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Abstract—Let Mn, n � 3, be a closed orientable n-manifold and G(Mn) the set of A-
diffeomorphisms f : Mn → Mn whose nonwandering set satisfies the following conditions: (1)
each nontrivial basic set of the nonwandering set is either an orientable codimension one
expanding attractor or an orientable codimension one contracting repeller; (2) the invariant
manifolds of isolated saddle periodic points intersect transversally and codimension one
separatrices of such points can intersect only one-dimensional separatrices of other isolated
periodic orbits. We prove that the ambient manifold Mn is homeomorphic to either the sphere
Sn or the connected sum of kf � 0 copies of the torus Tn, ηf � 0 copies of Sn−1 × S1 and lf � 0
simply connected manifoldsNn

1 , . . . , N
n
lf
which are not homeomorphic to the sphere. Here kf � 0

is the number of connected components of all nontrivial basic sets, ηf =
κf

2 − kf +
νf−μf+2

2 ,
κf � 0 is the number of bunches of all nontrivial basic sets, μf � 0 is the number of sinks and
sources, νf � 0 is the number of isolated saddle periodic points with Morse index 1 or n− 1,
0 � lf � λf , λf � 0 is the number of all periodic points whose Morse index does not belong
to the set {0, 1, n− 1, n} of diffeomorphism f . Similar statements hold for gradient-like flows
on Mn. In this case there are no nontrivial basic sets in the nonwandering set of a flow. As
an application, we get sufficient conditions for the existence of heteroclinic intersections and
periodic trajectories for Morse – Smale flows.
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1. INTRODUCTION

Dynamical systems satisfying axiom A (in short, A-systems) were introduced by Smale [57]. By
definition, a nonwandering set of an A-system has a hyperbolic structure and is the topological
closure of the set of periodic orbits (see the basic notation of the theory of dynamical systems
in [3, 16, 29, 53]). A-systems form a wide class containing Morse – Smale systems [44, 55] and
Anosov systems [2]. According to Mane [33] and Robinson [52], A-systems contain all structurally
stable dynamical systems.

One of the challenging problems in the theory of dynamical systems is the establishment
of a relationship between the dynamical properties of a selected class of dynamical systems
and the topological structures of supporting manifolds. A classical example is provided by the
Morse inequalities obtained by Smale [55] for Morse – Smale dynamical systems. In the spirit
of Morse inequalities [39], Smale established relations between the numbers of periodic points
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614 GRINES et al.

and the Betty numbers β0(M
n), β1(M

n), . . ., βn(M
n) of the ambient n-manifolds Mn, where

βi(M
n) = rank Hi(M

n,Z). After [55], many similar results were obtained for various classes of
Morse – Smale systems, see the surveys [14, 34] and numerous references therein. Several papers
have investigated the relationship for codimension one Anosov diffeomorphisms. Franks [11] and
Newhouse [40] proved that any codimension one Anosov diffeomorphism is conjugate to a hyperbolic
torus automorphism (as a consequence, a manifold admitting such diffeomorphisms is Tn, n � 2).

According to Smale spectral decomposition theorem [53, 57], a nonwandering set of A-system
splits into pairwise disjoint transitive closed and invariant pieces called basic sets. A basic set is
called trivial if it is an isolated periodic orbit. Otherwise, a basic set is nontrivial. Good examples
of nontrivial basic sets are expanding attractors and contracting repellers which were introduced by
Williams [61, 62]. They are divided into orientable and nonorientable ones. An A-diffeomorphism
of the n-torus Tn with an orientable codimension one expanding attractor can be obtained by the
Smale surgery [57, pp. 788–789] of a codimension one Anosov diffeomorphism. Such diffeomorphisms
are called DA-diffeomorphisms. The Plykin attractor is nonorientable [49]. It was proved in [18]
that, if the nonwandering set of structurally stable diffeomorphism f : Mn → Mn, n � 3, contains
a codimension one orientable attractor or repeller Λ, then the manifold Mn is diffeomorphic to
torus Tn and Λ is a unique nontrivial basic set in NW (f).

Let us recall that the Morse index of a hyperbolic periodic point p is equal to the dimension of
an unstable manifold W u(p). If the Morse index of the periodic point p is equal to 1 (or n− 1), we
say that the invariant manifold W s(p) (respectively W u(p)) is codimension one.

Let Mn be a closed smooth (connected) orientable n-manifold, n � 3, and G(Mn) the set of A-
diffeomorphisms f : Mn → Mn whose nonwandering set NW (f) satisfies the following conditions
(see Section 2 for details):

1) each nontrivial basic sets from NW (f) is either an orientable codimension one expanding
attractor or an orientable codimension one contracting repeller;

2) invariant manifolds of isolated saddle periodic points are intersected transversally and
codimension one separatrices of such points can intersect only one-dimensional separatrices
of other isolated saddle periodic orbits (there are no restrictions on heteroclinic intersections
of separatrices whose codimensions do not equal one).

Let Λ ⊂ NW (f) be a codimension one nontrivial basic set which is an expanding attractor (for a
contracting repeller, all concepts below are similar since a repeller is an attractor for diffeomorphism
f−1). For each point x ∈ Λ, W u(x) ⊂ Λ and W s(x)\x consists of two connected components.
Moreover, according to [13], at least one of the connected components of W s(x)\x has a nonempty
intersection with Λ. A point x ∈ Λ is called a boundary if one of the connected components of the
set W s(x)\x does not intersect with Λ. Such a component is denoted by W s∅(x).

According to [13] (see also [16]), the set of boundary points of an expanding attractor Λ is
nonempty and finite. Thus, any boundary point is periodic and is called a boundary periodic point
of the expanding attractor Λ. The set W s(Λ) \ Λ consists of a finite number of linear connected
components. The union of unstable manifolds W u(p1), . . . ,W

u(prbu ) of all boundary periodic points
p1, . . . , prbu of the attractor Λ such that the stable components W s∅(pi) (i = 1. . . . , rbu) belong to
the same path-connected component of the set W s(Λ) \Λ is said to be a bunch bu of the attractor Λ.
The number rbu is called the degree of the bunch bu. By virtue of [17], if Λ is an expanding orientable
attractor, then each of its bunches has a degree that is equal to 2. Similarly, one can define the
concept of bunch bs for a codimension one contracting repeller.

According to [5, 57], the set Λ is uniquely expressed as the finite union of compact subsets

Λ = Λ1 ∪ · · · ∪ ΛrΛ , rΛ � 1,

such that f rΛ(Λj) = Λj , f(Λj) = Λj+1, j ∈ {1, . . . , rΛ} (ΛrΛ+1 = Λ1). For every point x of Λj the
set W s

x ∩Λj (W
u
x ∩Λj) is dense in Λj . According to R. Bowen [5], the subset Λj is called a C-dense

component. Let us notice that each C-dense component of the attractor Λ is a connected set.
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For f ∈ G(Mn), we denote by kf � 0 the number of all C-dense components of all nontrivial basic
sets belonging to NW (f), and by κf � 0 the number of all bunches belonging to the union of all
nontrivial basic sets. Denote by μf � 0 the number of all nodal periodic points (sinks and sources),
by νf � 0 the number of isolated saddle periodic points with Morse index 1 or n− 1, and by λf � 0
the number of all periodic points whose Morse index does not belong to the set {0, 1, n − 1, n} of
diffeomorphism f . Let Sn be an n-sphere, Sn be a manifold which is homeomorphic to S

n and T
n

be an n-torus. For a nonnegative integer m, denote by T n
m a manifold that is either an empty set

if m = 0 or is a connected sum of m � 1 copies of the n-torus Tn if m > 0:

T n
m = T

n� · · · �Tn

︸ ︷︷ ︸

m�1

.

