a CW-complex K s.t. the following holds:

1) M is simple homotopy equivalent to K;

2) cells of K are in bijection with critical points of f . Moreover, dimension of a

cell equals the index of a critical point.

Remark 3.6. The CW-complex K need not be unique (see Construction 3.12), but its

simple homotopy type obviously is. Roughly speaking, the purpose of Subsection 3.5

is to encode the information that can be extracted uniquely from f in algebraic terms.

Note that Morse theory originated before CW-complexes were invented; see [36].

Remark 3.7. Orientations of cells in K may be naturally chosen by invoking orientation

of f ; see Construction 3.9.

Remark 3.8. The fact that the mentioned homotopy equivalence (as well as all the

others in this subsection) is actually simple is folklore; see [38, Theorem 3.8] for a proof.
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We will need this fact in Section 4 for statements involving (Reidemeister) torsion. We

will denote general homotopy equivalence by � and, whenever we want to emphasize

that it is simple, we write
s�.

The key ingredient in the proof of Theorem 3.5 is the following construction (we

continue using notations introduced in Subsection 3.1). (For a topological space X, by

X ∪ϕ ek, we mean X with a k-cell attached along ϕ.)

Construction 3.9. For s ∈ {1, . . . , # Cr(f )}, let rs and rs−1 be two corresponding regular

values of f , and let k = deg s. We will now recall the construction of a continuous map

ϕ : Sk−1 → Mrs−1 s.t. Mrs
s� Mrs−1 ∪ϕ ek. NB: this construction involves some choices.

�We will only sketch the argument; for details, see [33]. The space Mrs−1 is a

smooth manifold with boundary f −1(rs−1). Choose an antigradient-like vector field on

M. Its flow produces a smooth map Sk−1 → f −1(rs−1) ⊂ Mrs−1 , where the source is

viewed as a small sphere around critical point cs. For a different gradient-like vector

field, the resulting map will differ by an isotopy. This way, one gets an embedding

Mrs−1 ∪ϕ ek ↪→ Mrs . It is then shown to be a simple homotopy equivalence.

Note that since the function f is oriented, the sphere Sk−1 is oriented as well.

Thus, the cell ek is oriented too. �
The next proposition is obvious.

Proposition 3.10. Although the map ϕ from Construction 3.9 depends on some choices

made along the way, its homotopy class is uniquely defined.

Remark 3.11. We stress out that it is not claimed that the homotopy class of a map ϕ

satisfying the property that Mrs
s� Mrs−1 ∪ϕ ek is unique. This assertion is only true for

the map ϕ constructed by the recipe given above.

In order to get to Theorem 3.5, one then proceeds with the following construc-

tion.

Construction 3.12. Let s, rs, rs−1 and k be as in Construction 3.9. Suppose that Mrs−1
s�

K, where K is some CW-complex. We will now recall the construction of a cellular map

ψ : Sk−1 → K s.t. Mrs
s� K ∪ψ ek (note that r.h.s. is again a CW-complex). NB: this

construction involves some choices.

�Apply cellular approximation theorem to the map ϕ from Construction 3.9. �
Again, the next proposition is obvious.
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Proposition 3.13. Although the map ψ from Construction 3.12 depends on some

choices made along the way, its homotopy class is uniquely defined.

3.5 Enhanced complex associated with a strong Morse function

In this subsection, we discuss the following two statements.

Construction 3.14. Let f be an oriented strong Morse function on M and F be a

field. We will now construct an enhanced complex (C, �). NB: this construction involves

some choices.

Proposition 3.15. Although Construction 3.14 depends on some choices made along

the way, the isomorphism class of an enhanced complex (C, �) is uniquely defined.

We will first describe Construction 3.14.

� Take any CW-complex K constructed by the virtue of Theorem 3.5. Its cells are

naturally linearly ordered by the order of critical values of f . Moreover, the 1st s cells

form a CW-subcomplex, simple homotopy equivalent to Mrs . Consider an algebraic

complex C′ (of free abelian groups) associated with K. It has a preferred (ordered)

basis c given by cells (mind that they carry natural orientation since f is oriented; see

Construction 3.9). Thus, one has a Z-enhanced complex (C′, �(c)).

The desired enhanced complex is now taken to be (C′ ⊗ F, �(c)) (see

Subsections 2.4 and 2.6). �

Remark 3.16. Construction 3.14 produces not only an enhanced complex but also its

basis. The matrix of differential, however, does depend on the choices made (practically,

a cellular approximation from Construction 3.12). From this viewpoint, Proposition 3.15

says that for any two choices, the corresponding matrices of differential are conjugate

by an unitriangular (i.e., triangular with ones on the diagonal) base change. This can be

pushed to the full proof; see Remark 3.18.

Proof of Proposition 3.15. By the classificational Theorem 2.17, it suffices to prove

that B-data associated with (C, �) is uniquely defined (see Remark 2.18). We will do that

by identifying it with a B-data constructed from f in Subsection 3.2. We denote the

complex of singular chains (over F) mentioned there by Csing and by Cs
sing we mean the

subcomplex corresponding to subspace Mrs . Recall that since f is oriented the generator

of Hdeg s(Cs
sing, Cs−1

sing) � F is chosen (see Subsection 3.2).

First of all, the two gradings on the set {1, . . . , # Cr(f )} coincide since they

are defined in terms of indices of critical points of f . Next, for each s homology
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vector spaces, Hk(Cs) and Hk(Cs
sing) are naturally isomorphic (for all k) since both of

them compute Hk(Mrs). Moreover, their filtrations are the same (w.r.t. the mentioned

isomorphism) since they are defined topologically in terms of inclusions Mrt ↪→ Mrs for

various t. Finally, the chosen generators in Hdeg s(Cs
sing, Cs−1

sing) and in Hdeg s(Cs, Cs−1) are

the same for the same reason: they are defined topologically as a certain element in

Hdeg s(M
rs , Mrs−1). This implies that enhancements on Hk(Cs) and Hk(Cs

sing) are the same.

The statement now follows, since B-data was extracted in Subsection 2.4 in terms of

enhancements on Hk(Cs) for various k and s. �

Remark 3.17. It follows from Subsection 3.4 that B-data associated (C, �) coincides

with the one constructed in Subsection 3.2. It follows from Remark 1.9 that it is enough

to consider only fields Q and Fp (note that this is not the case in Subsections 4.2

and 4.3).

Remark 3.18. It is possible to prove Proposition 3.15 somewhat more explicitly

without appealing to Theorem 2.17. We will now sketch the argument. Consider

two approximations ψ1 and ψ2 from Construction 3.12. Since they are homotopic,

corresponding algebraic complexes associated with CW-complexes differ by a change

of basis. This change of basis is unitriangular by construction. Arguing inductively on

the number of cells, one obtains a unitriangular change of basis that turns one chain

complex into another. This means precisely that two corresponding enhanced complexes

are isomorphic.

Remark 3.19. B-data stays unaltered if one replaces f with ϕ ◦ f ◦ψ , where ψ : M → M

is any diffeomorphism and ϕ : R → R is a diffeomorphism preserving an orientation.

Consequently, B-data stays the same under the continuous deformation of f in the class

of oriented strong Morse functions on M (see Subsection 5.1).

3.6 Invariant of a map between two manifolds equipped with Morse functions

In this subsection, we discuss the following construction.

