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Abstract

In the article, at the mathematical level of rigor, it is shown that
the pair of concepts ”covalence — mesoionicity” correlates in the
same way as the pair ”kekuleness — non-kekuleness”. A criterion
for a structure to be mesoionic (mesoionicity criterion) is formulated
and proved, which makes it possible to enumerate all mono-charged
mesoionic structures (mesomeric betaines) on a given graph. The
mesoionicity criterion and the Kasteleyn theorem (on counting the
number of perfect matchings in a graph) were used as the basis
for a computer program that classifies dipolar resonance structures.
The work of the program is demonstrated on the lists of obtained
mesoionic structures. A general approach to mesoionicity is dis-
cussed.

1 Introduction

Currently, a large number of molecules are known to have structure that

cannot be satisfactorily expressed using a single structural formula con-
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taining only two-center and two-electron bonds [1]. For a qualitative as-

sessment of the electronic structure, stability, and energy, such structures

are often depicted as hybrids of several dipolar resonance structures (in

the entire text of this work, as is customary in organic chemistry, an ar-

bitrary π – charge in each given dipolar resonance structure is considered

as a point, integer, and centered on a particular atom). The simplest ex-

ample is the ozone molecule described by a superposition of two resonance

structures (example (1) in Fig. 1). Another example is the zwitter-ion (2).

The use of resonance theory to describe the electronic structure of such

systems is quite justified [2].

Figure 1. Dipolar resonance structures for (1) ozone and (2) organic
zwitter-ion.

Among the dipolar structures that do not have a covalent represen-

tation, there is an extensive group of compounds called mesomeric be-

taines. The most general definition of mesomeric betaines was given by

Ollis and Ramsden [3]: Mesomeric betaines are neutral conjugated hete-

rocyclic molecules that can only be represented by dipolar structures, in

which the positive and negative charges are not compensated and are de-

localized in one π-conjugated system.

As an illustration of this concept, let us consider sets of dipolar structures

(3)-(8) presented in Fig. 2. By ”moving” the charges with the help of

various resonance structures, it can be shown that structures (4), (6), (8)

have a covalent representation, and therefore do not belong to mesomeric

betaines. Structures (3), (5), (7), in their turn, do not have a covalent

representation, which means that they are mesomeric betaines.

We note some terminological features. In the literature, the stable term

“mesoionic compound” has developed only for five-membered heterocyclic

mesomeric betaines [4]. In this article, we will use the concept of mesoion-

icity in a broad sense for all mesomeric betaines. Moreover, the entire



7

theory presented will also be true for acyclic dipolar conjugated struc-

tures. Further in the text, the terms mesoionic compound and mesomeric

betaine are synonymous.

Mesoionic compounds are not only widely used in organic synthesis, but

also have a wide range of other applications. Thus, mesoionic compounds

in the liquid state can be ”distilled” analogs of ionic liquids, being super-

polar media [5, 6]. They also find application in catalysis [7] and are used

as non-linear optical materials [8].

Figure 2. Comparison of mesomeric betaines (3), (5), (7) and hetero-
cyclic compounds (4), (6), (8) having a covalent representa-
tion.

Katritzky and Balaban proposed [9] to divide mesoionic structures into

two odd alternant fragments, one of which bears a delocalized positive

charge, and another – a negative charge. Ramsden noted that the different

mutual orientations of these odd chains can form the basis of a classification

of alternant mesoionic compounds [10], which divides them into only five

classes (using the formalism of connectivity matrices).

Our early work was devoted to the problems of chemical topology [11,12],

application of graph theory to heterocyclic structures and reactions [13–

15], and experimental aspects of heterocyclic synthesis [16,17].

In this article, we propose a novel approach to listing all (and not just



8

alternant) mesoionic structures. The theorems we have proved can be

easily implemented in the form of a computer program, which makes it

easy to enumerate all mesoionic structures with a given number of atoms.

2 Results and discussion

While constructing a general theory, we tried to answer the following ques-

tions:

(a) Let the structure be defined by the resonance dipolar formula. How

to determine that the structure is covalent? In other words, is it possible

to find a resonance structure equivalent to the original one, in which the

positive and negative charges are compensated?

(b) Let a molecular graph be given, that is, a graph that can be realized

as a structural σ-skeleton of an organic molecule. Is it possible (and if

possible, then how) to place on it the signs of π-charges “+” and “-” along

with double bonds so that the resulting structure is mesoionic?

The theorem that allows answering these questions is called the mesoion-

icity criterion.

To demonstrate that the problem is not evident, we invite the reader to

determine, whether non-alternant structures (9) and (10) (Fig. 3) have a

covalent representation.

Figure 3. Do these structures have a covalent representation?

A preliminary answer to problems (a) and (b) was given by Rams-

den [17]. It has been pointed out that if a heterocyclic molecule with
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heteroatoms having two π-electrons (2π-heteroatom) contains (1) a non-

Kekule hydrocarbon fragment or (2) two independent odd alternant frag-

ments, then the molecule does not have a covalent representation. This

statement requires detailed consideration, clarification, and formalization,

which will be provided in subsequent sections. The entire previous theory

of the structure of mesoionic compounds predominantly described only al-

ternant structures. In our paper, we will discuss the most general arbitrary

case.

The structure of this article is the following. Section 3 discusses a class

of dipolar structures that is important for the formulation and application

of the criterion – π-perfect structures, and also introduces a convenient

WAXYZ-notation. Section 4 formulates the mesoionicity criterion and

demonstrates examples of its application. Section 5 is devoted to a rig-

orous proof of the mesoionicity criterion. Section 6 describes the connec-

tion between the results obtained and the well-known Kasteleyn theorem

in statistical physics; also, Section 6 demonstrates a computer algorithm

that implements the mesoionicity criterion. In Section 7, this computer

algorithm was used to obtain a library of all mesoionic π-perfect struc-

tures containing a small number of non-hydrogen atoms (up to 7 atoms

inclusive). Section 8 is devoted to a discussion of mesoionic compounds

containing heteroatoms that participate in π-conjugation. Section 9 deals

with the problem of poly-charged structures. In Section 10, we formulate a

scientific program to use our results to build a complete list of all mesoionic

compounds. A number of chemical limitations of the theory can be found

in section 11. Conclusions are given in Section 12.

