Annals of Pure and Applied Logic ••• (••••) •••••

[m3L; v1.323] P.1 (1-40)

ANNALS OF PURE AND APPLIED LOGI

g

^{0168-0072/© 2022} Elsevier B.V. All rights reserved.

Р

© 2022 Elsevier B.V. All rights reserved.

lease cite	this article in	press as: V.	Shehtman,	On Kripke	$\operatorname{completeness}$	of modal	predicate	logics aro	und qua	ntified K5,	Ann.
ure Appl.	Logic (2023),	https://doi	.org/10.1016	6/j.apal.202	2.103202						

ARTICLE IN PRESS

V. Shehtman / Annals of Pure and Applied Logic ••• (••••) •••••

1	[9], Theorem 6.1.29 and sections 6.6, 6.7; $[15]$, $[3]$). There a	are also some nice completeness theorems for
logi	ics of the form $(\mathbf{Q}\mathbf{\Lambda} + \text{Barcan formula})$ (by Yoshihito Tanak	xa, Hiroakira Ono, and Tatsuya Shimura; cf.
[9],	chapter 7).	
I	However, in contrast to powerful completeness results in pro	popositional logic (cf. [2]), these theorems look
scar	nty. How can we improve the situation?	
(One option is to leave Kripke semantics and to deal with i	ts generalizations. This strategy can restore
con	npleteness in many cases, but leads to rather complicated s	emantics, cf. [16].
1	In this paper we choose another option. If a logic is Kripk	te incomplete, it makes sense to describe its
con	npletion. In several cases this task was solved by Max Cress	swell [7], and we return to it here. ¹ We focus
on	the other hand, we find completions for certain incomplete	a new continual family of incomplete logics;
on T	the other hand, we find completions for certain incomplete The gravital propositional logic in our paper is $\mathbf{K}^{\mathbf{F}}$ as known	logics from that family.
	C legis, which is not one way DTC and the question should	as Euclidean modal logic. This is the simplest
T T T	[0] (Ch 6, p. 402) we alarmed that OK5 is incomplete, but	t the proposed proof was incorrect. Now we
nro	[9] (Ch.0, p. 492) we claimed that QK3 is incomplete, bu	1
Pro	The plan of the paper is as follows. Section 2 gives a brid	•. of introduction to model predicate logics: it
con	tains basic material on syntax. Krinke sheaf and Krinke se	mantics.
I	In section 3 we introduce the boxing operation and prove so	ne its properties. In particular. Theorem 3.21
give	es an axiomatization of boxing for predicate logics	The ros properties. In particular, Theorem 5.21
Sive	Section 4 proves transfer results for boxing: we consider ca	nonicity and strong completeness in Kripke
and	Kripke sheaf semantics.	inomotiy and serong compressions in thipite
Ι	In section 5 we prove Kripke (and Kripke sheaf) incomplet	eness for the family of logics $\mathbf{Q}\mathbf{\Lambda}$ for any $\mathbf{\Lambda}$
bet	ween $\Box \cdot \mathbf{T}$ and SL4 (Theorem 5.11). Here we apply the Kr	ipke bundle semantics. Together with results
between $\Box \cdot \mathbf{I}$ and $\mathbf{5L4}$ (Theorem 5.11). Here we apply the Kripke bundle semantics. Together with results from sections 3.4 this allows us to describe Kripke completions of cortain logics of the form $\mathbf{O}(\Box, \mathbf{A})$		
fror	m sections 3, 4 this allows us to describe Kripke complet	ions of certain logics of the form $\mathbf{Q}(\Box \cdot \mathbf{\Lambda})$
fror (Th	m sections 3, 4 this allows us to describe Kripke complet neorem 5.14).	ions of certain logics of the form $\mathbf{Q}(\Box \cdot \mathbf{\Lambda})$
fror (Th I	m sections 3, 4 this allows us to describe Kripke complet neorem 5.14). In sections 6, 7 we axiomatize completions of three particula	ions of certain logics of the form $\mathbf{Q}(\Box \cdot \mathbf{\Lambda})$ r logics beyond Theorem 5.14. To prove com-
fror (Th I plet	m sections 3, 4 this allows us to describe Kripke complet neorem 5.14). In sections 6, 7 we axiomatize completions of three particula teness we apply canonical models, with some modifications.	ions of certain logics of the form $\mathbf{Q}(\Box \cdot \mathbf{\Lambda})$ r logics beyond Theorem 5.14. To prove com- From the technical side, the logic QK5 is the
fron (Th I plet mos	m sections 3, 4 this allows us to describe Kripke complet neorem 5.14). In sections 6, 7 we axiomatize completions of three particula teness we apply canonical models, with some modifications. st interesting case (Theorem 7.2). Here we use a certain "sw	ions of certain logics of the form $\mathbf{Q}(\Box \cdot \mathbf{\Lambda})$ r logics beyond Theorem 5.14. To prove com- From the technical side, the logic QK5 is the ringing" procedure to construct simultaneous
fron (Th I plet mos Her	m sections 3, 4 this allows us to describe Kripke complet neorem 5.14). In sections 6, 7 we axiomatize completions of three particula teness we apply canonical models, with some modifications. st interesting case (Theorem 7.2). Here we use a certain "sw hkin completions for a set of consistent theories.	ions of certain logics of the form $\mathbf{Q}(\Box \cdot \mathbf{\Lambda})$ r logics beyond Theorem 5.14. To prove com- From the technical side, the logic $\mathbf{QK5}$ is the ringing" procedure to construct simultaneous
fron (Th plet mos Her	m sections 3, 4 this allows us to describe Kripke complet neorem 5.14). In sections 6, 7 we axiomatize completions of three particula teness we apply canonical models, with some modifications. st interesting case (Theorem 7.2). Here we use a certain "sw hkin completions for a set of consistent theories. Section 8 explains how to deal with iterated boxing operations.	ions of certain logics of the form $\mathbf{Q}(\Box \cdot \mathbf{\Lambda})$ r logics beyond Theorem 5.14. To prove com- From the technical side, the logic QK5 is the ringing" procedure to construct simultaneous ion; we prove the iterated versions of results
fron (Th I plet mos Her S fron	m sections 3, 4 this allows us to describe Kripke complet neorem 5.14). In sections 6, 7 we axiomatize completions of three particula teness we apply canonical models, with some modifications. st interesting case (Theorem 7.2). Here we use a certain "sw nkin completions for a set of consistent theories. Section 8 explains how to deal with iterated boxing operation m sections 3 and 5.	ions of certain logics of the form $\mathbf{Q}(\Box \cdot \mathbf{\Lambda})$ r logics beyond Theorem 5.14. To prove com- From the technical side, the logic $\mathbf{QK5}$ is the ringing" procedure to construct simultaneous ion; we prove the iterated versions of results
fron (Th I plet Mos Her S fron	m sections 3, 4 this allows us to describe Kripke complet hearem 5.14). In sections 6, 7 we axiomatize completions of three particula teness we apply canonical models, with some modifications. st interesting case (Theorem 7.2). Here we use a certain "sw hkin completions for a set of consistent theories. Section 8 explains how to deal with iterated boxing operation in sections 3 and 5. In the conclusive section 9 we discuss further possible directions	ions of certain logics of the form $\mathbf{Q}(\Box \cdot \mathbf{\Lambda})$ r logics beyond Theorem 5.14. To prove com- From the technical side, the logic $\mathbf{QK5}$ is the ringing" procedure to construct simultaneous ion; we prove the iterated versions of results tions and some related problems.
fron (Th I plet mos Hen S fron I I	In sections 3, 4 this allows us to describe Kripke complet neorem 5.14). In sections 6, 7 we axiomatize completions of three particula teness we apply canonical models, with some modifications. In the resting case (Theorem 7.2). Here we use a certain "sw pair completions for a set of consistent theories. Section 8 explains how to deal with iterated boxing operation in sections 3 and 5. In the conclusive section 9 we discuss further possible direc in our completeness proofs we essentially use the methods	ions of certain logics of the form $\mathbf{Q}(\Box \cdot \mathbf{\Lambda})$ r logics beyond Theorem 5.14. To prove com- From the technical side, the logic $\mathbf{QK5}$ is the ringing" procedure to construct simultaneous ion; we prove the iterated versions of results tions and some related problems. from [9]. Much of notation and terminology
fron (Th plet mos Her S fron I fron	In sections 3, 4 this allows us to describe Kripke complet heorem 5.14). In sections 6, 7 we axiomatize completions of three particula teness we apply canonical models, with some modifications. In the resting case (Theorem 7.2). Here we use a certain "sw hkin completions for a set of consistent theories. Section 8 explains how to deal with iterated boxing operation in sections 3 and 5. In the conclusive section 9 we discuss further possible direct fin our completeness proofs we essentially use the methods in that book is preserved.	ions of certain logics of the form $\mathbf{Q}(\Box \cdot \mathbf{\Lambda})$ r logics beyond Theorem 5.14. To prove com- From the technical side, the logic $\mathbf{QK5}$ is the ringing" procedure to construct simultaneous ion; we prove the iterated versions of results tions and some related problems. from [9]. Much of notation and terminology
fron (Th I plet mos Her S fron I fron	In sections 3, 4 this allows us to describe Kripke complet neorem 5.14). In sections 6, 7 we axiomatize completions of three particula teness we apply canonical models, with some modifications. In the resting case (Theorem 7.2). Here we use a certain "sw akin completions for a set of consistent theories. Section 8 explains how to deal with iterated boxing operation in sections 3 and 5. In the conclusive section 9 we discuss further possible direct in our completeness proofs we essentially use the methods in that book is preserved.	ions of certain logics of the form $\mathbf{Q}(\Box \cdot \mathbf{\Lambda})$ r logics beyond Theorem 5.14. To prove com- From the technical side, the logic $\mathbf{QK5}$ is the ringing" procedure to construct simultaneous ion; we prove the iterated versions of results tions and some related problems. from [9]. Much of notation and terminology
fron (Th I plet mos Her S fron I fron	n sections 3, 4 this allows us to describe Kripke complet heorem 5.14). In sections 6, 7 we axiomatize completions of three particula teness we apply canonical models, with some modifications. In theresting case (Theorem 7.2). Here we use a certain "sw hkin completions for a set of consistent theories. Section 8 explains how to deal with iterated boxing operation in sections 3 and 5. In the conclusive section 9 we discuss further possible direct in our completeness proofs we essentially use the methods in that book is preserved. Table of main result	ions of certain logics of the form $\mathbf{Q}(\Box \cdot \mathbf{\Lambda})$ r logics beyond Theorem 5.14. To prove com- From the technical side, the logic $\mathbf{QK5}$ is the ringing" procedure to construct simultaneous ion; we prove the iterated versions of results tions and some related problems. from [9]. Much of notation and terminology
fron (Th I plet mos Her S fron I fron	In sections 3, 4 this allows us to describe Kripke complet hearem 5.14). In sections 6, 7 we axiomatize completions of three particula teness we apply canonical models, with some modifications. In the resting case (Theorem 7.2). Here we use a certain "sw hkin completions for a set of consistent theories. Section 8 explains how to deal with iterated boxing operation in sections 3 and 5. In the conclusive section 9 we discuss further possible direc in our completeness proofs we essentially use the methods in that book is preserved. Table of main result iomatization of boxing	ions of certain logics of the form $\mathbf{Q}(\Box \cdot \mathbf{\Lambda})$ r logics beyond Theorem 5.14. To prove com- From the technical side, the logic $\mathbf{QK5}$ is the ringing" procedure to construct simultaneous ion; we prove the iterated versions of results tions and some related problems. from [9]. Much of notation and terminology rs
fron (Th I plet mos Her S fron I fron	n sections 3, 4 this allows us to describe Kripke complet hearem 5.14). In sections 6, 7 we axiomatize completions of three particula teness we apply canonical models, with some modifications. In the completions for a set of consistent theories. Section 8 explains how to deal with iterated boxing operation in sections 3 and 5. In the conclusive section 9 we discuss further possible direct in our completeness proofs we essentially use the methods in that book is preserved. Table of main result	ions of certain logics of the form $\mathbf{Q}(\Box \cdot \mathbf{\Lambda})$ r logics beyond Theorem 5.14. To prove com- From the technical side, the logic $\mathbf{QK5}$ is the ringing" procedure to construct simultaneous ion; we prove the iterated versions of results tions and some related problems. from [9]. Much of notation and terminology s Theorem 3.21, Proposition 3.10
fron (Th I plet mos Her S fron I fron Axi	n sections 3, 4 this allows us to describe Kripke complet neorem 5.14). In sections 6, 7 we axiomatize completions of three particula teness we apply canonical models, with some modifications. In theresting case (Theorem 7.2). Here we use a certain "sw hkin completions for a set of consistent theories. Section 8 explains how to deal with iterated boxing operation in sections 3 and 5. In the conclusive section 9 we discuss further possible direc in our completeness proofs we essentially use the methods in that book is preserved. Table of main result iomatization of boxing	ions of certain logics of the form $\mathbf{Q}(\Box \cdot \mathbf{\Lambda})$ r logics beyond Theorem 5.14. To prove com- From the technical side, the logic $\mathbf{QK5}$ is the ringing" procedure to construct simultaneous ion; we prove the iterated versions of results tions and some related problems. from [9]. Much of notation and terminology rs Theorem 3.21, Proposition 3.10
fron (Th I plet mos Her S fror I fror Axi Tra	n sections 3, 4 this allows us to describe Kripke complet neorem 5.14). In sections 6, 7 we axiomatize completions of three particula teness we apply canonical models, with some modifications. st interesting case (Theorem 7.2). Here we use a certain "sw akin completions for a set of consistent theories. Section 8 explains how to deal with iterated boxing operation in sections 3 and 5. In the conclusive section 9 we discuss further possible direct in our completeness proofs we essentially use the methods in that book is preserved. Table of main result iomatization of boxing	ions of certain logics of the form $\mathbf{Q}(\Box \cdot \mathbf{\Lambda})$ r logics beyond Theorem 5.14. To prove com- From the technical side, the logic $\mathbf{QK5}$ is the ringing" procedure to construct simultaneous ion; we prove the iterated versions of results tions and some related problems. from [9]. Much of notation and terminology rs Theorem 3.21, Proposition 3.10 Theorem 4.1
fron (Th I plet mos Her S fron I fron Axi Tra	n sections 3, 4 this allows us to describe Kripke complet neorem 5.14). In sections 6, 7 we axiomatize completions of three particula teness we apply canonical models, with some modifications. In theresting case (Theorem 7.2). Here we use a certain "sw hkin completions for a set of consistent theories. Section 8 explains how to deal with iterated boxing operation in sections 3 and 5. In the conclusive section 9 we discuss further possible direct in our completeness proofs we essentially use the methods in that book is preserved. Table of main result iomatization of boxing unsfer of canonicity for boxing	ions of certain logics of the form Q(□ · Λ) r logics beyond Theorem 5.14. To prove com- From the technical side, the logic QK5 is the ringing" procedure to construct simultaneous ion; we prove the iterated versions of results tions and some related problems. from [9]. Much of notation and terminology s Theorem 3.21, Proposition 3.10 Theorem 4.1 Theorem 4.4
fron (Th I plet mos Her S fron I fron Axi Tra	n sections 3, 4 this allows us to describe Kripke complet neorem 5.14). In sections 6, 7 we axiomatize completions of three particula teness we apply canonical models, with some modifications. st interesting case (Theorem 7.2). Here we use a certain "sw hkin completions for a set of consistent theories. Section 8 explains how to deal with iterated boxing operation in sections 3 and 5. In the conclusive section 9 we discuss further possible direct in our completeness proofs we essentially use the methods in that book is preserved. Table of main result iomatization of boxing unsfer of canonicity for boxing	ions of certain logics of the form $\mathbf{Q}(\Box \cdot \mathbf{\Lambda})$ r logics beyond Theorem 5.14. To prove com- From the technical side, the logic $\mathbf{QK5}$ is the ringing" procedure to construct simultaneous ion; we prove the iterated versions of results tions and some related problems. from [9]. Much of notation and terminology rs Theorem 3.21, Proposition 3.10 Theorem 4.1 Theorem 4.4
fron (Th I plet mos Her S fron I fron Axi Tra Tra Tra	n sections 3, 4 this allows us to describe Kripke complet neorem 5.14). In sections 6, 7 we axiomatize completions of three particula teness we apply canonical models, with some modifications. In the resting case (Theorem 7.2). Here we use a certain "sw hkin completions for a set of consistent theories. Section 8 explains how to deal with iterated boxing operation in sections 3 and 5. In the conclusive section 9 we discuss further possible direct in our completeness proofs we essentially use the methods in that book is preserved. Table of main result iomatization of boxing unsfer of canonicity for boxing unsfer of strong Kripke sheaf completeness for boxing of \mathbf{QA}	ions of certain logics of the form $\mathbf{Q}(\Box \cdot \mathbf{\Lambda})$ r logics beyond Theorem 5.14. To prove com- From the technical side, the logic $\mathbf{QK5}$ is the ringing" procedure to construct simultaneous ion; we prove the iterated versions of results tions and some related problems. from [9]. Much of notation and terminology cs Theorem 3.21, Proposition 3.10 Theorem 4.1 Theorem 4.4 Theorem 4.8
fron (Th I plet mos Hen S fron I fron Axii Tra Tra Tra Tra	n sections 3, 4 this allows us to describe Kripke complet heorem 5.14). In sections 6, 7 we axiomatize completions of three particula teness we apply canonical models, with some modifications. st interesting case (Theorem 7.2). Here we use a certain "sw hkin completions for a set of consistent theories. Section 8 explains how to deal with iterated boxing operation in sections 3 and 5. In the conclusive section 9 we discuss further possible direct in our completeness proofs we essentially use the methods in that book is preserved. Table of main result iomatization of boxing unsfer of canonicity for boxing unsfer of strong Kripke sheaf completeness for boxing of \mathbf{QA} unsfer of strong Kripke completeness for boxing of \mathbf{QA}	ions of certain logics of the form $\mathbf{Q}(\Box \cdot \mathbf{\Lambda})$ r logics beyond Theorem 5.14. To prove com- From the technical side, the logic $\mathbf{QK5}$ is the ringing" procedure to construct simultaneous ion; we prove the iterated versions of results tions and some related problems. from [9]. Much of notation and terminology rs Theorem 3.21, Proposition 3.10 Theorem 4.1 Theorem 4.4 Theorem 4.8 Theorem 4.9
fron (Th I plet mos Her S fron I fron Axi Tra Tra Tra Tra	n sections 3, 4 this allows us to describe Kripke complet heorem 5.14). In sections 6, 7 we axiomatize completions of three particula teness we apply canonical models, with some modifications. It interesting case (Theorem 7.2). Here we use a certain "sw hkin completions for a set of consistent theories. Section 8 explains how to deal with iterated boxing operation in sections 3 and 5. In the conclusive section 9 we discuss further possible direction our completeness proofs we essentially use the methods in that book is preserved. Table of main result iomatization of boxing unsfer of canonicity for boxing unsfer of strong Kripke sheaf completeness for boxing of \mathbf{QA} unsfer of strong Kripke completeness for boxing of \mathbf{QA}	ions of certain logics of the form $\mathbf{Q}(\Box \cdot \mathbf{\Lambda})$ r logics beyond Theorem 5.14. To prove com- From the technical side, the logic $\mathbf{QK5}$ is the ringing" procedure to construct simultaneous ion; we prove the iterated versions of results tions and some related problems. from [9]. Much of notation and terminology is Theorem 3.21, Proposition 3.10 Theorem 4.1 Theorem 4.4 Theorem 4.8 Theorem 4.9