Construction 3.20. Let M1 and M2 be two manifolds equipped with oriented strong

Morse functions f1 and f2, respectively. Let also l : M1 → M2 be a continuous map. We

will now construct a rook matrix Rk of size dimHk(M2) × dimHk(M1) (for any k).

�By Subsection 3.2, the function f1 (resp. f2) gives rise to an enhancement on a

homology vector space Hk(M1) (resp. Hk(M2)). Consider the induced map lk : Hk(M1) →
Hk(M2) and plug it into Lemma 1.7 to get the desired rook matrix. �
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Without choosing a particular orientation of strong Morse functions the nonzero

entries of Rk are defined only up to a sign. Note that we did not make use of any

complexes whatsoever.

3.7 Morse complex

In this subsection, we describe how Morse complex fits into our setting of enhanced

complexes. In particular, we give a certain description of a matrix of Morse differential

(w.r.t. any Riemannian metric) in terms of B-data.

Let g be a generic Riemannian metric on M and f be an oriented strong Morse

function. Then one can define a Morse complex M(f , g) whose integral homology is

naturally isomorphic to that of M. Itis a complex of free abelian groups, formally

generated by critical points. In this basis, the differential (mapping k-chains to (k − 1)-

chains) becomes a matrix (∂i,j). The matrix element ∂i,j equals the number of antigradient

flowlines from jth critical point of index k to ith critical point of index k−1, counted with

appropriate signs. For brevity, we say that ith critical point “appears in the differential”

of jth critical point with coefficient ∂i,j.

Remark 3.21. As we saw in Subsection 3.4, in order to construct a complex generated

by critical points out of a function f , one has to make a choice of cellular approximation.

On the other hand, in order to construct a Morse complex, one has to choose a

Riemannian metric. These two choices are actually very close to each other in the

following sense.

Given a function f , one can construct a handle decomposition s.t. each handle of

index k corresponds to some critical point of index k. The metric g specifies the way to

modify this decomposition, such that each handle of index k is attached to the union of

handles of smaller index. This, in turn, allows one define the handle complex, which is

precisely the Morse complex. On the other hand, one can collapse handles to cells and

obtain a CW-complex.

In our terms, one has obtained a Z-enhanced complex (M(f , g), �(c)), where

c is a basis consisting of critical points (see Subsection 2.6). It follows directly that

B-data of (M(f , g) ⊗ F, �(c)) coincides with that of f constructed in Subsection 3.2.

Therefore, by Theorem 2.17, enhanced complex (M(f , g) ⊗ F, �(c)) is isomorphic to

(C, �) from Subsection 3.5. So, practically, one may use any option to extract B-data

from a given f : either a complex of singular chains, or a CW-complex or a Morse

complex.
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Remark 3.22. Analogously to Remark 3.16, the matrix of Morse differential does

depend on Riemannian metric, while the isomorphism class of enhanced complex

(M(f , g) ⊗ F, �(c)) does not. The same goes for Z-enhanced complex (M(f , g), �(c)).

For a B-data associated with f , let Rk be the corresponding rook matrix of size

Crk−1(f ) × Crk(f ) (see Subsection 2.3). In other words, nonzero elements of Rk equal to

the Bruhat numbers on Barannikov pairs of points of degrees k and k − 1. The next

theorem follows readily from Proposition 2.22.

Theorem 3.23. Let f be an oriented strong Morse function on a manifold M. Let also

Rk be the rook matrix associated with f over Q (for k ∈ {1, . . . , dim M}). Then the matrix

of Morse differential ∂k w.r.t. any Riemannian metric g belongs to the set T (Rk).

For example, suppose that f has a B-data as depicted in Figure 1 and k = 2. Then

the corresponding rook matrix and general form of a matrix of a 2nd Morse differential

P are

R2 =

⎛
⎜⎜⎜⎜⎝

0 0 4

3 0 0

0 0 0

0 2 0

⎞
⎟⎟⎟⎟⎠ , P =

⎛
⎜⎜⎜⎜⎝

∗ ∗ ∗
3 ∗ ∗
0 ∗ ∗
0 2 ∗

⎞
⎟⎟⎟⎟⎠ .

Recall that weak Morse inequalities state that # Crk(f ) � dimHk(M;F) (for any

field F). It is easy to see that if # Cr(f ) = ∑
k dimHk(M;Q), then the Morse differential

(w.r.t. any metric) must be identically zero. The next corollary is applicable when this is

not the case.

Corollary 0.1. Let f be an oriented strong Morse function on M. Suppose that # Cr(f ) >∑
k dimHk(M;Q). Then one can find two critical points x and y of neighboring indices

s.t. the number of antigradient flowlines from x to y, counted with appropriate signs, is

the same for any generic Riemannian metric. This number is nonzero and equals some

Bruhat number of f over Q.

Proof. By assumption, there is at least one Barannikov pair of f over Q. Take any short

one. The statement now follows from Corollary 2.24. �

Remark 3.24. The 1st part of Corollary 0.1 can be proven without appealing to any

Barannikov pairs and Bruhat numbers whatsoever. Indeed, if one unwraps all the
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Fig. 3.

definitions and constructions involved, they arrive at a proof that is based on techniques

like exact sequences of a pair.

3.8 A few examples and properties

In this subsection, we quickly give several introductory examples and properties of

Bruhat numbers.

1. Let f be a function on RPn that descends from the function x2
1 +2x2

2 + . . .+ (n+
1)x2

n+1 defined on a unit sphere Sn ⊂ Rn+1. It has (n + 1) critical points of all possible

indices from 0 to n (ordered by increasing of index). If charF = 2, then all of them are

homological. Otherwise, (2k)th and (2k−1)th critical points form a Barannikov pair with

Bruhat number ±2 (for any k ∈ {1, . . . , [n/2]}, where brackets denote the integral part).

This is seen readily from any description of B-data, given either in Subsection 3.2 or in

Subsection 3.5. See Figure 3 for an example for n = 6.

2. The proof of the next statement uses one-parameter Morse theory and

therefore postponed until Subsection 5.2. See also [30] for other results concerning

realizabilty of Bruhat numbers.

Proposition 3.25. Let F be either Q or Fp and λ ∈ F∗ be any nonzero number. Let also

M be any closed manifold s.t. dim M � 4. Then one can find an oriented strong Morse

function f on M that has λ as one of its Bruhat numbers.
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In particular, Bruhat number over F = Q may well be noninteger.

3. Recall that a Barannikov pair is called short if there are no pairs of the

same degree lying inside it; see Subsection 2.6. The next statement follows directly from

Corollary 2.23.

Proposition 3.26. Over F = Q, Bruhat number on any short pair is integer.

In particular, if there are Barannikov pairs over Q at all, at least one of them

must carry integer Bruhat number.

4. The 1st statement from Subsection 2.7 translates straightforwardly to the

topological setting via Subsection 3.5. In this setting, it expresses Bruhat numbers of

oriented strong Morse function over Q in terms of torsion in (relative) integral homology

of various sublevel sets.

3.9 Poincare duality

In this subsection, prove the following proposition.

Proposition 3.27. Let M be closed and orientable and f be an oriented strong Morse

function on it. Let also F be a field. Then B-data for −f is B-data for f turned upside

down. Bruhat numbers on pairs remain the same.