3 π-Perfect structures

Careful consideration of a large array of mesoionic structures [3, 4] led us

to the conclusion that the existence of a covalent resonance is determined

not by the entire molecular structure, but only by a certain fragment of

it. Indeed, it is obvious, for example, that hydrogen atoms in conjugated

systems do not play any role in solving problems (a) and (b) from the pre-
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vious section. The same can be said about atoms that do not participate

in π-conjugation, since it is difficult to place a π-charge on such atoms

using resonance formulas.

We propose to call the dipolar fragments that determine the mesoionicity

to be π-perfect. The choice of the term π-perfect is due to the fact that

the condition for the existence of such structures is expressed in the lan-

guage of perfect matchings of graphs [18], as will be shown below.

An organic resonance structure is called π-perfect if each of its non-hydrogen

atoms participates in the formation of one multiple bond and/or has a π-

charge of any sign. π-Perfect structures usually contain only the following

fragments (not necessarily all of them):

(i) Any number of pairs of atoms linked by a multiple bond (such as, for

example, C = C, C = N , N = N , and their analogues) and attached to

each other in an arbitrary manner.

(ii) The group C = X+ attached to the structure in an arbitrary way.

Such groups can be, for example, the immonium cation R2N
+ = CR2

(and its analogs) or the pyridinium cation (and its analogs).

(iii) Group C = Z− attached to the structure in an arbitrary way. Such

groups can be, for example, the anion R2C = BR−
2 (and its analogs) or

the anion of boron-substituted benzene (and its analogs).

(iv) Atoms and groups Y − bearing a negative π-charge. The Y − atom can

be, for example, terminal atoms of oxygen, nitrogen, carbon, their ana-

logues according to the periodic table, or divalent vicinal groups formed

by the same atoms.

(v) Atoms and groups A+ bearing a positive π-charge. Such groups can

be, for example, carbocation centers.

Aza-, phospha-, arsa-, or any other substitutions of carbon atoms in π-

perfect structures do not affect the existence of a covalent representation

of the dipolar structure, so structures with such substitutions will also be

called π-perfect.

Examples of π-perfect structures are shown in Figs. 4. We note that

these structures are not zwitter-ionic, which means that the concept of

mesoionicity makes no sense for them.
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Figure 4. Examples of π-perfect structures. The top line shows the
conditions from the text that these structures satisfy. Note
that any substitution of carbon atoms for other atoms does
not affect the presence of the π-perfection property.

It is important to note that π-perfect structures can NOT contain

heteroatoms that contribute two π-electrons or zero π-electrons, that is,

atoms that do not participate in the formation of multiple bonds and do

not have a π-charge in this dipolar resonance structure. (Below in Fig.

6, this criterion for the absence of the property of π-perfectness will be

denoted by the sign (vi)). Let us agree that 2π- and 0π-heteroatoms in all

further figures will be circled (Fig. 5).

Figure 5. Examples of structures that are not π-perfect

An illustration of how the concept of π-perfection can correlate with

the concept of mesoionicity is shown in Fig. 6. Note that often for the

same molecule, one resonance structure is π-perfect, while the other is not.

This is especially true for non-mesoionic structures with an odd number

of atoms participating in the formation of a π-system: in such systems,

the covalent resonance structure is often not π-perfect. In some molecules,

π-perfect resonance structures may not exist at all, as for example, in the
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five-membered cycles in Fig. 2, where all the resonance structures of the

molecule (5) are not π-perfect, while the leftmost resonance of the molecule

(7) is π-perfect, while the other two are not.

Further in the text of this section, all structures under consideration are

π-perfect, as well as monocharged dipolar, that is, such structures contain

exactly one negative and exactly one positive π-charge.

Figure 6. Comparison of mesoionic and covalent structures indicating
that they have the property of π-perfection.

For further discussion, we need an advanced notation (WAXYZ-notation).

Let us agree that in molecules it is possible to formally replace the NR+

group and its analogs (PR+, O+, S+, etc.) by X+. We replace the four-

coordination boron and its analogues with Z−. Atoms carrying a negative
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π-charge will be denoted, as before, by the symbol Y −. Carbocationic

centers (iv) will be denoted by the symbol A+. Finally, the symbol W

will denote neutral 2π- and 0π-heteroatoms that do not participate in the

formation of a multiple bond. Thus, any studied structural formula can

be redrawn using the WAXYZ-notation (Fig. 7). Naturally, it is assumed

that in the structure under consideration there are no non-hydrogen atoms

that are not included in the π-conjugation chain. It is also necessary that

all aza-, phospha- and other substitutions in dipolar structures must be

replaced by carbon atoms.

We will adhere to the following notation in the figures: (I) is the opera-

tion of transition from the structural formula to the formula in WAXYZ-

notation, (II) is the removal of the W heteroatom from a non-π-perfect

structure, (III) is the separation of positive and negative charges into dif-

ferent atoms, as will be described below.

Figure 7. (I) Using WAXYZ-notation. (II) Selection of a π-perfect
fragment in some graph. In square brackets it is indicated
that under the action of operation (II) the structure does
not change

Once again, we note that not all resonance structures of the same

molecule containing a π-electronic structure are π-perfect. However, they

all contain a π-perfect subgraph, or may be equivalent to a π-perfect res-

onance formula. For example, enamine (11) (Fig. 8) does not fall under

the definition given above, but it can be converted into a π-perfect struc-

ture by charge delocalization (operation (III), structure (12)) or by formal
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removal of the nitrogen atom (operation (II ), structure (13)).

Figure 8. Two ways to isolate the π-perfect fragment: removal of the
2π-heteroatom (II) or delocalization (III)

Therefore, there are two ways to search for a π-perfect fragment: delo-

calization and removal of 2π-heteroatoms. Let us present a specific algo-

rithm related to the removal of vertices. First of all, you need to redraw

the given molecule, taking into account the WAXYZ-notation. Next, re-

move all atoms of type W from the structure. The remaining subgraph

will be the maximum π-perfect fragment in the molecule under study. Fig.

7 shows how to use this algorithm to extract π-perfect subgraphs in some

structures.