V. Shehtman / Annals of Pure and Applied Logic ••• (••••) •••••

1			1
2	Counterexamples to Kripke completeness transfer for boxing	Corollary 5.5	2
3	Knipka incompleteness of \mathbf{OA} for \mathbf{A} between \Box \mathbf{T} and \mathbf{SIA}	Theorem 5.11	3
5	Knpke incompleteness of QA for A between $\Box \cdot 1$ and $\mathbf{SL4}$	Theorem 5.11	5
6	Kripke completions of QK5 . QK45 . QK4 □ S5	Theorems 7.2, 6.13, 6.12	6
7		,,,,	7
8			8
9	2. Preliminaries		9
10			10
11	2.1. Propositional logics		11
12			12
13	We suppose that the reader is familiar with main properties	of modal propositional logics. In this paper	13
15	we consider only normal logics with a single modal connectiv	e \Box . Arbitrary logics are denoted by Λ , Λ_1	15
16	etc. We assume that all logics are consistent.		16
17	we use the main constructions of Kripke frames and models disjoint sums, canonical models; for the definitions of [2] [0]	, such as generated subframes, p-morphisms,	17
18	$ML(\mathcal{C})$ denotes the logic of a class of Kripke frames \mathcal{C} (or t	he logic determined by \mathcal{C} : recall that logics	18
19	of this form are called <i>Kripke complete</i> (or \mathcal{K} -complete). A mod	al logic Λ is called <i>strongly Kripke complete</i>	19
20	if every Λ -consistent set of formulas Γ is satisfied at a point of	some Kripke model over a Λ -frame.	20
21	K denotes the minimal modal logic; $\mathbf{K} + X$ is the smallest	ogic containing a set of formulas X .	21
22	$M_{\mathbf{\Lambda}}$ denotes the canonical model of $\mathbf{\Lambda}, F_{\mathbf{\Lambda}}$ its canonical framework of $\mathbf{\Lambda}$	ne.	22
23 24			23
25	2.2. Predicate logics		25
26			26
27	We deal with normal monomodal predicate logics without e	equality, as they are defined in [9]. So in the	27
28	language there are countably many predicate letters of all ar	ties (including U), but no function symbols	28
29	of individual constants. The <i>length</i> of a formula A is the hum connectives (except $ $) in A (closed formulas are also called ex-	before of occurrences of quantiners and logical $\overline{\nabla A}$ denotes the universal closure of	29
30	a formula A (with quantifiers in a fixed order).	menees. VII denotes the universal closure of	30
31	A modal predicate logic is a set of formulas containing the ba	sic axioms of classical logic and \mathbf{K} and closed	31
32 33	under Modus Ponens (MP), ∀-introduction, □-introduction, a	nd predicate substitution. For a logic L , the	32
34	notation $L \vdash A$ means the same as $A \in L$. Members of a logic	are also called 'theorems'.	34
35	\overline{L} denotes the set of all sentences in a logic L. Thus		35
36			36
37	$L = \{ \forall A \mid A \in L \}.$		37
38		11 . •	38
39	QA denotes the minimal predicate extension of a propositional	$1 \log_{10} \Lambda$.	39
40	A predicate theory is a set of sentences with extra constants. a fixed countable set (denoted by S^* see below). Theories are	e denoted by capital Greek letters theories	40
41	without constants by capital Latin letters $(X, Y,)$, $\mathcal{L}(\Gamma)$ der	otes the set of all sentences in the language	41
42 43	of a theory Γ , D_{Γ} is the set of all individual constants occurrin	ig in Γ.	42
44	If L is a predicate logic, Γ a predicate theory, then in L-der	$ivations^2$ from Γ we can use the members of	43
45	$\Gamma \cup L,$ apply MP, $\forall\text{-introduction}$ and also replace some free va	riables with constants. The notation $\Gamma \vdash_L A$	45
46	means that a formula (maybe, with constants) A is L -derivable	e from Γ . Γ is <i>L</i> -consistent if $\Gamma \nvDash_L \perp$.	46

 $^{^2\,}$ In [9] they are called 'L-inferences'.

ARTICLE IN PRESS

V. Shehtman / Annals of Pure and Applied Logic ••• (••••) •••••

L + X denotes the smallest predicate logic containing a logic L and a theory X. We recall the following

characterization of L + X ([9], Theorem 2.8.4): **Proposition 2.1.** $L + X \vdash A \quad iff \ \Box^{\infty} \overline{Sub}(X) \vdash_L A,$ where $\overline{Sub}(X)$ denotes the set of universal closures of substitution instances of X and $\Box^{\infty}Y := \{\Box^n B \mid B \in Y, \ n \ge 0\}.$ g 2.3. Kripke sheaves Let us recall some definitions and basic facts about Kripke sheaves from [9]. **Definition 2.2.** A Kripke sheaf over a propositional Kripke frame F = (W, R) is a triple $\Phi = (F, D, \rho)$ where $D = (D_u)_{u \in W}$ is a family of nonempty domains, $\rho = (\rho_{uv})_{(u,v) \in R^*}{}^3$ is a family of transition functions $\rho_{uv}: D_u \longrightarrow D_v$ such that • every ρ_{uu} is the identity function on D_u ; • uR^*vR^*w implies $\rho_{vw}\rho_{uv} = \rho_{uw}$. F is called the propositional base of Φ . **Definition 2.3.** A valuation on a Kripke sheaf Φ is a function ξ on predicate letters such that for every n-ary predicate letter P_k^n $\xi(P_k^n) = (\xi_u(P_k^n))_{u \in W},$ where $\xi_u(P_k^n) \subseteq D_u^n$ (and D_u^0 is a fixed singleton $\{()\}$, where () is the empty tuple). The pair $M = (\mathbf{F}, \xi)$ is a Kripke sheaf model over Φ . Given M, at every point $u \in W$ we evaluate modal D_u -sentences, i.e. sentences with constants from D_u : $M, u \vDash P_{\iota}^n(a_1, \ldots, a_n)$ iff $(a_1, \ldots, a_n) \in \xi_u(P_k^n)$, $M, u \models A \rightarrow B$ iff $(M, u \nvDash A \text{ or } M, u \models B)$, $M, u \not\models \bot,$ $M, u \vDash \forall x A(x)$ iff $\forall a \in D_u \ M, u \vDash A(a),$ $M, u \models \Box A \text{ iff } \forall v \in R(u) \ M, v \models A | v,$ where A|v denotes the D_v -sentence obtained from A by replacing every individual $a \in D_u$ with $\rho_{uv}(a)$. A D_u -sentence A is valid at Φ, u (in symbols, $\Phi, u \models A$), if $M, u \models A$ for any Kripke sheaf model M over Φ. A modal formula A is true in M (in symbols, $M \models A$) if $M, u \models \forall A$ for any $u \in W$. A is valid on a Kripke sheaf Φ (in symbols, $\Phi \models A$) if it is true in every Kripke sheaf model over Φ . By Soundness theorem ([9], Theorem 3.6.17) $\mathbf{ML}(\Phi) := \{A \mid \Phi \vDash A\}$ is a modal predicate logic (the modal logic of Φ). The modal logic of a class of Kripke sheaves \mathcal{C} is $\mathbf{ML}(\mathcal{C}) := \bigcap \{\mathbf{ML}(\Phi) \mid \Phi \in \mathcal{C}\}$. Logics $\mathbf{ML}(\mathcal{C})$ are called *Kripke sheaf complete* (or \mathcal{KE} -complete). $^3~R^*$ denotes the reflexive transitive closure of R.Please cite this article in press as: V. Shehtman, On Kripke completeness of modal predicate logics around quantified K5, Ann. Pure Appl. Logic (2023), https://doi.org/10.1016/j.apal.2022.103202

ARTICLE IN PRESS

A Kripke sheaf validating a modal predicate logic L is called an *L-sheaf*. So L is Kripke sheaf complete iff every sentence $A \notin L$ can be refuted in some L-sheaf. A formula A is a logical consequence of a logic L in Kripke sheaf semantics (in symbols, $L \vDash_{\mathcal{KE}} A$) if A is valid on all L-sheaves. The logic $C_{\mathcal{K}\mathcal{E}}(L) := \{A \mid L \vDash_{\mathcal{K}\mathcal{E}} A\}$ is the smallest $\mathcal{K}\mathcal{E}$ -complete extension of L, the $\mathcal{K}\mathcal{E}$ -completion of L. From definitions we readily have Lemma 2.4. g (1) For a Kripke sheaf $\Phi = (W, R, D, \rho)$ and a sentence A $\Phi, u \models \Box A \text{ iff } \forall v \in R(u) \Phi, v \models A.$ (2) For a Kripke sheaf $\Phi = (F, D, \rho)$ and a propositional formula A, $\Phi \vDash A \text{ iff } F \vDash A.$ **Definition 2.5.** Let u be a point in a Kripke sheaf model M, Γ a predicate theory. An *interpretation* of Γ at (M, u) is a map $\delta: D_{\Gamma} \longrightarrow D_{u}$. Given such an interpretation, we can transform every sentence $A \in \mathcal{L}(\Gamma)$ into a D_u -sentence $\delta \cdot A$ by replacing all occurrences of every constant $c \in D_{\Gamma}$ with $\delta(c)$. Γ is satisfiable at (M, u) if there exists an interpretation $\delta: D_{\Gamma} \longrightarrow D_{u}$ such that $M, u \vDash \delta \cdot A$ for all $A \in \Gamma$. Γ is satisfiable in M if it is satisfiable at (M, u) for some point u. **Definition 2.6.** A modal predicate logic L is called strongly Kripke sheaf (or \mathcal{KE} -) complete, if every L-consistent theory is satisfiable in some Kripke sheaf model over an L-sheaf. 2.4. Kripke semantics The standard Kripke semantics for modal predicate logics can be regarded as a particular case of Kripke sheaf semantics. Recall that a predicate Kripke frame over a propositional frame F = (W, R) is a pair $\mathbf{F} = (F, D)$, where $D = (D_u)_{u \in W}$, each D_u is nonempty and $D_u \subseteq D_v$ whenever uRv. So \mathbf{F} is actually a Kripke sheaf over F, in which every ρ_{uv} is the inclusion map $D_u \subset D_v$. F is called the propositional base of \mathbf{F} . In this case Kripke sheaf models become *Kripke models*, and the truth definition for $\Box A$ transforms to the familiar one: $M, u \models \Box A \text{ iff } \forall v \in R(u) \ M, v \models A.$ Other definitions (of the truth in a model, validity etc.) are the same as for arbitrary Kripke sheaves. In particular, $\mathbf{ML}(\mathbf{F}) := \{A \mid \mathbf{F} \vDash A\}, \ \mathbf{ML}(\mathcal{C}) := \bigcap \{\mathbf{ML}(\mathbf{F}) \mid \mathbf{F} \in \mathcal{C}\}$ for a class of frames \mathcal{C} . Logics of the latter form are called *Kripke complete*. Logical consequence in Kripke semantics is denoted by $\models_{\mathcal{K}}$. The set $\{A \mid L \models_{\mathcal{K}} A\}$ is the smallest Kripke complete extension of L, the Kripke completion of L; it is denoted by $C_{\mathcal{K}}(L)$, or (more often) by \hat{L} .

satisfiable in some Kripke model over an L-frame.⁴

2.5. Some Kripke sheaf constructions

(1) for any $u \in V$ and D_u -sentence A

(2) for any $u \in V$ and D_u -sentence A

ARTICLE IN PRESS

V. Shehtman / Annals of Pure and Applied Logic ••• (••••) •••••

Definition 2.7. A modal predicate logic L is called *strongly Kripke complete* if every L-consistent theory is

 $\Phi \upharpoonright V := (V, R \upharpoonright V, D \upharpoonright V, \rho \upharpoonright V)$, where $R \upharpoonright V = R \cap (V \times V)$, $D \upharpoonright V = (D_u)_{u \in V}$, $(\rho \upharpoonright V)_{uv} = \rho_{uv}$ for

A submodel $M \upharpoonright V$ of a Kripke sheaf model $M = (\Phi, \xi)$ is $M \upharpoonright V = (\Phi \upharpoonright V, \xi \upharpoonright V)$, where $(\xi \upharpoonright V)_u = \xi_u$

for each $u \in V$. If V is stable (i.e. $R(V) \subseteq V$), the subsheaf $\Phi \upharpoonright V$ and the submodel $M \upharpoonright V$ are called

Definition 2.8. A subsheaf of a Kripke sheaf $\Phi = (W, R, D)$ obtained by restriction to $V \subseteq W$ is

 $\Phi, u \vDash A \ i\!f\!f \ \! \Phi \upharpoonright V, u \vDash A;$ ²¹
²²

²³ (3) for any formula B

 $u, v \in V.$

generated.

 $M \vDash B$ implies $M \upharpoonright V \vDash B$;

 $M, u \vDash A$ *iff* $M \upharpoonright V, u \vDash A$;

(4) $\mathbf{ML}(\Phi) \subseteq \mathbf{ML}(\Phi \upharpoonright V).$

Recall that the disjoint sum of propositional Kripke frames is

Lemma 2.9 (Generation lemma). For generated subsheaves and submodels:

$$\bigsqcup_{i \in I} (W_i, R_i) := (W, R), \text{ where } W = \bigcup_{i \in I} (W_i \times \{i\}), \ (x, i) R(y, j) \text{ iff } i = j \& x R_i y.$$

Definition 2.10. For a family of Kripke sheaves, $\Phi_i = (F_i, D_i, \rho_i)$, $i \in I$, the *disjoint sum*⁵ is the Kripke sheaf

$$\bigsqcup_{i\in I} \Phi_i := \left(\bigsqcup_{i\in I} F_i, D, \rho\right),\,$$

where

Then the *disjoint sum* of Kripke sheaf models $M_i = (\Phi_i, \theta_i)$ is

 $D_{(u,i)} := (D_i)_u, \ \rho_{(u,i)(v,i)}(a) := \rho_{uv}(a).$

Please cite this article in press as: V. Shehtman, On Kripke completeness of modal predicate logics around quantified K5, Ann. Pure Appl. Logic (2023), https://doi.org/10.1016/j.apal.2022.103202

 ⁴ The definition of strong completeness given in [9] involves only theories without constants. That definition does not fit for our
 ⁴ purposes.