Denote by Sn
m a manifold that is either the sphere S

n if m = 0 or is a connected sum of m � 1
copies of Sn−1 × S

1 if m > 0:

Sn
m =

(

S
n−1 × S

1
)

� · · · �
(

S
n−1 × S

1
)

︸ ︷︷ ︸

m�1

.

Denote by N n
m a manifold that is either an empty set if m = 0 or a connected sum of simply

connected manifolds Nn
i if m > 0:

N n
m = Nn

1 � · · · �Nn
m,

where each manifold Ni is not homeomorphic to the sphere S
n.

Theorem 1. Let Mn be a closed orientable n-manifold, n � 3, supporting a diffeomorphism
f ∈ G(Mn). Then there is an integer lf , 0 � lf � λf , such that Mn is homeomorphic to the
connected sum:

T n
kf
�Sn

ηf
�Nlf

where

ηf =
κf
2

− kf +
νf − μf + 2

2
.

Corollary 1. Under the condition of Theorem 1, we have

π1(M
n) = Z

n ∗ · · · ∗ Zn
︸ ︷︷ ︸

kf

∗Z ∗ · · · ∗ Z
︸ ︷︷ ︸

ηf

where ∗ means the free product of groups.

The next remark follows from the main result of [17].

Remark 1. If f ∈ G(Mn) is structurally stable and has a nontrivial orientable codimension one
basic set, then the ambient manifold Mn is homeomorphic to the torus T

n.

Remark 2. If for diffeomorphism f ∈ G(Mn) and the number kf = 0 (κf also is equal to zero
in this case), then f is a Morse – Smale diffeomorphism. In the particular case n = 3, kf = 0
Theorem 1 is a generalization of the main result of [4], where it is proved that the ambient

manifold M3 is homeomorphic to S3
gf
, where gf =

νf−μf+2
2 . For n > 3, kf = 0 Theorem 1 is a

generalization of the main result from [18], where the authors required that stable and unstable
manifolds of saddle periodic orbits have no intersections at all. In this case the ambient manifold

Mn is homeomorphic to the connected sum: Sn
gf
�Nlf where gf =

νf−μf+2
2 and the integer lf satisfies

the inequality 0 � lf � λf .

Projective-like manifolds were introduced in [37] (actually, the concept of projective-like
manifolds appeared in [36] with no name).
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Definition 1. A closed smooth manifold Mn is called projective-like if

• n ∈ {2, 4, 8, 16};

• there is a locally flat embedded n
2 -sphere S

n
2 ⊂ Mn such that Mn \ S n

2 is an open n-ball.

Recall that a Morse – Smale diffeomorphism f is polar if the nonwandering set NW(f) contains
exactly one sink periodic orbit and one source periodic orbit.

Theorem 2. Let Mn be a closed orientable n-manifold, n � 3, supporting a diffeomorphism
f ∈ G(Mn). Suppose that lf �= 0 and there is a manifold Nn

i∗ which belongs to the connected sum
N n

lf
and admits a polar diffeomorphism fi∗ whose nonwandering set contains exactly one saddle

fixed point. Then

a) n ∈ {4, 8, 16};
b) if n ∈ {8, 16}, then Nn

i∗ is a projective-like manifold;

d) if n = 4, then N4
i∗ is a disjoint union of an open ball B4 and a 2-sphere S2 which is not locally

flat embedded in general1);

e) the homotopy groups π1(N
n
i∗) = · · · = πn

2
−1(N

n
i∗) = 0.

Remark 3. The existence of such Nn
i∗ containing exactly one saddle fixed point whose Morse index

differs from 1 and n− 1 follows from [10] where the existence of closed manifolds admitting Morse
functions with exactly three critical points was proved, and from [55] where it was proved that any
gradient flow can be approximated by the Morse – Smale gradient flow.

Let Mn be a closed smooth (connected) orientable n-manifold, n � 3. Denote by G
flow
grad(M

n) the

set of Morse – Smale flows on Mn satisfying the following conditions (see Section 2 for details):

1) f t ∈ G
flow
grad (M

n) is gradient-like, that is, the nonwandering set of f t does not contain closed

trajectories;

2) codimension one separatrices of saddle equilibrium states of f t ∈ G
flow
grad (M

n) have no

intersection with other separatrices of saddle equilibrium states.

For f t ∈ G
flow
grad (M

n) denote by μf t � 0 the number of all nodal equilibrium states (sinks and

sources), by νf t � 0 the number of isolated saddle equilibrium states with Morse index 1 or n− 1,
and by λf t � 0 the number of all equilibrium states whose Morse index does not belong to the set
{0, 1, n − 1, n}.

The next theorem is a direct corollary of Theorem 1 in the case kf = 0.

Theorem 3. Let f t ∈ G
flow
grad (M

n). Then there is an integer 0 � lf t � λf t such that:

Mn is homeomorphic to the connected sum:

Sn
gft

� Nlft
,

where gf t =
νft−μft+2

2 .

Remark 4. The statement similar to Theorem 2 holds for a manifold which belongs to the
connected sum Nlft

and admits polar flow with a unique saddle equilibrium state. Moreover, this

manifold is projective-like for n = 4.

1)In [36], an example is given of a 4-manifold which is a union of an open ball B4 and a 2-sphere S2 such that it
is not locally flat embedded.
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The first application of Theorem 1 concerns the existence of heteroclinic intersections of
codimension one separatrices that form codimension two submanifolds. In the particular case n = 3,
the heteroclinic intersections of two-dimensional separatrices consist of heteroclinic curves. Note
that heteroclinic curves are often the mathematical model of so-called separators considered in
solar magnetohydrodynamics [15, 20, 50]. From the modern point of view, reconnections of the
solar magnetic field along separators are responsible for solar flares [31, 32, 51].

Corollary 2. Let f : Mn → Mn be an orientation-preserving Morse – Smale diffeomorphism of the
closed orientable n-manifold Mn, n � 3. Suppose that the nonwandering set NW (f) of f consists
of μf nodal periodic points, νf codimension one saddle periodic points, and an arbitrary number
of saddle periodic points that are not codimension one. If the fundamental group π1(M

n) does not

contain a subgroup isomorphic to the free product Z ∗ · · · ∗ Z of gf = 1
2 (νf − μf + 2) copies of Z,

then there exist saddle periodic points p, q ∈ NW (f) such that the Morse index of the point p equals
1, and the Morse index of the point q equals n− 1, and W s(p) ∩W u(q) �= ∅.

The second application is the following sufficient condition for the existence of a periodic
trajectory for Morse – Smale flows.

Corollary 3. Let f t be a Morse – Smale flow without heteroclinic intersections on a closed
orientable manifold Mn of dimension n � 3, and assume that the nonwandering set NW (f t)
contains exactly μf t nodal fixed points and νf t �= 0 saddle fixed points with the Morse index 1

or n− 1. Then, if the fundamental group π1(M
n) does not contain a subgroup isomorphic to the

free product Z ∗ · · · ∗ Z of gf t = 1
2

(

νf t − μf t + 2
)

copies of Z, then the flow f t has at least one
periodic trajectory.

Let us mention some topological obstructions to manifolds supporting codimension one basic
sets. In [30], it was proved that, if a closed n-manifold Mn, n � 3, admits a codimension one
expanding attractor (orientable or not), then Mn has a nontrivial fundamental group. In particular,
there are no such diffeomorphisms of the n-sphere Sn, n � 3. Plante [47] proved that an orientable
codimension one expanding attractor defines a nontrivial element of the first homology group
H1(M

n). Sullivan and Williams [59] showed that the real Čech homology of an orientable attractor
(of any codimension) in its top dimension is nontrivial and finite-dimensional.

The structure of the paper is as follows. In Section 2, we formulate the main definitions and give
some previous results. In Section 3, we prove the main results and their applications.