To proceed further, we need to remind the reader of a few terms from

graph theory. A graph has a perfect matching [19] if there is a set of pair-

wise non-adjacent edges covering all the vertices of the graph. A molecular

structure is called Kekule structure if it has a perfect matching, or in the

language of chemistry, is covered by a system of double bonds. Otherwise,

we can speak of a non-Kekule structure (Fig. 9).

Figure 9. Examples of Kekule and non-Kekule structures

Let us divide all π-perfect zwitter-ionic structures into four classes (Fig.

10). Structures of the α type have an odd number of non-hydrogen atoms

and contain C = X+ and Y − fragments. Structures of the β type have

an odd number of non-hydrogen atoms and contain C = Z− and A+

fragments. Structures of the γ type have an even number of non-hydrogen

atoms and contain fragments A+ and Y −. Structures of the δ type have
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an even number of non-hydrogen atoms and contain C = X+ and C = Z−

fragments.

Figure 10. Four types of dipolar π-perfect structures.

Note that different resonance structures of the same molecule (not nec-

essarily π-perfect) often contain π-perfect substructures of different types

(Fig. 11). Note that sometimes a π-perfect subgraph is not connected (γ

in Fig. 11 contains two non-Kekule fragments: 1 and 3-5). In such cases,

the entire theory presented is still applicable.

Figure 11. Various resonance structures of 1,3-azaborine containing
π-perfect structures of various types. The π-perfect sub-
graphs are pointed by dashed lines for α, β, δ. For γ type
π-perfect fragment contains disconnected sets of atoms 1
and 3,4,5. W-type heteroatoms are marked with a circle.

Note that in π-perfect δ-type structures, every non-hydrogen atom

participates in the formation of a double bond, or, as mathematicians

say [18], the graph of a π-perfect δ-type molecule has a perfect matching

(is Kekule structure). In π-perfect structures of the α-type, every non-

hydrogen atom, with the exception of the Y − atom, forms a double bond,

which means that the entire structure without the Y − atom has a perfect

matching. Similar conditions can be formulated for structures of the β

and γ types.
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The conditions of the previous paragraph will be called necessary con-

ditions for the existence of a π-perfect fragment. They can be generalized

as the following obvious theorem:

Theorem 1. (condition for the existence of a π-perfect structure) Let G

be a π-perfect structure in WAXYZ-notation. Then the removal of all A+

and Y − type atoms from the G structure leads to a Kekule structure.

These conditions are important if we want to draw a π-perfect fragment

on a given arbitrary graph. The necessary condition for the existence of

π-perfect structures will be used in a computer algorithm in the problem of

enumeration of all mesoionic structures on a given graph in the following

sections.

4 Mesoionicity criterion

In this section, the main theorems of the article will be formulated, and

examples of their use for specific mesoionic structures will also be shown.

The next section will be devoted to a rigorous justification.

Let G be a graph in WAXYZ-notation. If now in this graph we replace

all multiple bonds with single ones, and the WAXYZ atoms with simple

vertices (carbon atoms), then we get a new SG graph.

A graph containing only carbon atoms and single bonds will be called

simple. The graph SG is obviously simple. So, we have the following con-

sequence of graphs:

M is structural formula ⇒ G is graph M in WAXYZ-notation ⇒ SG

is a simple graph M

Let us introduce the following notation: if SG is a simple graph, and V

is its vertex, then SG−V is a graph in which the vertex V and all adjacent

edges have been removed.

We can now rigorously formulate four theorems answering question (a) of

Section 2 for structures containing π-perfect fragments of various types.
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Theorem 2α. Let M be a molecular dipolar structure with a π-perfect

fragment G of type α (G contains atom types X+ and Y −), and SG the

simple graph corresponding to this fragment with a marked vertex V ∗ in

place of the vertex X+ of the graph G. The structure M is mesoionic if

and only if the graph SG–V
∗ does not have a perfect matching.

Theorem 2β. Let M be a molecular dipolar structure having a π-perfect

fragment G of type β (G contains atom types A+ and Z−), and SG the

simple graph corresponding to this fragment with a marked vertex V ∗ in

place of the vertex Z− of the graph G. The structure M is mesoionic if

and only if the graph SG–V
∗ does not have a perfect matching.

Theorem 2γ. Let M be a molecular dipolar structure with a π-perfect

fragment G of type γ (G contains atom types A+ and Y −), and let SG

be the simple graph corresponding to this fragment. The structure M is

mesoionic if and only if the graph SG does not have a perfect matching.

Theorem 2δ. Let M be a molecular dipolar structure with a π-perfect

fragment G of type δ (G contains atom types X+ and Z−), and SG the

simple graph corresponding to this fragment with marked vertex V ∗
1 in place

of the vertex X+ and vertex V ∗
2 in place of the vertex Z− of the graph G.

The structure M is mesoionic then and only if the graph SG–V
∗
1 –V

∗
2 does

not have a perfect matching.

The above theorems can be generalized by the following simple fact:

Theorem 2 (mesoionicity criterion). Let M be a molecular dipolar struc-

ture in WAXYZ-notation. S is a simple graph corresponding to the molec-

ular structure M from which all W , X+ and Z− type atoms (if any) have

been removed. The structure M is mesoionic if and only if the graph S is

non-Kekule.

If the structure contains a small number of atoms, then the mesoionic-

ity can be determined manually by drawing all the resonance structures.

For more complex structures, the use of the mesoionicity criterion is prefer-

able. So, you need to act according to the following algorithm:

1. The given structure M needs to be redrawn in WAXYZ-notation.
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2. Remove from the structure all atoms of type W , Z− and X+.

3. Replace all remaining non-hydrogen atoms with carbon atoms and re-

move all multiple bonds.

4. On the resulting simple graph S, try to arrange a system of non-

cumulated double bonds, in the formation of which each non-hydrogen

atom participates. If this succeeds, then the original structure M has a

covalent representation. If this cannot be done, then the initial structure

is mesoionic.

Let us consider examples of using the mesoionicity criterion. Fig. 12

shows a pair of dipolar structures – mesoionic 1-methyl-3-hydroxypyridinium

olate and 1-methyl-4-hydroxypyridinium olate having a covalent represen-

tation. The simple graph S for 3-hydroxypyridinium does not have a

perfect matching. This can be easily explained in the following way. Edge

1-2 is terminal, so if a matching exists, then it necessarily covers it. But

in this case, there is only one way to cover vertex 3 with a double bond –

edge 3-4. However, after this there is no way to draw a multiple bond be-

tween vertices 5 and 6. Therefore, the structure is mesoionic. In the case

of 4-hydroxypyridine, when the X+ atom is removed in WAXYZ-notation,

we can easily draw a perfect matching, which indicates the covalence of

this molecule.