We need to first make some comments on the formulation. Since M is orientable

and f is oriented, the strong Morse function −f is also naturally oriented. Each critical

point of f of index k is also a critical point of −f of index n − k, where n = dim M.

By turning the B-data upside down, we mean, formally speaking, precomposing all its

ingredients with the automorphism of the set {1, . . . , # Cr(f )} given by s �→ # Cr(f ) − s.

Under this operation, upper and lower critical points swap their roles (while the pairing

remains the same). Note that the classical Poincare duality over the field dimHk(M;F) =
dimHn−k(M;F) follows immediately from Proposition 3.27. Indeed, homological points

remain homological after the involution, but their indices change to complementary

ones. The proof, however, goes along the classical lines.

Proof of Proposition 3.27. Choose a generic Riemannian metric g on M. Matrix

of differential in a Morse complex M(−f , g) is obtained from that in M(f , g) by

transposing. Therefore, the same goes for the matrices of differential in the two

corresponding based enhanced complexes. Consider now any unitriangular matrix Pk
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that maps the basis c (of critical points) of the 1st complex to a Barannikov basis. If

follows from the formula (Pk−1DkPk)T = PT
k DT

k PT
k−1 that transposed matrix PT

k (which

is unitriangular w.r.t. reversed order) maps the initial basis of the 2nd complex to the

Barannikov one. Moreover, the matrices of differentials after these two changes of bases

still differ by taking the transpose. The statement follows. �

3.10 On pairs of extremal degrees

Recall that by a degree of a pair we mean degree of its lower point. In this subsection,

we prove the following proposition.

Proposition 3.28. Let f be a strong Morse function on M and F be a field.

1) The set of pairs of degree 0 is independent of F. Bruhat number on any such

pair is ±1.

2) Suppose that M is orientable. Then the set of pairs of degree dim M − 1 is

again independent of F. Bruhat number on any such pair is again ±1.

Proof. Fix any s ∈ {1, . . . , # Cr(f )} s.t. cs ∈ U (i.e., cs is an upper point in a pair) and

deg s = 1. We need to prove that λ(s) = ±1. Recall that {rs} is a set of regular values

of f , and let d = dimH0(Mrs−1). Let also i1 < . . . < id be the ordered sequence of

numbers that comprise the set {t ∈ Hs−1| deg t = 0}, where Hs−1 is the set H from

the B-data for the function f |Mrs−1 . In other words, (ci1 , . . . , cid) is the ordered set of

homological critical points of degree zero for f |Mrs−1 . It follows from Construction 2.6

that the sequence ([ci1 ], . . . , [cid ]) is a basis (up to signs, which are irrelevant to the

statement) of an enhanced vector space H0(Mrs−1) (square brackets denote taking the

homology class).

On the other hand, the connecting homomorphism δ : H1(Mrs , Mrs−1) → H0(Mrs−1)

maps the chosen generator, represented by an oriented segment, to [a]− [b], where a and

b are the endpoints. The 1st statement now follows. The 2nd one is obtained from it via

the Poincare duality (Proposition 3.27). �

Remark 3.29. Orientability assumption in the 2nd statement of Proposition 3.28 is

crucial. Indeed, the conclusion fails already for M = RP2 and F = Q; see Subsection 3.8.

Remark 3.30. Since the set of pairs from Proposition 3.28 is independent of the field

F, one is tempted to find an alternative definition that does not involve F. Indeed, it can

be proven that the mentioned set may be recovered from the Kronrod–Reeb [1, 39] graph
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of f (see, e.g., [5]). Moreover, the Kronrod–Reeb graph “sees more” than the set of pairs of

extremal indices in a sense that one can find two functions on the same manifold with

different Kronrod–Reeb graphs but identical mentioned sets of pairs. The reason is,

roughly, that B-data keeps track of filtration on homology induced by f , while Kronrod–

Reeb graph keeps track of a canonical basis in H0 (or Hdim M ) of the sublevel set.

4 Bruhat Numbers and the Theory of Torsions

As we saw in Proposition 3.25, any number may appear as a Bruhat number of some

function; in a sense, there is no control over the individual Bruhat number. However,

sometimes the alternating product of all these numbers turns out to be independent of

f . Thus, this product depends only on the manifold M. In the present section, we make

this statement precise (in Subsection 4.1) and provide a framework where the mentioned

product of Bruhat numbers equals the Reidemeister torsion of M (in Subsection 4.3).

4.1 Torsion of a Morse function

In this subsection, we set the stage for the further results.

Definition 4.1. Let f be an oriented strong Morse function on M and F be a field. Let

also σ be a permutation from Construction 2.33 (and (−1)σ its sign). The number

τ(f ,F) = (−1)σ
∏
s∈U

λ(s)(−1)deg s ∈ F∗

is called the torsion of f over F.

We refer to the r.h.s. as “alternating product” of all Bruhat numbers, in analogy

with alternating sum, which is used to define Euler characteristic. Actually, torsion is

very much similar to the Euler characteristic; see [35]. We will simply write τ when its

ingredients are understood. We will now link Definition 4.1 with the classical notion of

torsion (see a broad yet concise book [42] for an in-depth discussion).

By results from Subsection 3.4 starting from f , one can construct a (nonunique)

CW-complex X which is simple-homotopy equivalent to M. So, from the viewpoint of

torsion theory X and M are the same (see Subsection 4.2). Next, in Subsection 3.5, we

used X to construct a (unique up to isomorphism) enhanced complex (C, �). Further, in

Subsection 2.10, we studied the torsion (defined in a classical way) of any enhanced

complex. By the very definitions, it is a topological torsion of X (and, therefore, M) w.r.t.
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a certain basis in homology (see Remark 4.2). Finally, Proposition 2.34 identified the

torsion (defined in a classical way) with the formula from Definition 4.1.

Remark 4.2. Here is a more concise way of saying the same. Take enhancement on

a homology Hk(M) given by f . Take any basis of this enhancement. Any two such

bases differ by a unitriangular matrix. Therefore, they are equivalent (in the sense of

Subsection 2.9). Thus, the torsion of M w.r.t. any chosen basis of enhancement on Hk(M)

is the same. This is precisely τ .

Remark 4.3. In this section, we will actually be interested only in the number ±τ ∈
F∗/±1. So the reader may temporarily disregard the permutation σ and orientation of f .

The sign will be important later in Section 5.

Theorem 0.2. Let f be a strong Morse function on M and F be a field. Suppose that

Hk(M) = 0 for all 0 < k < dim M. Then the alternating product of all Bruhat numbers (as

an element from F∗/±1) is independent of f .

The proof requires bifurcation analysis and therefore postponed until

Subsection 5.5. For example, taking M to be RPn, one sees that τ(f ,Q) = ±2[n/2], where

brackets denote integral part. Indeed, one has to calculate such a τ for some particular

Morse function on RPn. They do so for a standard one from Subsection 3.8.

Remark 4.4. Since in Theorem 0.2 the number ±τ(f ,F) turns out to be independent

of f , one is tempted to give an alternative definition that does not involve f . We will

now sketch the construction. Recall that the torsion is defined whenever there is a

chosen basis in homology (or, at least, an equivalence class of such a basis). Usually,

in topology, there is no canonical choice of such a basis, so one studies torsion in the

setting where there is no homology at all. However, in H0(M) and Hdim M(M), there is an

obvious distinguished basis. The number ±τ(f ,F) is the torsion w.r.t. it.