 ⁵ In [9] disjoint sums are defined in another way. Here we need a slightly different notion, for which we use the same terminology
 and notation. Two versions of disjoint sums are logically equivalent.

ARTICLE IN PRESS

g

V. Shehtman / Annals of Pure and Applied Logic ••• (••••) •••••

 $\bigsqcup_{i \in I} M_i := \left(\bigsqcup_{i \in I} \Phi_i, \theta\right),$

 $\theta_{(u,i)} := (\theta_i)_u.$

g

- A particular case of a generated subsheaf (submodel) is a cone:
- **Definition 2.11.** A *cone* in a Kripke sheaf Φ is a generated subsheaf of the form $\Phi \uparrow u := \Phi \upharpoonright R^*(u)$, where R^* is the reflexive transitive closure of the accessibility relation R.
 - Similarly, a *cone* in a Kripke sheaf model M over Φ is $M \uparrow u := M \upharpoonright R^*(u)$.

For the case of Kripke frames the above definitions are rather well-known, so we do not write them explicitly.

2.6. Canonical models

Now we recall the construction and some properties of canonical models for modal predicate logics ([9], section 6.1).

Let us fix a universal countable set of constants S^* . A subset $S \subseteq S^*$ is called *small* if $(S^* - S)$ is infinite. We will consider only theories Γ , for which D_{Γ} is a small subset of S^* .

Definition 2.12. A predicate theory is called *L-complete* if it is maximal among *L*-consistent theories in the same language.

²⁶ Lemma 2.13. If a predicate theory Γ is L-complete, $A \in \mathcal{L}(\Gamma)$, then

 $\Gamma \vdash_L A \text{ iff } A \in \Gamma;$

³⁰ in particular, $\overline{L} \subseteq \Gamma$.

³² **Definition 2.14.** An theory Γ has the *Henkin property* if for any sentence $\exists x A(x) \in \mathcal{L}(\Gamma)$ there exists a ³³ constant $c \in D_{\Gamma}$ such that

 $(\exists x A(x) \to A(c)) \in \Gamma.$

- An *L*-complete theory with the Henkin property is called *L*-Henkin. An *L*-place is an *L*-Henkin theory with a small set of constants.

Lemma 2.15. Every L-consistent theory with a small set of constants can be extended to an L-place.

For any modal predicate logic L there exists a canonical frame $PF_L = (PW_L, R_L, D_L)$ and a canonical model $PM_L = (PF_L, \xi_L)$,⁶ where 43

• PW_L is the set of all *L*-places,

- $\Gamma R_L \Delta$ iff for any $A, \Box A \in \Gamma$ implies $A \in \Delta$,

 6 [9] uses a different notation for PF_{L} and PM_{L} , and they were called 'V-canonical'.

q

V. Shehtman / Annals of Pure and Applied Logic ••• (••••) •••••

• $(D_L)_{\Gamma} = D_{\Gamma}$, the set of all constants occurring in Γ ,

• $PM_L, \Gamma \vDash A$ iff $A \in \Gamma$ for any atomic D_{Γ} -sentence A.

Theorem 2.16 (Canonical model theorem).

$$PM_L, \Gamma \vDash A \text{ iff } A \in \mathbf{I}$$

for any L-place Γ and $A \in \mathcal{L}(\Gamma)$.

Definition 2.17. A modal predicate logic L is called *canonical* if $PF_L \models L$ (or, equivalently, $PF_L \models \overline{L}$).

Theorem 2.16 implies

Corollary 2.18. Every canonical logic is strongly Kripke complete.

Proof. Assume that L is canonical, Γ_0 is an L-consistent theory. By our general assumption, D_{Γ_0} is a small subset of S^* . So there exists an L-place $\Gamma \supseteq \Gamma_0$ (Lemma 2.15). By Theorem 2.16, $PM_L, \Gamma \vDash \Gamma$, thus Γ_0 is satisfiable at (PM_L, Γ) under the trivial interpretation $\delta: D_{\Gamma_0} \longrightarrow D_{\Gamma}$ sending each constant into itself. By canonicity, $PF_L \models L$, therefore L is strongly Kripke complete. \Box

Lemma 2.19. (Cf. [9], Lemma 6.1.25.) Let L, L_1 be modal predicate logics such that $L \subseteq L_1$. Then

- $PW_{L_1} = \{ \Gamma \in PW_L \mid \overline{L_1} \subseteq \Gamma \}.$
- PM_{L_1} is a generated submodel of PM_L .

3. Boxing

3.1. Propositional boxing

For a set of modal formulas X, put

 $\Box X := \{\Box A \mid A \in X\}.$

Definition 3.1. For a propositional modal logic Λ , we define its *boxing* as $\Box \cdot \Lambda := \mathbf{K} + \Box \Lambda$.

Note that $\Box \cdot \Lambda \subseteq \Lambda$.

Proposition 3.2. Let X be a set of propositional modal formulas. Then

Proof. $\Box X \subset \Box(\mathbf{K} + X)$, so $\mathbf{K} + \Box X \subset \Box \cdot (\mathbf{K} + X)$.

To check the converse inclusion $\Box \cdot (\mathbf{K} + X) \subseteq \mathbf{K} + \Box X$, note that theorems of $\mathbf{K} + X$ can be derived from **K** and substitution instances of X by applying (MP) and \Box -introduction. So by induction on the derivation of $A \in \mathbf{K} + X$ we show that $\Box A \in \mathbf{K} + \Box X$. Let $\Lambda := \mathbf{K} + \Box X$. If $A \in \mathbf{K}$, the claim is trivial. If $A = B(C_1, \ldots, C_n)$ is a substitution instance of $B(p_1, \ldots, p_n) \in X$, then $\Box A = \Box B(C_1, \ldots, C_n)$ is a

 $\Box \cdot (\mathbf{K} + X) = \mathbf{K} + \Box X.$

substitution instance of $\Box B$, so $A \in \Lambda$.

	V. Shehtman / Annals of Pure and Applied Logic ••• (••••) ••••• 9	
1	If A is obtained by (MP), from B and $B \to A$, then by IH	1
2		2
3	$\Box B, \ \Box (B o A) \in \mathbf{\Lambda}.$	3
4		4
5	Since $\Box A$ is derivable from $\Box B$, $\Box(B \to A)$ in K using (MP), we have $\Box A \in \mathbf{\Lambda}$.	5
6	If $A = \Box B$ and $B \in (\mathbf{K} + X)$, then by IH, $\Box B \in \mathbf{\Lambda}$, i.e. $A \in \mathbf{\Lambda}$. \Box	6
7		7
8	Lemma 3.3. $\Box A \in \Box \cdot \Lambda$ only if $A \in \Lambda$.	8
9	Description $A \neq A$ Then for some V_{i} is a solution of M (the second s	9
10	Proof. Suppose $A \notin \mathbf{A}$. Then for some Kripke model M (the canonical model of \mathbf{A}) we have $M \vdash \mathbf{A}$, $M \nvDash A$.	10
11	Consider a model M^2 obtained by adding the root 0 below M , so that every point of M is accessible from 0. The truth values of proposition letters at 0 can be arbitrary.	11
12	Then M is a generated submodel of M^+ so by Concration lemma M^+ $u \vdash \mathbf{A}$ for any $u \in M$. Hence	12
13	Then <i>M</i> is a generated submodel of <i>M</i> , so by Generation lemma, <i>M</i> , $u \in \mathbf{A}$ for any $u \in M$. Hence $M^+ \cap \vdash \Box \mathbf{A}$ and also $M^+ \cap \vdash \Box \mathbf{A}$ for $u \in M$. Thus $M^+ \vdash \Box \mathbf{A}$	13
14	Now note that $\Box \mathbf{A}$ is substitution closed so every member of $\Box \cdot \mathbf{A}$ is derivable from $\Box \mathbf{A}$ and \mathbf{K} using	14
15	(MP) and \Box -introduction Both these rules preserve the truth in M^+ thus $M^+ \models \Box \cdot \Lambda$	15
17	At the same time $M \not \cong A$ for some $u \in M$ hence $M^+ \not \cong A$ by Generation lemma and thus	10
10	$M^+, 0 \nvDash \Box A$.	10
10	Since M^+ is a model of $\Box \cdot \Lambda$ refuting $\Box A$, it follows that $\Box A \notin \Box \cdot \Lambda$. \Box	10
20		20
21	Proposition 3.4.	21
22	-	22
23	(1) Boxing embeds the poset of modal propositional logics in itself:	23
24		24
25	$oldsymbol{\Lambda}_1\subseteqoldsymbol{\Lambda}_2 \; \mathit{iff}\Box\cdotoldsymbol{\Lambda}_1\subseteq\Box\cdotoldsymbol{\Lambda}_2.$	25
26		26
27	(2) Boxing is a complete embedding of the upper semilattice of modal propositional logics in itself.	27
28		28
29	Proof. (1) 'Only if' is obvious. For 'if', suppose $\Lambda_1 \not\subseteq \Lambda_2$, $A \in \Lambda_1 - \Lambda_2$. Then $\Box A \in \Box \cdot \Lambda_1$ by Definition 3.1,	29
30	$\Box A \notin \Box \cdot \Lambda_2$, by Lemma 3.3. Thus $\Box \cdot \Lambda_1 \nsubseteq \Box \cdot \Lambda_2$.	30
31	(2) Consider logics $\mathbf{A}_i = \mathbf{K} + X_i$ for $i \in I$; their join is	31
32	$\sum \mathbf{A} = \mathbf{V} + [\mathbf{J}] \mathbf{V}$	32
33	$\sum_{i \in I} \Lambda_i = \mathbf{K} + \bigcup_{i \in I} \Lambda_i.$	33
34	$i \in I$ $i \in I$	34
35	By Proposition 3.2	35
36		36
37	$\Box \cdot \mathbf{\Lambda}_i = \mathbf{K} + \Box X_i,$	37
38		38
39 40	hence	39
40		40
+1 12	$\sum_{i \in I} \Box \cdot \mathbf{A}_i = \mathbf{K} + \bigcup_{i \in I} \Box X_i = \mathbf{K} + \Box (\bigcup_{i \in I} X_i),$	41
+2 13	$i \in I$ $i \in I$ $i \in I$	42
44	which is $\Box \cdot \sum \Lambda_i$ by Proposition 3.2 again. \Box	44
45	$i \in I$	45
46	Remark 3.5. Boxing does not preserve meets. To see this, consider the logics	46
47	С та т т т т т т т т т т т т т т т т т т	47
48	$\mathbf{\Lambda}_1 = \mathbf{Ver} = \mathbf{K} + \Box \bot, \ \mathbf{\Lambda}_2 = \mathbf{Triv} = \mathbf{K} + (\Box p \leftrightarrow p)$	48
	Please cite this article in press as: V. Shehtman. On Krinke completeness of model predicate logics around quantified K5. Ann	

Pure Appl. Logic (2023), https://doi.org/10.1016/j.apal.2022.103202

JID:APAL 10	AID:103202 /FLA [m3L; v1.323] P.10 (1-40) V. Shehtman / Annals of Pure and Applied Logic ••• (••••) •••••
and the	formula
	$A_0 := \Box^2 \bot \lor \Box (\Box p \leftrightarrow p).$
We elsin	$\mathbf{x} \text{ that } \mathbf{A} \in ((\Box \mathbf{A} \cap \Box \mathbf{A})) \Box (\mathbf{A} \cap \mathbf{A}))$
Indoo	$ \begin{array}{c} \text{fi fill } H_0 \in ((\Box \cdot \mathbf{A}_1 \Box \cdot \mathbf{A}_2) - \Box \cdot (\mathbf{A}_1 \mathbf{A}_2)). \\ \text{d} A_0 \in \Box \cdot \mathbf{A}_1 \text{since } \Box^2 \mid \in \Box \cdot \mathbf{A}_2 A_0 \in \Box \cdot \mathbf{A}_2 \text{since } \Box (\Box n \leftrightarrow n) \in \Box \cdot \mathbf{A}_2 \\ \end{array} $
To sh	ow that $A_0 \notin \Box : (A_1 \cap A_2)$ consider the frame $E_0 = (W_0, R_2)$ where $W_0 = \{0, 1, 2\}$ $R_0(0) = \{1, 2\}$
$R_0(1) =$	$\emptyset, R_0(2) = \{2\}$. Then $F_0, 1 \models \mathbf{\Lambda}_1$ and $F_0, 2 \models \mathbf{\Lambda}_2$. Hence $F_0, 0 \models \Box(\mathbf{\Lambda}_1 \cap \mathbf{\Lambda}_2)$ (by Lemma 2.4(1)).
Also F_0 ,	$1 \models \Box \mathbf{\Lambda}_1, F_0, 2 \models \Box \mathbf{\Lambda}_2$, and thus $F_0, 1 \models \Box (\mathbf{\Lambda}_1 \cap \mathbf{\Lambda}_2), F_0, 2 \models \Box (\mathbf{\Lambda}_1 \cap \mathbf{\Lambda}_2)$.
Thus	$F_0 \models \Box(\mathbf{\Lambda}_1 \cap \mathbf{\Lambda}_2)$ implying $F_0 \models \Box \cdot (\mathbf{\Lambda}_1 \cap \mathbf{\Lambda}_2)$. On the other hand, $F_0, 0 \not\models A_0$, since $F_0, 1 \not\models \Box p \leftrightarrow p$
and $F_0, 2$	$2 \nvDash \Box \bot$. Therefore $A_0 \notin \Box \cdot (\Lambda_1 \cap \Lambda_2)$.
3.2. Pre	edicate boxing
We de	efine boxing for predicate logics similarly to the propositional case.
Dofinitio	m 3.6. For a model predicate logic L put $\Box \bullet L := \mathbf{OK} \perp \Box L$
Demitio	5.0. For a modal predicate logic L put $\Box \bullet L := \mathbf{QK} + \Box L$.
Lemma	3.7.
(1) $\Box \bullet I$	$L\subseteq L.$
(2) For	a predicate theory X without constants,
	$\mathbf{QK} + \Box X \subseteq \Box \bullet (\mathbf{QK} + X).$
(3) For	a propositional logic A
(5) 107	
	$\mathbf{Q}(\Box\cdotoldsymbol{\Lambda})\subseteq\Boxullet\mathbf{Q}oldsymbol{\Lambda}.$
$\mathbf{Proof.} \ ($	1), (2) are obvious. (3) follows from (2) for $X = \mathbf{\Lambda}$; notice that
	$\mathbf{Q}\mathbf{K} + \sqcup \mathbf{\Lambda} = \mathbf{Q}\mathbf{K} + (\mathbf{K} + \sqcup \mathbf{\Lambda}) = \mathbf{Q}(\sqcup \cdot \mathbf{\Lambda}).$
In ger	neral, the inclusions in (2) and (3) cannot be replaced with equality, as we shall see later on, so
boxing d	loes not commute with minimal quantifier extensions. ⁷ That is why we use different notation for
proposit	ional and predicate boxing.
Thus	axiomatization of boxing in the predicate case makes some problem. However, the problem disap-
pears aft	ter adding the Barcan axiom:
	$Ba := \forall x \Box P(x) \to \Box \forall x P(x).$
Lemma	3.8 For any set of modal sentences X
Domina	or for any our of mound ochocheco 21,
	$\Box \bullet (\mathbf{QK} + X) + Ba = \mathbf{QK} + \Box X + Ba.$
In partie	cular, for a propositional logic $\mathbf{\Lambda}$,
	$\Box \bullet O A + D = O (\Box A) + D =$
	$\Box \bullet \mathbf{Q}\mathbf{\Lambda} + Ba = \mathbf{Q}(\Box \cdot \mathbf{\Lambda}) + Ba.$
7 5	
' For exa	ample, for the logic $\mathbf{T} = \mathbf{K} + \Box p \to p$ we have $\mathbf{Q}(\Box \cdot \mathbf{T}) \neq \Box \bullet \mathbf{QT}$, since obviously, $\Box \bullet \mathbf{QT} \vdash \Box \forall x (\Box P(x) \to P(x))$, while $(\Box = \nabla f(x) = \nabla f(x) = \nabla f(x)$.