2. DEFINITIONS AND PREVIOUS RESULTS

Here, we recall basic definitions and formulate some results which we will need later. Many
definitions for diffeomorphisms and flows are similar. We will give mainly the notation for
diffeomorphisms providing the exact notation for flows if necessary. Let f be a C∞ diffeomorphism
of a closed manifold Mn endowed with some Riemannian metric d. A diffeomorphism f is said

to be an A-diffeomorphism if its nonwandering set NW (f) is hyperbolic2) and periodic points are
dense in NW (f) [57]. The stable manifold W s(x) of a point x ∈ NW (f) is defined to be a set

2)An invariant set Λ(f) of a diffeomorphism f : Mn → Mn (Mn is a closed smooth manifold) is hyperbolic if there
is a continuous df -invariant splitting

TΛ(f)M
n = Es

Λ(f) ⊕ Eu
Λ(f)

of tangent bundle TΛ(f)M
n in the sum of stable and unstable subbundles such that the following estimates hold:

‖dfk(v)‖ � Cλk‖v‖, ‖df−k(w)‖ � Cλk‖w‖
for some real numbers C > 0 and 0 < λ < 1, and for any v ∈ Es

Λ(f), w ∈ Eu
Λ(f), k ∈ N.
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of points y ∈ Mn such that d
(

f i(x), f i(y)
)

→ 0 as i → +∞3). The unstable manifold W u(x) of x

is the stable manifold of x for the diffeomorphism f−1. Stable and unstable manifolds are called
invariant manifolds.

Smale’s spectral decomposition theorem [57] says that the nonwandering set NW (f) of an A-
diffeomorphism f is a finite union of pairwise disjoint f -invariant closed sets Ω1, . . . ,Ωk such that
every restriction f |Ωi is topologically transitive. These Ωi are called the basic sets of f . For any
x ∈ Ωi, dimW u(x) + dimW s(x) = n.

Both W u(x) and W s(x) are endowed with a normal and intrinsic orientation. Hence, one
can define the index of intersection at each point of W u(x) ∩W s(x) [26]. By definition, let
W s

ε (x) ⊂ W s(x) (resp. W u
ε (x) ⊂ W u(x)) be the ε-neighborhood of x in the intrinsic topology of

the manifold W s(x) (resp. W u(x)), where ε > 0. Following [13], we call a basic set Ωi orientable if
for any α > 0 and β > 0 the index of W s

x,α ∩W u
x,β does not depend on a point of intersection.

A basic set Ωi is called an attractor if there is a closed neighborhood U of the set Ωi such
that f(U) ⊂ int U ,

⋂

j�0
f j(U) = Ωi. An invariant set is called a repeller if it is an attractor for

f−1. If the basic set Ωi is an attractor (repeller), then for any point x ∈ Ωi the unstable (stable)
manifold W u(x) (W s(x)) belongs to Ωi. According to [62], an attractor (repeller) Ωi is called
an expanding attractor (contracting repeller) if its topological dimension equals the dimension of
unstable (stable) manifolds of any points of the attractor (repeller) [62]. If the topological dimension
of an expanding attractor (contracting repeller) equals n− 1, then we say that it is a codimension
one attractor (repeller). According to R. Plykin [48], any expanding attractor and contracting
repeller of codimension one is locally homeomorphic to the direct product of an (n− 1)-disk and a
Cantor set.

An A-diffeomorphism f : Mn → Mn is Morse – Smale if the nonwandering set NW (f) consists
of a finitely many periodic orbits (including fixed points that are periodic orbits of period 1) and
stable and unstable manifolds of periodic orbits intersect transversally. Thus, all basic sets of a
Morse – Smale diffeomorphism are trivial.

A periodic orbit p is called a sink (resp. source) orbit if dimW s(p) = n and dimW u(p) = 0
(resp. dimW s(p) = 0 and dimW u(p) = n). A sink or source periodic orbit is called a nodal periodic
orbit. A periodic point σ is called a saddle point if 1 � dimW u(σ) � n− 1, 1 � dimW s(σ) �
n− 1. A component of W u(σ) \ σ denoted by Sepu(σ) is called an unstable separatrix of σ.
If dimW u(σ) � 2, then Sepu(σ) is unique. Similar notation holds for a stable separatrix. A
saddle periodic point σ is called codimension one if either dimW u(σ) = 1, dimW s(σ) = n− 1
or dimW u(σ) = n− 1, dimW s(σ) = 1. The separatrices Seps(σ) and Sepu(σ) are codimension one
separatrices, respectively.

Let p, q be saddle periodic points such thatW u(p)∩W s(q) �= ∅. The intersection W u(p)∩W s(q)
is called heteroclinic. Due to the transversality of W u(p) � W s(q), a heteroclinic intersection
is either a union of countable sets of heteroclinic points or countable sets of submanifolds of
dimension m � 1. If dim (W u(p) ∩W s(q)) � 1, in this case a connected component of intersection
W u(p) ∩W s(q) is called a heteroclinic manifold (in the case n = 3 a heteroclinic manifold is called
a heteroclinic curve).

For 1 � m � n, we presume Euclidean space R
m to be included naturally in R

n as the subset
each of whose last (n−m) coordinates equals 0. Let e : Mm → Nn be an embedding of a closed

3)Let Λ ⊂ Mn be a hyperbolic set for a diffeomorphism f and let d be the metric on Mn induced by the Riemannian
metric on TMn. Then for each x ∈ Λ there exists a stable manifold W s

x = Js
x(E

s
x), where Js

x : Es
x → Mn is an

injective immersion with the following properties:
1) W s

x = {y ∈ Mn : d
(
fk(x), fk(y)

)
→ 0 for k → +∞};

2) if x, y ∈ Λ, then W s
x and W s

y either coincide or they are disjoint;
3) f(W s

x ) = W s
f(x);

4) the tangent space for W s
x at every point y ∈ Λ is Es

y;

5) if x, y ∈ Λ are close, then W s
x and W s

y are C1-close on compact sets (that is, the images of a compact K by

the immersions Js
x, J

s
y are C1-close if x, y are close). See [27, 57] for details.
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m-manifold Mm in the interior of n-manifold Nn. One says that e(Mm) is locally flat at e(x),
x ∈ Mm if there exist a neighborhood U(e(x)) = U and a homeomorphism h : U → R

n such that
h(U ∩ e(Mm)) = R

m ⊂ R
n. Otherwise, e(Mm) is wild at e(x) [9]. Similar notation holds for a

compact Mm, in particular, Mm = [0; 1].

Note that a separatrix Sepτ (σ) is a smooth manifold. Hence, Sepτ (σ) is locally flat at every
point [9]. However, a priori, clos Sepτ (σ) = W τ (σ) ∪ {β} could be wild at a unique point β.

One of the key statements to prove Theorem 1 is the following result proved in [4] for n = 3.

Proposition 1. Let e : Sn−1 → Mn be a topological embedding of the (n− 1)-sphere S
n−1, n � 3,

which is a smooth immersion everywhere except at one point, and let Σn−1 = e(Sn−1). Then any
neighborhood of Σn−1 contains a closed neighborhood of Σn−1 diffeomorphic to S

n−1 × [0; 1].

Proof. It is enough to prove the statement for n � 4. Let Σn−1 be a topologically embedded
(n− 1)-sphere that is smooth everywhere except at one point, say N ∈ Σn−1. According to [6]
(see also [7, 8]), a wildly embedded (n− 1)-sphere has to contain infinitely many points where
the local flatness fails provided that n � 4. Therefore, Σn−1 is a locally flat embedded (n− 1)-
sphere including at the point N . Hence, Σn−1 has an arbitrary small neighborhood diffeomorphic
to S

n−1 × [0; 1]. This completes the proof. �

The following propositions (Propositions 2 and 3) follow from Lemma 6 and Lemma 7 in [38],
respectively. For the reader’s convenience, we give a sketch of the proof.