Remark 4.5. We will now provide the formula for the number ±τ(f ,F) from

Theorem 0.2 in terms of homology of M over Z. For an integer l, denote by [l] its class in

F. For a finite group G, we denote its order by #G. The formula now reads

± τ(f ,F) = ±
dim M−1∏

k=1

[#Hk(M;Z)](−1)k+1
.
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So, as an invariant of a manifold ±τ(f ,F) is not very interesting; the whole point of

Theorem 0.2 is that this number does not depend on f . The proof of the formula will

appear elsewhere. For now, we will only provide sanity check. First, it follows from the

assumption of the theorem that Hk(M;Z) is finite (for 1 � k � dim M − 1), so the order

makes sense. Second, if F = Fp, then assumption implies that #Hk(M;Z) is not divisible

by p, so taking inverses on the r.h.s. makes sense.

As stated in Remark 4.4, the number ±τ(f ,F) can be interpreted as a certain kind

of torsion. In light of this interpretation, expressions similar to the r.h.s. of the above

formula appear in the works [8] and [7].

4.2 Reidemeister torsion: recollection

In this subsection, we briefly recall the notion of Reidemeister torsion (see [42] for

details).

For a topological space X, let π be its fundamental group, and let X̃ → X be

a universal covering. Choose a CW-decomposition of X, and denote the corresponding

algebraic complex of free abelian groups by C. Consider the lift of the CW-structure to

X̃. By the virtue of an action of π on its cells, one constructs a complex of free (right)

Z[π ]-modules C̃ (recall that Z[π ] is the integral group ring of π ). The rank of k-chains still

equals the number of k-cells in X. Moreover, one can choose a basis in C̃ by choosing any

lift of each cell. Therefore, each element of this basis is defined up to multiplication by

elements of π .

Let now ρ : π → GL1(F) = F∗ be a one-dimensional representation over F. This

map extends to the homomorphism of rings Z[π ] → F by linearity. Conversely, any such

homomorphism of rings arises from some representation since it is enough to define it

on generators of Z[π ]. By notation abuse, we denote this homomorphism by the same

letter ρ. Further, F acquires the structure of a left Z[π ]-module by the formula r · x =
ρ(r)x, where r ∈ Z[π ], x ∈ F. On the other hand, F is also a right module over itself.

Putting all this together, one now considers C̃ ⊗ρ F, which is a complex of vector spaces

over F. Moreover, this complex carries a basis, each element of which is defined up

to multiplication by elements of ρ(π) (which is a multiplicative subgroup of F∗). The

homology of C̃ ⊗ρ F is called ρ-twisted homology of X and denoted here by H∗(X; ρ). If

one is given an equivalence class of its basis (in a sense of Subsection 2.9), then they can

consider torsion τ(X, ρ) of the complex of twisted chains, which lives in F∗/ρ(±π). The

sign ambiguity is due to several things:

1) there is no canonical orientation of cells of X;
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2) there is also no canonical linear order on them;

3) there is no canonical CW-decomposition after all.

If twisted homology vanishes, τ(X, ρ) is called the Reidemeister torsion of X w.r.t. ρ. It is

known to be independent of CW-decomposition and to be stable under simple homotopy

equivalences. The theorem of Chapman [11] states that homeomorphism is a simple

homotopy equivalence.

Remark 4.6. Practically, passing from C̃ to C̃ ⊗ρ F means the following. Write the

differential of C̃ in some basis (e.g., in the basis of lifts of cells) to get a matrix with

coefficients in Z[π ]. Replace each coefficient x with ρ(x), and consider the resulting

matrix as a map between vector spaces over F.

Remark 4.7. Traditionally torsion theory is said to be born in the beginning of 20th

century by the virtue of works of Reidemeister [40] and Franz [19]. We note that, quite

surprisingly, the work of Cayley [9] contains some of the 1st torsion-theoretic ideas

while staying in the purely algebraic setting.

4.3 Reidemeister torsion and Bruhat numbers

In this subsection, we introduce the notion of a twisted B-data and show that the

alternating product of its Bruhat numbers equals the Reidemeister torsion, whenever

the latter is defined (see Theorem 0.3). In particular, this product is independent of a

function.

Let G be a multiplicative subgroup of F∗ and V be a vector space over F. By V/G

we will denote a set, which is a quotient of V by the natural action of G.

Definition 4.8. An enhancement up to G on a vector space V is a choice of two

structures:

1) a full flag on V, that is, a sequence of subspaces 0 = V0 ⊂ V1 ⊂ . . . ⊂
Vdim V = V s.t. dim(Vs/Vs−1) = 1, s ∈ {1, . . . , dim V};

2) a nonzero element �s in a quotient set (Vs/Vs−1)/G, s ∈ {1, . . . , dim V}.
Enhancement up to G is still denoted by (V, �).

Definitions of isomorphism between two such vector spaces, as well of the

complex enhanced up to G go exactly in the same manner as in the usual case. Moreover,

all the major statements from Section 1 and 2 translate readily to this new setting, with

the only following exception. The nonzero elements of rook matrix from Section 1 are
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only defined up to multiplication by elements from G. Consequently, Bruhat numbers of

a complex enhanced up to G now live in the quotient set F∗/G.

If f is a strong Morse function and F is a field of characteristic not two, then f

defines a complex enhanced up to Z2 = {±1} ⊂ F∗ (see Remark 3.2).

Construction 4.9. Let f be an oriented strong Morse function on a manifold M, F

be a field, and ρ : Z[π ] → F be a homomorphism of rings. We will now construct an

isomorphism class of a complex enhanced up to ρ(π).

�Apply Construction 3.12 to f to get a CW-complex X, simple homotopy equiv-

alent to M. Lift the CW-structure to the universal cover X̃, choose any preimage of

each cell, and consider the corresponding algebraic complex C̃ of free Z[π ]-modules.

It is basis is defined up to action of π and naturally linearly ordered. Moreover, the

matrix of differential is upper triangular w.r.t. this order, since so is differential in C. In

particular, the span of the first s basis elements is a subcomplex (for s ∈ {1, . . . , # Cr(f )}).
Consider now the complex C̃ ⊗ρ F. It inherits a linearly ordered basis that is

defined up to an action of ρ(π). The desired complex enhanced up to ρ(π) is now taken

to be the one associated with this basis (see the end of the Subsection 2.4).

It remains to prove that obtained complex is well defined up to an isomorphism.

Indeed, let X ′ be another CW-complex obtained by the virtue of Construction 3.12.

Matrices of cellular differentials (in any degree) in these two complexes are conjugated

by a unitriangular matrix over Z (see Remark 3.18). Therefore, the matrices of differ-

entials in C̃ and C̃′ are conjugated by a triangular matrix with elements from π on the

diagonal. The desired statement follows. �
Consequently, given the data as in the Construction 4.9, one can construct

Barannikov pairs and Bruhat numbers, which are elements of F∗/ρ(π) (without choosing

a particular orientation of f these numbers live in F∗/±ρ(π)). To emphasize the presence

of ρ, we say “twisted Barannikov pairs” and “twisted Bruhat numbers”.

Remark 4.10. One can also adapt construction from Remark 3.3 to the case of twisted

coefficients. This provides a quick way of defining twisted Barannikov pairs and Bruhat

numbers.