Figure 12. An illustration of the applicability of the mesoion-
icity criterion to the dipolar structures of 3- and 4-
hydroxypyridinium olates

More examples can be found in Figure 13. Note that despite the need

to introduce the concept of π-perfectness in the general theory, we can
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easily apply the mesoionicity criterion without referring to it. However,

this π-perfectness will be important for theorem proving and computer

enumeration of all mesoionic structures on a given graph.

Figure 13. An illustration of the applicability of the mesoionicity cri-
terion for various dipolar structures.

Table 1. A brief description of all mentioned types of atom removals

5 Proof of the mesoionicity criterion

Initially, we will prove Theorem 2α, the mesoionicity criterion for π-perfect

structures of the α-type, that is for structures with an odd number of non-

hydrogen atoms containing only heteroatoms of the Y − and X+ types.

Note that π-perfect odd anions of this type were previously used by Rams-

den [1] to answer questions (a) and (b) in the following way. Let G be a

π-perfect alternant odd anion. Then, firstly, some of its atoms can be
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marked with the symbol ”*” (star) so that any marked atom can be cova-

lently bonded only with an unmarked one, and each unmarked one with a

marked one (the property of alternance [1]). Second, the formal replace-

ment of one carbon atom by X+ leads to a dipolar structure G1, which is

isoelectronic to the original structure G. Now let the Y − atom be marked.

If the X+ atom is located at a vertex that is not marked, then the G1

structure will necessarily be mesoionic, otherwise it is impossible to give

an unambiguous answer (Fig. 15). This approach to the definition of

mesoionicity is suitable for a very narrow class of conjugated alternant

structures. Also, this method does not work for structures that are not

π-perfect. Our approach to the consideration of the mesoionicity crite-

rion is more general and is applicable to all structures, and not only to

alternating ones.

Figure 14. An illustration of Ramsden’s [1] approach to problems (a)
and (b). Ramsden’s approach to the alternant structures
does not allow to consider the second non-π-perfect anion
due to the W-type atom. The answer to the question why
these structures are mesoionic or covalent can be found in
Fig. 2 and Fig. 13. See description in text.

Let us proceed to the proof of the mesoionicity criterion. This will

require some preparatory definitions and lemmas.

Assume that SG is an odd simple graph. On this graph, you can introduce
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the structure of a π-perfect odd anion in WAXYZ-notation, that is, to

place a negative charge Y − on one of the atoms and cover the rest of the

graph with a perfect matching. In other words, consider the first arrow in

the following diagram:

SG is simple graph M ⇒ G is graph M in WAXYZ-notation ⇒ M is

structural formula

If we take a simple graph SG as a starting point for constructing a

π-perfect anion, we can see the following. Placing π-electrons and a Y −

atom on a simple graph can lead to either a π-perfect or a biradical anion

(Fig. 16). This fact, within the framework of the theory already developed

above, is an illustration of the necessary condition for the existence of a

π-perfect structure, since a π-perfect structure G exists only if the graph

G− Y − is Kekule.

Figure 15. Placing π-electrons and Y − on a simple graph results in
either a π-perfect or biradical anion

Note that the possibility of passing from a simple graph to a π-perfect

structure G (and not to a biradical) depends solely on the position of the

Y − atom. We say that an atom V in a simple graph SG is allowed if there

exists a π-perfect structure G in which a negative π-charge is concentrated

on the atom V . Fig. 17 shows allowed and restricted positions for a given

simple graph.
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Figure 16. The scheme on the left – all possible ways to go from a
given simple graph to a π-perfect anion, on the right – to a
biradical structure. Atoms that are allowed for a negative
charge are marked by circle solid in the left, those that are
not allowed are marked in the right.

If, in two resonance structures defined on the same simple graph, neg-

ative π-charges can be localized on the allowed atoms V1 and V2 separated

by a third atom, as shown in Figure 18a, then we shall say that the allowed

atoms V1 and V2 are conjugated. Further, we can say that if the V1 atom

is conjugated with the V2 atom, and the V2 atom is conjugated with the

V3 atom, then the V1 atom is also conjugated with V3 (Fig. 18b). As a

result, long chains of conjugated atoms can be considered.

Figure 17. (a) V1 and V2 atoms are conjugated, (b) V1, V2, V3 atoms
are conjugated

Lemma 1 (the connectivity of conjugated atoms). Let V1 and V2 be al-

lowed positions for a negative charge in an odd connected π-perfect struc-

ture, then V1 and V2 are conjugated.

Proof of the Lemma. We will carry out the proof by induction of the num-

ber of atoms in the structure.

For a structure with 1 atom, the lemma is obviously true.

Let now we have a structure with 2k+1 atoms and the property being

proved is true for it. Let us now prove that the structure with 2k+3 atoms

will also obey the required property.
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In a generic simple graph SG with 2k+3 atoms, select an edge E consisting

of atoms V1 and V2 and the remaining subgraph S′
G with 2k+1 atoms. In

Fig. 19 one can see different ways of attaching E to S′
G. Cases 1 – 4 in

Fig. 19 differ in the number of covalent bonds by which the edge E is con-

nected to the subgraph S′
G. Note that additions of E are also possible not

to vicinal atoms S′′
G, but to terminal ones, therefore, generally speaking,

the number of different ways of joining E and S′
G is quite large. However,

in each particular case, the proof of the inductive step is very simple. We

present the argument only for case 1 in Fig. 19. The remaining combina-

tions are left to the reader as an easy exercise.

So, we need to prove that if the atoms V1 and/or V2 are allowed, then

they will be conjugated with other allowed atoms. In case 1, the atom V1

cannot be allowed: if a negative charge is localized on it, then V2 cannot be

covered with a double bond. For atom V2, there are two options. First, the

atom V2 may not be allowed, and then there is nothing to prove, since all

allowed atoms are in S′
G, where the conditions of the lemma are satisfied.