Proposition 2. Let Bn
1 , B

n
2 ⊂ Sn be disjoint open n-balls such that the boundaries Sn−1

1 = ∂Bn
1 ,

Sn−1
2 = ∂Bn

2 are locally flat embedded (n− 1)-spheres. Then, given any orientation-reversing home-

omorphism ψ : Sn−1
1 → Sn−1

2 , the manifold Nn obtained from Sn \ (Bn
1 ∪Bn

2 ) after the identification

of Sn−1
1 with Sn−1

2 under ψ is homeomorphic to S
n−1 × S

1.

Sketch of the proof. Since Sn−1
1 , Sn−1

2 are locally flat embedded (n− 1)-spheres, Sn \ (Bn
1 ∪Bn

2 ) is a

closed n-annulus homeomorphic Sn−1 × [0; 1] [60]. We see that the spheres Sn−1 × {0}, Sn−1 × {1}
are identified by ψ. Hence, Nn is a total space of the locally trivial bundle over S1 that is
homeomorphic to S

n−1 × S
1. �

Proposition 3. Let Mn be a closed (topological) manifold and Sn−1 an (n− 1)-sphere topologically
embedded in Mn. Suppose that Sn−1 has an open neighborhood U homeomorphic to the direct product
S
n−1 × (−1, 1). If the manifold Mn \U is connected, then there is a topological closed manifold Mn

1

such that Mn is homeomorphic to the connected sum Mn
1 �(S

n−1 × S
1).

Proof. Denote by Sn−1
1 , Sn−1

2 the components of the boundary ∂U . Clearly, Sn−1
1 and Sn−1

2 are

(n− 1)-spheres locally flat embedded in Mn. Since Mn \U is connected, the manifold ˜M = (Mn \
U) ∪ (Bn

1 ∪Bn
2 ) is closed and connected where Bn

1 , B
n
2 are disjoint n-balls such that ∂Bn

i = Sn−1
i ,

i = 1, 2. The connectedness of ˜M implies that there is a closed subset ˜Dn ⊂ ˜M containing Bn
1 ∪Bn

2

and homeomorphic to a closed n-ball. Set Qn = ˜Dn \ (Bn
1 ∪Bn

2 ). The boundary ∂Qn consists of

three components Sn−1
0 , Sn−1

1 , Sn−1
2 , each of which is homeomorphic to an (n− 1)-sphere. Attaching

a closed n-ball to Qn along the component Sn−1
0 , one gets the set homeomorphic to Sn \ (Bn

1 ∪Bn
2 ).

To get the original manifold Mn, we must glue the spheres Sn−1
1 , Sn−1

2 by the orientation-
reversing homeomorphism. Using the result of Proposition 2, we find that the manifold Mn is
homeomorphic to the connected sum Mn

1 �(S
n−1 × S

1) for some closed manifold Mn
1 . �

The next proposition is a key sufficient condition for a closed manifold Nn to be projective-
like. To prove it we will use the models of projective-like manifold by means of the well-known

Hopf fiber bundle (Sn−1,S
n
2 ,S

n
2
−1) [10, 43], where n ∈ {4, 8, 16}. Such models are induced by

the following construction of a projective plane. Let B
2 be an open 2-ball with the boundary
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S
1 = ∂B2. The identification of opposite points (a1; a2), (−a1;−a2) of S

1 gives the factor-space
S
1/(a1; a2) ∼ (−a1;−a2) that is homeomorphic to S

1. The natural projection

S
1 → S

1/
(

(a1; a2) ∼ (−a1;−a2)
)

= S
1

gives the locally trivial fiber bundle (∂B2 = S1,S1,S0) with the fiber being a zero-dimensional
circle S

0 that is a union of two points. The projective plane P
2 is obtained from the closed

2-ball clos B
2 = B

2 ∪ ∂B2 by the identification of each fiber of the locally trivial fiber bundle
(∂B2 = S

1,S1,S0) with a point. It is obvious that the projective plane is homeomorphic to the
union of a disk B2 and a locally flat embedded circle S1.

We now consider a smooth Hopf fiber bundle (∂Bn = S
n−1,S

n
2 ,S

n
2
−1), where n ∈ {4, 8, 16}. Let

Nn be a manifold obtained from the closed n-ball clos Bn = B
n ∪ ∂Bn after the identification of each

fiber of the Hopf fiber bundle (∂Bn = S
n−1,S

n
2 ,S

n
2
−1) with a point. Denote by S the set obtained

after this identification. Since the Hopf fiber bundle is locally trivial, S is homeomorphic to the

base S
n
2 that is an n

2 -sphere. Clearly, ∂B
n = S

n−1 is a locally flat embedded (n − 1)-sphere in the
closed n-ball clos B

n. Hence, S is also locally flat embedded in Nn. We see that Nn is a disjoint
union of the open n-ball Bn and n

2 -sphere S that is locally flat embedded in Nn. Thus, according
to Definition 1, the manifold Nn is a projective-like manifold.

Proposition 4. Let a closed manifold Nn, n � 4, be a disjoint union of an open n-ball Bn and a
k-sphere Σk, 1 � k � n− 1, locally flat embedded in Nn. Then Nn is projective-like.

Proof. As k-sphere Σk, 1 � k � n− 1, is locally flat embedded in Nn, Σk has an open tubular
neighborhood T (Σk) such that its boundary ∂T (Σk) is a submanifold of codimension one, and

T (Σk) is the total space of a locally trivial fiber bundle with the base Σk and a fiber Bn−k [26].

For convenience, we can assume that each fiber B̃n−k is an (n− k)-ball such that the boundary

∂B̃n−k = Sn−k−1 belongs to ∂T (Σk), and the center of B̃n−k belongs to Σk.

First, we have to show that ∂T (Σk) is homeomorphic to Sn−1. Let us construct flows f t
0 and f t

1

on the sets Bn and clos T (Σk) = T (Σk) ∪ ∂T (Σk), respectively, as follows.

To construct f t
0, take an arbitrary point x0 ∈ Bn that does not belong to clos T (Σk). Since Bn

is an open ball, there is a flow f t
0 on Bn such that f t

0 has a unique fixed point x0 that is a hyperbolic
source, and all one-dimensional trajectories leave any compact part of Bn in the positive direction
(time increases).

To construct the flow f t
1, we arrange the following:

a) each disk B̃n−k that is a fiber of the locally trivial bundle
(

T (Σk),Σk, Bn−k
)

is invariant

under f t
1;

b) the restriction of f t
1 on B̃n−k has a sink at a point on Σk, corresponding to the center of the

disk B̃n−k, and has the set of equilibria that fills out the entire boundary of the disc B̃n−k;

c) the one-dimensional trajectories on the set (T (Σk) \Σk)∩ B̃n−k move in the positive direction
to the sinks.

Let Σ̃n−1 be an (n− 1)-sphere smoothly embedded in Nn such that Σ̃n−1 bounds the n-ball bn0
with a point x0 inside, and Σ̃n−1 is transversal to the trajectories of the flow f t

0. From the properties

of this flow, and the equality Nn = Σk ∪Bn, and from the fact that ∂T (Σk) is a compact subset of

Bn, it follows that there is a number τ > 0 such that the set Σ̃n−1
τ = f τ

0 (Σ̃
n−1) belongs to T (Σk).

Moreover, the set ∂T (Σk) belongs to f τ
0 (b

n
0 ). Clearly, Σ̃

n−1
τ is an (n − 1)-sphere that is locally flat

embedded in Nn. By construction, Σ̃n−1
τ belongs to the wandering set of the flow f t

1.