One then defines torsion τ(f , ρ) of f exactly as in Definition 4.1. Again, as in

Subsection 4.2, Proposition 2.34 justifies the name. In short, the alternating product of

twisted Bruhat numbers of f equals the torsion of M w.r.t. a certain basis of the vector

space H•(M; ρ) defined by f . Generally, this basis and, consequently, τ(f , ρ) may well
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depend on f ; this basis is even nonuniquely defined, but this arbitrariness does not

affect τ(f , ρ).

However, combining all of the above with Subsection 4.2, one gets the following

theorem.

Theorem 0.3. Let f be a strong Morse function on a manifold M, F be a field,

and ρ : π → F∗ be a one-dimensional representation. Suppose that twisted homology

vanishes. Then the alternating product of twisted Bruhat numbers of f equals the

Reidemeister torsion of M. In particular, it is independent of f .

4.4 Non-acyclic Reidemeister torsion and Bruhat numbers

In this subsection, prove the analog of Theorem 0.3 in the case where twisted homology

is not assumed to vanish.

We start with generalities. We continue using notations introduced in

Subsections 4.2, 4.3, 2.9, and 2.10. For a topological space X and a map ρ : π → F∗,

choose a CW-decomposition of X, and consider the complex of vector spaces C̃ ⊗ρ F.

It carries a cellular basis, defined up to ρ(π). By Subsection 2.9, this basis gives

rise to the element c ∈ det(C̃ ⊗ρ F)/ρ(π). Consider now the canonical isomorphism

ξ : det(C̃ ⊗ρ F)/±ρ(π)
∼−→ detH∗(X; ρ)/±ρ(π). One can show that the element ξ(±c) does

not depend on the CW-decomposition of X. We call it a non-acyclic Reidemeister torsion

and denote as τna(X, ρ).

We will now pour Morse theory into this setting. Fix a strong Morse function f

on M. By Subsection 2.10, it gives rise to an element hf ∈ detH∗(M; ρ)/±ρ(π) (as usual,

via the enhanced complex construction). Recall that by τ(f , ρ), we denote the alternating

product of twisted Bruhat numbers of f . We now have the following theorem.

Theorem 4.11. Let f be a strong Morse function on a manifold M, F be a field, and

ρ : π → F∗ be a one-dimensional representation. In the notations given above, one has

τna(M, ρ) = hf

τ(f , ρ)
.

Proof. Follows readily from Proposition 2.34 and 2.36. �

In words, this theorem says that the non-acyclic Reidemeister torsion of M is

equal to a certain element in the twisted determinant line of homology of M divided

by the alternating product of twisted Bruhat numbers. Note that both ingredients, as

suggested by notation, do depend on f . But the l.h.s. of the equality, obviously, does not.
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Remark 4.12. Theorem 4.11 indeed implies Theorem 0.3. The former, however, requires

introducing additional notions, making the result less accessible. This is the reason why

we decided to prove Theorem 0.3 separately by more elementary means.

5 One-Parameter Morse Theory

One-parameter Morse theory deals with generic paths (in other words, one-parameter

families) in the space of all smooth functions on M. The endpoints of a generic path are

strong Morse functions—this is essentially the statement that strong Morse functions

form an open dense subspace. However, finitely many points of such a path may fail

to be either strong or Morse functions. It is exactly at these points where the B-

data associated with a strong Morse function changes. In this section, we describe

how exactly these changes look like (see Subsection 5.3). This allows to prove some

statements from the previous sections (see Subsection 5.5). On the other hand, this also

enables us to reprove a theorem of Akhmetev–Cencelj–Repovs [2] in greater generality

(see Subsection 5.6).

5.1 Generalities on one-parameter Morse theory

In this subsection, we recall foundations of one-parameter Morse theory, initiated by

Cerf [10].

A path in the space of functions on M is practically a map F : M × [−1, 1] → R.

Let t be a coordinate along [−1, 1], which we occasionally refer to as “time”. Define the

function ft : M → R by ft(x) := F(x, t). For convenience, we will write {ft} instead of F. By

a point of a path {ft}, we will mean a function ft0
for some particular t0 ∈ [−1, 1]. Fix a

generic path {ft} once and for all throughout this section (see [10] for the precise defini-

tion of genericity). Its endpoints f−1 and f1 are strong Morse functions on M. Moreover,

the same holds for all but finitely many points of {ft}. The rest of this subsection is

devoted to describing what changes may occur to a function at these points.

We first introduce a couple of definitions. One says that two strong Morse

functions f and g are isotopic if there exists a diffeomorphism ϕ (resp. ψ ) of R (resp. M)

isotopic to the identity s.t. g = ϕ ◦ f ◦ ψ . Roughly, isotopic functions represent the same

object from the viewpoint of Morse theory (see Remark 3.19). Analogously, two paths {ft}
and {gt} are said to be equivalent if there exists an isotopy {ϕt} : R × [−1, 1] → R (resp.

{ψt} : M × [−1, 1] → M) s.t. gt = ϕt ◦ ft ◦ ψt (ϕ0 = id, ψ0 = id).

It is a folklore result that if path {ft} consists only of strong Morse functions,

then it is equivalent to a constant path. See [22] for a rigorous proof. The following
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description of changes of a strong Morse function along a generic path is to be

understood as description of a certain explicit representative in the equivalence class

of a path in question.

We will depict paths of functions in the following manner. The Cerf diagram of

a path {ft} is a subset of [−1, 1] × R consisting of points (t, x) s.t. x is a critical value of

ft. Topologically, it is a set of (possibly self-intersecting and non-closed) curves in the

plane.

As proven in [10], in a generic one-parameter family, there are two possible

changes of isotopy class of a strong Morse function, which we call events. (Since there

are only finitely many of them anyway, we assume for convenience that ft is strong

Morse for all t except for a single value t = 0.)

1) The function f0 is strong, but non-Morse. This case is given by the local

formula

ft(x1, . . . , xn) = x3
1 ± tx1 + Q(x2, . . . , xn),

where (x1, . . . , xn) is some small coordinate neighborhood around the non-

Morse critical point of f0 (outside of a bit bigger neighborhood the function

does not change at all) and Q is a nondegenerate quadratic form. At the

moment, t = 0 the birth/death (depending on the sign) of two points of

neighboring indices happens (the lower index is the index of Q). On a Cerf

diagram, this corresponds to a (left or right) cusp. This event is called

birth/death event.

2) The function f0 is Morse, but not strong. This happens when two critical

values collide. Outside of small neighborhoods around two corresponding

critical points the function does not change at all; moreover, critical points

themselves do not move along the path. On the Cerf diagram, this corre-

sponds to a transversal self-intersection; in a sense, a pair of critical values

is swapped. The space on non-strong functions is sometimes called Maxwell

stratum. So, we call this event a Maxwell event.

Remark 5.1. Note that in both cases there are exactly two distinguished critical

points: either two newborn/about to die points or a couple with swapping critical

values. We will refer to them as “critical points involved in event”. They go one straight

after another in the natural linear order. All the other critical points of f−1 and of f1 are

in natural bijection. We will always keep this bijection in mind without mentioning it

explicitly.
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Now we may describe a Cerf diagram a bit more precisely: it is a set of plane

arcs (smooth in the interior) whose endpoints are either at cusps or has t coordinate

equal to ±1. These arcs do not have vertical tangencies and may self-intersect. To each

arc, an integer number is assigned, namely the index of any critical point on it (mind

that, for a generic point in a path, critical points are in bijection with critical values).