Second, the V2 atom can be allowed. In this case, V2 is conjugated with C

(fig.19.1), which in this case is allowed, and hence the requirements of the

lemma are satisfied.

Figure 18. Illustration for the proof of the lemma

Now we can proceed to the proof of the main theorem.
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Theorem 2α. Let M be a molecular dipolar structure with an odd π-

perfect fragment G of type α, and let SG be the simple graph corresponding

to this fragment with a marked vertex V ∗ in place of the vertex X+ of the

graph G. The structure M is mesoionic if and only if the graph SG–V
∗

does not have a perfect matching.

Proof of the theorem 2. Recall that in the WAXYZ-notation, any odd π-

perfect structure of type α is composed of an atom Y −, a group C = X+,

and also any number of non-cumulated C = C double bonds connected

to each other in an arbitrary way. Let’s go directly from the molecular

structure M to the π-perfect fragment G in WAXYZ-notation.

Let M be non-mesoionic, then we can draw a covalent resonance structure

by moving the negative charge from the Y − atom to the X+ atom (X

and Y are conjugated), as this was exactly shown in Figure 2. Note that

in odd π-perfect structures of type α, for the mesoionicity property only

resonance structures turn out to be conjugated, as shown in Fig. 20a. Such

conjugations do not change the number of double bonds in the structure,

which means that in the covalent resonance structure, all atoms except X

will be bound by double bonds. This exactly corresponds to the proven

Kekule property of SG–V
∗.

Let SG–V
∗ be Kekule structure (explanatory figure – 20b), that is, it has

a perfect matching. Let’s depict it on a simple graph SG by drawing

a covalent resonance structure G1. Now it remains to prove that this

resonance structure is equivalent to the original structure G. To do this,

using operation (III), we delocalize the positive and negative charges on

the X atom and the V carbon atom adjacent to it, as shown in Fig. 20b.

As a result, we obtain a dipolar π–perfect resonance structure G2. In

this structure, the V atom is allowed for a negative charge, just like the

Y atom. Then, according to the proved lemma, the V and Y atoms are

conjugated, therefore, there is a set of resonance structures that shift the

negative charge from V to Y . Structure G2 is equivalent to both the

original G and the covalent G1. Hence G is non-mesoionic.
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Figure 19. Resonance structures mentioned in the text

Essentially, there are two things to prove. First, the presence of W-

type heteroatoms does not affect the mesoionicity of a π-perfect fragment

of a given type α. The point is that the presence of two or more W-type

heteroatoms in a π-perfect fragment of the α type can lead to equivalence

of resonance structures with different π-perfect fragments (Fig. 21). How-

ever, this does not change the essence of the theorem being proved, since

the removal of both heteroatoms of type W and the current atom X+ leads

to the same simple graph SG.

Second, some resonance structures may have a different type of π-perfect

fragment (β, γ, δ types). Structures of type α can be easily transformed

into structures of type γ (as shown in Fig. 11). In this case, it is obvi-

ous that the mesoionicity of a structure of one type is equivalent to the

mesoionicity of a structure of another type.

The proof of Theorems 2β − 2δ is trivial, because of the possibility of

passing from a π-perfect fragment of type α to the others, as was indicated

in Section 3 (Fig. 11). For these theorems, it suffices to pass to a perfect

fragment of type α and refer to Theorem 2.
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Figure 20. An example of different ways to choose a π-perfect fragment
in a molecule. Despite this, all procedures for removing
atoms lead to the analysis of the Kekule property of the
same graph.

6 Kasteleyn’s theorem and mesoionicity

The criteria formulated and proven above can be easily implemented in the

form of a computer program, if we see its connection with the Kasteleyn

theory. The problem of calculating the number of perfect matchings was

solved by Fischer, Kasteleyn and Temperley [19, 20]. They proposed an

algorithm that is now known as the FKT algorithm. In this section, we

will briefly outline how this algorithm can be easily applied to design all

mesoionic molecules on a given graph.

Let G be a molecular graph with N vertices. We number its vertices with

numbers from 1 to N arbitrarily. Then the undirected adjacency matrix

is the square matrix N x N Aij ; Aii = 0 for all i, and Aij = 1 if vertices

i and j are connected by an edge, otherwise Aij = 0 . Examples of such

matrices are shown in Fig. 22.

Figure 21. Examples of undirected adjacency matrices
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The next mathematical object is the orientation on the graph. Orienta-

tion on the graph – the choice of direction on each edge. A directed graph

can be assigned a directed adjacency matrix. This is an antisymmetric

matrix N x N Bij ; Bii = 0 for all i, Bij = 1 if edge ij is oriented from

i to j, and Bij = −1 if edge ij is directed from j to i. In all other cases

Bij = 0. Examples of directed graphs and adjacency matrices are shown

in Figure 23. We will henceforth denote the directed matrix of a directed

graph G as B(G).

Figure 22. Examples of oriented graphs and oriented adjacency matri-
ces

Theorem 3 (Kasteleyn [19]). Let G be a planar graph and M the number

of perfect matchings on this graph. Then there is an orientation such that

detB = M2

An example of using the theorem is shown in Figure 24. We will omit

all the details associated with Pfaffians and Hafnians, which are usually

inherent in this theory, since they are not essential in what follows.

Figure 23. An example of using Kasteleyn’s theorem

Using the Kasteleyn theorem, one can reformulate the mesoionicity cri-

terion (Theorem 2).
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Theorem 4 (algebraic representation of the mesoionicity criterion for odd

structures). Let G be a dipolar structure in WAXYZ-notation. G1 is the

structure G from which atoms of types A+, Y −, W have been removed.

G2 is the structure G from which atoms of types Z−, X+, W have been

removed. Then

1. The graph G1 has at least one edge orientation such that detA(G1) ̸= 0.

(a necessary condition for the existence of a π-perfect anion).

2. The structure G2 is mesoionic if and only if, for all orientations of the

graph G2 it is true that detA(G2) = 0

The use of these theorems opens wide possibilities for computer enu-

meration of all possible mesoionic compounds on a given simple graph. We

have written several programs for verifying the obtained assertions.

First of all, we are interested in the complete list of all π-perfect structures

of types α and γ.

The program algorithm was as follows:

Algorithm 1.

