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The paper studies completeness and incompleteness of modal predicate logics in
Kripke semantics, especially for logics of the form QΛ, minimal predicate extensions
of modal propositional logics. We show that QΛ is incomplete for a continual family
of logics Λ above K + �(�p → p), in particular for well-known K5 and K45. On
the other hand, in some cases we find completions of QΛ; they are obtained by
adding a single extra axiom. Completeness proofs use canonical models, with some
modifications, and the case of QK5 is the most interesting from the technical side.
We also introduce the “boxing” operation for modal predicate logics and prove
transfer results for Kripke and Kripke sheaf completeness with respect to this
operation.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that, unlike the propositional case, for modal first-order predicate logics standard Kripke

semantics does not fit well. There are numerous examples of incompleteness; even, if a propositional modal

logic Λ is Kripke complete, its minimal predicate extension QΛ may lose completeness. In particular, Silvio

Ghilardi proved that for normal Λ extending S4, the logic QΛ can be Kripke complete only if Λ ⊇ S5 or

Λ ⊆ S4.3, cf. [10].

Still, sometimes the predicate logics QΛ are complete. E.g., this happens for the “one-way PTC logics”

(in the monomodal case they are axiomatized by formulas of the form �p → �np and closed formulas, cf. [9],

Definition 1.11.4) and for the logics axiomatized by formulas expressing density, confluence, non-branching
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(cf. [9], Theorem 6.1.29 and sections 6.6, 6.7; [15], [3]). There are also some nice completeness theorems for

logics of the form (QΛ+Barcan formula) (by Yoshihito Tanaka, Hiroakira Ono, and Tatsuya Shimura; cf.

[9], chapter 7).

However, in contrast to powerful completeness results in propositional logic (cf. [2]), these theorems look

scanty. How can we improve the situation?

One option is to leave Kripke semantics and to deal with its generalizations. This strategy can restore

completeness in many cases, but leads to rather complicated semantics, cf. [16].

In this paper we choose another option. If a logic is Kripke incomplete, it makes sense to describe its

completion. In several cases this task was solved by Max Cresswell [7], and we return to it here.1 We focus

on certain logics of the form QΛ. On the one hand, we present a new continual family of incomplete logics;

on the other hand, we find completions for certain incomplete logics from that family.

The crucial propositional logic in our paper is K5, as known as Euclidean modal logic. This is the simplest

PTC-logic, which is not one-way PTC, and the question about Kripke completeness of QK5 is quite natural.

In [9] (Ch.6, p. 492) we claimed that QK5 is incomplete, but the proposed proof was incorrect. Now we

prove this result as a particular case of a general Theorem 5.11.

The plan of the paper is as follows. Section 2 gives a brief introduction to modal predicate logics; it

contains basic material on syntax, Kripke sheaf and Kripke semantics.

In section 3 we introduce the boxing operation and prove some its properties. In particular, Theorem 3.21

gives an axiomatization of boxing for predicate logics.

Section 4 proves transfer results for boxing; we consider canonicity and strong completeness in Kripke

and Kripke sheaf semantics.

In section 5 we prove Kripke (and Kripke sheaf) incompleteness for the family of logics QΛ for any Λ

between � · T and SL4 (Theorem 5.11). Here we apply the Kripke bundle semantics. Together with results

from sections 3, 4 this allows us to describe Kripke completions of certain logics of the form Q(� · Λ)

(Theorem 5.14).

In sections 6, 7 we axiomatize completions of three particular logics beyond Theorem 5.14. To prove com-

pleteness we apply canonical models, with some modifications. From the technical side, the logic QK5 is the

most interesting case (Theorem 7.2). Here we use a certain “swinging” procedure to construct simultaneous

Henkin completions for a set of consistent theories.

Section 8 explains how to deal with iterated boxing operation; we prove the iterated versions of results

from sections 3 and 5.

In the conclusive section 9 we discuss further possible directions and some related problems.

In our completeness proofs we essentially use the methods from [9]. Much of notation and terminology

from that book is preserved.

Table of main results

Axiomatization of boxing Theorem 3.21, Proposition 3.10

Transfer of canonicity for boxing Theorem 4.1

Transfer of strong Kripke sheaf completeness for boxing Theorem 4.4

Transfer of strong Kripke completeness for boxing of QΛ Theorem 4.8

Transfer of Kripke completeness for propositional boxing Theorem 4.9

1 However, for many standard logics Kripke completions are not recursively axiomatizable, cf. [6].
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Counterexamples to Kripke completeness transfer for boxing Corollary 5.5

Kripke incompleteness of QΛ for Λ between � · T and SL4 Theorem 5.11

Kripke completions of QK5, QK45, QK4�S5 Theorems 7.2, 6.13, 6.12

2. Preliminaries

2.1. Propositional logics

We suppose that the reader is familiar with main properties of modal propositional logics. In this paper

we consider only normal logics with a single modal connective �. Arbitrary logics are denoted by Λ, Λ1

etc. We assume that all logics are consistent.

We use the main constructions of Kripke frames and models, such as generated subframes, p-morphisms,

disjoint sums, canonical models; for the definitions cf. [2], [9].

ML(C) denotes the logic of a class of Kripke frames C (or the logic determined by C); recall that logics

of this form are called Kripke complete (or K-complete). A modal logic Λ is called strongly Kripke complete

if every Λ-consistent set of formulas Γ is satisfied at a point of some Kripke model over a Λ-frame.

K denotes the minimal modal logic; K + X is the smallest logic containing a set of formulas X.

MΛ denotes the canonical model of Λ, FΛ its canonical frame.

2.2. Predicate logics

We deal with normal monomodal predicate logics without equality, as they are defined in [9]. So in the

language there are countably many predicate letters of all arities (including 0), but no function symbols

or individual constants. The length of a formula A is the number of occurrences of quantifiers and logical

connectives (except ⊥) in A. Closed formulas are also called sentences. ∀A denotes the universal closure of

a formula A (with quantifiers in a fixed order).

A modal predicate logic is a set of formulas containing the basic axioms of classical logic and K and closed

under Modus Ponens (MP), ∀-introduction, �-introduction, and predicate substitution. For a logic L, the

notation L ⊢ A means the same as A ∈ L. Members of a logic are also called ‘theorems’.

L denotes the set of all sentences in a logic L. Thus

L = {∀A | A ∈ L}.

QΛ denotes the minimal predicate extension of a propositional logic Λ.

A predicate theory is a set of sentences with extra constants. We assume that the constants are taken from

a fixed countable set (denoted by S∗, see below). Theories are denoted by capital Greek letters, theories

without constants by capital Latin letters (X, Y, . . .). L(Γ) denotes the set of all sentences in the language

of a theory Γ, DΓ is the set of all individual constants occurring in Γ.

If L is a predicate logic, Γ a predicate theory, then in L-derivations2 from Γ we can use the members of

Γ ∪ L, apply MP, ∀-introduction and also replace some free variables with constants. The notation Γ ⊢L A

means that a formula (maybe, with constants) A is L-derivable from Γ. Γ is L-consistent if Γ0L ⊥.

2 In [9] they are called ‘L-inferences’.
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L + X denotes the smallest predicate logic containing a logic L and a theory X. We recall the following

characterization of L + X ([9], Theorem 2.8.4):

Proposition 2.1.

L + X ⊢ A iff �∞Sub(X) ⊢L A,

where Sub(X) denotes the set of universal closures of substitution instances of X and

�∞Y := {�nB | B ∈ Y, n ≥ 0}.

2.3. Kripke sheaves

Let us recall some definitions and basic facts about Kripke sheaves from [9].

Definition 2.2. A Kripke sheaf over a propositional Kripke frame F = (W, R) is a triple Φ = (F, D, ρ) where

D = (Du)u∈W is a family of nonempty domains, ρ = (ρuv)(u,v)∈R∗
3 is a family of transition functions

ρuv : Du −→ Dv such that

• every ρuu is the identity function on Du;

• uR∗vR∗w implies ρvwρuv = ρuw.

F is called the propositional base of Φ.

Definition 2.3. A valuation on a Kripke sheaf Φ is a function ξ on predicate letters such that for every n-ary

predicate letter P n
k

ξ(P n
k ) = (ξu(P n

k ))u∈W ,

where ξu(P n
k ) ⊆ Dn

u (and D0
u is a fixed singleton {()}, where () is the empty tuple).

The pair M = (F, ξ) is a Kripke sheaf model over Φ.

Given M , at every point u ∈ W we evaluate modal Du-sentences, i.e. sentences with constants from Du:

M, u � P n
k (a1, . . . , an) iff (a1, . . . , an) ∈ ξu(P n

k ),

M, u � A → B iff (M, u2A or M, u � B),

M, u2⊥,

M, u � ∀xA(x) iff ∀a ∈ Du M, u � A(a),

M, u � �A iff ∀v ∈ R(u) M, v � A|v,

where A|v denotes the Dv-sentence obtained from A by replacing every individual a ∈ Du with ρuv(a).

A Du-sentence A is valid at Φ, u (in symbols, Φ, u � A), if M, u � A for any Kripke sheaf model M over

Φ.

A modal formula A is true in M (in symbols, M � A) if M, u � ∀ A for any u∈W . A is valid on a Kripke

sheaf Φ (in symbols, Φ � A) if it is true in every Kripke sheaf model over Φ.

By Soundness theorem ([9], Theorem 3.6.17) ML(Φ) := {A | Φ � A} is a modal predicate logic (the

modal logic of Φ). The modal logic of a class of Kripke sheaves C is ML(C) :=
⋂

{ML(Φ) | Φ ∈ C}. Logics

ML(C) are called Kripke sheaf complete (or KE-complete).

3 R∗ denotes the reflexive transitive closure of R.
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A Kripke sheaf validating a modal predicate logic L is called an L-sheaf. So L is Kripke sheaf complete

iff every sentence A /∈ L can be refuted in some L-sheaf. A formula A is a logical consequence of a logic L

in Kripke sheaf semantics (in symbols, L �KE A) if A is valid on all L-sheaves. The logic

CKE(L) := {A | L �KE A} is the smallest KE-complete extension of L, the KE-completion of L.

From definitions we readily have

Lemma 2.4.

(1) For a Kripke sheaf Φ = (W, R, D, ρ) and a sentence A

Φ, u � �A iff ∀v ∈ R(u) Φ, v � A.

(2) For a Kripke sheaf Φ = (F, D, ρ) and a propositional formula A,

Φ � A iff F � A.

Definition 2.5. Let u be a point in a Kripke sheaf model M , Γ a predicate theory. An interpretation of Γ at

(M, u) is a map δ : DΓ −→ Du. Given such an interpretation, we can transform every sentence A ∈ L(Γ)

into a Du-sentence δ · A by replacing all occurrences of every constant c ∈ DΓ with δ(c).

Γ is satisfiable at (M, u) if there exists an interpretation δ : DΓ −→ Du such that M, u � δ · A for all

A ∈ Γ. Γ is satisfiable in M if it is satisfiable at (M, u) for some point u.

Definition 2.6. A modal predicate logic L is called strongly Kripke sheaf (or KE-) complete, if every

L-consistent theory is satisfiable in some Kripke sheaf model over an L-sheaf.

2.4. Kripke semantics

The standard Kripke semantics for modal predicate logics can be regarded as a particular case of Kripke

sheaf semantics. Recall that a predicate Kripke frame over a propositional frame F = (W, R) is a pair

F = (F, D), where D = (Du)u∈W , each Du is nonempty and Du ⊆ Dv whenever uRv. So F is actually a

Kripke sheaf over F , in which every ρuv is the inclusion map Du ⊂→ Dv. F is called the propositional base

of F.

In this case Kripke sheaf models become Kripke models, and the truth definition for �A transforms to

the familiar one:

M, u � �A iff ∀v ∈ R(u) M, v � A.

Other definitions (of the truth in a model, validity etc.) are the same as for arbitrary Kripke sheaves. In

particular,

ML(F) := {A | F � A}, ML(C) :=
⋂

{ML(F) | F ∈ C}

for a class of frames C. Logics of the latter form are called Kripke complete.