The intersection T (Σk) ∩ f τ
0 (b

n
0 ) is an open set whose boundary contains ∂T (Σk). Since ∂T (Σk)

is a submanifold of codimension one, it has a semi-neighborhood U ⊂
(

T (Σk) ∪ ∂T (Σk)
)

∩ f τ
0 (b

n
0 )
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that is homeomorphic to (0; 1] × ∂T (Σk). Let us take an open subset intU ⊂ U homeomorphic to

(0; 1) × ∂T (Σk). Obviously,

πi(intU) = πi

(

(0; 1) × ∂T (Σk)
)

= πi

(

∂T (Σk)
)

, i = 0, . . . , n− 2. (2.1)

The set A0 = Bn \ clos f τ
0 (b

n
0 ) is an open n-dimensional annulus homeomorphic to (0; 1) ×

S
n−1. Therefore, its homotopy groups πi(A0) are equal to zero for all i = 0, . . . , n− 2. Let us

consider a representative γ : Si → intU of the group πi(intU) = 0, where Si is an i-sphere. Since

γ(Si)∩ ∂T (Σk) = ∅, there exists a number τ1 > 0 such that f τ1
1 (γ(Si)) ⊂ A0. Hence, πi(intU) = 0.

Thus, (2.1) implies that πi(∂T (Σ
k)) = 0 for all i = 0, . . . , n− 2. It follows from the validity of

the Poincaré conjecture for all dimensions n � 3 (see [12, 41, 45, 46, 56]) that the set ∂T (Σk) is
homeomorphic to an (n− 1)-sphere.

Since ∂T (Σk) is homeomorphic to Sn−1, the locally trivial bundle
(

T (Σk),Σk, Bn−k
)

is (globally)

nontrivial. The projection π : T (Σk) → Σk of this bundle induces a projection π∗ : ∂T (Σk) → Σk

such that π−1
∗ (x) = ∂Bn−k = Sn−k−1 for any x ∈ Σk. Since the bundle (T (Σk),Σk, Bn−k) is locally

trivial, π∗ induces the locally trivial bundle (∂T (Σk),Σk, ∂Bn−k) = (Sn−1, Sk, Sn−k−1). According
to [1] (see also [43]), there are only the following bundles of this kind:

S
3 → S

2, fiber S1; S
7 → S

4, fiber S3; S
15 → S

8, fiber S7.

It is easy to see that these bundles correspond to the following pairs (n, k): (4, 2), (8, 4), (16, 8).

We see that Nn is a disjoint union of an open n-ball Bn and an n
2 -sphere S

n
2 locally flat

embedded in Nn, where n ∈ {4, 8, 16}. One can consider the spheres S
n
2 , n = 4, 8, 16, as bases of

the Hopf bundles (Sn−1, S
n
2 , S

n
2
−1). Since ∂Bn = S

n−1, Nn can be obtained from the closed n-ball

clos Bn = B
n ∪ ∂Bn after the identification of every fiber of the Hopf bundle (∂Bn = S

n−1,S
n
2 ,S

n
2
−1)

with a point. This completes the proof. �

For reference, we formulate the following statement proved in [22] (see also [19, 21, 23]).

Proposition 5. Let f : Mn → Mn be a Morse – Smale diffeomorphism, and Sepτ (σ) a separatrix
of dimension 1 � d � n− 1 of a saddle fixed point σ. Suppose that Sepτ (σ) has no intersections
with other separatrices. Then Sepτ (σ) belongs to either an unstable (if τ = s) or a stable (if τ = u)
manifold of some nodal fixed point (sink or source, respectively), say β, and the topological closure
of Sepτ (σ) is a topologically embedded d-sphere that equals W τ (σ) ∪ {β}.

Proposition 6. Let f : Mn → Mn be a Morse – Smale diffeomorphism without heteroclinic man-
ifolds on codimension one separatrices. Suppose that there is a codimension one saddle periodic
point σ ∈ NW (f) such that dimW s(σ) = 1, dimW u(σ) = n− 1. Then there exists a codimension
one saddle periodic point σ∗ such that the unstable separatrix Sepu(σ∗) is codimension one and
Sepu(σ∗) has no heteroclinic intersections.

Proof. Without loss of generality, one can assume that all periodic points are fixed. Given any p,
q ∈ NW (f), we put p ≺ q provided that W s(p) ∩W u(q) �= ∅ and there are no other r ∈ NW (f)
such that W s(p) ∩W u(r) �= ∅, W s(r) ∩W u(q) �= ∅. The relation ≺ is a partial ordering and this
order is strict [55, 57].

Suppose the codimension one separatrix Sepu(σ) has heteroclinic intersections (otherwise, there
is nothing to prove). The chain σ ≺ σ1 ≺ · · · has a maximum point, say σ∗. Since f has no
heteroclinic manifolds on codimension one separatrices, every saddle in this chain has a codimension
one unstable separatrix. Since Sepu(σ∗) corresponds to the maximal point, Sepu(σ∗) does not
intersect any separatrix of any other saddle point. �
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Corollary 4. Let f : Mn → Mn be a Morse – Smale diffeomorphism without heteroclinic manifolds
on codimension one separatrices and let there be a codimension one saddle periodic point σ ∈
NW (f) such that dimW u(σ) = 1, dimW s(σ) = n− 1. Then there exists a codimension one saddle
periodic point σ∗ such that the stable separatrix Seps(σ∗) is codimension one and has no heteroclinic
intersections.

The following statement proved in [19] gives sufficient conditions for a Morse – Smale diffeomor-
phism to be polar.

Proposition 7. Let f : Mn → Mn be a Morse – Smale diffeomorphism without codimension one
saddle periodic orbits. Then f is a polar diffeomorphism, i. e., f has a unique source periodic orbit
and unique sink periodic orbit.

Proposition 8. Let Nn be a closed n-manifold, n � 3. Suppose that Nn admits a polar Morse –
Smale diffeomorphism g : Nn → Nn with no codimension one saddles. Then Nn is a simply
connected manifold.

Proof. Note that, if n = 3, then every saddle is codimension one. Hence, for the case n = 3, there
are no saddles at all. This implies that N3 is a 3-sphere. Thus, it remains to consider the case
n � 4. Let e : S1 → Nn be a map representing an element of π1(N

n). Since n � 4, one can assume
that e is a smooth immersion [24]. Without loss of generality, one can assume that e(S1) does not
contain periodic points of g. Take an unstable manifold W u(σ1) of some saddle σ1. Since W u(σ1)

is an image of Rk under a smooth immersion, one can slightly move e(S1) to become transversal
to W u(σ1). By condition, dimW u(σ1) � n− 2. The transversality gives that e(S1) ∩W u(σ1) = ∅.
Continuing this procedure, one can obtain e(S1) with no intersections with unstable manifolds of
every saddle. Hence, e(S1) belongs to the unstable manifold W u(α) of unique source α of g. Since
W u(α) is homeomorphic to R

n, e(S1) is homotopic to zero. It follows that π1(N
n) = 0. �

3. PROOFS OF THE MAIN RESULTS

Proof (of Theorem 1). Let Mn be a supporting manifold for f ∈ G(Mn). There are two cases:
a) kf = 0, b) kf � 1.

Consider case a). It follows from item 1 of the definition of class G(Mn) that diffeomorphism f
is a Morse – Smale diffeomorphism without heteroclinic manifolds on codimension one separatrices.
Without loss of generality we can suppose that the nonwandering set of diffeomorphism f consists of
fixed points. By virtue of Proposition 6, there exists a codimension one saddle σ whose codimension
one separatrix has no heteroclinic intersections. For definiteness, let us assume that dimW s(σ) = 1,
dimW u(σ) = n− 1. According to Proposition 5, the topological closure clos W u(σ) of W u(σ) is a
topologically embedded (n− 1)-sphere consisting of W u(σ) and a sink ω. By Proposition 1, there
is an open neighborhood U of clos W u(σ) such that the topological closure clos U is diffeomorphic

to S
n−1 × [0; 1]. Since clos U contains the sink ω, fk(clos U) ⊂ U for a sufficiently large k. Passing

to the iteration fk if necessary, we can assume, without loss of generality, that k = 1.