1. Input of an undirected adjacency matrix for a given simple graph SG

2. Generation of an directed adjacency matrix for the graph G. The re-

quired orientation is selected manually. The orientation of the graph can,

generally speaking, not be set manually by writing a standard procedure in

many programming languages – a FOR loop that goes through all possible

orientations.

Determining the parity of the number of vertices of a graph G:

3.1. If the number of vertices is odd (α-type), then the search and output

of all mesoionic positions using Theorem 2α by enumeration of all possible

pairs of vertices for X+ and Y − atoms.

3.2. If the number of vertices is odd (γ-type), then the search and output

of all mesoionic positions using Theorem 2γ by enumeration of all possible

pairs of vertices for atoms A+ and Y −.

The program that executes this algorithm has been systematically tested

on simple graphs containing from 5 to 7 atoms. In all cases, the result of

the program’s operation coincides with that of the ”manual” check. A list
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of all mesoionic structures on these graphs can be found in Section 7.

7 Library of all π-perfect mesoionic struc-

tures for small graphs

In this section, we invite the reader to get acquainted with the table of all

π-perfect mesoionic graphs of types α–δ, containing no more than 7 atoms.

Tables 2,3,4 are filled with structures of types α, γ, δ, as follows. Next to

each graph are numbers corresponding to the positions of the positively

charged X+ group and the negatively charged Y − group. The reader

must place these atoms on the vertices of the corresponding numbers and

place the system of conjugated double bonds on a subgraph containing all

vertices except Y − (example in Fig. 25). The third column of the table

corresponds to the number of prototypes of mesoionic structures on a given

graph (the number of nonequivalent prototypes is indicated in brackets,

taking into account the symmetry of the graph).

Figure 24. How to use the table with all mesoionic π-perfect structures

Note that structures of type α and β are dual (Fig. 26). Therefore, the



30

table of all π-perfect structures of type β completely coincides with Table

2 up to the replacement of the atom Y − by A+ and X+ by Z−.

Figure 25. Examples expressing the duality of dipolar π-perfect struc-
tures of α and β types

Figure 26. Table 2. List of all π-perfect structures of α-type. (See Fig.
25 for how to use the table)
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Figure 27. Table 2 (continued). The end of the list of all π-perfect
structures of α-type. (See Fig. 25 for how to use the table).
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Figure 28. Table 3. List of all π-perfect structures of γ-type. (See Fig.
25 for how to use the table)
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Figure 29. Table 4. List of all π-perfect structures of δ-type. Pairs
(X+,Z−) mean the positions of atoms X+ and Z−that
give mesoionic prototypes
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Figure 30. List of all π-perfect structures in WAXYZ notation con-
taining seven non-hydrogen atoms and including a five- or
six-membered ring. Substitution of carbon atoms by any
suitable heteroatom is possible (example in box).

8 Mesoionic compounds containing W-hete-

roatoms. Five-membered rings with one

substituent.

The theory of the previous sections was based mainly on the consideration

of π-perfect structures. However, a significant number of known mesoionic

compounds cannot be considering as π-perfect structures. In particular,

the widely studied sydnons and munchnons in WAXYZ-notation have one

2π-heteroatom W. In this section, we will discuss algorithms that make

it possible to apply the theory developed above to structures containing

W-heteroatoms. A library of all (not only π-perfect) mesoionic structures

of α and γ types for a five-membered cycle with one substituent will also

be built. Essentially, we are again talking about tasks (a) and (b) from

section 2:
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Task (a): let a dipolar resonance structure be given (with any number of

W atoms). It is necessary to determine whether it is mesoionic.

Task (b): list all mesoionic structures (also with any number of W atoms)

on a given simple graph. We can also talk about two different approaches

to solving these problems:

Approach 1: Find a pen-and-paper way to solve the problem using the

mesoionicity criteria from Section 4

Approach 2: Implement computer algorithm based on the Kasteleyn the-

ory and mesoionicity criteria from section 6.

Both approaches, as shown in Section 6, are synonymous.

Let us discuss here how we can approach the solution of problem (b) using

both approaches.

First, note that in mesoionic structures, all atoms involved in the for-

mation of π-orbitals either belong to a π-perfect fragment or are W-type

atoms. It is reasonable to divide all mesoionic structures according to the

number and location of W-type atoms. For example, Fig. 31 shows all

possible ways to arrange an arbitrary number of W atoms in a pentagonal

structure.

Figure 31. All ways to arrange an arbitrary number of W atoms in a
pentagonal structure.

Next, you need to be able to find all possible ways to fill a given graph

with W atoms. This procedure is equivalent to the standard combinatorial

procedure for writing out all possible enumerations [18] for a given set. An

enumeration is an ordered set of elements of a given set without repetition.

For example, enumerations for the set of digits 1, 2, 3, 4 are shown in Fig.

33.
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Figure 32. Enumerations of a four-element set and the corresponding
ways to arrange atoms of type W on a four-membered cycle.

The reader may notice that the structures and enumerations in Fig. 33

are grouped according to the symmetry of the W-containing structures.

A significant drawback of the presented approach is its inability to distin-

guish symmetrically equivalent structures. This must be done manually

or involve third-party algorithms.

Thus, we have a simple graph with numbered vertices, then we can enu-

merate all possible positions for W atoms. After that, Algorithm 1 can be

easily applied to the remaining subgraphs, which are π-perfect, to search

for all mesoionic structures. Thus, we get
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Algorithm 2

1. The vertices of a given simple graph are numbered.

2. Write out all enumerations of graph atoms containing any number of

atoms

3. For each enumeration, a π-perfect fragment is found.

4. Algorithm 1 is applied to π-perfect fragments.

The complete set of all mesoionic structures of α and β types (in WAXYZ-

notation) on a five-membered ring with one substituent, obtained using

Algorithm 2, is presented below. Among the structures, let us pay spe-

cial attention to the already known sydnons and munchnons. Therefore,

we can state that our approach is verified by the fact that it reproduces

already widely known structures.

Figure 33. Library of all mesoionic structures on a five-membered cy-
cle with one substituent.
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9 Poly-charged mesoionic structures

There are poly-charged mesoionic compounds. The simplest example is

the N2O4 molecule (Fig. 35). More complex examples can be imagined

(see also second structure on Fig. 35).