Logical consequence in Kripke semantics is denoted by �K. The set {A | L �K A} is the smallest Kripke

complete extension of L, the Kripke completion of L; it is denoted by CK(L), or (more often) by L̂.
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Definition 2.7. A modal predicate logic L is called strongly Kripke complete if every L-consistent theory is

satisfiable in some Kripke model over an L-frame.4

2.5. Some Kripke sheaf constructions

Definition 2.8. A subsheaf of a Kripke sheaf Φ = (W, R, D) obtained by restriction to V ⊆ W is

Φ ↾ V := (V, R ↾ V, D ↾ V, ρ ↾ V ), where R ↾ V = R ∩ (V × V ), D ↾ V = (Du)u∈V , (ρ ↾ V )uv = ρuv for

u, v ∈ V .

A submodel M ↾ V of a Kripke sheaf model M = (Φ, ξ) is M ↾ V = (Φ ↾ V, ξ ↾ V ), where (ξ ↾ V )u = ξu

for each u ∈ V . If V is stable (i.e. R(V ) ⊆ V ), the subsheaf Φ ↾ V and the submodel M ↾ V are called

generated.

Lemma 2.9 (Generation lemma). For generated subsheaves and submodels:

(1) for any u ∈ V and Du-sentence A

M, u � A iff M ↾ V, u � A;

(2) for any u ∈ V and Du-sentence A

Φ, u � A iff Φ ↾ V, u � A;

(3) for any formula B

M � B implies M ↾ V � B;

(4) ML(Φ) ⊆ ML(Φ ↾ V ).

Recall that the disjoint sum of propositional Kripke frames is

⊔
i∈I

(Wi, Ri) := (W, R), where W =
⋃

i∈I

(Wi × {i}), (x, i)R(y, j) iff i = j & xRiy.

Definition 2.10. For a family of Kripke sheaves, Φi = (Fi, Di, ρi), i ∈ I, the disjoint sum5 is the Kripke

sheaf

⊔
i∈I

Φi :=

(

⊔
i∈I

Fi, D, ρ

)
,

where

D(u,i) := (Di)u, ρ(u,i)(v,i)(a) := ρuv(a).

Then the disjoint sum of Kripke sheaf models Mi = (Φi, θi) is

4 The definition of strong completeness given in [9] involves only theories without constants. That definition does not fit for our
purposes.

5 In [9] disjoint sums are defined in another way. Here we need a slightly different notion, for which we use the same terminology
and notation. Two versions of disjoint sums are logically equivalent.
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⊔
i∈I

Mi :=

(

⊔
i∈I

Φi, θ

)
,

where

θ(u,i) := (θi)u.

A particular case of a generated subsheaf (submodel) is a cone:

Definition 2.11. A cone in a Kripke sheaf Φ is a generated subsheaf of the form Φ↑u := Φ ↾ R∗(u), where

R∗ is the reflexive transitive closure of the accessibility relation R.

Similarly, a cone in a Kripke sheaf model M over Φ is M↑u := M ↾ R∗(u).

For the case of Kripke frames the above definitions are rather well-known, so we do not write them

explicitly.

2.6. Canonical models

Now we recall the construction and some properties of canonical models for modal predicate logics ([9],

section 6.1).

Let us fix a universal countable set of constants S∗. A subset S ⊆ S∗ is called small if (S∗ −S) is infinite.

We will consider only theories Γ, for which DΓ is a small subset of S∗.

Definition 2.12. A predicate theory is called L-complete if it is maximal among L-consistent theories in the

same language.

Lemma 2.13. If a predicate theory Γ is L-complete, A ∈ L(Γ), then

Γ ⊢L A iff A ∈ Γ;

in particular, L ⊆ Γ.

Definition 2.14. An theory Γ has the Henkin property if for any sentence ∃xA(x) ∈ L(Γ) there exists a

constant c ∈ DΓ such that

(∃xA(x) → A(c)) ∈ Γ.

An L-complete theory with the Henkin property is called L-Henkin. An L-place is an L-Henkin theory with

a small set of constants.

Lemma 2.15. Every L-consistent theory with a small set of constants can be extended to an L-place.

For any modal predicate logic L there exists a canonical frame PFL = (PWL, RL, DL) and a canonical

model PML = (PFL, ξL),6 where

• PWL is the set of all L-places,

• ΓRL∆ iff for any A, �A ∈ Γ implies A ∈ ∆,

6 [9] uses a different notation for P FL and P ML, and they were called ‘V-canonical’.
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• (DL)Γ = DΓ, the set of all constants occurring in Γ,

• PML, Γ � A iff A ∈ Γ for any atomic DΓ-sentence A.

Theorem 2.16 (Canonical model theorem).

PML, Γ � A iff A ∈ Γ

for any L-place Γ and A ∈ L(Γ).

Definition 2.17. A modal predicate logic L is called canonical if PFL � L (or, equivalently, PFL � L).

Theorem 2.16 implies

Corollary 2.18. Every canonical logic is strongly Kripke complete.

Proof. Assume that L is canonical, Γ0 is an L-consistent theory. By our general assumption, DΓ0
is a small

subset of S∗. So there exists an L-place Γ ⊇ Γ0 (Lemma 2.15). By Theorem 2.16, PML, Γ � Γ, thus Γ0 is

satisfiable at (PML, Γ) under the trivial interpretation δ : DΓ0
−→ DΓ sending each constant into itself. By

canonicity, PFL � L, therefore L is strongly Kripke complete. 2

Lemma 2.19. (Cf. [9], Lemma 6.1.25.) Let L, L1 be modal predicate logics such that L ⊆ L1. Then

• PWL1
= {Γ ∈ PWL | L1 ⊆ Γ}.

• PML1
is a generated submodel of PML.

3. Boxing

3.1. Propositional boxing

For a set of modal formulas X, put

�X := {�A | A ∈ X}.

Definition 3.1. For a propositional modal logic Λ, we define its boxing as �·Λ := K + �Λ.

Note that �·Λ ⊆ Λ.

Proposition 3.2. Let X be a set of propositional modal formulas. Then

� ·(K + X) = K + �X.

Proof. �X ⊆ �(K + X), so K + �X ⊆ �·(K + X).

To check the converse inclusion �·(K+X) ⊆ K+�X, note that theorems of K+X can be derived from

K and substitution instances of X by applying (MP) and �-introduction. So by induction on the derivation

of A ∈ K + X we show that �A ∈ K + �X.

Let Λ := K + �X.

If A ∈ K, the claim is trivial.

If A = B(C1, . . . , Cn) is a substitution instance of B(p1, . . . , pn) ∈ X, then �A = �B(C1, . . . , Cn) is a

substitution instance of �B, so A ∈ Λ.
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If A is obtained by (MP), from B and B → A, then by IH

�B, �(B → A) ∈ Λ.

Since �A is derivable from �B, �(B → A) in K using (MP), we have �A ∈ Λ.

If A = �B and B ∈ (K + X), then by IH, �B ∈ Λ, i.e. A ∈ Λ. 2

Lemma 3.3. �A ∈ �·Λ only if A ∈ Λ.

Proof. Suppose A /∈ Λ. Then for some Kripke model M (the canonical model of Λ) we have M � Λ, M 2A.

Consider a model M+ obtained by adding the root 0 below M , so that every point of M is accessible

from 0. The truth values of proposition letters at 0 can be arbitrary.

Then M is a generated submodel of M+, so by Generation lemma, M+, u � Λ for any u ∈ M . Hence

M+, 0 � �Λ, and also M+, u � �Λ for u ∈ M . Thus M+ � �Λ.

Now note that �Λ is substitution closed, so every member of � ·Λ is derivable from �Λ and K using

(MP) and �-introduction. Both these rules preserve the truth in M+, thus M+ � �·Λ.

At the same time M, u 2 A for some u ∈ M , hence M+, u 2 A by Generation lemma, and thus

M+, 0 2 �A.

Since M+ is a model of �·Λ refuting �A, it follows that �A /∈ �·Λ. 2

Proposition 3.4.

(1) Boxing embeds the poset of modal propositional logics in itself:

Λ1 ⊆ Λ2 iff � · Λ1 ⊆ � · Λ2.

(2) Boxing is a complete embedding of the upper semilattice of modal propositional logics in itself.

Proof. (1) ‘Only if’ is obvious. For ‘if’, suppose Λ1 * Λ2, A ∈ Λ1 −Λ2. Then �A ∈ � ·Λ1 by Definition 3.1,

�A /∈ � · Λ2, by Lemma 3.3. Thus � · Λ1 * � · Λ2.

(2) Consider logics Λi = K + Xi for i ∈ I; their join is

∑

i∈I

Λi = K +
⋃

i∈I

Xi.

By Proposition 3.2

� · Λi = K + �Xi,

hence

∑

i∈I

� · Λi = K +
⋃

i∈I

�Xi = K + �(
⋃

i∈I

Xi),

which is � ·
∑
i∈I

Λi by Proposition 3.2 again. 2

Remark 3.5. Boxing does not preserve meets. To see this, consider the logics

Λ1 = Ver = K + �⊥, Λ2 = Triv = K + (�p↔p)
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and the formula

A0 := �2⊥ ∨ �(�p↔p).

We claim that A0 ∈ ((� · Λ1 ∩ � · Λ2) − � · (Λ1 ∩ Λ2)).

Indeed, A0 ∈ � · Λ1, since �2⊥ ∈ � · Λ1; A0 ∈ � · Λ2, since �(�p↔p) ∈ � · Λ2.

To show that A0 /∈ � ·(Λ1 ∩Λ2), consider the frame F0 = (W0, R0), where W0 = {0, 1, 2}, R0(0) = {1, 2},

R0(1) = ∅, R0(2) = {2}. Then F0, 1 � Λ1 and F0, 2 � Λ2. Hence F0, 0 � �(Λ1 ∩ Λ2) (by Lemma 2.4(1)).

Also F0, 1 � �Λ1, F0, 2 � �Λ2, and thus F0, 1 � �(Λ1 ∩ Λ2), F0, 2 � �(Λ1 ∩ Λ2).

Thus F0 � �(Λ1 ∩ Λ2) implying F0 � � · (Λ1 ∩ Λ2). On the other hand, F0, 02A0, since F0, 12�p↔p

and F0, 22�⊥. Therefore A0 /∈ � · (Λ1 ∩ Λ2).

3.2. Predicate boxing

We define boxing for predicate logics similarly to the propositional case.

Definition 3.6. For a modal predicate logic L put � •L := QK + �L.

Lemma 3.7.

(1) � •L ⊆ L.

(2) For a predicate theory X without constants,

QK + �X ⊆ � •(QK + X).

(3) For a propositional logic Λ,

Q(� ·Λ) ⊆ � •QΛ.

Proof. (1), (2) are obvious. (3) follows from (2) for X = Λ; notice that

QK + �Λ = QK + (K + �Λ) = Q(� ·Λ). 2

In general, the inclusions in (2) and (3) cannot be replaced with equality, as we shall see later on, so

boxing does not commute with minimal quantifier extensions.7 That is why we use different notation for

propositional and predicate boxing.

Thus axiomatization of boxing in the predicate case makes some problem. However, the problem disap-

pears after adding the Barcan axiom:

Ba := ∀x�P (x) → �∀xP (x).

Lemma 3.8. For any set of modal sentences X,

� • (QK + X) + Ba = QK + �X + Ba.

In particular, for a propositional logic Λ,

� • QΛ + Ba = Q(� · Λ) + Ba.

7 For example, for the logic T = K +�p → p we have Q(� · T) 6= � •QT, since obviously, � •QT ⊢ �∀x(�P (x) → P (x)), while
Q(� · T)0�∀x(�P (x) → P (x)) (see Lemma 5.12).
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Proof. The inclusion (⊇) holds due to Lemma 3.7, so let us prove (⊆). It suffices to show that

� • (QK + X) ⊆ QK + �X + Ba,

i.e. QK + X ⊢ A implies L ⊢ �A, where L := QK + �X + Ba.

Note that theorems of QK + X are derivable from the axioms of QK and substitution instances of X

by applying (MP), �-introduction, and ∀-introduction (Proposition 2.1). So we can consider derivations of

this kind and argue by induction on the derivation of A. The proof is similar to Proposition 3.2.

We consider only two cases.

If A is a substitution instance of the form SB, where B ∈ X, S is a predicate substitution, then

�A = S�B, and �B ∈ �X.

If A = ∀xB is obtained by ∀-introduction from B, then L ⊢ �B by IH, hence by ∀-introduction,

L ⊢ ∀x�B. By applying substitution to Ba and next (MP), we have L ⊢ �∀xB(= �A). 2

Next, consider extensions of QT = QK + �p → p.