From the viewpoint of Theorem 3.5, each arc corresponds to a cell in the CW-complex

obtained via ft. Birth/death event translates to birth/death of two cells of neighboring

dimensions s.t. one appears in the cellular differential of another one with coefficient

±1. Note that this is exactly the building block of the simple homotopy equivalence.

5.2 Any Bruhat number is realizable

In this subsection, we prove the following.

Proposition 3.25. Let F be either Q or Fp and λ ∈ F∗ be any nonzero number. Let also

M be any closed manifold s.t. dim M � 4. Then one can find an oriented strong Morse

function f on M that has λ as one of its Bruhat numbers.

The plan would be to construct a generic path of functions on M that starts

with any strong Morse function and ends with the one satisfying the desired property.

The tools for constructing such a path were essentially developed by Smale [41] and

restated in Morse-theoretical terms by Milnor [32], which is our main reference here. In

the following three statements, one is given a strong Morse function f−1 on a manifold

M, equipped with a generic Riemannian metric g. Recall from Subsection 3.7 that g

gives rise to a Morse complex, formally spanned by critical points. We write ∂k for its

differential, which maps k-chains to (k − 1)-chains. The following two operations alter

the function, but does not change the metric.

Proposition 5.2. Given any k ∈ {0, . . . , dim M−1}, one can find a generic path {ft} which

contains a single event, namely a birth event. The indices of newborn points cs−1 and cs

are k and k + 1, respectively. Both lie in the small neighborhood of any regular point of

f−1 chosen in advance. Moreover, if ct and ct′ are two critical points not involved in the

event, then one appears in the Morse differential of another with the same coefficient

for f−1 and f1.

Proposition 5.3. Suppose that cs and cs−1 are two neighboring critical points of f−1

satisfying ind cs � ind cs−1. Then one can find a generic path {ft} that contains a single
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event, namely a Maxwell event; its swapping points are cs and cs−1. Moreover, the matrix

of Morse differential ∂k (resp. ∂k+1) for f1 equals that for f−1 multiplied on the right (resp.

left) by a transposition (s, s − 1).

The next operation is called handle sliding. It alters the metric but does not

change the function.

Proposition 5.4. Suppose that cs and cs−1 are two neighboring critical points of f−1 of

the same index k, k ∈ {2, . . . , dim M − 2}. Suppose also that points cs and cs−1 lie in the

same connected component of f −1
−1 ([f−1(cs−1) − ε, f−1(cs) + ε]). Then one can find a new

metric g′± s.t. new matrix of Morse differential ∂ ′
k (resp. ∂ ′

k+1) equals the old one ∂k (resp.

∂k+1) multiplied on the right (resp. left) by the base change mapping cs to cs ± cs−1.

We shall specify the place in [32] where one can find the proof of Proposition 5.4.

Shortly after the beginning of the proof of Theorem 7.6 (basis theorem), the author

writes: “The steps involved are roughly as follows: increase f in the neighborhood

of p1, alter the vector field so that the left-hand disk of p1 “sweeps across” p2 with

positive sign, and then readjust the function so that there is only one critical value.”.

The required argument is contained in the 2nd step.

Proof Proposition 3.25. Take any oriented strong Morse function f0 on M and any

generic Riemannian metric g0. We will be modifying f0 (in the small neighborhood of its

regular point) and g0. For clarity, we write B (birth) for usage of Proposition 5.2, S (swap)

for Proposition 5.3, and HS (handle slide) for Proposition 5.4. Fix any k ∈ {2, . . . , dim M −
2}. After any birth event, we orient two newborn points s.t. the coefficient of one in the

differential of another would be +1 (there are two such choices); indices of newborn

points will always be k and k − 1. Fix any integers n and m s.t. n/m = λ (by the notation

abuse, we identify integer and its class in F). Note that if F = Fp, one may take m to

be 1.

We present necessary modifications in the Table 1. In the 2nd column, we write

which modification should be applied. In the 3rd one, we list pairs of points affected

by modification (if there are several pairs listed, then modifications should be applied

consecutively in the given order). If modification is of type B, then we simply fix the

notations in the 2nd column (and specify the level at which points are being born).

If modification is of type HS, then it should be applied sufficiently many times as to

obtain matrix in the 5th column (see below).
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Fig. 4. To the proof of Proposition 3.25. Moments of nontrivial bifurcation are marked by black

dots (see Subsection 5.4).

In the last three columns, we describe the function obtained by modifications.

Namely, in the 4th column, we give the linear order on critical points. In the 5th one, we

write (integral) submatrix of Morse differential that takes into account only mentioned

critical points. The star denotes some integer number. In the last column, we write the

corresponding rook matrix (recall that it is a matrix over F). For rook matrices, we write

only nonzero entries. If some table entry remains unchanged, we do not write it.

As seen, after all the modifications, points a and f form a Barannikov pair with

Bruhat number n/m = λ. The Cerf diagram of the resulting path is given in Figure 4.

See Subsections 5.3 and 5.4 for a description of bifurcations of B-data in one-parameter

families. �

Remark 5.5. Note that after performing modifications from the proof of

Proposition 3.25, the alternating product of Bruhat numbers does not change (up to

sign; see Subsection 4.1). It is not surprising since indeed it sometimes does not depend

on the function at all. However, we will now sketch the construction of a strong Morse

function on CP2 s.t. it has only one Barannikov pair and the corresponding Bruhat

number is λ for any λ from Fp. Fix any integer n s.t. its class in Fp is λ.

Consider first a standard strong Morse function on CP2 that has three critical

points, a, b, and c (of indices 0, 2, and 4, respectively). Apply Proposition 5.2 to introduce

a pair of points d and e (of indices 2 and 1) between (in the sense of natural linear order)

a and b. Apply Proposition 5.4 enough many times s.t. e would appear in the differential

of b with coefficient n. Finally, apply Proposition 5.3 to points b and d (the bifurcation
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TABLE 1 To the proof of Proposition 3.25.

will necessarily be nontrivial). The resulting function will have points b and e paired

with Bruhat number λ.

Remark 5.6. During the course of proof of Proposition 3.25, we introduced six new

critical points in total. One can show that using the same technique, it is impossible to

get by with only four of them; we will only sketch the argument. Indeed, Bruhat number

on any short Barannikov pair over Q is integer (see Proposition 3.26). Since the product

of two must be ±1, the 2nd Bruhat number may only be the reciprocal of an integer.

5.3 B-Data in families

In this subsection, we start describing how B-data behaves along the generic path of

functions. In Subsection 5.4, we finish this description.

First of all, we will orient all the functions in the path in the following way. Pick

a generic point on some arc of the Cerf diagram. It corresponds to a critical point of
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some ft; orient it. Extend this orientation by continuity to all the critical points lying

the same arc (excluding the cusps). Apply this procedure to all the arcs. This recipe

allows us to orient all the points in the path {ft} by making only finite number of binary

choices, namely 2l where l is the number of arcs. We use the term “orientation of an arc”

for short.

Recall that we have to fix a field F in order to define B-data. Next, if the path {ft}
consists of only strong Morse functions, then these data stay the same for all the time;

see Remark 3.19 and Subsection 5.1.