In this case, we can formulate similar theorems regarding their mesoionic-

ity. We will further consider structures that do not have atoms of type A+

in the WAXYZ-notation (the consideration of the case with atoms of type

A+ is similar). First of all, we note that if a bis-dipolar resonance struc-

ture has a covalent representation, then we can say that its subfragment,

which does not contain atoms of the X type, is Kekule. atoms of type X

will necessarily be non-Kekule (Fig. 36).

Figure 34. Examples of bis-mesoionic structures and application of the
mesoionicity criterion to them.

Note that in the poly-charged case, it is also possible to specify an

algorithm that will enumerate all possible mesoionic compounds.

Algorithm 3.

1. The vertices of the given graph are numbered.

2. All pairs of mismatched enumerations of vertices (P1, P2) are written

out, the first enumeration P1 in the pair corresponds to Y − atoms bearing

a negative π-charge, the second P2 to atoms with a positive π-charge X+.

3. For each pair of permutations, the necessary condition for the existence

of the structure is checked: G− P1 must have a perfect matching

4. For each pair of permutations, the criterion of mesoionicity is checked:

G− P2 has a perfect matching if and only if G is covalent.

However, this algorithm has two significant drawbacks.

First, as in the case of Algorithm 2, Algorithm 3 distinguishes between



39

structures that differ only in the permutation of different atoms of the

group P1 and different atoms of the group P2. Thus, the result of the al-

gorithm will be a set of equivalent structures that will need to be manually

sorted out.

Secondly, a situation is possible when the initially bis-charged mesoionic

dipolar resonance structure is equivalent to a resonance structure with

only one charge separation. Thus, the algorithm will produce poly-charged

structures not only with the required number of charges of each sign, but

also with a smaller number of charges.

Figure 35. An illustration of the pseudo-bis-mesoionicity problem.
The structure on the left has two pairs of uncompensated
charges. The structure on the right has only one pair, de-
spite being able to draw the resonance formula with two
pairs.

Consideration of the computer implementation of this section of mesoion-

icity is still under the progress of solving by us.

10 General case

So, at this stage, we potentially have all the technical means to consider

the issue of enumerating any mesoionic compounds: Algorithm 1 for han-

dling π-perfect structures, Algorithm 2 for enumerating all mono-charged

mesoionic structures containing W-heteroatoms, and Algorithm 3 for poly-

charged mesoionic structures. Algorithms 2 and 3, as already mentioned,

have a drawback associated with not taking into account the symmetry

of the structures, which significantly complicates manual processing of the
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result for molecules containing a large number of atoms. Despite this,

these algorithms have demonstrated the infallibility of their work, based

on the theorems proved earlier in the text. Thus, we can conclude that in

this work we have found an extremely efficient mathematical formalism for

describing mesoionicity that can be easily translated into computer lan-

guage. However, a number of technical implementation problems still need

to be solved and may be the subject of future publications. Let us try to

formulate a further program of actions (Fig. 37) for applying our results

in questions of systematization and classification of mesoionic structures:

1. Solve the problem associated with not taking into account the symme-

try of structures in algorithms 1 and 2.

2. Algorithms 1, 2 and 3 must be combined to enumerate all mesoionic

structures on given graphs.

3. Analysis of the obtained lists of all mesoionic compounds in order to

construct a new classification without missing classes.

4. Synthesis of new compounds obtained for organic synthesis and mate-

rials science.

As a conclusion of this section, we note that, without exaggeration, there

are many different mesoionic compounds (which is demonstrated, for in-

stance, by the lists of structures in Fig. 30 and tables 2-4). However,

only a very small part of them has been synthesized and studied, and we

hope that our work will make it possible to simplify the preparation of

new promising mesoionic molecules.

Figure 36. Potential applications of the mesoionicity criterion.
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11 Feature of the elements of the second pe-

riod

Fig. 38 shows pairs of dipolar resonance structures. In each pair, one

of the structures contains a heteroatom of the second period of the peri-

odic system, and the other – of the third. Despite the formal possibility

of drawing a covalent resonance for both types of structures, molecules

containing elements of the second period are not covalent. For example,

in the molecule (14) there cannot be a neutral five-coordinate nitrogen

(four σ-bonds and one π-bond), since at the external level it has only four

atomic orbitals. On the contrary, in the phosphorus atom of structure

(15), such a configuration is possible because it has a 3d-sublevel. The

same feature can be observed for elements of other groups of the periodic

system. Consideration of these examples is important because they are

exceptions to our mesoionicity rules, despite the fact that all the theorems

formally remain true.

Figure 37. Mesoionic structures are shown on the left, covalent struc-
tures on the right.

12 Conclusions

1. An important concept of a π-perfect structure is introduced. It is shown

this concept can be used in order to consider all mesoionic structures. The

WAXYZ-notation has been introduced, which simplifies the language for

studying mesoionic structures.

2. The mesoionicity criteria for molecules in the WAXYZ-notation are
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formulated and proved, which makes it possible to classify all mesoionic

molecules. The obtained criteria indicate that the pair of concepts mesoion-

icity – covalence correlates in the same way as the pair of non-Kekule –

Kekule properties.

3. The connection between the criterion of mesoionicity and the matrix

theory of Kasteleyn about counting the number of matchings on an arbi-

trary graph is shown. A matrix theory of mesoionicity has been developed.

On its basis, an algorithm that classifies mesoionic molecules was invented.