Lemma 3.9. For any set of modal sentences X,

� • (QK + X) ⊆ QK + �X + �∀ref,

where

∀ref := ∀x(�P (x) → P (x)).

Proof. Similar to the previous lemma. Let L := QK + �X + �∀ref , and let us show that QK + X ⊢ A

implies L ⊢ �A. Again we can use Proposition 2.1 and argue by induction on the derivation of A using

QK, substitution instances of X, (MP), �- and ∀-introduction.

The only nontrivial case is when A = ∀xB is obtained by ∀-introduction from B. Then L ⊢ �B by IH,

hence

L ⊢ �∀x�B (∗)

by ∀- and �-introduction. By substitution into �∀ref , we have L ⊢ �∀x(�B → B), hence by QK we

obtain

L ⊢ �(∀x�B → ∀xB),

and next

L ⊢ �∀x�B → �∀xB. (∗∗)

Now L ⊢ �A follows from (∗), (∗∗) by (MP). 2

Proposition 3.10. If QT ⊆ QK + X, then � • (QK + X) = QK + �X + �∀ref . In particular, for a

propositional logic Λ ⊇ T,

� •QΛ = Q(� · Λ) + �∀ref.
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Proof. We have QT ⊢ ∀ref by substitution and ∀-introduction, so QK + X ⊢ ∀ref , and thus

� • (QK + X) ⊢ �∀ref . Obviously, �X ⊆ �(QK + X), hence

QK + �X + �∀ref ⊆ � • (QK + X).

The converse inclusion holds by Lemma 3.9. 2

Lemma 3.11. For a Kripke sheaf model M

M � � •L iff M � �L .

Proof. ‘Only if’ holds, since �L ⊆ � •L.

Let us prove ‘if’. Suppose M � �L.

If A ∈ L, then ∀A ∈ L, so M � �∀A. Since QK ⊢ �∀A → ∀�A (by the converse Barcan formula, cf.

[11], p. 245), it follows that M � ∀�A, i.e. M � �A.

Thus M � �L. Now we can argue similarly to Lemma 3.8. Since the set �L is substitution closed,

theorems of � •L = QK + �L can be obtained from QK ∪ �L by applying (MP), ∀-introduction and

�-introduction. These rules preserve the truth in M , therefore M � � •L. 2

We also have an analogue of Lemma 3.3:

Lemma 3.12. For any modal sentence A, � •L ⊢ �A implies L ⊢ A.

Proof. We use the canonical model almost in the same way as in the proof of Lemma 3.3.

Suppose L0A. Then we have PML, Γ 2 A, PML � L for some L-place Γ. Let M := PML ↑ Γ be the

corresponding rooted generated submodel; by Lemma 2.9(1), (3), we have M, Γ 2 A, M � L as well.

Consider a model M+ obtained by adding the root 0 below M , so that only Γ is accessible from 0 and

the domain at 0 is the same as at Γ. The valuation of predicate letters at 0 does not matter.

Then M is a generated submodel of M+, so by Lemma 2.9(1), M � L implies M+, u � L for any u ∈ M .

Hence M+, 0 � �L, and also M+, u � �L for u ∈ M . Thus M+ � �L implying M+ � �•L by Lemma 3.11.

M, Γ 2 A implies M+, Γ 2 A by Lemma 2.9(1), and thus M+, 0 2 �A.

Since M+ is a model of � •L refuting �A, we obtain � •L0�A. 2

Similarly to Proposition 3.4(1) we have

Proposition 3.13. Boxing embeds the poset of modal predicate logics in itself:

L1 ⊆ L2 iff � • L1 ⊆ � • L2.

Proof. For the proof of ‘if’, note that A ∈ (L1 − L2) implies �A ∈ � • L1 by Definition 3.1, �A /∈ � • L2,

by Lemma 3.12. 2

Lemma 3.14. For any set of sentences X

� • ̂QK + X ⊆ ̂QK + �X.

Proof. We have to show that for any sentence A, QK + X �K A implies QK + �X �K �A. So assuming

QK + X �K A, F = (W, R, D) � �X, let us prove that F � �A.
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Consider the set V := {v ∈ W | R−1(v) 6= ∅}. We have F, u � �X for any u, so uRv implies F, v � X

(Lemma 2.4). Thus F, v � X for any v ∈ V . Since V is stable, we have F ↾ V, v � X (Lemma 2.9 (2)). Hence

F ↾ V � X, so F ↾ V � A, due to the assumption QK + X �K A.

Now for any u, uRv implies v ∈ V , so F ↾ V, v � A. Then F, v � A (Lemma 2.9 (2)), and thus F, u � �A

by Lemma 2.4.

Eventually F � �A. 2

Proposition 3.15.

QK + �X ⊆ � • (QK + X) ⊆ � • ̂QK + X ⊆ CK(QK + �X) = CK(� • (QK + X)).

In particular, for a modal propositional logic Λ,

Q(� · Λ) ⊆ � •QΛ ⊆ � •Q̂Λ ⊆ ̂Q(� · Λ) = �̂ •QΛ.

Proof. The first inclusion holds by Lemma 3.7(2), the third one by Lemma 3.14. The second inclusion is

obvious.

The inclusion CK(QK +�X) ⊆ CK(� •(QK + X)) is also obvious. So, since CK(QK +�X) is a Kripke

complete extension of � •(QK + X), it should coincide with CK(� •(QK + X)). 2

Corollary 3.16. Boxing preserves Kripke incompleteness.

Proof. Suppose L is incomplete, i.e. L ⊂ L̂. Then � • L ⊂ � • L̂ by Proposition 3.13; also � • L̂ ⊆ �̂ • L by

Proposition 3.15. Thus � • L ⊂ �̂ • L. 2

As we will see later on, it often happens that a logic � •(QK + X) is Kripke complete, while QK +�X

is Kripke incomplete.

Analogues of Lemma 3.14, Proposition 3.15, and Corollary 3.16 hold for Kripke sheaves. The proofs are

almost the same.

Lemma 3.17. � • CKE(QK + X) ⊆ CKE(QK + �X).

Proof. Assuming that QK + X �KE A for a sentence A and Φ = (W, R, D, ρ) � �X we show Φ � �A.

Again consider V := {v ∈ W | R−1(v) 6= ∅}. Then by Lemma 2.4 and Lemma 2.9 (2) we obtain

Φ ↾ V � X, so by assumption Φ ↾ V � A. Hence by the same lemmas it follows that Φ, u � �A for any

u. 2

Proposition 3.18.

� •CKE(QK + X) ⊆ CKE(QK + �X) = CKE(� •(QK + X)).

In particular, for a propositional logic Λ

� •CKE(QΛ) ⊆ CKE(Q(� · Λ)) = CKE(� •QΛ).

Corollary 3.19. Boxing preserves Kripke sheaf incompleteness.

To formulate the main theorem on axiomatization of boxing we first recall the definition of shifts from

[9].
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Let P1, . . . , Pk be all predicate letters (besides equality) occurring in a formula A, assume that Pi is

ni-ary, and put

P := P1(x1), . . . , Pk(xk),

where each xi is a list of different variables of length ni not occurring in A. Next, let m ≥ 0, and let P ′
i

be different (m + ni)-ary predicate letters (i = 1, . . . , k), z = z1 . . . zm a list of distinct new variables that

do not occur in x1, . . . , xk and A. Then we call P ′
i the m-shift of Pi; an m-shift of the formula A (by z) is

Am(z) := [P′/P]A, where

P′ = P ′
1(x1, z), . . . , P ′

k(xk, z).

We also put A0(z) := A.

Sometimes we omit z and use the notation Am rather than Am(z).

We need the following decomposition lemma ([9], Lemma 2.5.30):

Lemma 3.20. Let A be a modal sentence. Then every substitution instance of A is congruent to a formula

of the form S0Am, where S0 is a strict substitution, m ≥ 0.

Recall that congruent formulas are obtained by renaming bound variables and two congruent formulas

are QK-equivalent. Strict substitutions do not introduce new parameters (cf. [9], sections 2.3, 2.5).

Theorem 3.21. For a set of modal sentences X

� • (QK + X) = QK + {� ∀Am | A ∈ X, m ≥ 0}.

(In more detail, for each A ∈ X and m ≥ 0 we choose a list of new variables zA,m; then ∀Am denotes

∀zA,mAm(zA,m).)

Proof. The inclusion (⊇) follows easily, since QK + X is closed under m-shifts, ∀- and �-introduction.

To prove (⊆) we have to show that QK + X ⊢ B implies QK + Y ⊢ �B, where

Y := {� ∀Am | A ∈ X, m ≥ 0}.

By Proposition 2.1, if QK + X ⊢ B, then �∞Sub(X) ⊢QK B, so by Deduction Theorem,

QK ⊢
∧

Z → B

for some finite Z ⊆ �∞Sub(X). Then

QK ⊢ �(
∧

Z) → �B,

or equivalently,

QK ⊢ (
∧

�Z) → �B.

So it remains to prove that QK + Y ⊢ �C for any C ∈ �∞Sub(X), or even (due to �-introduction) for

any C ∈ Sub(X). Thus we can present C as ∀SA for some A ∈ X and substitution S.
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By Lemma 3.20 we have8 SA ⊜ S0Am; then �∀SA ⊜ �∀S0Am. S0 commutes with � and also with ∀

(since it is strict), so we obtain

�∀SA ⊜ S0�∀Am.

By definition, ∀Am ∈ Y , hence QK + Y ⊢ S0�∀Am by substitution and �-introduction, and eventually

QK + Y ⊢ �∀SA (= �C) as required. 2

Corollary 3.22. Boxing is a complete embedding of the upper semilattice of modal predicate logics in itself.

Proof. Similar to Proposition 3.4 (2). Consider logics Li = QK + Xi for i ∈ I; their join is

∑

i∈I

Li = QK +
⋃

i∈I

Xi.

By Theorem 3.21

� •Li = QK + {� ∀Am | A ∈ Xi, m ≥ 0},

hence

∑

i∈I

� • Li = QK +
⋃

i∈I

{� ∀Am | A ∈ Xi, m ≥ 0} = QK + {� ∀Am | A ∈
⋃

i∈I

Xi, m ≥ 0},

which is � •
∑
i∈I

Li by Theorem 3.21 again. 2

4. Transfer theorems for boxing

4.1. Transfer of canonicity

Theorem 4.1. Let L be a modal predicate logic. If L is canonical, then � •L is canonical.

Proof. Suppose L is canonical and consider the canonical frame G := PF�•L. Let us show that G � � •L,

which is equivalent to G � �L (by Lemma 3.11).

We prove that G, Γ � �L for an arbitrary point Γ. We have �L ⊆ � •L ⊆ Γ by Lemma 2.13, so

ΓR�•L∆ implies L ⊆ ∆, i.e. ∆ ∈ PWL (Lemma 2.19). Also, since L is canonical, we have PFL, ∆ � L.

Since � • L ⊆ L, by Lemma 2.19, PFL is a generated subframe of G; then by Lemma 2.9(2), G, ∆ � L.

This holds for any ∆ ∈ R�•L(Γ), hence G, Γ � �L (Lemma 2.4). 2

In the propositional case we have a similar theorem:

Theorem 4.2. Boxing preserves canonicity for propositional modal logics.

The proof is by a straightforward modification of the previous one; use the following analogue of

Lemma 2.19:

Lemma 4.3. If Λ ⊆ Λ′, then the points of MΛ containing Λ′ are exactly the points of MΛ′ .

8 Recall that ⊜ denotes congruence ([9], section 2.3).
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4.2. Transfer of strong completeness

Theorem 4.4. Boxing preserves strong KE-completeness.

Proof. Assume that L is strongly KE-complete. Let us show that every (� •L)-place Γ is satisfiable in a

Kripke sheaf model over a (� •L)-sheaf.

The proof of Theorem 4.1 shows that every ∆ ∈ R�•L(Γ) is an L-place, so by strong KE-completeness,

∆ is satisfiable in a model M∆ over some L-sheaf Φ∆ = (W∆, R∆, D∆, ρ∆). Note that DΓ ⊆ D∆.

By Generation Lemma 2.9 we may assume that M∆ is rooted with root 0∆, and ∆ is satisfiable at

M∆, 0∆. So there exists an interpretation δ∆ such that M∆, 0∆ � δ∆ · ∆ (:= {δ∆ · A | A ∈ ∆}).

Next, we add the root Γ to the disjoint sum ⊔
ΓR�·L∆

M∆. To simplify notation, we identify M∆ with its

image in this disjoint sum.