We use the term “bifurcations” for the description of the way B-data changes

after two events from Subsection 5.1. Disregarding the Bruhat numbers, this description

was presented already in [4] (see [29] for a different proof). See also the paper [14]

and pictures in the survey [16]. Thus, our job is to determine how Bruhat numbers

change along the way (see Remark 3.4). In the case of birth/death event, we restrict

ourselves to birth one for brevity (death one is obtained from birth one by reversing

the time).

Before turning to formal statements, let us describe the basic general properties

of bifurcations. Recall that in the path {ft} all functions are strong Morse except for f0.

Consider the following subset of critical points of f1:

1) two points involved in event (i.e., either two newborn points or a couple with

swapping critical values; see Remark 5.1);

2) the points paired with those, if any.

We will refer to points from this subset as ones “involved in the bifurcation”. The reason

behind this name is that all the other points retain their original pairs (in a sense of

bijection from Remark 5.1). Moreover, the Bruhat numbers on these pairs remain the

same. Thanks to all these facts, we are able to use pictorial format for describing the

bifurcations. Namely, we will only depict points that are involved in the bifurcation

(there are at most four of them).

Theorem 5.7. After the birth event a Barannikov pair of two newborn critical points

appears; its Bruhat number is ±1. All the other pairs and Bruhat numbers remain

unaltered. See Figure 5.

Proof. Recall that by the preceding discussion in the present subsection, it suffices

to track down only the Bruhat numbers. The 1st statement follows from the description

given in Subsection 5.1.
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Fig. 5. Birth of two critical points.

Note that # Cr(f1) = # Cr(f−1) + 2; denote the non-Morse critical point of f0 by

p. Recall that outside of a small neighborhood of p the function ft does not change

along the path. Thus, all critical points of f−1 are also critical for f1. Let cs+1 and cs be

two newborn critical points of f1. Let r0 < . . . < r# Cr(f1) be regular values of f1. Take

elements of the sequence r0 < . . . < rs−1 < rs+2 < . . . < r# Cr(f1) as sample regular values

of f−1. This way any regular sublevel set of f−1 is also that of f1. One then arrives at the

following diagram.

Here, equality sign denotes set-theoretical equality of two subspaces of M and ∼=
denotes a homeomorphism. The latter takes place since attaching two cells as in

Subsection 5.1 does not change the homeomorphism type of a space. It now follows

that Construction 3.1 produces the same B-data for f−1 and f1 except for the above-

mentioned newborn pair. �

Remark 5.8. The sign in ±1 depends on the chosen orientations of arcs (see beginning

of this subsection). See Subsection 5.6 for a theorem where it plays important role.

5.4 Maxwell event

In this subsection, we consider the 2nd type of event, namely self-intersection of a Cerf

diagram (in other words, Maxwell event). This finishes the description of bifurcations

of B-data in families started in Subsection 5.3.

Let us fix the notations first. Let cs+1 and cs be two critical points of f−1

participating in the bifurcation. Recall from Subsection 5.1 that Cr(f1) coincides, as an

ordered subset of M, with Cr(f−1) with the order of cs+1 and cs reversed. As we will see
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Fig. 6. Nontrivial bifurcations at the self-intersection of a Cerf diagram.

in Theorem 5.9 some bifurcations can only happen provided that certain restrictions

on the linear order of involved critical points are satisfied. These restrictions depend

on types of critical points (upper, lower, or homological); see also Remark 5.10. See the

proof of Proposition 3.25 for an example.

Theorem 5.9. After the Maxwell event two types of bifurcations possible.

1) Trivial bifurcation. After it, points cs+1 and cs keep their initial pairs (if any)

and Bruhat numbers on them. No restrictions on the linear order of points

are placed. The values deg cs+1 and deg cs may be any.

2) Nontrivial bifurcation. The necessary condition is deg cs+1 = deg cs. The list

of five possible variants is given in Figure 6. Restrictions on the linear order

can be deduced from the pictures; see Remark 5.10.

All the points not participating in the bifurcation keep their initial pairs (if any) and

Bruhat numbers on them.

Remark 5.10. As seen on Figure 6, pairing and Bruhat numbers may well change

after the nontrivial bifurcation. As for the restrictions on the linear order, suppose,

for example, that both cs and cs+1 are of upper type (picture 3). Then the restriction

says that b(s + 1) < b(s) (where b is a pairing from the definition of B-data). Note that

the same restrictions are involved in the definition of the ruling of a Legendrian knot

[13, 20]. See [13] for discussion.

Remark 5.11. Suppose that (twisted) homology of M vanishes in degree k. Then there

are no homological critical points of index k. Therefore, nontrivial bifurcation of such

points can only be one of the 1st three types on Figure 6. In turn, this implies that the
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alternating product of (twisted) Bruhat numbers stays the same after the bifurcation.

This provides an alternative proof of the fact that alternating product of twisted Bruhat

numbers does not depend on the function (assuming homology vanishes).

Proof of Theorem 5.9. As in Theorem 5.7, it suffices to track down only Bruhat

numbers. Let r0 < . . . < r# Cr(f1) be regular values of f−1. These values are also regular

for f1. Moreover, all but one sublevel sets of f−1 and f1 coincide. The only exception is

the sublevel set for the regular value rs, so we write Mrs = {x ∈ M|f−1(x) � rs} and

M̃rs = {x ∈ M|f1(x) � rs}. One arrives at the following diagram.

The case of trivial bifurcation and the very last statement of Theorem 5.9 now follow

directly by unwrapping Construction 3.1. We now need to show how Bruhat numbers

change after cases 1–3 of nontrivial bifurcation (see Figure 6; two other do not place

any restriction on these numbers). By the very last statement, it suffices to prove

that τ(f−1) = −τ(f1) (see Subsection 4.1). Since the number τ admits torsion-theoretic

interpretation, it depends only on two things: equivalence class basis c of an enhanced

complex and equivalence class of basis h of homology. The latter is uniquely determined

by the enhancement on H•(M) induced by a function. Since both points involved in the

event are not homological, this enhancement is the same for f−1 and f1.

We will now investigate how basis c changes after the bifurcation. Choose any

CW-approximation (or any Riemannian metric) for f−1 in the sense of Subsection 3.4

(or, respectively, Subsection 3.7). The resulting CW-complex (or, respectively, Morse

complex) also serves as a CW-complex associated with f1 with the only difference

that sth and (s + 1)th generators got swapped in the linear order. The determinant

of a transposition matrix is −1 and the formula τ(f−1) = −τ(f1) now follows from

Remark 2.30. �

5.5 Manifolds with almost no F-homology

In this subsection, we prove the following theorem; see Subsection 4.1 for a context.
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Theorem 0.2. Let f be a strong Morse function on M and F be a field. Suppose that

Hk(M) = 0 for all 0 < k < dim M. Then the alternating product of all Bruhat numbers (as

an element from F∗/±1) is independent of f .

Proof. Take two strong Morse functions on M, and connect them by a generic path. The

plan is to use Theorem 5.7 and 5.9 to prove that ±τ does not change after any bifurcation

along the path. The case of birth/death event obviously follows from Theorem 5.7. The

rest is devoted to dealing with the Maxwell event.

It follows from Theorem 5.9 that if both points involved in Maxwell event are

paired (i.e., not homological) then the number ±τ stays the same after the bifurcation.