Let us remove the neighborhood U from the manifold Mn. The manifold Mn \ U has two

boundary components Σn−1
1 , Σn−1

2 , each of which is homeomorphic to S
n−1. Gluing to each Σn−1

i
an n-ball Bn

i , i = 1, 2, we get a smooth closed manifold Mn
1 . Since f(clos U) ⊂ U , we can continue

the diffeomorphism f to the manifold Mn
1 in such a way that inside each ball Bn

1 , B
n
2 the obtained

diffeomorphism f1 : M
n
1 → Mn

1 has exactly one hyperbolic sink, while all points except the sinks
are wandering. Comparing the nonwandering sets of f1 and f , one can see that f1 has one saddle
of codimension less and one node (the sink, in this case) more. We call the described procedure
a cutting along an unstable separatrix. A similar cutting operation is considered along a stable
separatrix (with adding sources).

After νf cuttings along codimension one separatrices of all saddles with the Morse indices
n− 1 and 1, we obtain a Morse – Smale diffeomorphism fνf : Mn

νf
→ Mn

νf
of a closed manifold Mn

νf
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consisting of finitely many connected components. The nonwandering set of fνf contains exactly
μf + νf nodes, and does not contain codimension one saddles. By Proposition 7, each connected
component of the manifold Mn

νf
admits a polar diffeomorphism with exactly one source and exactly

one sink. Hence, the number of connected components ofMn
νf

is equal to γf = 1
2(μf + νf ). Therefore,

the number μf + νf is even.

The cutting procedure above allows one to rebuild the original manifold Mn from the obtained
connected components. If one gets a connected manifold after the cutting along a codimension
one separatrix, the intermediate manifold is homeomorphic to the connected sum of some closed
manifold and S

n−1 × S
1, according to Proposition 3. If after the cutting along a codimension one

separatrix one gets a manifold consisting of two connected components, then the intermediate
manifold is homeomorphic to the connected sum of two closed manifolds.

Denote by Nn
1 , . . ., N

n
γf

the connected components of the manifold Mn
νf
. The number of cuttings

that does not increase the number of the connected components is equal to

gf = νf − 1

2
(μf + νf ) + 1 =

1

2
(νf − μf + 2) .

Each such cutting corresponds to the summand S
n−1× S

1 in the resulting connected sum. Therefore,
the connected sum of γf manifolds Nn

1 , . . ., N
n
γf

and gf copies of Sn−1 × S1 is homeomorphic Mn.

There are two possibilities: 1) gf = 0, 2) gf �= 0. For the first one, there are two subcases: 1a) all
manifolds Nn

1 , . . ., N
n
γf

are homeomorphic to the sphere S
n. Then Mn is homeomorphic to S

n.

1b) among Nn
1 , . . ., N

n
γf
, there exist exactly 1 � lf � γf manifolds that are not homeomorphic

to S
n. Then Mn is homeomorphic to

Nn
1 � · · · �Nn

lf
.

It is obvious that lf � λf . If gf �= 0, we find in a similar way that either Mn is homeomorphic to
the connected sum

(

S
n−1 × S

1
)

� · · · �
(

S
n−1 × S

1
)

︸ ︷︷ ︸

gf

of gf copies of Sn−1 × S
1, or Mn is homeomorphic to the connected sum

(

S
n−1 × S

1
)

� · · · �
(

S
n−1 × S

1
)

︸ ︷︷ ︸

gf

�Nn
1 � · · · �Nn

lf

for some 1 � lf � λf . By construction, each manifold Nn
i (i = 1, . . . , lf ) admits a polar diffeo-

morphism without codimension one saddle periodic orbits, so it is simply connected according to
Proposition 8. Thus, the ambient manifold is homeomorphic to

T n
kf
� Sn

gf
� N n

lf
,

where kf = 0 and T n
kf

= ∅. This completes the proof of case a).

Consider case b), that is, kf � 1.

Let Λ be a C-dense component of a nontrivial basic set of f and lΛ � 1 be a minimal positive
integer such that f lΛ(Λ) = Λ. It follows directly from Theorem 5.1 [17] (see also [49, 63]) that there
is a neighborhood U(Λ) of Λ homeomorphic to T

n \ (∪κΛ
i=1Bi), where Bi is an n-ball and κΛ is the

number of all bunches belonging to Λ. Moreover, clos f lΛ
(

U(Λ)
)

⊂ U(Λ), ∩j�0f
jlΛ

(

U(Λ)
)

= Λ if

Λ belongs to an attractor, and clos f−lΛ
(

U(Λ)
)

⊂ U(Λ), ∩j�0f
−jlΛ

(

U(Λ)
)

= Λ if Λ belongs to a
repeller.

Let us recall for convenience a construction of a neighborhood U(Λ) which was done in [17]. For
definiteness, suppose that Λ is a C-dense component of an expanding attractor. First, one proves
the existence of a periodic point p ∈ Λ such that one of the components of W s(p) \ {p} does not
intersect Λ. Following [13], such a p ∈ Ω is called a boundary periodic point. A periodic point is
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interior if it is not a boundary periodic point. According to [13], there are finitely many boundary
periodic points. An unstable manifold W u(x) ⊂ Λ, x ∈ Λ, is called a boundary unstable manifold
if W u(x) contains a boundary periodic point. The boundary unstable manifolds split into a finite
number of so-called bunches in the following way. The union of pairwise disjoint unstable manifolds
W u(p1), . . ., W

u(pk) containing the boundary points p1, . . . , pk, respectively, is said to be a k-
bunch if there are points xi ∈ W u(pi) and arcs (xi, yi)

s
∅, yi ∈ W u(pi+1), 1 � i � k, where pk+1 = p1,

yk ∈ W u(p1). Here (xi, yi)
s
∅ means an arc of W s(xi) = W s(yi) such that (xi, yi)

s
∅ ∩ Λ = ∅. Since

Λ belongs to the orientable expanding attractor and the dimension n � 3, every bunch of Λ is a
2-bunch.

Let Bpq be a bunch consisting of two unstable manifolds W u(p) and W u(q), where p and q
are boundary periodic points. Clearly, p and q have the same period, denoted by m = m(p, q).
Given any point x ∈ W u(p), there is a unique point y ∈ W u(q) such that (x, y)s = (x, y)s∅, and vice
versa. Let the map ϕpq : (W

u(p) \ {p})∪ (W u(q) \ {q}) → (W u(p) \ {p})∪ (W u(q) \ {q}) be given by
ϕpq(x) = y whenever (x, y)s = (x, y)s∅. The restriction fm|Wu(p) has the sole hyperbolic repelling

fixed point p. Therefore, there is a closed C1 embedded (n− 1)-ball p ∈ Dp ⊂ W u(p) bounded

by the C1 embedded (n− 2)-sphere Sn−2
p = ∂Dp such that Sn−2

p and fm(Sn−2
p ) bound a closed

(n− 1)-annulus. Since ϕpq|(Wu(p)−p) is a homeomorphism, ϕpq(S
n−2
p ) is a locally flat embedded

(n− 2)-sphere Sn−2
q bounding the closed (n− 1)-ball Dq ⊂ W u(q). Set Cpq =

⋃

x∈Sn−2
p

[x, ϕpq(x)]
s
∅.