Consider a Kripke sheaf Φ := (W, R, D⋆, ρ) such that

(i) R(Γ) := {0∆ | ΓR�•L∆}, D⋆
Γ := DΓ,

(ii) R(Σ) := R∆(Σ) for Σ ∈ W∆,

(iii) ρΓ0∆
:= δ∆ ↾ DΓ (the restriction of δ∆ to DΓ) for ∆ ∈ R�•L(Γ),

(iv) ρuv := (ρ∆)uv for u, v ∈ W∆,

(v) ρΓv := ρ0∆v ρΓ0∆
for v ∈ W∆,

(vi) ρuu := idD⋆
u
.

We define a model M over Φ by putting

M, Γ � A iff A ∈ Γ

for any atomic DΓ-sentence A.

It is clear that ρ really defines a transition function, i.e. wR∗uR∗v implies

ρwv = ρuvρwu. (◦)

In fact, this holds for w 6= Γ, since each ρ∆ is a transition function. So suppose w = Γ.

If u = w, then (◦) is obvious.

If u, v ∈ W∆, then by (v), ρΓu = ρ0∆u ρΓ0∆
, so

ρuvρΓu = ρuvρ0∆u ρΓ0∆
= ρ0∆v ρΓ0∆

= ρΓv

by (v) and since (◦) holds within W∆.

We claim that Φ � � • L and M, Γ � Γ.

Indeed, for every u ∈ W, u 6= Γ we have Φ, u � L, since u is in some generated subsheaf Φ∆; so by

Lemma 2.4, Φ, u � �L. Similarly, since the points accessible from the root Γ are 0∆ and (as noticed above)

Φ, 0∆ � L, it follows that Φ, Γ � �L as well. Thus Φ � �L, which implies Φ � � · L (Lemma 3.11).

Now let us show by induction on the length of a DΓ-sentence A that

M, Γ � A iff A ∈ Γ.

We can consider only the cases A = �B, A = ∃xB.

(i) Suppose A = �B. If A ∈ Γ, then by definition of the canonical model, B ∈ ∆ for every ∆ ∈ R�•L(Γ).

So M∆, 0∆ � δ∆ · B by the choice of M∆, and thus M, 0∆ � δ∆ · B, since M∆ is a generated submodel of
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M . Note that9 B|0∆ = ρΓ0∆
· B = δ∆ · B, since δ∆ ↾ DΓ = ρΓ0∆

((iii) in the definition of Φ) and B is a

DΓ-sentence. This implies M, Γ � �B, since Γ sees exactly the points 0∆.

On the other hand, if A /∈ Γ, then by properties of the canonical model, ¬B ∈ ∆ for some ∆ ∈ R�·Λ(Γ).

So M∆, 0∆ � δ∆ · ¬B, and thus M, 0∆ 2 δ∆ · B, since M∆ is a generated submodel of M . Since ΓR0∆ and

δ∆ · B = B|0∆ (as noted above), this implies M, Γ2�B.

(ii) Suppose A = ∃xB(x) ∈ Γ. Then B(c) ∈ Γ for some c ∈ DΓ, since Γ is a (� •L)-place. This implies

M, Γ � B(c) by IH, and thus M, Γ � A.

The other way round, if M, Γ � ∃xB(x), then M, Γ � B(c) for some c ∈ DΓ. Hence B(c) ∈ Γ by IH. Then

Γ ⊢�•L ∃xB(x), and so ∃xB(x) ∈ Γ, since Γ is a (� •L)-place.

Therefore Γ is satisfiable in a (� • L)-sheaf. 2

Proposition 4.5. For modal propositional logics, boxing preserves strong Kripke completeness.

Proof. By slight changes in the proofs of Theorems 4.1, 4.2. Every (� · Λ)-consistent set is contained in

some Γ ∈ W�·Λ. So it suffices to show that Γ is satisfied in some (�·Λ)-frame.

Every ∆ ∈ R�·Λ(Γ) contains Λ, so Lemma 4.3 implies that ∆ is Λ-consistent. Since Λ is strongly

complete, ∆ is satisfied in a model M∆ over a Λ-frame F∆; assume that M∆ is rooted with root 0∆, and

M∆, 0∆ � ∆.

Consider the model M = (W, R, ξ) obtained from the disjoint sum ⊔
ΓR�·Λ∆

M∆ by adding the root Γ,

so that R(Γ) = {0∆ | ΓR�·Λ∆} and M, Γ � q iff q ∈ Γ for every proposition letter q. Then we have

(W, R) � � · Λ and M, Γ � Γ.

By induction on the length of A it follows that M, Γ � A iff A ∈ Γ.

Therefore Γ is satisfiable in the (� · Λ)-frame (W, R). 2

Definition 4.6. Let M = (F, ξ) be a Kripke model over a predicate Kripke frame F = (W, R, D), and let

V 6= ∅.

The inflation of F by V is the frame F ⊙ V := (W, R, D′), where D′
u := Du × V for each u ∈ W .

The inflation of M by V is M ⊙ V := (F ⊙ V, ξ′), where10

ξ′
u(P ) := {(d1, . . . , dn) ∈ (D′

u)n | (pr1(d1), . . . , pr1(dn)) ∈ ξu(P )}

for every n-ary predicate letter P .

Informally speaking, the inflation by V contains |V | copies of each individual e behaving exactly as e.

So we have

M ⊙ V, u � P (d1, . . . , dn) iff M, u � P (pr1(d1), . . . , pr1(dn))

for n-ary P ; in particular,

M ⊙ V, u � P iff M, u � P

for 0-ary P .

Lemma 4.7. Let M be a Kripke model over a predicate Kripke frame F = (W, R, D), M ⊙ V = (W, R, D′, ξ′)

its inflation. Then for any u ∈ W , for any D′
u-sentence A(d1, . . . , dn) and v ∈ V

9 The notation A|v was introduced in Definition 2.3.
10 pr1 denotes the first projection.
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M ⊙ V, u � A(d1, . . . , dn) iff M, u � A(pr1(d1), . . . , pr1(dn)).

The proof is by induction on the length of A. In fact, this lemma is a particular case of Proposition

3.3.11 from [9]: here we have a morphism of Kripke models (f0, f1) : M ⊙ V −→ M , where f0 = idW ,

f1u(d) = pr1(d), cf. [9], Definitions 3.3.1, 3.3.3.

Theorem 4.8. If QΛ is strongly Kripke complete, then � •(QΛ) is strongly Kripke complete.

Proof. We modify the proof of Theorem 4.4.

Let L = QΛ, and let Γ0 be a (� •L)-consistent theory. Recall that we assume that its set of constants is

small, so by Lemma 2.13, Γ0 is contained in some (� •L)-place Γ. Let us show that Γ is satisfiable in some

Kripke model over a (� •L)-frame.

As in the proof of Theorem 4.4, we can see that every ∆ ∈ R�•L(Γ) is an L-place. Since L is strongly

complete, ∆ is satisfiable in a model M∆ over some L-frame F∆; let F∆ be its propositional base. By

Lemma 2.4(2) it follows that F∆ � Λ.

Note that ΓR�•L∆ implies DΓ ⊆ D∆.

We may assume that M∆ is rooted with root 0∆, and ∆ is satisfiable at (M∆, 0∆). By Definition 2.5,

there exists an interpretation δ∆ such that

M∆, 0∆ � δ∆ · ∆.

Now we would like to add the root Γ to the disjoint sum ⊔
ΓR�·L∆

M∆. Unfortunately, this idea would not

work directly, because the domain DΓ may be condensed by the interpretations δ∆. To avoid this, we use

inflation.

So for each ∆ ∈ R�·L(Γ) we put M ′
∆ := M∆ ⊙ DΓ; let D′

0∆
be the root domain of M ′

∆. We call an

interpretation δ′
∆ of ∆ at (M ′

∆, 0∆) associated with δ∆ if pr1(δ′
∆(c)) = δ∆(c) for any c ∈ D∆. Then by

Lemma 4.7, for any formula B ∈ L(∆)

M ′
∆, 0∆ � δ′

∆ · B iff M∆, 0∆ � δ∆ · B,

and thus

M ′
∆, 0∆ � δ′

∆ · ∆. (∗)

Now for every ∆ consider a specific interpretation δ′
∆ associated with δ∆ such that δ′

∆(c) = (δ∆(c), c) for

every c ∈ DΓ and δ′
∆(c) is arbitrary for c ∈ D∆ − DΓ (with the only requirement pr1(δ′

∆(c)) = δ∆(c)). Then

δ′
∆ is injective on DΓ.

Next, we cross-identify some individuals in the domains D′
0∆

.

Namely, let h be the map defined on the total domain of M ′
∆ such that

h(a) :=

{
c if a = δ′

∆(c), c ∈ DΓ,

a otherwise.

If D′
u is the domain at world u of M ′

∆, we define D′′
u as the image set h(D′

u); so h is a bijection11 from D′
u

onto D′′
u. It is clear that DΓ ⊆ D′′

0∆
.

11 For injectivity of h we need a technical assumption that DΓ does not contain ordered pairs. This can be achieved by an
appropriate choice of the basic set S∗ (cf. subsection 2.6).
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Then we define the Kripke model M ′′
∆ over the predicate frame F′′

∆ := (F∆, D′′) as follows:

M ′
∆, u � P (a1, . . . , an) iff M ′′

∆, u � P (h(a1), . . . , h(an))

for any world u, predicate letter P and a1, . . . , an ∈ D′
u. So there is an isomorphism from M ′

∆ onto M ′′
∆

sending every world to itself and every individual a to h(a). Thus

M ′
∆, u � A(a1, . . . , an) iff M ′′

∆, u � A(h(a1), . . . , h(an)) (∗∗)

for any world u, formula A(x1, . . . , xn) and tuple (a1, . . . , an) ∈ (D′
u)n. Next, we define an interpretation

δ′′
∆ := h · δ′

∆, so

δ′′
∆(c) =

{
c if c ∈ DΓ,

δ′
∆(c) if c ∈ D∆ − DΓ.

Then by (**) for any formula B in L(∆) we have

M ′
∆, 0∆ � δ′

∆ · B iff M ′′
∆, 0∆ � δ′′

∆ · B.

Therefore (∗) implies

M ′′
∆, 0∆ � δ′′

∆ · ∆. (∗ ∗ ∗)

Let F′′
∆ be the frame of M ′′

∆. Its propositional base is the same F∆, so F′′
∆ � Λ by Lemma 2.4, which

implies F′′
∆ � L.

Next, we construct the disjoint sum M ′′ := ⊔
ΓR�·L∆

M ′′
∆ and add the root Γ to it. This is possible, since

DΓ ⊆ D′′
0∆

. Thus we obtain a Kripke model M⋆ over a frame G = (W, R, D⋆) such that

R(Γ) = {0∆ | ΓR�·L∆}, D⋆
Γ = DΓ,

M⋆, Γ � A iff A ∈ Γ

for any atomic DΓ-sentence A.

We claim that G � � •L and M⋆, Γ � Γ.

This is proved as in Theorem 4.4. By Lemma 3.11, it suffices to show that G � �L. First note that

for every u ∈ W, u 6= Γ we have G, u � L, since u is in some generated subframe F′′
∆ validating L; thus

G, u � �L. In particular, G, 0∆ � L. Since R(Γ) consists of the points 0∆, it follows that G, Γ � �L as

well (by Lemma 2.4).

Next, let us show by induction on the length of a DΓ-sentence A that

M⋆, Γ � A iff A ∈ Γ.

If A is atomic, this holds by definition.

We skip the cases A = ⊥, A = B → C.

Suppose A = �B. If A ∈ Γ, then by definition of the canonical model, B ∈ ∆ for every ∆ ∈ R�•L(Γ). So

by (***), M ′′
∆, 0∆ � δ′′

∆ · B = B (since B is a DΓ-sentence), and thus M⋆, 0∆ � B, since M ′′
∆ is (isomorphic

to) a generated submodel of M⋆. Therefore M⋆, Γ � �B, since Γ sees only these 0∆.

On the other hand, if A /∈ Γ, then by the properties of the canonical model, ¬B ∈ ∆ for some

∆ ∈ R�•L(Γ). So by (***) again, M ′′
∆, 0∆ � ¬B, and thus M⋆, 0∆ 2B, since M ′′

∆ is a generated submodel

of M⋆. Since ΓR0∆, we have M⋆, Γ2�B.
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Suppose A = ∃xB(x) ∈ Γ. Then B(c) ∈ Γ for some c ∈ DΓ, since Γ is a (�•L)-place. Hence M⋆, Γ � B(c)

by IH, which implies M⋆, Γ � A.