ARTICLE IN PRESS

V. Shehtman / Annals of Pure and Applied Logic ••• (••••) •••••

Proof. The inclusion (\supseteq) holds due to Lemma 3.7, so let us prove (\subseteq) . It suffices to show that
$\Box \bullet (\mathbf{QK} + X) \subseteq \mathbf{QK} + \Box X + Ba,$
1.e. $\mathbf{Q}\mathbf{K} + X \vdash A$ implies $L \vdash \Box A$, where $L := \mathbf{Q}\mathbf{K} + \Box X + Ba$.
Note that theorems of $\mathbf{QK} + \mathbf{X}$ are derivable from the axioms of \mathbf{QK} and substitution instances of \mathbf{X}
by applying (MP), \Box -introduction, and \forall -introduction (Proposition 2.1). So we can consider derivations of
this kind and argue by induction on the derivation of A. The proof is similar to Proposition 3.2.
We consider only two cases.
If A is a substitution instance of the form SB, where $B \in X$, S is a predicate substitution, then $\Box A = \Box \Box D = \Box W$
$\Box A = S \Box B, \text{ and } \Box B \in \Box X.$
If $A = \nabla x B$ is obtained by ∇ -introduction from B, then $L \vdash \Box B$ by IH, hence by ∇ -introduction
$L \vdash \forall x \sqcup B$. By applying substitution to Ba and next (MP), we have $L \vdash \sqcup \forall x B (= \sqcup A)$. \Box
Next, consider extensions of $\mathbf{QI} = \mathbf{QK} + \Box p \rightarrow p$.
Lamma 20. For any set of model contarion V
Lemma 3.3. For any set of modul semences A,
$\Box \bullet (\mathbf{QK} + X) \subseteq \mathbf{QK} + \Box X + \Box \forall ref,$
where
$\forall ref := \forall x (\Box P(x) \to P(x)).$
Proof. Similar to the previous lemma. Let $L := \mathbf{QK} + \Box X + \Box \forall ref$, and let us show that $\mathbf{QK} + X \vdash A$ implies $L \vdash \Box A$. Again we can use Proposition 2.1 and argue by induction on the derivation of A using \mathbf{QK} , substitution instances of X , (MP), \Box - and \forall -introduction. The only nontrivial case is when $A = \forall xB$ is obtained by \forall -introduction from B . Then $L \vdash \Box B$ by IH hence
lience
$L \vdash \Box \forall x \Box B \tag{*}$
by \forall - and \Box -introduction. By substitution into $\Box \forall ref$, we have $L \vdash \Box \forall x (\Box B \rightarrow B)$, hence by QK we obtain
$L \vdash \Box(\forall x \Box R \rightarrow \forall x R)$
$D \vdash \Box(\forall u \Box D \land \forall u D),$
and next
$I \vdash \Box \forall_{\alpha} \Box B \land \Box \forall_{\alpha} B \qquad (111)$
$L \vdash \Box \lor L \Box D \rightarrow \Box \lor L D. \tag{**}$
Now $L \vdash \Box A$ follows from (*) (**) by (MP) \Box
$100 D_{+} = 11 \text{ follows from } (*), (**) \text{ by (inf).} =$
Proposition 3.10. If $\mathbf{OT} \subset \mathbf{OK} + X$ then $\Box \bullet (\mathbf{OK} + X) = \mathbf{OK} + \Box X + \Box \forall ref$ In particular for
$repositional loaic \Lambda \supset \mathbf{T}$
$p_{i} = p_{i} = p_{i} = p_{i}$
$\Box \bullet O \Lambda = O(\Box \land \Lambda) + \Box \forall z \circ f$
$\Box \bullet \mathbf{Q} \mathbf{i} \mathbf{x} - \mathbf{Q} (\Box \cdot \mathbf{i} \mathbf{x}) + \Box \mathbf{v} \mathbf{i} \mathbf{e} \mathbf{j}.$

JID:APAL AID:103	202 /FLA [m3L; v1.3: V. Shehtman / Annals of Pure and Applied Logic ••• (••••) •••••	23] P.12 (1-40)
Proof. We hav	e $\mathbf{OT} \vdash \forall ref$ by substitution and \forall -introduction, so $\mathbf{OK} + X \vdash \forall ref$, and thus	
$\Box \bullet (\mathbf{QK} + X)$	$\vdash \Box \forall ref.$ Obviously, $\Box X \subseteq \Box (\mathbf{QK} + X)$, hence	
	$\mathbf{QK} + \Box X + \Box \forall ref \subseteq \Box \bullet (\mathbf{QK} + X).$	
The converse in	nclusion holds by Lemma 3.9. \Box	
Lemma 3.11. F	or a Kripke sheaf model M	
	$M \vDash \Box \bullet L \text{ iff } M \vDash \Box \overline{L} .$	
Proof. 'Only if	'holds, since $\Box \overline{L} \subseteq \Box \bullet L$.	
If $A \in L$, the	In Suppose $M \models \Box L$, en $\forall A \in \overline{L}$, so $M \models \Box \forall A$. Since $\mathbf{QK} \vdash \Box \forall A \to \forall \Box A$ (by the converse Barcan f	ormula, cf.
[11], p. 245), it Thus $M \vDash$	follows that $M \models \forall \Box A$, i.e. $M \models \Box A$. $\Box L$. Now we can argue similarly to Lemma 3.8. Since the set $\Box L$ is substitut	ion closed,
theorems of \Box \Box -introduction	• $L = \mathbf{QK} + \Box L$ can be obtained from $\mathbf{QK} \cup \Box L$ by applying (MP), \forall -introd. . These rules preserve the truth in M , therefore $M \vDash \Box \bullet L$. \Box	uction and
We also hav	e an analogue of Lemma 3.3:	
Lemma 3.12. F	For any modal sentence A , $\Box \bullet L \vdash \Box A$ implies $L \vdash A$.	
Proof. We use Suppose $L \nvDash$ corresponding Consider a n the domain at Then M is a Hence $M^+, 0 \vDash$ $M, \Gamma \nvDash A$ in Since M^+ is	the canonical model almost in the same way as in the proof of Lemma 3.3. <i>A</i> . Then we have $PM_L, \Gamma \nvDash A, PM_L \vDash L$ for some <i>L</i> -place Γ . Let $M := PM_L$ cooted generated submodel; by Lemma 2.9(1), (3), we have $M, \Gamma \nvDash A, M \vDash L$ as nodel M^+ obtained by adding the root 0 below M , so that only Γ is accessible for 0 is the same as at Γ . The valuation of predicate letters at 0 does not matter. consequences generated submodel of M^+ , so by Lemma 2.9(1), $M \vDash L$ implies $M^+, u \vDash \overline{L}$ for a $\Box \overline{L}$, and also $M^+, u \vDash \Box \overline{L}$ for $u \in M$. Thus $M^+ \vDash \Box \overline{L}$ implying $M^+ \vDash \Box \bullet L$ by Lemma 1.9(1), and thus $M^+, 0 \nvDash \Box A$. a model of $\Box \bullet L$ refuting $\Box A$, we obtain $\Box \bullet L \nvDash \Box A$. \Box	$\uparrow \Gamma$ be the well. from 0 and any $u \in M$. emma 3.11.
Similarly to	Proposition $3.4(1)$ we have	
Proposition 3.1	3. Boxing embeds the poset of modal predicate logics in itself:	
	$L_1 \subseteq L_2 \ iff \Box \bullet L_1 \subseteq \Box \bullet L_2.$	
Proof. For the by Lemma 3.12	proof of 'if', note that $A \in (L_1 - L_2)$ implies $\Box A \in \Box \bullet L_1$ by Definition 3.1, $\Box A$.	$A \notin \Box \bullet L_2,$
Lemma 3.14. F	for any set of sentences X	
	$\Box \bullet \widehat{\mathbf{QK} + X} \subseteq \widehat{\mathbf{QK} + \Box X}.$	
Proof. We hav $\mathbf{QK} + X \vDash_{\mathcal{K}} A$	e to show that for any sentence A , $\mathbf{QK} + X \vDash_{\mathcal{K}} A$ implies $\mathbf{QK} + \Box X \vDash_{\mathcal{K}} \Box A$. So, $\mathbf{F} = (W, R, D) \vDash \Box X$, let us prove that $\mathbf{F} \vDash \Box A$.	o assuming

ARTICLE IN PRESS

V. Shehtman / Annals of Pure and Applied Logic ••• (••••) •••••

Consider the set $V := \{v \in W \mid R^{-1}(v) \neq \emptyset\}$. We have $\mathbf{F}, u \models \Box X$ for any u, so uRv implies $\mathbf{F}, v \models X$ (Lemma 2.4). Thus $\mathbf{F}, v \models X$ for any $v \in V$. Since V is stable, we have $\mathbf{F} \upharpoonright V, v \models X$ (Lemma 2.9 (2)). Hence $\mathbf{F} \upharpoonright V \vDash X$, so $\mathbf{F} \upharpoonright V \vDash A$, due to the assumption $\mathbf{QK} + X \vDash_{\mathcal{K}} A$. Now for any u, uRv implies $v \in V$, so $\mathbf{F} \upharpoonright V, v \models A$. Then $\mathbf{F}, v \models A$ (Lemma 2.9 (2)), and thus $\mathbf{F}, u \models \Box A$ by Lemma 2.4. Eventually $\mathbf{F} \models \Box A$. \Box Proposition 3.15. q g $\mathbf{Q}\mathbf{K} + \Box X \subset \Box \bullet (\mathbf{Q}\mathbf{K} + X) \subset \Box \bullet \mathbf{Q}\widehat{\mathbf{K} + X} \subset C_{\mathcal{K}}(\mathbf{Q}\mathbf{K} + \Box X) = C_{\mathcal{K}}(\Box \bullet (\mathbf{Q}\mathbf{K} + X)).$ In particular, for a modal propositional logic Λ , $\mathbf{Q}(\Box \cdot \mathbf{\Lambda}) \subset \Box \bullet \mathbf{Q}\mathbf{\Lambda} \subset \Box \bullet \widehat{\mathbf{Q}\mathbf{\Lambda}} \subset \widehat{\mathbf{Q}(\Box \cdot \mathbf{\Lambda})} = \widehat{\Box \bullet \mathbf{Q}\mathbf{\Lambda}}.$ **Proof.** The first inclusion holds by Lemma 3.7(2), the third one by Lemma 3.14. The second inclusion is obvious. The inclusion $C_{\mathcal{K}}(\mathbf{QK} + \Box X) \subseteq C_{\mathcal{K}}(\Box \bullet (\mathbf{QK} + X))$ is also obvious. So, since $C_{\mathcal{K}}(\mathbf{QK} + \Box X)$ is a Kripke complete extension of $\Box \bullet (\mathbf{QK} + X)$, it should coincide with $C_{\mathcal{K}}(\Box \bullet (\mathbf{QK} + X))$. \Box **Corollary 3.16.** Boxing preserves Kripke incompleteness. **Proof.** Suppose L is incomplete, i.e. $L \subset \hat{L}$. Then $\Box \bullet L \subset \Box \bullet \hat{L}$ by Proposition 3.13; also $\Box \bullet \hat{L} \subset \overline{\Box \bullet L}$ by Proposition 3.15. Thus $\Box \bullet L \subset \widehat{\Box \bullet L}$. \Box As we will see later on, it often happens that a logic $\Box \bullet (\mathbf{QK} + X)$ is Kripke complete, while $\mathbf{QK} + \Box X$ is Kripke incomplete. Analogues of Lemma 3.14, Proposition 3.15, and Corollary 3.16 hold for Kripke sheaves. The proofs are almost the same. Lemma 3.17. $\Box \bullet C_{\mathcal{K}\mathcal{E}}(\mathbf{Q}\mathbf{K} + X) \subseteq C_{\mathcal{K}\mathcal{E}}(\mathbf{Q}\mathbf{K} + \Box X).$ **Proof.** Assuming that $\mathbf{QK} + X \vDash_{\mathcal{KE}} A$ for a sentence A and $\Phi = (W, R, D, \rho) \vDash \Box X$ we show $\Phi \vDash \Box A$. Again consider $V := \{v \in W \mid R^{-1}(v) \neq \emptyset\}$. Then by Lemma 2.4 and Lemma 2.9 (2) we obtain $\Phi \upharpoonright V \vDash X$, so by assumption $\Phi \upharpoonright V \vDash A$. Hence by the same lemmas it follows that $\Phi, u \vDash \Box A$ for any u. \Box Proposition 3.18. $\Box \bullet C_{\mathcal{K}\mathcal{E}}(\mathbf{Q}\mathbf{K} + X) \subseteq C_{\mathcal{K}\mathcal{E}}(\mathbf{Q}\mathbf{K} + \Box X) = C_{\mathcal{K}\mathcal{E}}(\Box \bullet (\mathbf{Q}\mathbf{K} + X)).$ In particular, for a propositional logic Λ $\Box \bullet C_{\mathcal{K}\mathcal{E}}(\mathbf{Q}\mathbf{\Lambda}) \subseteq C_{\mathcal{K}\mathcal{E}}(\mathbf{Q}(\Box \cdot \mathbf{\Lambda})) = C_{\mathcal{K}\mathcal{E}}(\Box \bullet \mathbf{Q}\mathbf{\Lambda}).$ **Corollary 3.19.** Boxing preserves Kripke sheaf incompleteness. To formulate the main theorem on axiomatization of boxing we first recall the definition of shifts from [9]. Please cite this article in press as: V. Shehtman, On Kripke completeness of modal predicate logics around quantified K5, Ann. Pure Appl. Logic (2023), https://doi.org/10.1016/j.apal.2022.103202

ARTICLE IN PRESS

V. Shehtman / Annals of Pure and Applied Logic ••• (••••) •••••

Let P_1, \ldots, P_k be all predicate letters (besides equality) occurring in a formula A, assume that P_i is n_i -ary, and put $\mathbf{P} := P_1(\mathbf{x}_1), \ldots, P_k(\mathbf{x}_k),$ where each \mathbf{x}_i is a list of different variables of length n_i not occurring in A. Next, let $m \geq 0$, and let P'_i be different $(m + n_i)$ -ary predicate letters (i = 1, ..., k), $\mathbf{z} = z_1 ... z_m$ a list of distinct new variables that do not occur in $\mathbf{x}_1, \ldots, \mathbf{x}_k$ and A. Then we call P'_i the *m*-shift of P_i ; an *m*-shift of the formula A (by \mathbf{z}) is $A^m(\mathbf{z}) := [\mathbf{P}'/\mathbf{P}]A$, where $\mathbf{P}' = P_1'(\mathbf{x}_1, \mathbf{z}), \dots, P_k'(\mathbf{x}_k, \mathbf{z}).$ We also put $A^0(\mathbf{z}) := A$. Sometimes we omit \mathbf{z} and use the notation A^m rather than $A^m(\mathbf{z})$. We need the following decomposition lemma ([9], Lemma 2.5.30): **Lemma 3.20.** Let A be a modal sentence. Then every substitution instance of A is congruent to a formula of the form S_0A^m , where S_0 is a strict substitution, $m \ge 0$. Recall that *congruent* formulas are obtained by renaming bound variables and two congruent formulas are **QK**-equivalent. Strict substitutions do not introduce new parameters (cf. [9], sections 2.3, 2.5). **Theorem 3.21.** For a set of modal sentences X $\Box \bullet (\mathbf{QK} + X) = \mathbf{QK} + \{\Box \,\overline{\forall} A^m \mid A \in X, \ m \ge 0\}.$ (In more detail, for each $A \in X$ and $m \geq 0$ we choose a list of new variables $\mathbf{z}_{A,m}$; then $\overline{\forall} A^m$ denotes $\forall \mathbf{z}_{A,m} A^m(\mathbf{z}_{A,m}).)$ **Proof.** The inclusion (\supseteq) follows easily, since $\mathbf{QK} + X$ is closed under *m*-shifts, \forall - and \Box -introduction. To prove (\subseteq) we have to show that $\mathbf{QK} + X \vdash B$ implies $\mathbf{QK} + Y \vdash \Box B$, where $Y := \{ \Box \,\overline{\forall} A^m \mid A \in X, \ m \ge 0 \}.$ By Proposition 2.1, if $\mathbf{QK} + X \vdash B$, then $\Box^{\infty} \overline{Sub}(X) \vdash_{\mathbf{OK}} B$, so by Deduction Theorem, $\mathbf{QK} \vdash \bigwedge Z \to B$ for some finite $Z \subseteq \Box^{\infty} \overline{Sub}(X)$. Then $\mathbf{QK} \vdash \Box(\bigwedge Z) \rightarrow \Box B,$ or equivalently, $\mathbf{QK} \vdash (\bigwedge \Box Z) \rightarrow \Box B.$ So it remains to prove that $\mathbf{QK} + Y \vdash \Box C$ for any $C \in \Box^{\infty} \overline{Sub}(X)$, or even (due to \Box -introduction) for any $C \in \overline{Sub}(X)$. Thus we can present C as $\forall SA$ for some $A \in X$ and substitution S.