By construction, Cpq contains the spheres Sn−2
p , Sn−2

q and is homeomorphic to the closed (n− 1)-

cylinder Σn−2 × [0, 1]. Hence, the set Spq = Dp ∪Dq ∪ Cpq is homeomorphic to the (n− 1)-sphere.
Continuing this way for every 2-bunch from Λ, we get the family of (n− 1)-spheres Spjqj ,

j = 1, . . . , κΛ. Slightly moving Spjqj inside of Mn \ Λ, one gets smooth (n− 1)-spheres S′
pjqj ,

j = 1, . . . , κΛ, called characteristic spheres. The union of all these spheres bounds a neighborhood
U(Λ) of Λ such that clos f lΛ

(

U(Λ)
)

⊂ U(Λ), ∩j�0f
jlΛ

(

U(Λ)
)

= Λ. Let us attach the n-balls Bn
pjqj ,

j = 1, . . . , κΛ, to U(Λ) along S′
pjqj , j = 1, . . . , l, to get a closed manifold, say T n. By construction,

the manifold T n is a closed connected manifold.

The lamination formed by the unstable manifolds W u(x), x ∈ Λ, can be extended to a
codimension one foliation F on T n such that every leaf of F is homeomorphic (in the interior
topology) to R

n−1. It follows from [42] that the manifold T n is homotopy equivalent to an n-
torus T

n. It follows from [54, 58] that the manifold T 3 is homeomorphic to the 3-torus T
3. By

Theorem 8.1 [25], the manifold T 4 is homeomorphic to the 4-torus T
4 and, according to [28], for

any n � 5 the manifold T n is homeomorphic to the n-torus Tn.

Let Λ1, . . . ,Λkf be C-dense components of all nontrivial basic sets belonging to NW (f)

endowed by pairwise disjoint neighborhoods U(Λ1), . . ., U(Λkf ) described above for the C-dense

component Λ. Consider the manifold Mn
1 = Mn \

(

∪κf

i=1U(Λi)
)

(which is not connected in general).

Since every neighborhood U(Λi) is homeomorphic to T
n \

(

∪κΛi
i=1Bi

)

, where κΛi is the number

of bunches of the basic set which contains the C-dense component Λi, each boundary component
of Mn

1 is an (n− 1)-sphere. Let us attach the n-balls B to the manifold Mn
1 along each boundary

component belonging to ∂Mn
1 to get a closed manifold denoted by Mn

2 . It follows from the

inclusions clos f lΛ
(

U(Λ)
)

⊂ U(Λ), clos f−lΛ
(

U(Λ)
)

⊂ U(Λ) that one can extend f |Mn
1
to Mn

2 to get
a diffeomorphism f2 : M

n
2 → Mn

2 such that every attached ball contains either a unique hyperbolic
sink periodic point or a unique hyperbolic source periodic point. Thus, the diffeomorphism f2
belongs to the class G, moreover, f2 satisfies case a) considered above. Let us prove that Mn is
homeomorphic to

T
n� · · · �Tn

︸ ︷︷ ︸

kf�1

�
(

S
n−1 × S

1
)

� · · · �
(

S
n−1 × S

1
)

︸ ︷︷ ︸

βf�0

�Mn
2 . (3.1)

The appearance of copies S
n−1 × S

1, calculation of the integer βf in the connected sum and
the structure of a manifold Mn

2 can be explained in the following way. Let us consider a C-dense
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component Λi, i ∈ {1, . . . , kf}, and any characteristic sphere S′ for Λi. Take an open neighborhood

V of S′ such that the topological closure clos V is diffeomorphic to S
n−1 × [0; 1]. Let us remove the

neighborhood V from the manifold Mn.

There are two possibilities: 1) Mn \ V is connected; 2) Mn \ V is not connected. In the first case,
according to Proposition 3, there is a topological closed manifold Qn such thatMn is homeomorphic
to the connected sum Qn�(Sn−1 × S1). In the second case, the manifold Mn is homeomorphic to the
connected sum of some manifolds Q1 and Q2. In the first case, difffeomorphism f can be extended
to the manifold Qn to diffeomorphism fQn with two additional nodes (a sink and a source) and, in
the second case, f can be extended to Qn

1 to a diffeomorphism fQn
1
with an additional sink and to

Qn
2 to a diffeomorphism fQn

2
with an additional source. Continuing the process of cutting alone the

characteristic spheres of all C-dense components Λ1, . . . ,Λkf , we get kf closed connected manifolds
each of which is homeomorphic to T

n and closed manifolds Qn
1 , . . . , Q

n
χf

for some number χf which

satisfies the inequality 1 � χf � κf .

Thus, the manifold Mn is homeomorphic to the connected sum

T
n� · · · �Tn

︸ ︷︷ ︸

kf�1

�
(

S
n−1 × S

1
)

� · · · �
(

S
n−1 × S

1
)

︸ ︷︷ ︸

βf�0

�Qn
1 �, . . . , �Q

n
χf
. (3.2)

The integer βf equals the number of cuttings along characteristic spheres that does not increase
the number of the connected components. So βf can be calculated by the formula

βf = κf − kf − χf + 1.

Set Mn
2 = Qn

1 �, . . . , �Q
n
χf

and get the sum (3.1) from (3.2).

The nonwandering set of fMn
2
consists of trivial basic sets and has the same number of saddle

periodic orbits as the nonwandering set of diffeomorphism f . Thus, the nonwandering set of the
diffeomorphism fMn

2
contains exactly μf + κf − (2χf − 2) nodes, νf saddles with Morse index 1 or

n− 1 and λf saddles with Morse index other than 1 or n− 1. By the definition of the class G(Mn),
the invariant manifolds of saddle periodic orbits of fMn

2
intersect transversally. Hence, fMn

2
is a

Morse – Smale diffeomorphism. Applying to diffeomorphism fMn
2
the arguments of case a), we find

that the manifold Mn
2 is homeomorphic to the connected sum

Sn
g̃f
� Nlf ,

where g̃f = 1
2 (νf − μf − κf + 2χf ).

It follows from consideration of cases a) and b) that for diffeomorhism f ∈ G(Mn) the ambient
manifold Mn is homeomorphic to

T n
kf
�Sn

βf
�Sn

g̃f
� N n

lf
,

where βf = κf − kf − χf + 1, g̃f = 1
2 (νf − μf − κf + 2χf ) if kf �= 0 (that is 1 � χf � κf ) and

χf = 1 if kf = 0.

If νf = μf = λf = 0, then it follows from construction that χf =
κf

2 and βf =
κf

2 − kf + 1.

Set ηf = βf + g̃f . It is directly calculated that the number ηf =
κf

2 − kf +
νf−μf+2

2 . Thus, the
proof is finished. �

Proof (of Theorem 2). Since Nn
i∗ contains exactly one saddle fixed point, Nn

i∗ admits a polar
diffeomorphism fi∗ : Nn

i∗ → Nn
i∗ whose nonwandering set consists of a sink ωi∗ , a source αi∗ ,

and a saddle σi∗ . It follows from Proposition 5 that Σk = W u(σi∗) ∪ {ωi∗} is a k-sphere, where
2 � k = dimW u(σi∗) � n− 2. It is well known [16, 57] that a manifold is the disjoint union of
unstable manifolds of nonwandering orbits. Hence, the manifold

Nn
i∗ = W u(σi∗) ∪W u(ωi∗) ∪W u(α) = W u(σi∗) ∪ {ωi∗} ∪W u(αi∗) = Σk ∪W u(αi∗)
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is the disjoint union of the open n-ball Bn = W u(αi∗) and the k-sphere Σk topologically embedded
in Nn

i∗ .