The other way round, if M⋆, Γ � ∃xB(x), then M⋆, Γ � B(c) for some c ∈ DΓ. Hence B(c) ∈ Γ by IH.

Then Γ ⊢�•L ∃xB(x), and so ∃xB(x) ∈ Γ, since Γ is a (� •L)-place.

Therefore Γ is satisfiable in a (� •L)-frame. 2

4.3. Transfer of Kripke completeness for propositional logics

Theorem 4.9. For modal propositional logics, boxing preserves Kripke completeness.

Proof. We modify the proof of Proposition 4.5. Assume that Λ is Kripke complete, let A be a (� · Λ)-

consistent formula, and consider the canonical model M := M�·Λ. Then M, Γ � A for some Γ. For every

subformula �B of A refuted at M, Γ, there exists a point ∆B ∈ R�·Λ(Γ) such that M, ∆B 2B. ∆B is

Λ-consistent, since it contains Λ.

Let Ψ be the set of all subformulas of A, and put

B− := ¬B ∧
∧

{C | M, Γ � �C, �C ∈ Ψ}.

Then M, ∆B � B−, so B− is Λ-consistent.

Since Λ is complete, there exists a model NB over a Λ-frame with a root 0B such that NB , 0B � B−.

Consider the model N = (W, R, ξ) obtained from the disjoint sum ⊔
�B∈(Ψ−Γ)

NB by adding the root Γ, so

that

R(Γ) = {0B | �B ∈ (Ψ − Γ)}

and N, Γ � q iff q ∈ Γ for every proposition letter q. We claim that (W, R) � � · Λ and N, Γ � A.

The first claim is checked as in the proof of Proposition 4.5. For the second one, we show by induction

that for any E ∈ Ψ

N, Γ � E iff E ∈ Γ.

Again the only nontrivial case is when E begins with �.

Suppose E = �C ∈ Γ. Then C occurs as a conjunct in each B−, so NB , 0B � C. Thus N, 0B � C, since

NB is a generated submodel of N . By the definition of R(Γ), it follows that N, Γ � �C.

Now suppose E = �B /∈ Γ. Since ¬B is a conjunct in B−, we have NB , 0B � ¬B, and thus N, 0B � ¬B,

by Generation lemma. Therefore N, Γ2�B. 2

4.4. Some examples

Let us recall examples of strongly complete logics of the form QΛ for different Λ.

1. One-way PTC logics.

These are logics axiomatized by formulas of the form �p → �np and closed propositional formulas. Then

QΛ is canonical ([9], Theorem 6.1.29).

2. Logics with confluence and density axioms.

Here we have several logics, for which QΛ is strongly complete, but probably not canonical. The first

example of this kind was S4.2, the logic of confluent (or even directed) S4-frames. Strong completeness of

QS4.2 was proved by G. Corsi and S. Ghilardi [5].12 The proof can also be found in [9], section 6.6. Similar

12 Their paper states only completeness, but actually proves strong completeness.
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examples are constructed in [15]: these are extensions of K4 by axioms of confluence, density, and 2-density

in different combinations.

3. Logics with non-branching axioms.

This group of logics contains the axiom of non-branching, in reflexive or irreflexive versions, in combina-

tion with axioms of density or finite depth. Typical examples are the well-known logics S4.3 and K4.3. The

corresponding results on strong completeness of QΛ are proved in G. Corsi’s paper [4]. For the particular

case of QS4.3 cf. also [9], section 6.7.

5. S5 and its extensions.

Kripke completeness for QS5 was proved in the well-known S. Kripke’s paper [12]. However, strong

completeness (using a version of a canonical model with a constant domain) was first proved in [1]. The

same method nicely works for all extensions of S5. For these extensions one can also apply the general

Tanaka — Ono theorem (cf. [9], section 7.4) as these logics are tabular and their quantified extensions

contain the Barcan formula.

5. Incompleteness

5.1. Some counterexamples

Now we will show that an analogue of Theorem 4.4 does not hold for Kripke semantics.

Consider the logics

QΛU1 := QΛ + AU1,

where Λ is a propositional modal logic, and

AU1 := ∃xP (x) → ∀xP (x)

is the axiom of singleton domains. So for a Kripke frame F = (W, R, D)

F � AU1 iff ∀u ∈ W |Du| = 1.

The axiom AU1 allows us to eliminate all quantifiers. More exactly, we call a predicate formula primitive

if it is quantifier-free and contains at most one individual variable x. Then we have

Lemma 5.1. For any predicate formula A there exists a primitive formula A′ such that QK+AU1 ⊢ A ↔ A′.

Proof. Let L = QK + AU1. First note that by AU1, L ⊢ A↔∀A for any A.

Then the argument is by induction on the length of A.

If A = P (x1, . . . , xn) is atomic, then A is L-equivalent to A′ = P (x, . . . , x), due to AU1. In more detail,

we have L ⊢ P (x, . . . , x) → ∃x1 . . . ∃xnP (x1, . . . , xn) by classical logic and

L ⊢ ∃x1 . . . ∃xnP (x1, . . . , xn) → ∀P (x1, . . . , xn) by AU1. Also L ⊢ ∀P (x1, . . . , xn) → P (x, . . . , x) by classical

logic.

If A = ∀yB, then L ⊢ A ↔ B, so we can take A′ = B′.

The remaining cases are trivial. 2

Lemma 5.2. Let Λ be a strongly complete modal propositional logic. Then QΛU1 is strongly Kripke complete.

Proof. Let L = QΛU1. Note that L-frames are just propositional Λ-frames with singleton domains.
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Let Γ be an L-consistent theory. By Lemma 5.1 we can deal only with primitive formulas, so we may

assume that formulas in Γ are of the form A(c), where A(x) is primitive, c is a constant. We may also

assume that c is fixed, since we need only models with singleton domains.

For every formula A(c) we construct a propositional formula Aπ as follows.

Let (Pi)i∈ω be an enumeration of all our predicate letters. We associate a proposition letter pi with each

Pi and put

Pi(c, . . . , c)π := pi, (A → B)π := (Aπ → Bπ), ⊥π := ⊥, (�A)π := �Aπ.

Then we have:

Λ ⊢ Aπ ⇒ ⊢L A(c). (∗)

In fact, A(c) is obtained from Aπ by substituting Pi(c, . . . , c) for pi.

Now put

Γπ := {Aπ | A(c) ∈ Γ}.

Then Γπ is Λ-consistent. Indeed, if we have Λ ⊢ ¬
∧

j(Aj)π for some formulas Aj(c) ∈ Γ, then ⊢L ¬
∧

j Aj(c)

by (*), which implies the L-inconsistency of Γ.

By strong completeness of Λ, Γπ is satisfiable in a Λ-frame F . So by adding a singleton domain to F we

obtain an L-frame F.

We claim that Γ is satisfiable in F. Indeed, let M, u � Γπ for a model M on F . Consider the model M

on F such that for any v

M, v � Pi(a, . . . , a) iff M, v � pi,

where a is the unique individual in the domain. Then by induction we easily obtain that for any v

M, v � A(a) iff M, v � Aπ.

Hence M, u � Γ. 2

Lemma 5.3. Let Λ be a modal propositional logic. Then � • QΛU1 �K AU1 ∨ �⊥.

Proof. Let L := QΛU1. Every L-frame has singleton domains. In every (� • L)-frame F = (W, R, D) for

any u we have F, u � �AU1, so |Dv| = 1 for any v ∈ R(u). If u 6|= �⊥, there exists v ∈ R(u). Since Du ⊆ Dv,

Du is a singleton, thus F, u |= AU1.

Hence F � AU1 ∨ �⊥. 2

Recall that Triv := K + �p ↔ p, Ver := K + �⊥.

Proposition 5.4. Let Λ be a modal propositional logic. Then � • QΛU1 is Kripke incomplete.

Proof. Due to the previous lemma, it suffices to prove that

� • QΛU10AU1 ∨ �⊥.

By Makinson’s theorem ([2], Theorem 8.67) Λ ⊆ Triv or Λ ⊆ Ver, so we can consider only the cases

Λ = Triv and Λ = Ver.
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Fig. 1. Kripke sheaf Φ0.

For Triv we take the Kripke sheaf Φ0 with two worlds: irreflexive u and reflexive v, Du = {a, b}, Dv = {c}.

Fig. 1 shows the transition function from u to v.

We have Φ0, v � QTrivU1, since v is reflexive with a singleton domain. Hence Φ0 � � • QTrivU1.

On the other hand, |Du| = 2, R(u) 6= ∅, so Φ0, u2AU1∨�⊥. Thus, �•QTrivU10AU1∨�⊥ by Soundness

theorem.

For Λ = Ver replace Φ0 with Φ1, in which both u, v are irreflexive. 2

Corollary 5.5. Strong Kripke completeness of a modal predicate logic L does not imply Kripke completeness

of �•L: counterexamples are given by the logics QΛU1, where Λ is a strongly Kripke complete propositional

logic.13

5.2. Some propositional logics

Here are definitions of specific propositional logics; most of them are well known:

T := K + �p → p, K4 := K + �p → �2p,

S4 := T + �p → �2p, S5 := S4 + 3�p → p, Ver := K + �⊥,

Triv := K + �p ↔ p, SL := K + �p ↔ 3p,

SL4 := SL + �p → ��p, SL4n := SL + �np → �n+1p,

K5 := K + 3�p → �p,

K45 := K5 + �p → �2p,

K4�S5 := �·S5 + �p → �2p.

All these logics are Sahlqvist, so they are elementary and canonical.

In this paper we are interested mainly in extensions of the logic � ·T including those of the form �·Λ

for Λ ⊇ T. By Makinson’s theorem [2], Λ ⊆ Triv; thus �·T ⊆ �·Λ ⊆ �·Triv.

Fig. 2 shows inclusions between some extensions of �·T.

Recall that K5 is determined by ‘Euclidean frames’, i.e., by those satisfying

∀x∀y∀z(xRy & xRz → yRz).

So K45 is determined by transitive Euclidean frames.

The paper [13] describes all extensions of K5 and proves that K5 is locally tabular.14

13 These Λ were discussed in subsection 4.4.
14 One can also show local tabularity for � · S5 (and so, for all its extensions); this fact is stated in [14].
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Fig. 2. Extensions of �·T.

The inclusion K5 ⊃ � · S5 follows from semantical characterizations of these logics — they are complete,

and every Euclidean frame validates � · S5. In fact, in Euclidean frames xRy implies yRy, and the points

accessible from y make a cluster.15

The logic SL4 is determined by transitive functional frames and also by a single two-element frame

({0, 1}, {(0, 1), (1, 1)}). The inclusion K45 ⊂ SL4 is easily checked, semantically or syntactically.

Similarly, the logic SL4n is determined by the frame ({0, 1, . . . , n}, R), where xRy iff y = x+1∨x = y = n.

This logic will be used in section 8.

5.3. Kripke bundles

In the rest of this section we prove Kripke-incompleteness for a large family of predicate modal logics in-

cluding QK5. For this purpose we apply the Kripke bundle semantics. Let us briefly recall the corresponding

definitions, see [9], chapter 5 for further details.

Definition 5.6. A Kripke bundle over a propositional frame F = (W, R) is a triple F = (F, D, ρ), in which

D = (Du)u∈W is a family of (non-empty) disjoint domains and ρ = (ρuv)(u,v)∈R is a family of inheritance

relations ρuv ⊆ Du × Dv such that ρuv(a) 6= ∅ whenever uRv, a ∈ Du.

Models on F are of the form (F , ξ), where ξ = (ξu)u∈W , ξu(P ) ⊆ Dm
u for each m-ary P .

For a Kripke bundle model M the forcing relation M, u � A between worlds u ∈ F and Du-sentences is

defined recursively. In particular, M, u � �A(a1, . . . , an) iff

∀v ∈ R(u) ∀b1 ∈ ρuv(a1) . . . ∀bn ∈ ρuv(an) M, v � B(b1, . . . , bn).

Definition 5.7. A predicate formula A is true in a Kripke bundle model if its universal closure ∀A is true at

every world of this model. A is strongly valid on a Kripke bundle F (notation: F �+ A) all its substitution

instances are true in every model over F .