ARTICLE IN PRESS

V. Shehtman / Annals of Pure and Applied Logic ••• (••••) •••••

By Lemma 3.20 we have $SA \stackrel{\circ}{=} S_0 A^m$; then $\Box \overline{\forall} SA \stackrel{\circ}{=} \Box \overline{\forall} S_0 A^m$. S_0 commutes with \Box and also with $\overline{\forall}$ (since it is strict), so we obtain $\Box \overline{\forall} SA \triangleq S_0 \Box \overline{\forall} A^m.$ By definition, $\overline{\forall} A^m \in Y$, hence $\mathbf{QK} + Y \vdash S_0 \Box \overline{\forall} A^m$ by substitution and \Box -introduction, and eventually $\mathbf{OK} + Y \vdash \Box \overline{\forall} SA (= \Box C)$ as required. \Box Q **Corollary 3.22.** Boxing is a complete embedding of the upper semilattice of modal predicate logics in itself. g **Proof.** Similar to Proposition 3.4 (2). Consider logics $L_i = \mathbf{QK} + X_i$ for $i \in I$; their join is $\sum_{i \in I} L_i = \mathbf{QK} + \bigcup_{i \in I} X_i.$ By Theorem 3.21 $\Box \bullet L_i = \mathbf{QK} + \{\Box \,\overline{\forall} A^m \mid A \in X_i, \ m \ge 0\},\$ hence $\sum_{i\in I} \Box \bullet L_i = \mathbf{Q}\mathbf{K} + \bigcup_{i\in I} \{\Box \,\overline{\forall} A^m \mid A \in X_i, \ m \ge 0\} = \mathbf{Q}\mathbf{K} + \{\Box \,\overline{\forall} A^m \mid A \in \bigcup_{i\in I} X_i, \ m \ge 0\},\$ which is $\Box \bullet \sum_{i \in I} L_i$ by Theorem 3.21 again. \Box 4. Transfer theorems for boxing 4.1. Transfer of canonicity **Theorem 4.1.** Let L be a modal predicate logic. If L is canonical, then $\Box \bullet L$ is canonical. **Proof.** Suppose L is canonical and consider the canonical frame $\mathbf{G} := PF_{\Box \bullet L}$. Let us show that $\mathbf{G} \models \Box \bullet L$, which is equivalent to $\mathbf{G} \models \Box \overline{L}$ (by Lemma 3.11). We prove that $\mathbf{G}, \Gamma \models \Box \overline{L}$ for an arbitrary point Γ . We have $\Box \overline{L} \subseteq \Box \bullet L \subseteq \Gamma$ by Lemma 2.13, so $\Gamma R_{\Box \bullet L} \Delta$ implies $\overline{L} \subseteq \Delta$, i.e. $\Delta \in PW_L$ (Lemma 2.19). Also, since L is canonical, we have $PF_L, \Delta \models \overline{L}$. Since $\Box \bullet L \subseteq L$, by Lemma 2.19, PF_L is a generated subframe of G; then by Lemma 2.9(2), $\mathbf{G}, \Delta \models \overline{L}$. This holds for any $\Delta \in R_{\Box \bullet L}(\Gamma)$, hence $\mathbf{G}, \Gamma \models \Box \overline{L}$ (Lemma 2.4). In the propositional case we have a similar theorem: **Theorem 4.2.** Boxing preserves canonicity for propositional modal logics. The proof is by a straightforward modification of the previous one; use the following analogue of Lemma 2.19: **Lemma 4.3.** If $\Lambda \subseteq \Lambda'$, then the points of M_{Λ} containing Λ' are exactly the points of $M_{\Lambda'}$. ⁸ Recall that $\stackrel{\circ}{=}$ denotes congruence ([9], section 2.3). Please cite this article in press as: V. Shehtman, On Kripke completeness of modal predicate logics around quantified K5, Ann.

Pure Appl. Logic (2023), https://doi.org/10.1016/j.apal.2022.103202

	ARTICLE IN PRESS
ال 1(ID:APAL AID:103202 /FLA [m3L; v1.323] P.16 (1-40) .6 V. Shehtman / Annals of Pure and Applied Logic ••• (••••) ••••••
-	
4	4.2. Transfer of strong completeness
Т	Theorem 4.4. Boxing preserves strong \mathcal{KE} -completeness.
-	
P	Proof. Assume that L is strongly \mathcal{KE} -complete. Let us show that every $(\sqcup \bullet L)$ -place I is satisfiable in a
K	Aripke sheat model over a $(\sqcup \bullet L)$ -sheat.
^	The proof of Theorem 4.1 shows that every $\Delta \in R_{\Box \bullet L}(\Gamma)$ is an L-place, so by strong \mathcal{KE} -completeness
<u>_</u>	Is satisfiable in a model M_{Δ} over some <i>L</i> -snear $\Phi_{\Delta} = (W_{\Delta}, \kappa_{\Delta}, D_{\Delta}, \rho_{\Delta})$. Note that $D_{\Gamma} \subseteq D_{\Delta}$. By Concretion Lemma 2.0 we may assume that M_{Γ} is rected with root 0, and Δ is satisfiable as
λ	By Generation Lemma 2.9 we may assume that M_{Δ} is footed with foot 0_{Δ} , and Δ is satisfiable a M_{Δ} . So there exists an interpretation δ_{Δ} such that M_{Δ} is footed with foot 0_{Δ} , and Δ is satisfiable a
11	Next we add the root Γ to the disjoint sum $[M_{\Lambda}, 0_{\Lambda} \vdash 0_{\Lambda}, \Delta] = \{0_{\Lambda} \vdash A \mid A \in \Delta \}$.
	(i.e. $\Gamma R_{\Box \cdot L} \Delta$
ir	mage in this disjoint sum.
	Consider a Kripke sheaf $\Phi := (W, R, D^*, \rho)$ such that
	$(\cdot) \mathcal{D}(\mathcal{P}) = \{0 \mid \mathcal{P}\mathcal{D} \mid \mathcal{A}\} \mathcal{D}^* = \mathcal{D}$
	(1) $R(\Gamma) := \{ 0_{\Delta} \mid \Gamma R_{\Box \bullet L} \Delta \}, \ D_{\Gamma}^{-} := D_{\Gamma},$ (ii) $R(\Sigma) := R_{-}(\Sigma)$ for $\Sigma \in W$
((ii) $R(\Sigma) := R_{\Delta}(\Sigma)$ for $\Sigma \in W_{\Delta}$, (iii) $c_{-1} := \delta + \sum_{i=1}^{n} D_{-i}$ (the restriction of δ_{+i} to D_{-i}) for $\Delta \in B_{-i}$. (E)
() (i	(iv) $\rho_{\Gamma_0\Delta} := \delta_\Delta \mid D_{\Gamma}$ (the restriction of δ_Δ to D_{Γ}) for $\Delta \in R \sqcup_{\bullet L}(\Gamma)$, (iv) $\rho_{\bullet} := (\rho_{\bullet})$ for $u, v \in W$.
(1	(v) $\rho_{uv} := (\rho_{\Delta})_{uv}$ for $u, v \in W_{\Delta}$, (v) $\rho_{T} := \rho_{0}$, $\rho_{T} = W_{\Delta}$,
((v) $p_1 v := p_{0_\Delta v} p_{10_\Delta}$ for $v \in W_\Delta$, (vi) $p_{\dots} := id_{D^*}$
((i) $p_{uu} = m_{u}^{\star}$.
V	We define a model M over Φ by putting
	$M, \Gamma \vDash A \text{ iff } A \in \Gamma$
fo	for any atomic D_{Γ} -sentence A .
	It is clear that ρ really defines a transition function, i.e. wR^*uR^*v implies
	$\rho_{wv} = \rho_{uv} \rho_{wu}.$ (o
т.	The first this holds for an / Desires and the instance for sting for sting. Comparison on D
11	In fact, this holds for $w \neq 1$, since each ρ_{Δ} is a transition function. So suppose $w = 1$.
	If $u = w$, then (\circ) is obvious.
	If $u, v \in W_{\Delta}$, then by (v), $\rho_{\Gamma u} = \rho_{0_{\Delta} u} \rho_{\Gamma 0_{\Delta}}$, so
	$0 \rightarrow 0$ $\Sigma_{\pm} = 0 \rightarrow 0$ $\Omega_{\pm} \rightarrow 0$ $\Sigma_{\pm} = 0$ $\Omega_{\pm} \rightarrow 0$ $\Sigma_{\pm} = 0$ Σ_{\pm}
	$\rho uv \rho_1 u = \rho uv \rho_0 \Delta u \rho_1 0 \Delta = \rho_0 \Delta v \rho_1 0 \Delta = \rho_1 v$
b	by (v) and since (o) holds within W_{Δ} .
	We claim that $\Phi \vDash \Box \bullet L$ and $M, \Gamma \vDash \Gamma$.
	Indeed, for every $u \in W$, $u \neq \Gamma$ we have $\Phi, u \models \overline{L}$, since u is in some generated subsheaf Φ_{Δ} ; so by
L	Lemma 2.4, $\Phi, u \models \Box \overline{L}$. Similarly, since the points accessible from the root Γ are 0_{Δ} and (as noticed above
Φ	$\Phi, 0_{\Delta} \models \overline{L}$, it follows that $\Phi, \Gamma \models \Box \overline{L}$ as well. Thus $\Phi \models \Box \overline{L}$, which implies $\Phi \models \Box \cdot L$ (Lemma 3.11).
	Now let us show by induction on the length of a D_{Γ} -sentence A that
	$M, \Gamma \vDash A \text{ iff } A \in \Gamma.$
	We can consider only the cases $A = \Box B$, $A = \exists x B$.
C	(1) Suppose $A = \bigsqcup B$. If $A \in \Gamma$, then by definition of the canonical model, $B \in \Delta$ for every $\Delta \in R_{\Box \bullet L}(\Gamma)$
S	so $M_{\Delta}, U_{\Delta} \models \delta_{\Delta} \cdot B$ by the choice of M_{Δ} , and thus $M, U_{\Delta} \models \delta_{\Delta} \cdot B$, since M_{Δ} is a generated submodel of

ARTICLE IN PRESS

M. Note that $B|_{0_{\Delta}} = \rho_{\Gamma_{0_{\Delta}}} \cdot B = \delta_{\Delta} \cdot B$, since $\delta_{\Delta} \upharpoonright D_{\Gamma} = \rho_{\Gamma_{0_{\Delta}}}$ ((iii) in the definition of Φ) and B is a D_{Γ} -sentence. This implies $M, \Gamma \vDash \Box B$, since Γ sees exactly the points 0_{Δ} . On the other hand, if $A \notin \Gamma$, then by properties of the canonical model, $\neg B \in \Delta$ for some $\Delta \in R_{\Box \cdot \Lambda}(\Gamma)$. So $M_{\Delta}, 0_{\Delta} \models \delta_{\Delta} \cdot \neg B$, and thus $M, 0_{\Delta} \nvDash \delta_{\Delta} \cdot B$, since M_{Δ} is a generated submodel of M. Since $\Gamma R 0_{\Delta}$ and $\delta_{\Delta} \cdot B = B | 0_{\Delta}$ (as noted above), this implies $M, \Gamma \nvDash \Box B$. (ii) Suppose $A = \exists x B(x) \in \Gamma$. Then $B(c) \in \Gamma$ for some $c \in D_{\Gamma}$, since Γ is a $(\Box \bullet L)$ -place. This implies $M, \Gamma \vDash B(c)$ by IH, and thus $M, \Gamma \vDash A$. The other way round, if $M, \Gamma \models \exists x B(x)$, then $M, \Gamma \models B(c)$ for some $c \in D_{\Gamma}$. Hence $B(c) \in \Gamma$ by IH. Then $\Gamma \vdash_{\Box \bullet L} \exists x B(x)$, and so $\exists x B(x) \in \Gamma$, since Γ is a $(\Box \bullet L)$ -place. Therefore Γ is satisfiable in a $(\Box \bullet L)$ -sheaf. **Proposition 4.5.** For modal propositional logics, boxing preserves strong Kripke completeness. **Proof.** By slight changes in the proofs of Theorems 4.1, 4.2. Every $(\Box \cdot \Lambda)$ -consistent set is contained in some $\Gamma \in W_{\Box, \Lambda}$. So it suffices to show that Γ is satisfied in some (\Box, Λ) -frame. Every $\Delta \in R_{\Box \cdot \Lambda}(\Gamma)$ contains Λ , so Lemma 4.3 implies that Δ is Λ -consistent. Since Λ is strongly complete, Δ is satisfied in a model M_{Δ} over a Λ -frame F_{Δ} ; assume that M_{Δ} is rooted with root 0_{Δ} , and $M_{\Delta}, 0_{\Delta} \models \Delta.$ Consider the model $M = (W, R, \xi)$ obtained from the disjoint sum $\bigsqcup_{\Gamma R_{\Box} \cdot \mathbf{\Lambda} \Delta} M_{\Delta} \text{ by adding the root } \Gamma,$ so that $R(\Gamma) = \{0_{\Delta} \mid \Gamma R_{\Box \cdot \Lambda} \Delta\}$ and $M, \Gamma \vDash q$ iff $q \in \Gamma$ for every proposition letter q. Then we have $(W, R) \models \Box \cdot \Lambda \text{ and } M, \Gamma \models \Gamma.$ By induction on the length of A it follows that $M, \Gamma \vDash A$ iff $A \in \Gamma$. Therefore Γ is satisfiable in the $(\Box \cdot \Lambda)$ -frame (W, R). \Box **Definition 4.6.** Let $M = (\mathbf{F}, \xi)$ be a Kripke model over a predicate Kripke frame $\mathbf{F} = (W, R, D)$, and let $V \neq \emptyset$. The *inflation* of **F** by V is the frame $\mathbf{F} \odot V := (W, R, D')$, where $D'_u := D_u \times V$ for each $u \in W$. The inflation of M by V is $M \odot V := (\mathbf{F} \odot V, \xi')$, where¹⁰ $\xi'_{u}(P) := \{ (d_{1}, \dots, d_{n}) \in (D'_{u})^{n} \mid (pr_{1}(d_{1}), \dots, pr_{1}(d_{n})) \in \xi_{u}(P) \}$ for every n-ary predicate letter P. Informally speaking, the inflation by V contains |V| copies of each individual e behaving exactly as e. So we have $M \odot V, u \models P(d_1, \ldots, d_n)$ iff $M, u \models P(pr_1(d_1), \ldots, pr_1(d_n))$ for n-ary P; in particular, $M \odot V, u \vDash P$ iff $M, u \vDash P$ for 0-ary P. **Lemma 4.7.** Let M be a Kripke model over a predicate Kripke frame $\mathbf{F} = (W, R, D), M \odot V = (W, R, D', \xi')$ its inflation. Then for any $u \in W$, for any D'_u -sentence $A(d_1, \ldots, d_n)$ and $v \in V$ ⁹ The notation A|v was introduced in Definition 2.3. ¹⁰ pr_1 denotes the first projection. Please cite this article in press as: V. Shehtman, On Kripke completeness of modal predicate logics around quantified K5, Ann. Pure Appl. Logic (2023), https://doi.org/10.1016/j.apal.2022.103202

V. Shehtman / Annals of Pure and Applied Logic ••• (••••) •••••

g

[m3L; v1.323] P.18 (1-40)

 $M \odot V, u \models A(d_1, \ldots, d_n)$ iff $M, u \models A(pr_1(d_1), \ldots, pr_1(d_n))$.

The proof is by induction on the length of A. In fact, this lemma is a particular case of Proposition 3.3.11 from [9]: here we have a morphism of Kripke models $(f_0, f_1) : M \odot V \longrightarrow M$, where $f_0 = id_W$, $f_{1u}(d) = pr_1(d)$, cf. [9], Definitions 3.3.1, 3.3.3.

Theorem 4.8. If $\mathbf{Q}\mathbf{\Lambda}$ is strongly Kripke complete, then $\Box \bullet (\mathbf{Q}\mathbf{\Lambda})$ is strongly Kripke complete.

Proof. We modify the proof of Theorem 4.4.

Let $L = \mathbf{Q} \mathbf{\Lambda}$, and let Γ_0 be a $(\Box \bullet L)$ -consistent theory. Recall that we assume that its set of constants is small, so by Lemma 2.13, Γ_0 is contained in some ($\Box \bullet L$)-place Γ . Let us show that Γ is satisfiable in some Kripke model over a $(\Box \bullet L)$ -frame.