It was shown in [35] that n is even and Σk is locally flat embedded provided that n � 6. Thus,
it follows from Proposition 4 that Nn

i∗ is a projective-like manifold for n � 6. If n = 4, the manifold

N4
i∗ is the disjoint union of a topologically embedded 2-sphere and an open 4-dimensional ball. The

theorem is proved. �

Proof (of Theorem 3). If a Morse – Smale flow has no periodic trajectories, then the time one map
(shift along the trajectories) is a Morse – Smale diffeomorphism. Now, the result follows from
Theorem 1. �

Proof (of Corollaries 2 and 3). The outline of the proof of the corollaries is the same: if we assume
the contrary, then there exist decompositions of the ambient manifold Mn, according to Theorems 1
and 3. It follows from the Van Kampen theorem (see, for example, [43]) that π1(M

n) contains a
subgroup Z ∗ · · · ∗ Z. This contradiction proves the required assertions. �
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4. Bonatti, C., Grines, V., Medvedev, V., and Pécou, E., Three-Manifolds Admitting Morse – Smale
Diffeomorphisms without Heteroclinic Curves, Topology Appl., 2002, vol. 117, no. 3, pp. 335–344.

5. Bowen, R., Periodic Points and Measures for Axiom A Diffeomorphisms, Trans. Amer. Math. Soc., 1971,
vol. 154, pp. 377–397.

6. Cantrell, J.C., Almost Locally Flat Embeddings of Sn−1 in Sn, Bull. Amer. Math. Soc., 1963, vol. 69,
pp. 716–718.

7. Cantrell, J. and Edwards, C., Almost Locally Flat Embeddings of Manifolds, Michigan Math. J., 1965,
vol. 12, pp. 217–223.

8. Chernavskii, A.V., On Singular Points of Topological Imbeddings of Manifolds and the Union of Locally
Flat Cells, Dokl. Akad. Nauk SSSR, 1966, vol. 167, no. 3, pp. 528–530 (Russian).

9. Daverman, R. J. and Venema, G.A., Embeddings in Manifolds, Grad. Stud. Math., vol. 106, Provi-
dence, R.I.: AMS, 2009.

10. Eells, J., Jr. and Kuiper, N.H., Manifolds Which Are Like Projective Planes, Inst. Hautes Études Sci.
Publ. Math., 1962, No. 14, pp. 5–46.

11. Franks, J., Anosov Diffeomorphisms, in Global Analysis: Proc. Sympos. Pure Math. (Berkeley, Calif.,
1968): Vol. 14, Providence,R.I.: AMS, 1970, pp. 61–93.

12. Freedman, M.H., The Topology of Four-Dimensional Manifolds, J. Differential Geometry, 1982, vol. 17,
no. 3, pp. 357–453.

13. Grines, V. Z., The Topological Conjugacy of Diffeomorphisms of a Two-Dimensional Manifold on One-
Dimensional Orientable Basic Sets: 1, Trans. Moscow Math. Soc., 1975, vol. 32, pp. 31–56; see also: Trudy
Moskov. Mat. Obsc., 1975, vol. 32, pp. 35–60.

REGULAR AND CHAOTIC DYNAMICS Vol. 27 No. 6 2022



ON THE TOPOLOGICAL STRUCTURE OF MANIFOLDS 627

14. Grines, V. Z., Gurevich, E.Ya., Zhuzhoma, E.V., and Pochinka, O.V., Classification of Morse – Smale
Systems and the Topological Structure of Underlying Manifolds, Russian Math. Surveys, 2019, vol. 74,
no. 1, pp. 37–110; see also: Uspekhi Mat. Nauk, 2019, vol. 74, no. 1(445), pp. 41–116.

15. Grines, V., Gurevich, E., Zhuzhoma, E., and Zinina, S., Heteroclinic Curves of Morse – Smale Diffeo-
morphisms and Separators in the Magnetic Field of the Plasma, Nelin. Dinam., 2014, vol. 10, no. 4,
pp. 427–438 (Russian).

16. Grines, V., Medvedev, T., and Pochinka, O., Dynamical Systems on 2- and 3-Manifolds, Dev. Math.,
vol. 46, New York: Springer, 2016.

17. Grines, V. and Zhuzhoma, E., On Structurally Stable Diffeomorphisms with Codimension One Expand-
ing Attractors, Trans. Amer. Math. Soc., 2005, vol. 357, no. 2, pp. 617–667.

18. Grines, V. Z., Zhuzhoma, E.V., and Medvedev, V. S., On the Structure of the Ambient Manifold
for Morse – Smale Systems without Heteroclinic Intersections, Proc. Steklov Inst. Math., 2017, vol. 297,
no. 1, pp. 179–187; see also: Tr. Mat. Inst. Steklova, 2017, vol. 297, pp. 201–210.

19. Grines, V. Z., Zhuzhoma, E.V., Medvedev, V. S., and Pochinka, O.V., Global Attractor and Repeller
of Morse – Smale Diffeomorphisms, Proc. Steklov Inst. Math., 2010, vol. 271, no. 1, pp. 103–124; see also:
Tr. Mat. Inst. Steklova, 2010, vol. 271, pp. 111–133.

20. Grines, V., Medvedev, T., Pochinka, O., and Zhuzhoma, E., On Heteroclinic Separators of Magnetic
Fields in Electrically Conducting Fluids, Phys. D, 2015, vol. 294, pp. 1–5.

21. Grines, V. Z., Zhuzhoma, E.V., and Medvedev V. S. New Relations for Morse – Smale Flows and Diffeo-
morphisms, Dokl. Math., 2002, vol. 65, no. 1, pp. 95–97; see also: Dokl. Akad. Nauk, 2002, vol. 382, no. 6,
pp. 730–733.

22. Grines, V. Z., Zhuzhoma, E.V., and Medvedev, V. S., On the Morse – Smale Diffeomorphisms with Four
Periodic Points on Closed Orientable Manifolds, Math. Notes, 2003, vol. 74, nos. 3–4, pp. 352–366; see
also: Mat. Zametki, 2003, vol. 74, no. 3, pp. 369–386.

23. Grines, V. Z., Medvedev, V. S., and Zhuzhoma, E.V., On Existence of Noncompact Heteroclinic Curves,
Qual. Theory Dyn. Syst., 2003, vol. 4, no. 1, pp. 59–65.

24. Haefliger, A., Differentiable Embeddings of Sn, Bull. Amer. Math. Soc., 1961, vol. 67, pp. 109–112.
25. Hillman, J. A., Four-Manifolds, Geometries and Knots, Geom. Topol. Monogr., vol. 5, Sydney: Univ.

of Sydney, 2002.
26. Hirsch, M.W., Differential Topology, Grad. Texts in Math., vol. 33, New York: Springer, 1976.
27. Hirsch, M.W. and Pugh, C.C., Stable Manifolds and Hyperbolic Sets, in Global Analysis: Proc. Sympos.

Pure Math. (Berkeley, Calif., 1968): Vol. 14, Providence,R.I.: AMS, 1970, pp. 133–163.
28. Hsiang, W.-C. and Wall, C. T.C., On Homotopy Tori: 2, Bull. London Math. Soc., 1969, vol. 1, pp. 341–

342.
29. Katok, A. and Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia

Math. Appl., vol. 54, Cambridge: Cambridge Univ. Press, 1995.
30. Kollmer, H., On Hyperbolic Attractors of Codimension One, in Geometry and Topology: Proc. of the 3rd

Latin Amer. School of Math. (Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976), Lecture Notes
in Math., vol. 597, Berlin: Springer, 1977, pp. 330–334.

31. Longcope, D.W., Topological and Current Ribbons: A Model for Current, Reconnection and Flaring
in a Complex, Evolving Corona, Sol. Phys., 1996, vol. 169, no. 1, pp. 91–121.

32. Maclean, Rh., Beveridge, C., Longcope, D., Brown, D., and Priest, E., A Topological Analysis
of the Magnetic Breakout Model for an Eruptive Solar Flare, Proc. R. Soc. Lond. Ser. A Math. Phys.
Eng. Sci., 2005, vol. 461, no. 2059, pp. 2099–2120.
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