Proposition 5.8. The set {A | F �+ A} is a modal predicate logic.

Definition 5.9. For a Kripke bundle F = (F, D, ρ), put D0 := W and

Dn :=
⋃

{Dn
u | u ∈ W}

for n > 0.

The relations Rn on Dn are defined as follows:

R1 :=
⋃

{ρuv | uRv}, R0 := R,

15 An alternative syntactic proof is an exercise for the reader.
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Fig. 3. Kripke bundle F .

aRnb iff ∀j ajR1bj & ∀j, k (aj = ak ⇒ bj = bk)

for n > 1.

Thus F corresponds to the family of propositional frames Fn = (Dn, Rn), in which F0 = F .

Proposition 5.10. For a Kripke bundle F and a modal propositional formula A,

F �+ A iff ∀n Fn � A.

For the proof cf. [9], Proposition 5.3.7.

Theorem 5.11. Let Λ be a modal propositional logic between � ·T and SL4. Then QΛ is Kripke (and Kripke

sheaf) incomplete. In particular, this holds for Λ = �·Λ1, where Λ1 is a consistent extension of T.

Proof. Here the crucial formula is �∀ref . First we prove

Lemma 5.12. QSL4 0 �∀ref .

Proof. By Proposition 5.8 it suffices to construct a Kripke bundle F = (F, D, ρ) strongly validating QSL4,

but refuting �∀ref .

Let F = F0 be a reflexive singleton ({u}, {(u, u)}). Let F1 = (D, ρ), where D = {a, b} and

ρ := {(a, b), (b, b)}, see Fig. 3. Then ML(F1) = SL4, and we obtain

Dn = (D1)n; dRne iff ∀i ≤ n ei = b.

So every Rn is functional; every d ∈ Dn (for n > 0) has a unique successor (b, b, . . . , b︸ ︷︷ ︸
n

). Hence Fn � SL4

for n ≥ 0, and thus F �+ QSL4 by Proposition 5.10.

On the other hand, consider a model M = (F , ξ), where ξu(P ) := {b}. We claim that M, u 2 �∀ref .

Indeed, M, u � �P (a), since M, u � P (b) and b is the unique inheritor of a. At the same time M, u 2 P (a).

Thus M, u 2 �P (a) → P (a), and so

M, u 2 ∀x(�P (x) → P (x)).

This implies M, u 2 �∀ref , since u is reflexive. 2

Now to prove Theorem 5.11 note that QΛ �KE �∀ref , since Q(� · T) �KE �∀ref (Propositions 3.10,

3.18); however QΛ 0 �∀ref , since QSL4 0 �∀ref (Lemma 5.12). 2

Remark 5.13. It is well known (cf. [8]) that there is a continuum of modal logics between T and Triv. By

Proposition 3.4, their boxings are different; hence by Theorem 5.11 we obtain a continuum of incomplete

logics of the form QΛ.
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Theorem 5.14. For any modal propositional logic Λ between � · T and SL4:

(1) If QΛ + �∀ref is Kripke complete, then

Q̂Λ = QΛ + �∀ref.

In particular, this holds whenever Λ = � · Λ1, Λ1 ⊇ T and QΛ1 is strongly Kripke complete.

(2) Similarly, if QΛ + �∀ref is Kripke sheaf complete, then

CKE(QΛ) = QΛ + �∀ref.

In particular, this holds for Λ = � · Λ1, where Λ1 ⊇ T and QΛ1 is strongly Kripke sheaf complete.

Proof. (1) Since QΛ �K �∀ref , we have QΛ + �∀ref ⊆ Q̂Λ. But Q̂Λ is the least K-complete extension

of QΛ, so the inclusion becomes equality if QΛ + �∀ref is K-complete.

Also note that strong Kripke completeness transfers from QΛ1 to � • (QΛ1), by Theorem 4.8, and

� •(QΛ1) = Q(�·Λ1) + �∀ref , by Proposition 3.10.

(2) Similar to (1), now using QΛ �KE �∀ref and Theorem 4.4 (for Λ = �·Λ1). 2

6. Kripke completions of QK4�S5 and QK45

6.1. C-canonicity

Let us first recall the construction of canonical models with constant domains from [9], chapter 7.

We begin with the well-known characterization of the Barcan formula:

Lemma 6.1. The Barcan formula

∀x�P (x) → �∀xP (x)

is valid on a rooted Kripke frame F = (W, R, D) iff F has a constant domain, i.e. all the domains Du for

u ∈ W coincide.

Definition 6.2. For a modal logic L containing Ba let CWL be the set of all L-places (from PWL) with a

fixed countable set of constants S0. The canonical frame and the canonical model with a constant domain

for L are the restrictions CFL := PFL ↾ CWL, CML := PML ↾ CWL.

For these models we have

Theorem 6.3. For any Γ ∈ CWL and modal S0-sentence A,

CML, Γ � A iff A ∈ Γ.

Corollary 6.4. For any modal predicate formula A,

CML � A iff L ⊢ A.

Definition 6.5. A modal predicate logic L containing Ba is called C-canonical if CFL � L.

Corollary 6.6. Every C-canonical logic is strongly Kripke complete.
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Proof. Assume that L is C-canonical, Γ is an L-consistent theory. We may also assume that DΓ ⊆ S0. Then

Γ can be extended to some ∆ ∈ CWL. By Theorem 6.3, CML, ∆ � ∆. Thus Γ is satisfiable in the L-frame

CFL. 2

The definition of CWL and CML depends on the basic set of constants S0, but sometimes we need to

indicate this set explicitly. Then we use the notation CWL(S0), CFL(S0), CML(S0). Obviously, all the

models CML(S0) are isomorphic for countable S0.

The well-known example of a C-canonical logic is QS5:

Theorem 6.7. QS5 is C-canonical.

This is a particular case of Tanaka – Ono completeness theorem, cf. [9], Theorem 7.4.7. However, in this

case C-canonicity follows readily: reflexivity and transitivity are inherited from the larger frame PFQS5;

symmetry for CFQS5 is easily checked.

6.2. QK4�S5

Lemma 6.8. Let L be a modal predicate logic containing � • QS5, and let ΓRL∆ in the canonical model

PML. Then

(1) ∆ is a QS5-place.

(2) ∆RL∆.

Proof. (1) By Lemma 2.19, it suffices to prove that QS5 ⊆ ∆. Indeed, suppose QS5 ⊢ A for a sentence

A; then by definition � • QS5 ⊢ �A, hence L ⊢ �A, and so �A ∈ Γ (Lemma 2.13). Thus A ∈ ∆ by the

definition of RL.

(2) Since ∆ is a QS5-place, we have (�A → A) ∈ ∆ for A ∈ L(∆). So �A ∈ ∆ implies A ∈ ∆, i.e.

∆RL∆. 2

Lemma 6.9. Let L be a modal predicate logic containing � • QS5, and assume that Γ is an L-place with an

infinite domain. Then in the canonical model PML

ΓRL∆ & ∆RLΣ & D∆ = DΣ ⇒ ΣRL∆.

Proof. By the previous lemma, ∆, Σ ∈ PWQS5. Since D∆ = DΣ, we have ∆, Σ ∈ CWQS5(D∆). Then the

claim follows from the symmetry of CFQS5. 2

To prove the required completeness results we use selective submodels of canonical models. Note that their

definition differs from the one given in [9]. It resembles the Tarski–Vaught test for elementary submodels in

classical model theory.

Definition 6.10. Let M = (W, R, D, ξ) be a Kripke model. A weak submodel of M is a Kripke model

M1 = (U, R1, D1, ξ1) such that16

U ⊆ W, R1 ⊆ R, D1 = D ↾ U, ξ1 = ξ ↾ U.

The weak submodel M1 is called selective if for any u ∈ U , for any Du-sentence A

16 I.e. (ξ1)u = ξu, (D1)u = Du for each u ∈ U , cf. Definition 2.8.
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M, u � 3A ⇒ ∃v ∈ R1(u) M, v � A.

Lemma 6.11. Let M , M1 be the same as in the previous definition. Then M1 is a reliable submodel of M :

for any u ∈ U , for any Du-sentence A

M, u � A iff M1, u � A.

Proof. We may assume that A is constructed from atomic formulas using 3, →, ⊥, ∃ and argue by

induction on the length of A. The only nontrivial case is when A = 3B.

Then, if M, u � 3B, there exists v ∈ R1(u) such that M, v � B, since M1 is selective. By IH, we have

M1, v � B, hence M1, u � 3B.

The other way round, if M1, u � 3B, there is v ∈ R1(u) such that M1, v � B. We have M, v � B, by IH,

and v ∈ R(u), since R1 ⊆ R. Thus M, u � 3B. 2

Theorem 6.12. The logic QK4�S5 + �∀ref is strongly Kripke complete. Thus
̂QK4�S5 = QK4�S5 + �∀ref .

Proof. We denote this logic by L. Then L ⊇ Q(� · S5) + �∀ref = � • QS5.

Since L ⊇ QK4, a standard argument shows that the canonical relation RL is transitive.

Given an L-consistent theory Γ0, we may assume that its set of constants is small (by an appropriate

choice of the set S∗ in the canonical model, cf. subsection 2.6) and extend Γ0 to an L-place Γ (Lemma 2.15)

So it is sufficient to satisfy Γ in a Kripke model over an L-frame.

CASE 1 �⊥ ∈ Γ. Then Γ is an endpoint in the canonical model PML, and PML, Γ � Γ by the Canonical

model theorem. By Lemma 2.9(1) we have PML↑Γ, Γ � Γ.

Since Γ is an endpoint, the cone F := PFL↑Γ has a single world Γ, which is irreflexive. Then obviously

F � �B for any formula B; hence F � �∀ref , F � K4�S5, and thus F is an L-frame.

CASE 2 ΓRLΓ.

Then by Lemma 6.8, Γ is a QS5-place. So by Theorem 6.7 and Corollary 6.6, Γ is satisfiable in the

QS5-frame CFQS5. This is an L-frame, since L ⊆ QS5.

CASE 3 3⊤ ∈ Γ, but Γ is RL-irreflexive. Then RL(Γ) 6= ∅.

Consider the set U := {Γ} ∪ RL(Γ) with the relation

∆RΣ iff ∆RLΣ & (∆ = Γ ∨ D∆ = DΣ).

Let M be the restriction of PML to (U, R). We claim that M is selective.

Indeed, suppose 3C ∈ ∆, ∆ ∈ U .

(a) ∆ 6= Γ.

Then ∆ is a QS5-place, by Lemma 6.8. So CMQS5(D∆), ∆ � 3C (Theorem 6.3); hence in the C-canonical

model CMQS5(D∆) there exists Θ such that ∆RQS5Θ, C ∈ Θ. Certainly, ∆, Θ are points in the larger

canonical model PMQS5, which is a generated submodel of PML (Lemma 2.19). Thus Θ is an L-place and

∆RLΘ.

We also have ΓRLΘ by transitivity. Therefore Θ ∈ U and PML, Θ � C.

(b) ∆ = Γ. In the canonical model there exists Σ such that ΓRLΣ and C ∈ Σ. This Σ is in U , and

∆ = ΓRΣ.

Besides selectivity, we need to show that PFL ↾ (U, R) � L, i.e., that R is transitive, and R is an

equivalence on all points but Γ. In fact, reflexivity for these points follows from Lemma 6.8, and symmetry

from Lemma 6.9.

The transitivity of RL is provided by K4, so R is transitive on U −{Γ}. Also ΓR∆RΣ implies ΓRL∆RLΣ,

and thus ΓRLΣ, i.e. ΓRΣ. 2
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6.3. QK45

Theorem 6.13. The logic QK45 + �∀ref is strongly Kripke complete. Thus Q̂K45 = QK45 + �∀ref .

Proof. It goes along the same lines as in the previous theorem. Let L = QK45 + �∀ref and let Γ be an

L-place (with an infifnite domain). Since K45 ⊇ � · S5, we see again that L ⊇ � • QS5.

Now we have the same three cases as in the previous theorem. In cases 1, 2 the argument does not change.

CASE 3 Suppose 3⊤ ∈ Γ, but Γ is RL-irreflexive. Then there exists an L-place ∆ such that ΓRL∆.

Let S := D∆, and put M := PML ↾ U , where

U := {Γ} ∪ {Σ ∈ RL(∆) | DΣ = S}.

By Lemma 6.8, ∆ is reflexive, so ∆ ∈ U .