As in the proof of Theorem 4.4, we can see that every $\Delta \in R_{\square \bullet L}(\Gamma)$ is an L-place. Since L is strongly complete, Δ is satisfiable in a model M_{Δ} over some L-frame \mathbf{F}_{Δ} ; let F_{Δ} be its propositional base. By Lemma 2.4(2) it follows that $F_{\Delta} \vDash \Lambda$.

Note that $\Gamma R_{\Box \bullet L} \Delta$ implies $D_{\Gamma} \subseteq D_{\Delta}$.

We may assume that M_{Δ} is rooted with root 0_{Δ} , and Δ is satisfiable at $(M_{\Delta}, 0_{\Delta})$. By Definition 2.5, there exists an interpretation δ_{Δ} such that

$$\lambda, 0_{\Delta} \models \delta_{\Delta} \cdot \Delta.$$

 M_{\wedge} Now we would like to add the root Γ to the disjoint sum $\bigsqcup_{\Gamma R_{\Box,L}\Delta} M_{\Delta}$. Unfortunately, this idea would not

work directly, because the domain D_{Γ} may be condensed by the interpretations δ_{Δ} . To avoid this, we use inflation.

So for each $\Delta \in R_{\Box \cdot L}(\Gamma)$ we put $M'_{\Delta} := M_{\Delta} \odot D_{\Gamma}$; let $D'_{0_{\Lambda}}$ be the root domain of M'_{Δ} . We call an interpretation δ'_{Δ} of Δ at $(M'_{\Delta}, 0_{\Delta})$ associated with δ_{Δ} if $pr_1(\delta'_{\Delta}(c)) = \delta_{\Delta}(c)$ for any $c \in D_{\Delta}$. Then by Lemma 4.7, for any formula $B \in \mathcal{L}(\Delta)$

$$M'_{\Delta}, 0_{\Delta} \models \delta'_{\Delta} \cdot B \text{ iff } M_{\Delta}, 0_{\Delta} \models \delta_{\Delta} \cdot B,$$

and thus

 $M'_{\Delta}, 0_{\Delta} \models \delta'_{\Delta} \cdot \Delta.$ (*)

Now for every Δ consider a specific interpretation δ'_{Δ} associated with δ_{Δ} such that $\delta'_{\Delta}(c) = (\delta_{\Delta}(c), c)$ for every $c \in D_{\Gamma}$ and $\delta'_{\Delta}(c)$ is arbitrary for $c \in D_{\Delta} - D_{\Gamma}$ (with the only requirement $pr_1(\delta'_{\Delta}(c)) = \delta_{\Delta}(c)$). Then δ'_{Λ} is injective on D_{Γ} .

Next, we cross-identify some individuals in the domains $D'_{0_{\Lambda}}$.

Namely, let h be the map defined on the total domain of M'_{Δ} such that

 $h(a) := \begin{cases} c \text{ if } a = \delta'_{\Delta}(c), \ c \in D_{\Gamma}, \\ a \text{ otherwise.} \end{cases}$

If D'_u is the domain at world u of M'_{Δ} , we define D''_u as the image set $h(D'_u)$; so h is a bijection¹¹ from D'_u onto D''_u . It is clear that $D_{\Gamma} \subseteq D''_{0_{\Lambda}}$.

For injectivity of h we need a technical assumption that D_{Γ} does not contain ordered pairs. This can be achieved by an appropriate choice of the basic set S^* (cf. subsection 2.6).

Please cite this article in press as: V. Shehtman, On Kripke completeness of modal predicate logics around quantified K5, Ann. Pure Appl. Logic (2023), https://doi.org/10.1016/j.apal.2022.103202

ARTICLE IN PRESS

Then we define the Kripke model M''_{Δ} over the predicate frame $\mathbf{F}''_{\Delta} := (F_{\Delta}, D'')$ as follows: $M'_{\Delta}, u \models P(a_1, \ldots, a_n)$ iff $M''_{\Delta}, u \models P(h(a_1), \ldots, h(a_n))$ for any world u, predicate letter P and $a_1, \ldots, a_n \in D'_u$. So there is an isomorphism from M'_{Δ} onto M''_{Δ} sending every world to itself and every individual a to h(a). Thus $M'_{\Delta}, u \models A(a_1, \ldots, a_n)$ iff $M''_{\Delta}, u \models A(h(a_1), \ldots, h(a_n))$ (**) g g for any world u, formula $A(x_1,\ldots,x_n)$ and tuple $(a_1,\ldots,a_n) \in (D'_u)^n$. Next, we define an interpretation $\delta_{\Delta}'' := h \cdot \delta_{\Delta}', \text{ so}$ $\delta_{\Delta}''(c) = \begin{cases} c \text{ if } c \in D_{\Gamma}, \\ \delta_{\Delta}'(c) \text{ if } c \in D_{\Delta} - D_{\Gamma}. \end{cases}$ Then by (**) for any formula B in $\mathcal{L}(\Delta)$ we have $M'_{\Delta}, 0_{\Delta} \models \delta'_{\Delta} \cdot B$ iff $M''_{\Delta}, 0_{\Delta} \models \delta''_{\Delta} \cdot B$. Therefore (*) implies $M_{\Delta}'', 0_{\Delta} \models \delta_{\Delta}'' \cdot \Delta.$ (* * *)Let \mathbf{F}'_{Δ} be the frame of M''_{Δ} . Its propositional base is the same F_{Δ} , so $\mathbf{F}''_{\Delta} \models \mathbf{\Lambda}$ by Lemma 2.4, which implies $\mathbf{F}_{\Delta}^{\prime\prime} \models L$. Next, we construct the disjoint sum $M'' := \bigsqcup_{\Gamma R_{\Box,L}\Delta} M''_{\Delta}$ and add the root Γ to it. This is possible, since $D_{\Gamma} \subseteq D_{0_{\Lambda}}^{\prime\prime}$. Thus we obtain a Kripke model M^{\star} over a frame $\mathbf{G} = (W, R, D^{\star})$ such that $R(\Gamma) = \{0_{\Delta} \mid \Gamma R_{\Box \cdot L} \Delta\}, \ D_{\Gamma}^{\star} = D_{\Gamma},$ $M^{\star}, \Gamma \vDash A \text{ iff } A \in \Gamma$ for any atomic D_{Γ} -sentence A. We claim that $\mathbf{G} \models \Box \bullet L$ and $M^{\star}, \Gamma \models \Gamma$. This is proved as in Theorem 4.4. By Lemma 3.11, it suffices to show that $\mathbf{G} \models \Box \overline{L}$. First note that for every $u \in W$, $u \neq \Gamma$ we have $\mathbf{G}, u \models \overline{L}$, since u is in some generated subframe \mathbf{F}_{Δ}'' validating L; thus $\mathbf{G}, u \models \Box \overline{L}$. In particular, $\mathbf{G}, 0_{\Delta} \models \overline{L}$. Since $R(\Gamma)$ consists of the points 0_{Δ} , it follows that $\mathbf{G}, \Gamma \models \Box \overline{L}$ as well (by Lemma 2.4). Next, let us show by induction on the length of a D_{Γ} -sentence A that $M^{\star}, \Gamma \vDash A \text{ iff } A \in \Gamma.$ If A is atomic, this holds by definition. We skip the cases $A = \bot$, $A = B \rightarrow C$. Suppose $A = \Box B$. If $A \in \Gamma$, then by definition of the canonical model, $B \in \Delta$ for every $\Delta \in R_{\Box \bullet L}(\Gamma)$. So by (***), $M''_{\Delta}, 0_{\Delta} \vDash \delta''_{\Delta} \cdot B = B$ (since B is a D_{Γ} -sentence), and thus $M^*, 0_{\Delta} \vDash B$, since M''_{Δ} is (isomorphic to) a generated submodel of M^* . Therefore $M^*, \Gamma \vDash \Box B$, since Γ sees only these 0_{Δ} . On the other hand, if $A \notin \Gamma$, then by the properties of the canonical model, $\neg B \in \Delta$ for some $\Delta \in R_{\Box \bullet L}(\Gamma).$ So by (***) again, $M''_{\Delta}, 0_{\Delta} \vDash \neg B$, and thus $M^{\star}, 0_{\Delta} \nvDash B$, since M''_{Δ} is a generated submodel of M^* . Since $\Gamma R0_{\Delta}$, we have $M^*, \Gamma \nvDash \Box B$.

 $Please \ cite \ this \ article \ in \ press \ as: \ V. \ Shehtman, \ On \ Kripke \ completeness \ of \ modal \ predicate \ logics \ around \ quantified \ K5, \ Ann. \ Pure \ Appl. \ Logic \ (2023), \ https://doi.org/10.1016/j.apal.2022.103202$

V. Shehtman / Annals of Pure and Applied Logic ••• (••••) •••••

Suppose $A = \exists x B(x) \in \Gamma$. Then $B(c) \in \Gamma$ for some $c \in D_{\Gamma}$, since Γ is a $(\Box \bullet L)$ -place. Hence $M^{\star}, \Gamma \vDash B(c)$ by IH, which implies $M^*, \Gamma \vDash A$.

The other way round, if $M^*, \Gamma \vDash \exists x B(x)$, then $M^*, \Gamma \vDash B(c)$ for some $c \in D_{\Gamma}$. Hence $B(c) \in \Gamma$ by IH. Then $\Gamma \vdash_{\Box \bullet L} \exists x B(x)$, and so $\exists x B(x) \in \Gamma$, since Γ is a $(\Box \bullet L)$ -place. Therefore Γ is satisfiable in a $(\Box \bullet L)$ -frame. \Box 4.3. Transfer of Kripke completeness for propositional logics **Theorem 4.9.** For modal propositional logics, boxing preserves Kripke completeness. **Proof.** We modify the proof of Proposition 4.5. Assume that Λ is Kripke complete, let A be a $(\Box \cdot \Lambda)$ -consistent formula, and consider the canonical model $M := M_{\Box, \Lambda}$. Then $M, \Gamma \vDash A$ for some Γ . For every subformula $\Box B$ of A refuted at M, Γ , there exists a point $\Delta_B \in R_{\Box, \Lambda}(\Gamma)$ such that $M, \Delta_B \nvDash B$. Δ_B is Λ -consistent, since it contains Λ . Let Ψ be the set of all subformulas of A, and put $B^{-} := \neg B \land \bigwedge \{ C \mid M, \Gamma \vDash \Box C, \ \Box C \in \Psi \}.$ Then $M, \Delta_B \vDash B^-$, so B^- is **A**-consistent. Since Λ is complete, there exists a model N_B over a Λ -frame with a root 0_B such that $N_B, 0_B \vDash B^-$. $\bigsqcup_{B \in (\Psi - \Gamma)} N_B$ by adding the root Γ , so Consider the model $N = (W, R, \xi)$ obtained from the disjoint sum that $R(\Gamma) = \{0_B \mid \Box B \in (\Psi - \Gamma)\}$ and $N, \Gamma \vDash q$ iff $q \in \Gamma$ for every proposition letter q. We claim that $(W, R) \vDash \Box \cdot \Lambda$ and $N, \Gamma \vDash A$. The first claim is checked as in the proof of Proposition 4.5. For the second one, we show by induction that for any $E \in \Psi$ $N, \Gamma \models E$ iff $E \in \Gamma$. Again the only nontrivial case is when E begins with \Box . Suppose $E = \Box C \in \Gamma$. Then C occurs as a conjunct in each B^- , so $N_B, 0_B \models C$. Thus $N, 0_B \models C$, since N_B is a generated submodel of N. By the definition of $R(\Gamma)$, it follows that $N, \Gamma \vDash \Box C$. Now suppose $E = \Box B \notin \Gamma$. Since $\neg B$ is a conjunct in B^- , we have $N_B, 0_B \vDash \neg B$, and thus $N, 0_B \vDash \neg B$, by Generation lemma. Therefore $N, \Gamma \nvDash \Box B$. \Box 4.4. Some examples Let us recall examples of strongly complete logics of the form \mathbf{QA} for different $\mathbf{\Lambda}$. 1. One-way PTC logics. These are logics axiomatized by formulas of the form $\Box p \to \Box^n p$ and closed propositional formulas. Then \mathbf{QA} is canonical ([9], Theorem 6.1.29). 2. Logics with confluence and density axioms. Here we have several logics, for which $\mathbf{Q}\mathbf{\Lambda}$ is strongly complete, but probably not canonical. The first example of this kind was S4.2, the logic of confluent (or even directed) S4-frames. Strong completeness of QS4.2 was proved by G. Corsi and S. Ghilardi [5].¹² The proof can also be found in [9], section 6.6. Similar ¹² Their paper states only completeness, but actually proves strong completeness. Please cite this article in press as: V. Shehtman, On Kripke completeness of modal predicate logics around quantified K5, Ann. Pure Appl. Logic (2023), https://doi.org/10.1016/j.apal.2022.103202

ARTICLE IN PRESS

1	examples are constructed in [15]: these are extensions of $\mathbf{K4}$ by axioms of confluence, density, and 2-density	1
2	in different combinations.	2
3	3. Logics with non-branching axioms.	3
4	This group of logics contains the axiom of non-branching, in reflexive or irreflexive versions, in combina-	4
5	tion with axioms of density or finite depth. Typical examples are the well-known logics S4.3 and K4.3. The	5
0	corresponding results on strong completeness of \mathbf{QA} are proved in G. Corst's paper [4]. For the particular	0
/ 0	case of Q54.3 cf. also [9], section 6.7.	<i>'</i>
0	5. 55 and its extensions.	0
9	Kripke completeness for QS5 was proved in the well-known S. Kripke's paper [12]. However, strong	9 10
11	completeness (using a version of a canonical model with a constant domain) was first proved in [1]. The	11
12	same method meety works for an extensions of 55 . For these extensions one can also apply the general Tapaka. One theorem (af $[0]$ souther 7.4) as these logics are tabular and their quantified extensions	12
13	contain the Barcan formula	13
14	contain the Darcan formula.	14
15	5 Incompleteness	15
16	J. Incompleteness	16
17	5.1. Some countercramples	17
18	5.1. Some counterexamples	18
19	Now we will show that an analogue of Theorem 4.4 does not hold for Krinke semantics	19
20	Consider the logics	20
21	Consider the logies	21
22	$\mathbf{\Omega}\mathbf{\Delta}\mathbf{U}_{1}:=\mathbf{\Omega}\mathbf{\Delta}+AU_{1}$	22
23	$\operatorname{ano}_1 := \operatorname{an}_1 + \operatorname{no}_1,$	23
24	where $\mathbf{\Lambda}$ is a propositional modal logic, and	24
25		25
26	$AU_1 := \exists x P(x) \to \forall x P(x)$	26
27	- (), (),	27
28	is the axiom of singleton domains. So for a Kripke frame $\mathbf{F} = (W, R, D)$	28
29		29
30	$\mathbf{F} \vDash AU_1 \text{ iff } \forall u \in W D_u = 1.$	30
31		31
32	The axiom AU_1 allows us to eliminate all quantifiers. More exactly, we call a predicate formula <i>primitive</i>	32
33	if it is quantifier-free and contains at most one individual variable x . Then we have	33
34		34
35	Lemma 5.1. For any predicate formula A there exists a primitive formula A' such that $\mathbf{QK} + AU_1 \vdash A \leftrightarrow A'$.	35
30		30
31	Proof. Let $L = \mathbf{QK} + AU_1$. First note that by $AU_1, L \vdash A \leftrightarrow \forall A$ for any A.	31
20 20	Then the argument is by induction on the length of A .	20
40	If $A = P(x_1, \ldots, x_n)$ is atomic, then A is L-equivalent to $A' = P(x_1, \ldots, x)$, due to AU_1 . In more detail,	40
40	we have $L \vdash P(x,, x) \to \exists x_1 \dots \exists x_n P(x_1, \dots, x_n)$ by classical logic and $L \vdash \exists x_n \neg \neg P(x_1, \dots, x_n) \to \forall P(x_1, \dots, x_n)$ by classical logic and	40
42	$L \vdash \exists x_1 \dots \exists x_n P(x_1, \dots, x_n) \rightarrow \forall P(x_1, \dots, x_n) \text{ by } AU_1. \text{ Also } L \vdash \forall P(x_1, \dots, x_n) \rightarrow P(x, \dots, x) by classical logic$	42
43	In It $A - \forall a B$ then $I \vdash A \leftrightarrow B$ so we can take $A' = B'$	43
44	$\Pi A = vgD, \text{ then } D + A \forall D, \text{ so we can take } A = D.$ The remaining cases are trivial	44
45		45
46	Lemma 5.2. Let Λ be a strongly complete modal propositional logic. Then $\Omega \Lambda U_1$ is strongly Krinke complete	46
47	Louina or Louin of a servinging complete mount propositional logic. Then an OI is strongly hittple complete.	47
48	Proof. Let $L = \mathbf{Q} \mathbf{\Lambda} \mathbf{U}_1$. Note that <i>L</i> -frames are just propositional $\mathbf{\Lambda}$ -frames with singleton domains.	48
	v I ···································	