On the other hand, by assumption, any homological point is of degree either zero or

dim M. In the former case, the 1st part of Proposition 3.28 implies that ±τ again stays

the same (regardless of whether the bifurcation is trivial or not). The rest is devoted to

the latter case.

If M is non-orientable, then f may have a homological point of degree dim M

only if charF = 2, but this case makes the initial statement trivial (see Remark 3.17).

If M is orientable, we make use of the 2nd part of Proposition 3.28 in the same way as

earlier. �

5.6 A theorem of Akhmetev–Cencelj–Repovs

In this subsection, we apply our methods to reprove the theorem of Akhmetev–Cencelj–

Repovs [2] in a greater generality. Roughly, it says that several numerical invariants of

a generic path in the space of strong Morse functions satisfy a certain equation mod 2.

First of all, we need to pass to a bit more general setting. Cobordism is a

manifold M with boundary ∂0M � ∂1M. By a function f on a cobordism (M, ∂0M, ∂1M),

we will mean a function f : M → [0, 1] s.t. f −1(0) = ∂0M and f −1(1) = ∂1M. The function

f on cobordism is called Morse if all its critical points are nondegenerate and lie in the

interior of M. Strongness property is defined in the same manner as in the closed case.

All the classical results from Subsections 3.4 and 3.7 generalize readily to this setting;

see [32]. The only thing to mention here is that now construction from Subsection 3.4

attaches cells one-by-one starting from ∂0M. As a consequence, one obtains a

CW-decomposition of M/∂0M, not M itself. Thus, all the various constructed complexes

calculate relative homology H∗(M, ∂0M). All the results about enhanced complexes also

translate readily. Finally, all of this allows us to define B-data in the setting of manifolds

with boundary. Trivial cobordism is a cylinder (N × [0, 1], N × {0}, N × {1}), where N is a

closed manifold.
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We will now introduce mentioned invariants of a generic path {ft}. The 1st one is

the number of self-intersections of the Cerf diagram (or, in our terminology, the number

of Maxwell events), call it X. To get to the 2nd one, recall that in Subsection 5.3, we

described the procedure of orienting the arcs of a Cerf diagram, which outputs an

orientation of each strong Morse function in a path. After orienting the arcs, somehow,

one can assign a sign to each cusp of a Cerf diagram (i.e., birth/death event) as follows.

Let t0 be a point of birth (resp. death) event. Pick any value t1 > t0 (resp. t1 < t0) s.t.

all functions between t1 and t0 (t0 excluded) are strong Morse. Denote by cs+1 and cs

two newborn (resp. about to die) critical points of ft1
. It follows from classical results

recalled in Subsection 3.4 that cellular differential of cs+1 contains cs with coefficient

either 1 or −1 regardless of choices made (essentially, cellular approximation). Using

another language, one may say the same about the Morse differential w.r.t. any

Riemannian metric (see Subsection 3.7). The sign of a cusp is now defined as the sign

of this number. Let C be the number of negative cusps. Changing orientation of an arc

changes the sign of each cusp that serves as this arc’s endpoint (obviously, there are

at most two such cusps). Therefore, if both f−1 and f1 have no critical points, then the

parity of C is a well-defined invariant of a path {ft}. We are now turning to a corollary

that is easier to state compared with the main theorem. For example, it does not appeal

to any field or Bruhat numbers whatsoever, thus remaining entirely in the realm of Cerf

theory. This corollary asserts a certain relation between two introduced invariants of a

path (the number X and the parity of C).

Corollary 0.4 ([check and update corollary number). ] Let {ft} be a generic path of

functions on a cylinder N × [0, 1] s.t. both f−1 and f1 have no critical points. Let X be

the number of self-intersections of its Cerf diagram and C be the number of negative

cusps. Then one has

X+ C = 0 (mod 2).

Remark 5.12. In [2], Corollary 0.4 was proved using two different methods, both

requiring additional assumptions on N. The 1st method is based on h-principle and

requires N to be stably parallelizable and simply connected. The 2nd one is based

on parametric Morse theory and requires the dimension of N to be at least five. This

method is geometrical and relies on strong results of Smale akin to those in Subsection

5.2. These results, in turn, only valid if the dimension of N is big enough and lead, for

example, to the famous h-cobordism theorem. On the other hand, our approach of using
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enhanced complexes, after deducing all the necessary generalities in Subsection 5.3, is

entirely combinatorial.

We will now give one more definition in order to state the main theorem of this

subsection. Fix a field F s.t. charF �= 2, and consider the set of Barannikov pairs of some

oriented strong Morse function f . We say that two pairs overlap if they overlap when

viewed as segments on the real line. Formally, two pairs (s1, s2) and (t1, t2) overlap if

either s1 < t1 < s2 < t2 or t1 < s1 < t2 < s2. Let O be the number of all overlapping

(unordered) pairs of Barannikov pairs (we stress out that we place no restrictions on the

degrees of points). Define now

τ ′(f ,F) := (−1)O
∏
s∈U

λ(s)(−1)deg s ∈ F∗.

Remark 5.13. In words, this is the alternating product of all the Bruhat numbers

times the sign depending on the parity of O. This sign is different from the one from

Definition 4.1. As usual, we drop the ingredients of τ ′ when they are understood.

Let now (M, ∂0M, ∂1M) be any cobordism s.t. relative homology H∗(M, ∂0M)

vanishes (recall that we take coefficients to be in F by default). (For instance, one may

take an h-cobordism.) Then Theorem 0.2 (in the aforementioned setting) implies that

±τ ′(f ) in independent of f .

We are now ready to state the main theorem of this subsection, which we do

in multiplicative notation. Recall that X is the number of self-intersections of the Cerf

diagram and C is the number of its negative cusps. It is easy to check that the number
τ ′(f1)
τ ′(f−1)

(−1)C ∈ {±1} is a well-defined invariant of a path, that is, it does not depend on

orientations of arcs. The next theorem asserts a certain relation between this invariant

and a number X. In the conclusion of the theorem, multiplication takes place in F.

Theorem 5.14. Let F be a field and (M, ∂0M, ∂1M) be a cobordism s.t. H∗(M, ∂0M) = 0.

Let also {ft} be a (somehow oriented) generic path of functions on it. Then one has

τ ′(f1)

τ ′(f−1)
(−1)C(−1)X = 1.

Proof. The plan is to track down when the number τ ′(ft) changes its sign as t varies

from −1 to 1. It suffices to prove that it does so exactly after t passes

1) a self-intersection of the Cerf diagram,
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2) a negative cusp (either left or right).

Note that by assumption there are no homological points, that is, all of the points are

paired.

We will first sort out the 2nd case. The number O does not change after a

birth/death event, since the newborn/recently dead Barannikov pair does not overlap

with any other pair. The statement now follows directly from Theorem 5.7.

We will now turn to the 1st case. Suppose that the bifurcation is nontrivial.

Then the decomposition of critical points into pairs remains the same; thus, the number

O remains unaltered. It then follows directly from Theorem 5.7 that the alternating

product of Bruhat numbers changes its sign. Suppose now that the bifurcation is

trivial. This time the set of Bruhat numbers remains the same, but the number O

increases or decreases by one (depending on the juxtaposition of pairs involved in the

bifurcation). �

Since τ(f ,F) = 1 for any f without critical points at all (and for any F), the

Corollary 0.4 follows straightforwardly by taking any F s.t. charF �= 2.
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