Let us show that M is selective. Let B = 3C ∈ Σ ∈ U and consider two cases.

(a) Σ ∈ RL(∆), DΣ = S.

As in the previous theorem, case 3(a), we notice that Σ is a QS5-place, by Lemma 6.8. Hence we obtain

Θ ∈ RQS5(Σ) such that C ∈ Θ. By Lemma 2.19 it follows that Θ is an L-place and ΣRLΘ. By transitivity,

∆RLΘ and also DΘ = S. Thus Θ ∈ U and PML, Θ � C.

(b) Σ = Γ.

We claim that there exists Θ ∈ RL(∆) ∩ RL(Γ) such that DΘ = S and C ∈ Θ.

Since the relation RL is transitive, this claim follows easily from the case (a). Indeed, ⊢L 3C → �3C, so

�3C ∈ Γ, and since ΓRL∆, we have 3C ∈ ∆. By (a) we obtain Θ ∈ RL(∆) with DΘ = S and M, C � Θ;

also ΓRLΘ by transitivity.

It remains to show that the frame of M (we again denote it by F) validates L, i.e. it is transitive,

Euclidean and validates �∀ref .

The transitivity is already known.

For the Euclideanness note that Γ is RL-related to all other points by transitivity, and let us show that

all these points are RL-related.

Indeed, suppose ∆RLΣ, ∆RLΣ′, DΣ = DΣ′ = S. Since ∆ is reflexive, ΣRL∆ by Lemma 6.9. Hence

ΣRLΣ′ by transitivity.

The formula �∀ref is valid on F, since every its point but Γ is reflexive and Γ is not accessible (from

any point): ΓRLΣRLΓ would imply ΓRLΓ by transitivity. 2

Remark. The equality Q̂Λ = QΛ + �∀ref also holds for Λ = SL4. We leave the proof as an exercise for

the reader.

7. Kripke completion of QK5

In this section we also prove completeness using canonical models, but the argument becomes more

involved.

We begin with a useful lemma on adding witnesses for logics containing the Barcan formula. Implicitly

it is contained in the proof of Lemma 7.1.2 from [9].

Lemma 7.1. Let L be a predicate logic containing Ba, Σ an L-consistent theory such that Σ ⊢L 3B for some

sentence B in the language of Σ. Let ∃xA(x) also be a sentence in the language of Σ and let c be a new

constant not occurring in Σ, B and A(x). Then the theory

Σ′ := Σ ∪ {3(B ∧ (∃xA(x) → A(c)))}
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is L-consistent.

Proof. Supposing the inconsistency of Σ′ we obtain

Σ ⊢L �(B → ∃xA(x) ∧ ¬A(c)),

and thus

Σ ⊢L ∀y�(B → ∃xA(x) ∧ ¬A(y))

by lemma on new constants ([9], Lemma 2.7.11). Hence by applying Ba we have

Σ ⊢L �∀y(B → ∃xA(x) ∧ ¬A(y)).

Next, by classical logic, we can move the quantifier inside:

Σ ⊢L �(B → ∃xA(x) ∧ ∀y¬A(y)),

which implies

Σ ⊢L �¬B.

Together with the assumption Σ ⊢L 3B this implies the inconsistency of Σ.

Therefore Σ′ is consistent. 2

Theorem 7.2. The logic QK5 + �∀ref is strongly Kripke complete. Thus Q̂K5 = QK5 + �∀ref .

Proof. The proof follows the same lines as in Theorem 6.13, with an essential difference in case 3.

Let L be our logic, and consider the canonical model PML. Since K5 ⊇ � · S5, we have

L ⊇ Q(� · S5) + �∀ref = � • QS5

(Proposition 3.10), so Lemmas 6.8, 6.9 hold for PML.

Let Γ be an L-place and consider three cases as in Theorems 6.12, 6.13.

In cases 1 and 2 the argument is preserved. However, in case 3 (Γ is irreflexive, 3⊤ ∈ Γ), we cannot rely

on the transitivity of RL. To see the difficulties, consider a formula 3C ∈ Γ. In the proof of Theorem 6.13,

case 3(b), we constructed Θ ∈ RL(Γ) ∩ RL(∆) such that DΘ = D∆ and C ∈ Θ. To obtain Θ we noticed

that 3C ∈ ∆ and then used the transitivity of RL. But now RL is not transitive, so we cannot claim that

Θ ∈ RL(Γ).

To modify the proof properly, we do not start from a certain ∆ ∈ RL(Γ), but construct successors of Γ

gradually. The whole procedure goes in three stages.

For a theory Σ denote

3Σ := {3A | A ∈ Σ}, �−Σ := {A | �A ∈ Σ}.

Stage 1 Consider all formulas in Γ beginning with 3: 3C1, 3C2, . . . We first construct QS5-consistent

theories with the Henkin property ∆1, ∆2, . . . (all in the same language) containing �−Γ and such that

Ci ∈ ∆i. This is done by induction.

Base We start with the theories ∆0
i := [{Ci} ∪ �−Γ], where [. . .] denotes closure under ⊢QS5 (i.e. QS5-

derivability, cf. subsection 2.2).
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(1) Let us show their consistency.17 It is sufficient to show that {Ci} ∪ �−Γ are consistent. So suppose

�−Γ ⊢ ¬Ci. Since �−Γ is closed under conjunction, by Deduction theorem it follows that ⊢ G → ¬Ci for

some G ∈ �−Γ. Recall that by Lemma 3.9, QS5 ⊢ A implies Q(� · S5) + �∀ref ⊢ �A and thus L ⊢ �A.

So we obtain ⊢L �(G → ¬Ci), and thus ⊢L �G → ¬3Ci (by K). Since �G ∈ Γ and Γ is an L-place, it

follows that ¬3Ci ∈ Γ, which contradicts 3Ci ∈ Γ. Therefore ∆0
i is consistent.

(2) We claim that 3∆0
i ⊆ ∆0

1 for any i.

Indeed, let A ∈ ∆0
i ; then Ci, B1, . . . , Bn ⊢ A for some B1, . . . , Bn ∈ �−Γ. Since �−Γ is closed under

conjunction, there is B ∈ �−Γ such that Ci, B ⊢ A, so by Deduction theorem ⊢ Ci ∧ B → A. Hence

⊢ 3(Ci ∧ B) → 3A.

However, 3Ci,�B ∈ Γ, and note that ⊢ 3Ci ∧ �B → 3(Ci ∧ B) (by K). It follows that 3A ∈ Γ, so

�3A ∈ Γ (by K5); hence 3A ∈ �−Γ ⊆ ∆0
1. Thus (2) holds.

Step The further construction is ruled by a fixed enumeration of all possible pairs (k, ∃xA(x)), where

k > 0 and ∃xA(x) is a sentence (with x arbitrary) in the language of Γ with extra constants from a certain

countable set S.

Suppose we have a collection of consistent ∧-closed theories ∆n
i , i = 1, 2, . . . such that 3∆n

i ⊆ ∆n
1 for any

i and infinitely many constants from S do not appear in these theories.18 Let us construct theories ∆n+1
i

with the same properties.

Consider the first new pair (k, ∃xA(x)) and assume that k 6= 1. Then we create a witness for ∃xA(x) in

∆n+1
k : we choose a new constant c ∈ S that does not occur in ∆n

1 ∪ ∆n
k ∪ {A(x)} and put

∆n+1
k := [∆n

k ∪ {∃xA(x) → A(c)}],

∆n+1
1 := [∆n

1 ∪ 3∆n+1
k ], ∆n+1

i := ∆n
i for i 6= 1, k.

It is clear that the theories ∆n+1
i are ∧-closed. The consistency of ∆n+1

k is checked as in classical logic; for

∆n+1
i with i 6= 1, k it holds by IH.

(3) Let us prove that ∆n+1
1 is consistent.

Suppose the contrary. Then

∆n
1 , 3A1, . . . , 3Ar ⊢ ⊥

for some A1, . . . , Ar ∈ ∆n+1
k . Since 3(A1 ∧ . . . ∧ Ar) ⊢ 3A1, . . . 3Ar, we also have

∆n
1 , 3(A1 ∧ . . . ∧ Ar) ⊢ ⊥.

Since ∆n
k is ∧-closed, we can join the Ai from this set together, so we obtain

∆n
1 , 3(B ∧ (∃xA(x) → A(c))) ⊢ ⊥

for some B ∈ ∆n
k . However, by IH, 3∆n

k ⊆ ∆n
1 , so 3B ∈ ∆n

1 , while

∆n
1 ∪ {3(B ∧ (∃xA(x) → A(c)))}

is inconsistent. This contradicts Lemma 7.1.

Therefore ∆n+1
1 is consistent, and we have 3∆n+1

i ⊆ ∆n+1
1 for i 6= 1 by construction and IH.

The inclusion 3∆n+1
1 ⊆ ∆n+1

1 also holds for i = 1, since ⊢ A → 3A for any A (remember that we argue

in QS5) and ∆n+1
1 is closed under derivability.

17 Henceforth in this proof, ‘consistency’ means ‘QS5-consistency’, ⊢ means ⊢QS5.
18 In [9] theories with infinitely many unused constants are called ‘small’.
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Recall that the above argument refers to the pair (k, ∃xA(x)) with k 6= 1. If the first new pair is

(1, ∃xA(x)), we choose a new constant c and put

∆n+1
1 := [∆n

1 ∪ {∃xA(x) → A(c)}],

∆n+1
i := ∆n

i for i 6= 1.

Then the consistency of ∆n+1
1 is proved by a standard classical argument; the inclusion 3∆n+1

1 ⊆ ∆n+1
1 is

explained as above.

Finally we put

∆i :=
⋃

n

∆n
i .

By the construction these theories are also ∧-closed, consistent, satisfy the condition

(5) 3∆i ⊆ ∆1

and enjoy the Henkin property. Indeed, if ∃xA(x) ∈ L(∆k) and (k, ∃xA(x)) is the n-th pair in our fixed

enumeration, then by construction, ∃xA(x) gets a witness in ∆n+1
k .

Stage 2 Completing the theories ∆i.

We will now construct QS5-places ∆i containing ∆i.

By Lindenbaum lemma there is a complete (i.e. maximal consistent) theory ∆1 ⊇ ∆1. We also claim that

for any i > 1 the theory ∆i ∪ �−∆1 is consistent.

Indeed, suppose not. Since both ∆i, �−∆1 are ∧-closed, there exist A ∈ ∆i, B ∈ �−∆1 such that

⊢ B → ¬A, so ⊢ �B → �¬A, and thus �¬A ∈ ∆1 by completeness of ∆1. But 3A ∈ ∆1 by (5), which

contradicts the consistency of ∆1.

Then we can also construct complete theories in the same language

∆i ⊇ ∆i ∪ �−∆1

for all i > 1.

Therefore due to Henkin property, we have QS5-places ∆1, ∆2, . . . , and by construction ΓRL∆i for all

i, ∆1RL∆i for all i > 1. All the theories ∆i have the same set of constants S. So ∆i ∈ CWQS5(S). Since

the relation RL on CWQS5(S) is an equivalence (Theorem 6.7), we obtain

(6) ∆iRL∆j for all i, j.

Stage 3 Extending the model.

This is done as in the proof of Theorem 6.13. Put

M := PML ↾ ({Γ} ∪ {Σ ∈ RL(∆1) | DΣ = S}).

Since all the points except Γ are RL-related, and Γ is not accessible from any other point (otherwise it

would be reflexive by Lemma 6.8), the frame of M is Euclidean. The validity of �∀ref is checked as in the

proof of Theorem 6.13.

It remains to prove selectivity. This is done again as in Theorem 6.13, case 3, with the only difference in

the subcase (b). Namely, if B = 3C ∈ Γ, C is some Ci (see Stage 1), so by construction C ∈ ∆i. 2
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8. Remarks on iterated boxing

Definition 8.1. For a modal predicate logic L we define �n • L by recursion:

�0 • L := L, �n+1 • L := � • (�n • L).

Similarly for a modal propositional logic Λ we define �n · Λ.

Some results on boxing are rather easily transferred to iterated boxing.

From Proposition 3.13 we obtain

Proposition 8.2. Iterated boxing embeds the poset of modal predicate logics in itself:

L1 ⊆ L2 iff �n • L1 ⊆ �n • L2.

Theorem 8.3. Iterated boxing preserves canonicity and strong KE-completeness for modal predicate logics.