V. Shehtman / Annals of Pure and Applied Logic ••• (••••) •••••

Let Γ be an L-consistent theory. By Lemma 5.1 we can deal only with primitive formulas, so we may assume that formulas in Γ are of the form A(c), where A(x) is primitive, c is a constant. We may also assume that c is fixed, since we need only models with singleton domains. For every formula A(c) we construct a propositional formula A_{π} as follows. Let $(P_i)_{i \in \omega}$ be an enumeration of all our predicate letters. We associate a proposition letter p_i with each P_i and put $P_i(c,\ldots,c)_\pi := p_i, \ (A \to B)_\pi := (A_\pi \to B_\pi), \ \perp_\pi := \bot, \ (\Box A)_\pi := \Box A_\pi.$ Then we have: $\mathbf{\Lambda} \vdash A_{\pi} \; \Rightarrow \; \vdash_L A(c).$ (*)In fact, A(c) is obtained from A_{π} by substituting $P_i(c, \ldots, c)$ for p_i . Now put $\Gamma_{\pi} := \{ A_{\pi} \mid A(c) \in \Gamma \}.$ Then Γ_{π} is Λ -consistent. Indeed, if we have $\Lambda \vdash \neg \bigwedge_{i} (A_{j})_{\pi}$ for some formulas $A_{j}(c) \in \Gamma$, then $\vdash_{L} \neg \bigwedge_{i} A_{j}(c)$ by (*), which implies the *L*-inconsistency of Γ . By strong completeness of Λ , Γ_{π} is satisfiable in a Λ -frame F. So by adding a singleton domain to F we obtain an L-frame \mathbf{F} . We claim that Γ is satisfiable in **F**. Indeed, let $M, u \models \Gamma_{\pi}$ for a model M on F. Consider the model **M** on **F** such that for any v $\mathbf{M}, v \vDash P_i(a, \ldots, a)$ iff $M, v \vDash p_i$, where a is the unique individual in the domain. Then by induction we easily obtain that for any v $\mathbf{M}, v \models A(a)$ iff $M, v \models A_{\pi}$. Hence $\mathbf{M}, u \models \Gamma$. \Box **Lemma 5.3.** Let Λ be a modal propositional logic. Then $\Box \bullet Q\Lambda U_1 \vDash_{\mathcal{K}} AU_1 \lor \Box \bot$. **Proof.** Let $L := \mathbf{QAU}_1$. Every L-frame has singleton domains. In every $(\Box \bullet L)$ -frame $\mathbf{F} = (W, R, D)$ for any u we have $\mathbf{F}, u \models \Box AU_1$, so $|D_v| = 1$ for any $v \in R(u)$. If $u \not\models \Box \bot$, there exists $v \in R(u)$. Since $D_u \subseteq D_v$, D_u is a singleton, thus $F, u \models AU_1$. Hence $\mathbf{F} \models AU_1 \lor \Box \bot$. \Box Recall that $\mathbf{Triv} := \mathbf{K} + \Box p \leftrightarrow p$, $\mathbf{Ver} := \mathbf{K} + \Box \bot$. **Proposition 5.4.** Let Λ be a modal propositional logic. Then $\Box \bullet \mathbf{Q}\Lambda \mathbf{U}_1$ is Kripke incomplete. **Proof.** Due to the previous lemma, it suffices to prove that $\Box \bullet \mathbf{Q} \Lambda \mathbf{U}_1 \not\vdash A U_1 \lor \Box \bot$. By Makinson's theorem ([2], Theorem 8.67) $\Lambda \subseteq \text{Triv}$ or $\Lambda \subseteq \text{Ver}$, so we can consider only the cases $\Lambda = \text{Triv} \text{ and } \Lambda = \text{Ver}.$ Please cite this article in press as: V. Shehtman, On Kripke completeness of modal predicate logics around quantified K5, Ann. Pure Appl. Logic (2023), https://doi.org/10.1016/j.apal.2022.103202

ARTICLE IN PRESS

JID:APAL AID:103202 /FLA

V. Shehtman / Annals of Pure and Applied Logic ••• (••••) •••••

ર b U g g Fig. 1. Kripke sheaf Φ_0 . For **Triv** we take the Kripke sheaf Φ_0 with two worlds: irreflexive u and reflexive v, $D_u = \{a, b\}, D_v = \{c\}$. Fig. 1 shows the transition function from u to v. We have $\Phi_0, v \models \mathbf{QTrivU_1}$, since v is reflexive with a singleton domain. Hence $\Phi_0 \models \Box \bullet \mathbf{QTrivU_1}$. On the other hand, $|D_u| = 2$, $R(u) \neq \emptyset$, so $\Phi_0, u \not\models AU_1 \lor \Box \bot$. Thus, $\Box \bullet \mathbf{QTrivU_1} \not\vdash AU_1 \lor \Box \bot$ by Soundness theorem. For $\Lambda =$ Ver replace Φ_0 with Φ_1 , in which both u, v are irreflexive. \Box **Corollary 5.5.** Strong Kripke completeness of a modal predicate logic L does not imply Kripke completeness of $\Box \bullet L$: counterexamples are given by the logics \mathbf{QAU}_1 , where Λ is a strongly Kripke complete propositional logic.¹³ 5.2. Some propositional logics Here are definitions of specific propositional logics; most of them are well known: $\mathbf{T} := \mathbf{K} + \Box p \rightarrow p, \ \mathbf{K4} := \mathbf{K} + \Box p \rightarrow \Box^2 p,$ $\mathbf{S4} := \mathbf{T} + \Box p \rightarrow \Box^2 p, \ \mathbf{S5} := \mathbf{S4} + \Diamond \Box p \rightarrow p, \ \mathbf{Ver} := \mathbf{K} + \Box \bot,$ $\mathbf{Triv} := \mathbf{K} + \Box p \leftrightarrow p, \ \mathbf{SL} := \mathbf{K} + \Box p \leftrightarrow \Diamond p,$ $\mathbf{SL4} := \mathbf{SL} + \Box p \to \Box \Box p, \ \mathbf{SL4}_n := \mathbf{SL} + \Box^n p \to \Box^{n+1} p,$ $\mathbf{K5} := \mathbf{K} + \Diamond \Box p \to \Box p,$ $\mathbf{K45} := \mathbf{K5} + \Box p \to \Box^2 p,$ $\mathbf{K4}\square\mathbf{S5} := \square \cdot \mathbf{S5} + \square p \to \square^2 p.$ All these logics are Sahlqvist, so they are elementary and canonical. In this paper we are interested mainly in extensions of the logic $\Box \cdot \mathbf{T}$ including those of the form $\Box \cdot \mathbf{\Lambda}$ for $\Lambda \supseteq \mathbf{T}$. By Makinson's theorem [2], $\Lambda \subseteq \mathbf{Triv}$; thus $\Box \cdot \mathbf{T} \subseteq \Box \cdot \Lambda \subseteq \Box \cdot \mathbf{Triv}$. Fig. 2 shows inclusions between some extensions of $\Box \cdot \mathbf{T}$. Recall that K5 is determined by 'Euclidean frames', i.e., by those satisfying $\forall x \forall y \forall z (xRy \& xRz \to yRz).$ So **K45** is determined by transitive Euclidean frames. The paper [13] describes all extensions of $\mathbf{K5}$ and proves that $\mathbf{K5}$ is locally tabular.¹⁴ $^{13}\,$ These Λ were discussed in subsection 4.4. ¹⁴ One can also show local tabularity for $\Box \cdot \mathbf{S5}$ (and so, for all its extensions); this fact is stated in [14].

Pure Appl. Logic (2023), https://doi.org/10.1016/j.apal.2022.103202

48

JID:APAL AID:103202 /FLA [m3L; v1.323] P.25 (1-40) V. Shehtman / Annals of Pure and Applied Logic ••• (••••) ••••• Fig. 3. Kripke bundle \mathbb{F} . $\mathbf{a}R^{n}\mathbf{b}$ iff $\forall j \ a_{j}R^{1}b_{j} \& \forall j, k \ (a_{j} = a_{k} \Rightarrow b_{j} = b_{k})$ for n > 1. Thus \mathbb{F} corresponds to the family of propositional frames $F_n = (D^n, R^n)$, in which $F_0 = F$. **Proposition 5.10.** For a Kripke bundle \mathbb{F} and a modal propositional formula A, $\mathbb{F} \models^+ A \text{ iff } \forall n F_n \models A.$ For the proof cf. [9], Proposition 5.3.7. **Theorem 5.11.** Let Λ be a modal propositional logic between $\Box \cdot \mathbf{T}$ and **SL4**. Then $\mathbf{Q}\Lambda$ is Kripke (and Kripke sheaf) incomplete. In particular, this holds for $\Lambda = \Box \cdot \Lambda_1$, where Λ_1 is a consistent extension of \mathbf{T} . **Proof.** Here the crucial formula is $\Box \forall ref$. First we prove Lemma 5.12. QSL4 $\nvdash \Box \forall ref.$ **Proof.** By Proposition 5.8 it suffices to construct a Kripke bundle $\mathbb{F} = (F, D, \rho)$ strongly validating QSL4, but refuting $\Box \forall ref$. Let $F = F_0$ be a reflexive singleton ($\{u\}, \{(u, u)\}$). Let $F_1 = (D, \rho)$, where $D = \{a, b\}$ and $\rho := \{(a, b), (b, b)\},$ see Fig. 3. Then $\mathbf{ML}(F_1) = \mathbf{SL4}$, and we obtain $D^n = (D^1)^n$; $\mathbf{d}R^n \mathbf{e}$ iff $\forall i < n e_i = b$. So every \mathbb{R}^n is functional; every $\mathbf{d} \in D^n$ (for n > 0) has a unique successor $(\underline{b}, \underline{b}, \dots, \underline{b})$. Hence $F_n \models \mathbf{SL4}$ for $n \ge 0$, and thus $\mathbb{F} \models^+ \mathbf{QSL4}$ by Proposition 5.10. On the other hand, consider a model $M = (\mathbb{F}, \xi)$, where $\xi_u(P) := \{b\}$. We claim that $M, u \nvDash \Box \forall ref$. Indeed, $M, u \models \Box P(a)$, since $M, u \models P(b)$ and b is the unique inheritor of a. At the same time $M, u \nvDash P(a)$. Thus $M, u \nvDash \Box P(a) \to P(a)$, and so $M, u \not\vDash \forall x (\Box P(x) \to P(x)).$ This implies $M, u \nvDash \Box \forall ref$, since u is reflexive. \Box Now to prove Theorem 5.11 note that $\mathbf{QA} \models_{\mathcal{KE}} \Box \forall ref$, since $\mathbf{Q}(\Box \cdot \mathbf{T}) \models_{\mathcal{KE}} \Box \forall ref$ (Propositions 3.10, 3.18); however $\mathbf{QA} \nvDash \Box \forall ref$, since $\mathbf{QSL4} \nvDash \Box \forall ref$ (Lemma 5.12). \Box **Remark 5.13.** It is well known (cf. [8]) that there is a continuum of modal logics between **T** and **Triv**. By Proposition 3.4, their boxings are different; hence by Theorem 5.11 we obtain a continuum of incomplete

g

48 logics of the form $\mathbf{Q}\mathbf{\Lambda}$.

	ARTICLE IN PRESS
JID:APA 26	L AID:103202 /FLA [m3L; v1.323] P.26 (1-40 V. Shehtman / Annals of Pure and Applied Logic ••• (••••) •••••
Theor	em 5.14. For any modal propositional logic Λ between $\Box \cdot \mathbf{T}$ and SL4:
(1) If	$\mathbf{QA} + \Box \forall ref \ is \ Kripke \ complete, \ then$
	$\widehat{\mathbf{OA}} = \mathbf{OA} + \Box \forall ref$
In (2) Si	particular, this holds whenever $\mathbf{\Lambda} = \Box \cdot \mathbf{\Lambda}_1$, $\mathbf{\Lambda}_1 \supseteq \mathbf{T}$ and $\mathbf{Q}\mathbf{\Lambda}_1$ is strongly Kripke complete. milarly, if $\mathbf{Q}\mathbf{\Lambda} + \Box \forall ref$ is Kripke sheaf complete, then
	$C_{\mathcal{K}\mathcal{E}}(\mathbf{Q}\mathbf{\Lambda}) = \mathbf{Q}\mathbf{\Lambda} + \Box \forall ref.$
In	particular, this holds for $\mathbf{\Lambda} = \Box \cdot \mathbf{\Lambda}_1$, where $\mathbf{\Lambda}_1 \supseteq \mathbf{T}$ and $\mathbf{Q}\mathbf{\Lambda}_1$ is strongly Kripke sheaf complete.
Proof.	(1) Since $\mathbf{Q}\mathbf{\Lambda} \models_{\mathcal{K}} \Box \forall ref$, we have $\mathbf{Q}\mathbf{\Lambda} + \Box \forall ref \subseteq \widehat{\mathbf{Q}\mathbf{\Lambda}}$. But $\widehat{\mathbf{Q}\mathbf{\Lambda}}$ is the least \mathcal{K} -complete extension so the inclusion becomes equality if $\mathbf{Q}\mathbf{\Lambda} + \Box \forall ref$ is \mathcal{K} -complete
Also	b note that strong Kripke completeness transfers from $\mathbf{Q}\mathbf{\Lambda}_1$ to $\Box \bullet (\mathbf{Q}\mathbf{\Lambda}_1)$, by Theorem 4.8, and
$\Box \bullet (\mathbf{Q}$	$\mathbf{\Lambda}_1$ = $\mathbf{Q}(\Box \cdot \mathbf{\Lambda}_1) + \Box \forall ref$, by Proposition 3.10.
(2)	Similar to (1), now using $\mathbf{Q}\mathbf{\Lambda} \models_{\mathcal{K}\mathcal{E}} \Box \forall ref$ and Theorem 4.4 (for $\mathbf{\Lambda} = \Box \cdot \mathbf{\Lambda}_1$). \Box
6. Kri	pke completions of $\mathbf{QK4}\Box\mathbf{S5}$ and $\mathbf{QK45}$
6.1. C	'-canonicity
Let	us first recall the construction of canonical models with constant domains from [9], chapter 7.
We	begin with the well-known characterization of the Barcan formula:
Lemm	a 6.1. The Barcan formula
	$\forall x \Box D(x) \rightarrow \Box \forall x D(x)$
	$\forall x \sqcup F(x) \to \sqcup \forall x F(x)$
is vali	d on a rooted Kripke frame $\mathbf{F} = (W, R, D)$ iff \mathbf{F} has a constant domain, i.e. all the domains D_u for
$u \in W$	coincide.
Defini	tion 6.2. For a modal logic L containing Ba let CW_L be the set of all L-places (from PW_L) with a
fixed o	countable set of constants S_0 . The <i>canonical frame</i> and the <i>canonical model</i> with a constant domain
for L a	are the restrictions $CF_L := PF_L \upharpoonright CW_L, CM_L := PM_L \upharpoonright CW_L.$
For	these models we have
Theor	em 6.3. For any $\Gamma \in CW_L$ and modal S_0 -sentence A ,
	$CM_{-} \Gamma \vdash A i^{\mathcal{H}} A \subset \Gamma$
	$\bigcirc ML, 1 \vdash A \ i j j \ A \in 1$.
Coroll	ary 6.4. For any modal predicate formula A,
	$CM_L \vDash A$ iff $L \vdash A$.
Defini	tion 6.5. A modal predicate logic L containing Ba is called C-canonical if $CF_L \models L$.
	and & Eugen Class anisal losis is strongly Wrights complete