The algorithm allows to write a computer program that enumerates all

monocharged mesoionic molecules. A library of all π-perfect mesoionic

molecules containing no more than seven non-hydrogen atoms and a li-

brary of all monocharged structures for a five-membered graph with one

substituent have been constructed.
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Appendix

Also in this section we provide Python computer program that allows to
list all mesoionic compounds of all types and containing any number of W
atoms on given graph. The work of this program based on algorithms 1-4

from i t e r t o o l s import combinat ions
import numpy as np
import math

#===Se l e c t i o n by one element o f the minor===#
def OneMinor (A, n , atomn) :

B=A. copy ( )
B[ atomn , : ]=0
B [ : , atomn]=0
B[ atomn , atomn]=1
return B

#===========I s o l a t i o n o f the minor==========#
def Minor (A, n , wnumbers ) :

f o r i in wnumbers :
A=OneMinor (A, n , i )

r e turn A
#============Mesoionic Alpha==================#
def Meso ion ic a lpha (Dcur , WAXYZ, i , n ) :

D1cur=Dcur . copy ( )
WAXYZ1=WAXYZ. copy ( )
neg=0
pos=0
i f ( ( n−i )%2!=0) :

f o r neg in range (n) :
f o r pos in range (n) :

i f ( ( neg !=pos ) and (WAXYZ1[ neg ] != ”W” )
and (WAXYZ1[ pos ] != ”W” ) ) :

i f (np . l i n a l g . det (Minor (D1cur , n , [ pos ] ) )
==0) :
i f (np . l i n a l g . det (Minor (D1cur , n , [ neg ] )

) !=0) :
WAXYZ1[ neg ]=”Y”
WAXYZ1[ pos ]=”X”
f o r k in range (n) :

p r i n t ( k+1, end=”” )
p r i n t ( )
f o r k in range (n) :
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p r in t (WAXYZ1[ k ] , end=”” )
p r i n t ( )
p r i n t ( )

WAXYZ1=WAXYZ. copy ( )
#===============Mesoionic Beta=================#
def Meso ion ic beta (Dcur , WAXYZ, i , n ) :

D1cur=Dcur . copy ( )
WAXYZ1=WAXYZ. copy ( )
neg=0
pos=0
i f ( ( n−i )%2!=0) :

f o r neg in range (n) :
f o r pos in range (n) :

i f ( ( neg !=pos ) and (WAXYZ1[ neg ] != ”W” )
and (WAXYZ1[ pos ] != ”W” ) ) :

i f (np . l i n a l g . det (Minor (D1cur , n , [ pos ] ) )
==0) :
i f (np . l i n a l g . det (Minor (D1cur , n , [ neg ] )

) !=0) :
WAXYZ1[ neg ]=”Z”
WAXYZ1[ pos ]=”A”
f o r k in range (n) :

p r i n t ( k+1, end=”” )
p r i n t ( )
f o r k in range (n) :

p r i n t (WAXYZ1[ k ] , end=”” )
p r i n t ( )
p r i n t ( )

WAXYZ1=WAXYZ. copy ( )

#===============Mesoionic Gamma======================#
def Mesoionic gamma (Dcur , WAXYZ, i , n ) :

D1cur=Dcur . copy ( )
WAXYZ1=WAXYZ. copy ( )
neg=0
pos=0
i f ( ( n−i )%2==0) and (np . l i n a l g . det (D1cur )==0) :

f o r neg in range (n) :
f o r pos in range (n) :

i f ( ( neg !=pos )
and (np . l i n a l g . det (Minor (D1cur , n , [ pos , neg ] ) )

!=0) ) :
i f ( (WAXYZ1[ neg ] != ”W” ) and (WAXYZ1[ pos ] != ”W

” ) ) :
WAXYZ1[ neg ]=”Y”
WAXYZ1[ pos ]=”A”
f o r k in range (n) :

p r i n t ( k+1, end=”” )
p r i n t ( )
f o r k in range (n) :

p r i n t (WAXYZ1[ k ] , end=”” )
p r i n t ( )
p r i n t ( )



46

WAXYZ1=WAXYZ. copy ( )
#===============Meso ion ic De l ta======================#
def Meso i on i c de l t a (Dcur , WAXYZ, i , n ) :

D1cur=Dcur . copy ( )
WAXYZ1=WAXYZ. copy ( )
neg=0
pos=0
i f ( ( n−i )%2==0) and (np . l i n a l g . det (D1cur ) !=0) :

f o r neg in range (n) :
f o r pos in range (n) :

i f ( ( neg !=pos )
and (np . l i n a l g . det (Minor (D1cur , n , [ pos , neg ] ) )

==0)) :
i f ( (WAXYZ1[ neg ] != ”W” ) and (WAXYZ1[ pos ] != ”W

” ) ) :
WAXYZ1[ neg ]=”Z”
WAXYZ1[ pos ]=”X”
f o r k in range (n) :

p r i n t ( k+1, end=”” )
p r i n t ( )
f o r k in range (n) :

p r i n t (WAXYZ1[ k ] , end=”” )
p r i n t ( )
p r i n t ( )

WAXYZ1=WAXYZ. copy ( )
#==========main func t i on=====================#
pr in t ( ”Enter the number o f v e r t i c e s in the column” )
n=in t ( input ( ) )
p r i n t ( ” Input Undirected Graph Adjacency Matrix” )
A = [ ] #und i rec ted adjacency matrix
f o r i in range (n) :

A. append ( [ i n t ( j ) f o r j in input ( ) . s p l i t ( ) ] )
D = np . array (A)
D[ np . t r i u i n d i c e s f r om (D) ] ∗= −1
WAXYZ = l i s t ( range (n) )#the type o f each atom in WAXYZ−notat ion
f o r i in range (n) :

WAXYZ[ i ] = ”C”
tmp = range (n)
a l l a toms = [ i n t (n) f o r n in tmp ]
f o r i in range (n) : #cyc l e by the number o f atoms W

pr in t ( ” s t r u c t u r e s conta in ing ” , i , ”W atoms” )
f o r j in combinat ions ( a l latoms , i ) : #permutation loop

wnumbers = l i s t ( j )
f o r k in range ( i ) :

WAXYZ[ wnumbers [ k ] ] = ”W”
#padding the s t r i n g WAXYZ with a W atom

Dcur=OneMinor (D, n , wnumbers )
#copy o f matrix D f o r cur rent work
p r in t ( ”alpha−type ” )
p r i n t ( )
Meso ion ic a lpha (Dcur , WAXYZ, i , n )
p r i n t ( ”beta−type ” )
p r i n t ( )
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Meso ion ic beta (Dcur , WAXYZ, i , n )
p r i n t ( ”gamma−type ” )
p r i n t ( )
Mesoionic gamma (Dcur , WAXYZ, i , n )
p r i n t ( ” de l ta−type ” )
p r i n t ( )
Meso i on i c de l t a (Dcur , WAXYZ, i , n )
f o r k in range (n) :

WAXYZ[ i n t ( k ) ] = ”C”
pr in t ( ”=================================” )

pr in t ( ”end” )
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