Proof. Follows from Theorems 4.1, 4.4. 2

In the next lemma F = (F, D) is a predicate Kripke frame with a propositional base F = (W, R). The

set V := {v ∈ W | R−1(v) 6= ∅} is stable in F , so we have generated subframes F− := F ↾ V , F − := F ↾ V

(cf. Definition 2.8).

Λ denotes an arbitrary modal propositional logic, L an arbitrary modal predicate logic.

Lemma 8.4.

(1) For any modal sentence A, F � �A iff F− � A.

(2) For any modal propositional formula A, F � �A iff F − � A.

(3)

F � � • L iff F− � L.

(4)
F � � · Λ iff F − � Λ.

(5)
F � �n · Λ iff F � �n • QΛ.

(6)
�n • Q̂Λ ⊆ CK(Q(�n · Λ)).

(7)
Q(�n · Λ) ⊆ �n • QΛ ⊆ �n • Q̂Λ ⊆ CK(Q(�n · Λ)) = ̂�n • QΛ.

Proof. (1) Assume F− � A. Then F, v � A for any v ∈ V , by Lemma 2.9 (2). Since R(u) ⊆ V for any

u ∈ W , it follows that F, u � �A (Lemma 2.4 (1)). Thus F � �A.

The other way round, assume F � �A. Since every v ∈ V is in some R(u), we have F, v � A (Lemma 2.4

(1)), and thus F−, v � A (Lemma 2.9 (2)). Hence F− � A.

(2) The same argument as in (1) can be applied to the propositional frames F and F −.

(3) We have F � � • L ⇔ F � �L by Lemma 3.11, and F � �L ⇔ F− � L by (1). Obviously,

F− � L ⇔ F− � L.
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(4) We have F � � · Λ = QK + �Λ ⇔ F � �Λ by soundness, and F � �Λ ⇔ F − � Λ by (2).

(5) By induction on n. Denote Ln := �n • QΛ, Λn := �n · Λ. The case n = 0 is obvious, by soundness.

For the induction step, suppose the equivalence holds for n. Note that Ln+1 = � • Ln, Λn+1 = � · Λn.

Then by (3), IH and (4)

F � Ln+1 iff F− � Ln iff F − � Λn iff F � Λn+1.

Finally, F � Λn+1 ⇔ F � Λn+1 by Lemma 2.4 (2).

(6) Also by induction. The case n = 0 is trivial.

Assuming �n • Q̂Λ ⊆ CK(Q(�n · Λ)) we obtain

�n+1 • Q̂Λ ⊆ � • CK(Q(�n · Λ)) ⊆ CK(Q(�n+1 · Λ))

by monotonicity of boxing and Lemma 3.14 (or Proposition 3.15).

(7) For the first inclusion it is sufficient to show that �n · Λ ⊆ �n • QΛ. The latter follows easily by

induction: Λ ⊆ QΛ is obvious, and �n · Λ ⊆ �n • QΛ implies �(�n · Λ) ⊆ �(�n • QΛ), and hence

� · (�n · Λ) ⊆ � • (�n • QΛ).

The second inclusion follows from QΛ ⊆ Q̂Λ by monotonicity of boxing.

The third inclusion is (6).

The last equality follows from (5). Indeed, A ∈ CK(Q(�n · Λ)) if and only if F � A for any predicate

frame F validating Q(�n · Λ), or �n · Λ (by soundness), or �n · QΛ (by (5)). 2

Now we prove an analogue of Theorem 4.8:

Theorem 8.5. If QΛ is strongly Kripke complete, then �n • (QΛ) is strongly Kripke complete.

Proof. By induction. Denote again Ln := �n • (QΛ), Λn := �n · Λ.

The base is trivial. For the induction step, suppose Ln is strongly Kripke complete. Let Γ be an

Ln+1-place. The further argument follows the proof of Theorem 4.8, where we replace L with Ln and Λ

with Λn.

So for every ∆ ∈ RLn+1
(Γ) we construct a model M∆ over a frame F∆ with root 0∆ and an interpretation

δ∆ such that M∆, 0∆ � δ∆ · ∆ and F∆ � Ln. The latter is equivalent to F∆ � Λn, by Lemma 8.4 (5).

Next, in two steps we construct the models M ′′
∆ over frames F′′

∆ such that M ′′
∆, 0∆ � ∆. Since the

propositional bases of frames F∆ and F′′
∆ are the same, it follows that F′′

∆ � Λn and F′′
∆ � Ln (Lemma 8.4

(5)).

Finally, from the models M ′′
∆ we construct the model M∗ with root Γ over a frame G and show by the

same argument as in Theorem 4.8 that M∗, Γ � Γ. Since G− is a disjoint union of frames F′′
∆, it follows

that G− � Ln, and thus by Lemma 8.4 (3), G � � • Ln = Ln+1.

Therefore Ln+1 is strongly Kripke complete. 2

The previous theorem can be slightly generalized.

Theorem 8.6. Assume that a logic Q̂Λ is strongly Kripke complete. Then

(1) �n •Q̂Λ is strongly Kripke complete.

(2) �n • Q̂Λ = ̂�n • QΛ = CK(Q(�n · Λ)).

Proof. We can almost repeat the proof of Theorem 8.5 and argue by induction. Let L′
n := �n • Q̂Λ,

Λn := �n · Λ.
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Fig. 4. Kripke bundle F
′.

If n = 0, there is nothing to prove. For the step, suppose L′
n is strongly Kripke complete and satisfies (2),

and consider an L′
n+1-place Γ. Every ∆ ∈ RL′

n+1
(Γ) is an L′

n-place and so satisfiable at the root of some

model M∆ over an L′
n-frame F∆ with a propositional base F∆.

Then (2) implies F∆ � ̂�n • QΛ, which is obviously equivalent to F∆ � �n • QΛ, or to F∆ � Λn

(Lemma 8.4 (5)), or to F∆ � Λn (Lemma 2.4(2)).

By the same construction as in Theorems 4.8, 8.5 we obtain models M ′′
∆ satisfying ∆ over frames F′′

∆

with the same propositional bases F∆. Thus F′′
∆ � Λn, hence F′′

∆ � �n •QΛ by Lemma 8.4 (5) and F′′
∆ � L′

n

by (2).

Next, as in Theorem 8.5, we obtain a model M∗ with the root Γ over a frame G such that M∗, Γ � Γ. By

Lemma 8.4 (3) we also have G � � • L′
n = L′

n+1, since G− � L′
n as a disjoint sum of frames F′′

∆. Therefore

L′
n+1 is strongly Kripke complete.

By Lemma 8.4 (7) we have

�n+1 • QΛ ⊆ �n+1 • Q̂Λ ⊆ ̂�n+1 • QΛ = CK(Q(�n · Λ)).

The logic L′
n+1 = �n+1 • Q̂Λ is Kripke complete by (1), so from these inclusions it follows that

�n+1 • Q̂Λ = ̂�n+1 · QΛ, thus (2) holds for n + 1. 2

Theorem 8.7. Let Λ be a modal propositional logic between �n · T and SL4n (for n > 0). Then

QΛ ⊂ QΛ + �n∀ref ⊆ Q̂Λ.

Thus QΛ is Kripke incomplete.

Proof. By an easy generalization of Theorem 5.11.

First note that QT ⊢ ∀ref obviously implies �n • QT ⊢ �n∀ref by induction. Hence by Lemma 8.4 (6),

�n∀ref ∈ ̂Q(�n · T) ⊆ Q̂Λ.

We also have

Lemma 8.8. QSL4n 0 �n∀ref .

Proof. We construct a Kripke bundle F
′ = (F, D′) strongly validating QSL4n and refuting �n∀ref .

The propositional base F is again a reflexive singleton ({u}, {(u, u)}). The frame (D′, ρ′) determines

SL4n. Viz.,

D′ = {a0, . . . , an}, aiρ
′aj iff j = i + 1 ∨ i = j = n,

see Fig. 4.

Then D′ m consists of m-tuples of individuals with the relation

dρ′ me iff ∀i ≤ m diρ
′ei.
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(sub does not matter here, since ρ′ is functional.) So ρ′ m is functional, and (an, . . . , an︸ ︷︷ ︸
m

) is the successor of

itself. The nth and the (n + 1)th iterations of ρ′ m coincide. Hence F ′
m � SL4n, and thus F

′ �+ QSL4n by

Proposition 5.10.

On the other hand, consider a model M = (F , ξ), where ξu(P ) := {a1}. Then M, u 2 �n∀ref , since

M, u � �P (a0) ∧ ¬P (a0) implies M, u � 3
n∃x(�P (x) ∧ ¬P (x)). 2

Eventually we obtain QΛ �K �n∀ref, QΛ 0 �n∀ref . 2

Remark 8.9. A similar assertion holds for Kripke sheaf semantics. We leave the corresponding proofs to the

reader.

9. Conclusion

This paper makes a little next step in systematic study of completeness for modal predicate logics of the

form QΛ, and large terra incognita is lying ahead. Let us outline some topics for further development.

1. Axiomatization of completions.

For logics considered in this paper Kripke completions are obtained by adding a single axiom �∀ref (or

�n∀ref). How far do these results extend? In particular, is it true that QΛ + �∀ref is Kripke complete

for any Λ between � · S5 and SL4?

2. Finite axiomatizability of boxing.

The general Theorems 3.21, ?? suggest infinite axiomatizations for boxing and iterated boxing. However,

the logics � • QΛ for Λ containing T are finitely axiomatizable (Proposition 3.10). It seems we are lucky

here. What happens for other propositional logics? We conjecture that in many cases �• QΛ should not be

finitely axiomatizable, in particular, for Λ = K5 and Λ = SL4. Finite axiomatizability of iterated boxing

is also an open problem. We hope to return to this topic in later publications.

3. Boxing vs ∆-operation.

A certain analogue of boxing is Suzuki’s ∆-operation for superintuitionistic logics [18]. The definitions

and properties of these two operations are very similar. Is it always the case, i.e. do general theorems on

boxing for modal predicate logics transfer to ∆-operation and vice versa?

In particular, from sections 4, 5 we know that boxing preserves strong Kripke sheaf completeness, but does

not preserve strong Kripke completeness. However, for ∆-operation there is a better result ([9], Proposition

6.9.9): it preserves Kripke completeness for intermediate predicate logics. A modal analogue of this result

might be the following: boxing preserves Kripke completeness for modal predicate logics included in QTriv.

Is this assertion true?

4. Correlation between Kripke completeness and strong Kripke completeness.

For intermediate predicate logics these two properties are non-equivalent. It is very likely that simi-

lar counterexamples can be constructed for modal predicate logics. However, we do not know if Kripke

completeness implies strong Kripke completeness for logics of the form QΛ (modal or superintuitionistic).

5. Correlation between Kripke completeness and Kripke sheaf completeness.

There are many examples of Kripke sheaf complete, but Kripke incomplete predicate logics, both in

the modal and the intuitionistic fields. On the other hand, Suzuki showed that Kripke and Kripke sheaf

completeness are equivalent for logics of the form QΛ + CD, where Λ is an intermediate propositional

logic, CD is the axiom of constant domains [17]. Apparently this result extends to modal logics of the form

QΛ + Ba, where Ba is the Barcan formula. But for the logics QΛ the problem remains open. Moreover,

the following weaker problem is open: does there exist a propositional logic Λ such that CKE(QΛ) 6= Q̂Λ?

6. Completeness of QΛ in other semantics.
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When syntax and semantics mismatch, one can try to change semantics appropriately. There is a sequence

of generalizations leading from Kripke to simplicial semantics, cf. [9], [16].19 For Kripke incomplete logics

considered in this paper simplicial semantics can be helpful: viz., for d-persistent (in particular, Sahlqvist)

propositional logics Λ, both QΛ and QΛ + Ba are simplicially complete [16]. But the general case makes

a problem: e.g. for QGL and QGrz we do not know any semantical characterization.

7. Reflexive boxing.

� · Λ-frames for are obtained from Λ-frames by adding an irreflexive root below. So boxing destroys

reflexivity. To stay within reflexive frames, we should add a reflexive root or a reflexive cluster. Both

options lead to some operations on modal logics similar to Suzuki’s ∆. These operations deserve a special

study. Note that iterated reflexive boxing of QS5 gives predicate modal logics of finite depth. In particular,

the logic Q̂S4.4 axiomatized by M. Cresswell [7] is a singleton reflexive boxing of QS5.
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