V. Shehtman / Annals of Pure and Applied Logic ••• (••••) •••••

Proof. Assume that L is C-canonical, Γ is an L-consistent theory. We may also assume that $D_{\Gamma} \subseteq S_0$. Then Γ can be extended to some $\Delta \in CW_L$. By Theorem 6.3, $CM_L, \Delta \models \Delta$. Thus Γ is satisfiable in the L-frame CF_L . \Box The definition of CW_L and CM_L depends on the basic set of constants S_0 , but sometimes we need to indicate this set explicitly. Then we use the notation $CW_L(S_0)$, $CF_L(S_0)$, $CM_L(S_0)$. Obviously, all the models $CM_L(S_0)$ are isomorphic for countable S_0 . The well-known example of a C-canonical logic is **QS5**: q g Theorem 6.7. QS5 is C-canonical. This is a particular case of Tanaka – Ono completeness theorem, cf. [9], Theorem 7.4.7. However, in this case C-canonicity follows readily: reflexivity and transitivity are inherited from the larger frame PF_{OS5} ; symmetry for CF_{QS5} is easily checked. 6.2. QK4 S5 **Lemma 6.8.** Let L be a modal predicate logic containing $\Box \bullet \mathbf{QS5}$, and let $\Gamma R_L \Delta$ in the canonical model PM_L . Then (1) Δ is a QS5-place. (2) $\Delta R_L \Delta$. **Proof.** (1) By Lemma 2.19, it suffices to prove that $QS5 \subseteq \Delta$. Indeed, suppose $QS5 \vdash A$ for a sentence A; then by definition $\Box \bullet \mathbf{QS5} \vdash \Box A$, hence $L \vdash \Box A$, and so $\Box A \in \Gamma$ (Lemma 2.13). Thus $A \in \Delta$ by the definition of R_L . (2) Since Δ is a QS5-place, we have $(\Box A \to A) \in \Delta$ for $A \in \mathcal{L}(\Delta)$. So $\Box A \in \Delta$ implies $A \in \Delta$, i.e. $\Delta R_L \Delta$. \Box **Lemma 6.9.** Let L be a modal predicate logic containing $\Box \bullet \mathbf{QS5}$, and assume that Γ is an L-place with an infinite domain. Then in the canonical model PM_L $\Gamma R_L \Delta \& \Delta R_L \Sigma \& D_{\Delta} = D_{\Sigma} \Rightarrow \Sigma R_L \Delta.$ **Proof.** By the previous lemma, $\Delta, \Sigma \in PW_{QS5}$. Since $D_{\Delta} = D_{\Sigma}$, we have $\Delta, \Sigma \in CW_{QS5}(D_{\Delta})$. Then the claim follows from the symmetry of CF_{QS5} . \Box To prove the required completeness results we use selective submodels of canonical models. Note that their definition differs from the one given in [9]. It resembles the Tarski–Vaught test for elementary submodels in classical model theory. **Definition 6.10.** Let $M = (W, R, D, \xi)$ be a Kripke model. A *weak submodel* of M is a Kripke model $M_1 = (U, R_1, D_1, \xi_1)$ such that¹⁶ $U \subseteq W, R_1 \subseteq R, D_1 = D \upharpoonright U, \xi_1 = \xi \upharpoonright U.$ The weak submodel M_1 is called *selective* if for any $u \in U$, for any D_u -sentence A ¹⁶ I.e. $(\xi_1)_u = \xi_u$, $(D_1)_u = D_u$ for each $u \in U$, cf. Definition 2.8. Please cite this article in press as: V. Shehtman, On Kripke completeness of modal predicate logics around quantified K5, Ann. Pure Appl. Logic (2023), https://doi.org/10.1016/j.apal.2022.103202

ARTICLE IN PRESS

[m3L; v1.323] P.28 (1-40)

V. Shehtman / Annals of Pure and Applied Logic ••• (••••) •••••

 $M, u \models \Diamond A \Rightarrow \exists v \in R_1(u) \ M, v \models A.$

Lemma 6.11. Let M, M_1 be the same as in the previous definition. Then M_1 is a reliable submodel of M: for any $u \in U$, for any D_u -sentence A

$$M, u \vDash A$$
iff $M_1, u \vDash A$.

Proof. We may assume that A is constructed from atomic formulas using \diamond , \rightarrow , \perp , \exists and argue by induction on the length of A. The only nontrivial case is when $A = \diamond B$.

Then, if $M, u \models \Diamond B$, there exists $v \in R_1(u)$ such that $M, v \models B$, since M_1 is selective. By IH, we have $M_1, v \models B$, hence $M_1, u \models \Diamond B$.

The other way round, if $M_1, u \models \Diamond B$, there is $v \in R_1(u)$ such that $M_1, v \models B$. We have $M, v \models B$, by IH, and $v \in R(u)$, since $R_1 \subseteq R$. Thus $M, u \models \Diamond B$. \Box

Theorem 6.12. The logic $\mathbf{QK4}\square\mathbf{S5} + \square\forall ref$ is strongly Kripke complete. Thus $\mathbf{QK4}\square\mathbf{S5} = \mathbf{QK4}\square\mathbf{S5} + \square\forall ref$.

Proof. We denote this logic by L. Then $L \supseteq \mathbf{Q}(\Box \cdot \mathbf{S5}) + \Box \forall ref = \Box \bullet \mathbf{QS5}$.

Since $L \supseteq \mathbf{QK4}$, a standard argument shows that the canonical relation R_L is transitive.

Given an *L*-consistent theory Γ_0 , we may assume that its set of constants is small (by an appropriate choice of the set S^* in the canonical model, cf. subsection 2.6) and extend Γ_0 to an *L*-place Γ (Lemma 2.15) So it is sufficient to satisfy Γ in a Kripke model over an *L*-frame.

<u>CASE 1</u> $\Box \perp \in \Gamma$. Then Γ is an endpoint in the canonical model PM_L , and PM_L , $\Gamma \models \Gamma$ by the Canonical model theorem. By Lemma 2.9(1) we have $PM_L \uparrow \Gamma$, $\Gamma \models \Gamma$.

Since Γ is an endpoint, the cone $\mathbf{F} := PF_L \uparrow \Gamma$ has a single world Γ , which is irreflexive. Then obviously $\mathbf{F} \models \Box B$ for any formula B; hence $\mathbf{F} \models \Box \forall ref$, $\mathbf{F} \models \mathbf{K4} \Box \mathbf{S5}$, and thus \mathbf{F} is an *L*-frame.

<u>CASE 2</u> $\Gamma R_L \Gamma$.

Then by Lemma 6.8, Γ is a QS5-place. So by Theorem 6.7 and Corollary 6.6, Γ is satisfiable in the QS5-frame CF_{QS5} . This is an L-frame, since $L \subseteq QS5$.

<u>CASE 3</u> $\diamond \top \in \Gamma$, but Γ is R_L -irreflexive. Then $R_L(\Gamma) \neq \emptyset$.

Consider the set $U := \{\Gamma\} \cup R_L(\Gamma)$ with the relation

$$\Delta R\Sigma \text{ iff } \Delta R_L \Sigma \& (\Delta = \Gamma \lor D_\Delta = D_\Sigma).$$

³⁴ Let *M* be the restriction of PM_L to (U, R). We claim that *M* is selective.

35 Indeed, suppose $\diamond C \in \Delta, \ \Delta \in U$.

(a) $\Delta \neq \Gamma$.

Then Δ is a **QS5**-place, by Lemma 6.8. So $CM_{\mathbf{QS5}}(D_{\Delta}), \Delta \models \Diamond C$ (Theorem 6.3); hence in the C-canonical model $CM_{\mathbf{QS5}}(D_{\Delta})$ there exists Θ such that $\Delta R_{\mathbf{QS5}}\Theta, C \in \Theta$. Certainly, Δ, Θ are points in the larger canonical model $PM_{\mathbf{QS5}}$, which is a generated submodel of PM_L (Lemma 2.19). Thus Θ is an L-place and $\Delta R_L\Theta$.

⁴¹ We also have $\Gamma R_L \Theta$ by transitivity. Therefore $\Theta \in U$ and $PM_L, \Theta \models C$.

42 (b) $\Delta = \Gamma$. In the canonical model there exists Σ such that $\Gamma R_L \Sigma$ and $C \in \Sigma$. This Σ is in U, and 43 $\Delta = \Gamma R \Sigma$.

Besides selectivity, we need to show that $PF_L \upharpoonright (U, R) \vDash L$, i.e., that R is transitive, and R is an equivalence on all points but Γ . In fact, reflexivity for these points follows from Lemma 6.8, and symmetry from Lemma 6.9.

⁴⁷ The transitivity of R_L is provided by **K4**, so R is transitive on $U - \{\Gamma\}$. Also $\Gamma R \Delta R \Sigma$ implies $\Gamma R_L \Delta R_L \Sigma$, ⁴⁸ and thus $\Gamma R_L \Sigma$, i.e. $\Gamma R \Sigma$. \Box

ARTICLE IN PRESS

V. Shehtman / Annals of Pure and Applied Logic ••• (••••) •••••

6.3. QK45 **Theorem 6.13.** The logic $\mathbf{QK45} + \Box \forall ref$ is strongly Kripke complete. Thus $\mathbf{QK45} = \mathbf{QK45} + \Box \forall ref$. **Proof.** It goes along the same lines as in the previous theorem. Let $L = \mathbf{QK45} + \Box \forall ref$ and let Γ be an *L*-place (with an infifite domain). Since **K45** $\supseteq \Box \cdot \mathbf{S5}$, we see again that $L \supseteq \Box \bullet \mathbf{QS5}$. Now we have the same three cases as in the previous theorem. In cases 1, 2 the argument does not change. <u>CASE 3</u> Suppose $\Diamond \top \in \Gamma$, but Γ is R_L -irreflexive. Then there exists an L-place Δ such that $\Gamma R_L \Delta$. Let $S := D_{\Delta}$, and put $M := PM_L \upharpoonright U$, where q $U := \{ \Gamma \} \cup \{ \Sigma \in R_L(\Delta) \mid D_{\Sigma} = S \}.$ By Lemma 6.8, Δ is reflexive, so $\Delta \in U$. Let us show that M is selective. Let $B = \Diamond C \in \Sigma \in U$ and consider two cases. (a) $\Sigma \in R_L(\Delta), D_{\Sigma} = S.$ As in the previous theorem, case 3(a), we notice that Σ is a QS5-place, by Lemma 6.8. Hence we obtain $\Theta \in R_{\mathbf{QS5}}(\Sigma)$ such that $C \in \Theta$. By Lemma 2.19 it follows that Θ is an L-place and $\Sigma R_L \Theta$. By transitivity, $\Delta R_L \Theta$ and also $D_{\Theta} = S$. Thus $\Theta \in U$ and $PM_L, \Theta \models C$. (b) $\Sigma = \Gamma$. We claim that there exists $\Theta \in R_L(\Delta) \cap R_L(\Gamma)$ such that $D_{\Theta} = S$ and $C \in \Theta$. Since the relation R_L is transitive, this claim follows easily from the case (a). Indeed, $\vdash_L \Diamond C \to \Box \Diamond C$, so $\Box \diamond C \in \Gamma$, and since $\Gamma R_L \Delta$, we have $\diamond C \in \Delta$. By (a) we obtain $\Theta \in R_L(\Delta)$ with $D_\Theta = S$ and $M, C \vDash \Theta$; also $\Gamma R_L \Theta$ by transitivity. It remains to show that the frame of M (we again denote it by \mathbf{F}) validates L, i.e. it is transitive, Euclidean and validates $\Box \forall ref$. The transitivity is already known. For the Euclideanness note that Γ is R_L -related to all other points by transitivity, and let us show that all these points are R_L -related. Indeed, suppose $\Delta R_L \Sigma$, $\Delta R_L \Sigma'$, $D_{\Sigma} = D_{\Sigma'} = S$. Since Δ is reflexive, $\Sigma R_L \Delta$ by Lemma 6.9. Hence $\Sigma R_L \Sigma'$ by transitivity. The formula $\Box \forall ref$ is valid on **F**, since every its point but Γ is reflexive and Γ is not accessible (from any point): $\Gamma R_L \Sigma R_L \Gamma$ would imply $\Gamma R_L \Gamma$ by transitivity. \Box **Remark.** The equality $\widehat{\mathbf{Q}}\widehat{\mathbf{\Lambda}} = \mathbf{Q}\mathbf{\Lambda} + \Box \forall ref$ also holds for $\mathbf{\Lambda} = \mathbf{SL4}$. We leave the proof as an exercise for the reader. 7. Kripke completion of QK5 In this section we also prove completeness using canonical models, but the argument becomes more involved. We begin with a useful lemma on adding witnesses for logics containing the Barcan formula. Implicitly it is contained in the proof of Lemma 7.1.2 from [9]. **Lemma 7.1.** Let L be a predicate logic containing Ba, Σ an L-consistent theory such that $\Sigma \vdash_L \Diamond B$ for some sentence B in the language of Σ . Let $\exists x A(x)$ also be a sentence in the language of Σ and let c be a new constant not occurring in Σ , B and A(x). Then the theory $\Sigma' := \Sigma \cup \{ \diamondsuit(B \land (\exists x A(x) \to A(c))) \}$

	ARTICLE IN PRESS	
	JID:APAL AID:103202 /FLA [m3L; v1.323] P.30 (1-40)	
	30 V. Shehtman / Annals of Pure and Applied Logic ••• (••••) •••••	
1	is L-consistent.	1
2	Proof. Supposing the inconsistency of Σ' we obtain	2
4	room supposing the meansionery of 2 we obtain	4
5	$\Sigma \vdash_L \Box(B \to \exists x A(x) \land \neg A(c)),$	5
6		6
7	and thus	7
8	$\Sigma \vdash_L \forall u \Box (B \to \exists x A(x) \land \neg A(y))$	8
9		9
10	by lemma on new constants ([9], Lemma 2.7.11). Hence by applying Ba we have	10
11	$\Sigma \vdash \Box \forall x (D \rightarrow \exists x A(x) \land A(x))$	12
13	$\Sigma \vdash_L \sqcup \forall y (B \to \exists x A(x) \land \neg A(y)).$	13
14	Next, by classical logic, we can move the quantifier inside:	14
15		15
16	$\Sigma \vdash_L \Box (B \to \exists x A(x) \land \forall y \neg A(y)),$	16
17	which implies	17
18	which hipples	18
20	$\Sigma \vdash_L \Box \neg B.$	20
21		21
22	Together with the assumption $\Sigma \vdash_L \Diamond B$ this implies the inconsistency of Σ .	22
23	Therefore Σ' is consistent. \square	23
24	Theorem 7.2. The logic $\mathbf{QK5} + \Box \forall ref$ is strongly Kripke complete. Thus $\widehat{\mathbf{QK5}} = \mathbf{QK5} + \Box \forall ref$.	24
25		25
26	Proof. The proof follows the same lines as in Theorem 6.13, with an essential difference in case 3.	26
27	Let L be our logic, and consider the canonical model PM_L . Since $\mathbf{K5} \supseteq \Box \cdot \mathbf{S5}$, we have	27
20 29	$L \supset \mathbf{O}(\Box \cdot \mathbf{S5}) \perp \Box \forall ref = \Box \bullet \mathbf{OS5}$	20
30	$D \supseteq \mathcal{Q}(\Box \circ \mathcal{O}\mathcal{O}) + \Box \otimes \mathcal{O}\mathcal{O} = \Box \circ \mathcal{Q}\mathcal{O}\mathcal{O}$	30
31	(Proposition 3.10), so Lemmas 6.8, 6.9 hold for PM_L .	31
32	Let Γ be an <i>L</i> -place and consider three cases as in Theorems 6.12, 6.13.	32
33	In cases 1 and 2 the argument is preserved. However, in case 3 (Γ is irreflexive, $\Diamond \top \in \Gamma$), we cannot rely	33
34	on the transitivity of R_L . To see the difficulties, consider a formula $\Diamond C \in \Gamma$. In the proof of Theorem 6.13,	34
35	case 3(b), we constructed $\Theta \in R_L(\Gamma) \cap R_L(\Delta)$ such that $D_{\Theta} = D_{\Delta}$ and $C \in \Theta$. To obtain Θ we noticed	35
36	that $\heartsuit \in \Delta$ and then used the transitivity of K_L . But now K_L is not transitive, so we cannot claim that $\Theta \in \mathcal{P}_{-}(\Gamma)$	36
31 38	To modify the proof properly, we do not start from a certain $\Lambda \in R_{L}(\Gamma)$ but construct successors of Γ	31
39	gradually. The whole procedure goes in three stages.	39
40	For a theory Σ denote	40
41		41
42	$\diamond \Sigma := \{ \diamond A \mid A \in \Sigma \}, \ \Box^{-}\Sigma := \{ A \mid \Box A \in \Sigma \}.$	42
43		43
44	Stage 1 Consider all formulas in Γ beginning with $\diamond: \diamond C_1, \diamond C_2, \ldots$ We first construct QS5 -consistent	44
45	theories with the Henkin property $\Delta_1, \Delta_2, \ldots$ (all in the same language) containing \Box^-1 and such that $C \in \Delta_1$. This is done by induction	45
46	$ \nabla_i \in \Delta_i $. This is done by induction.	46
48	<u>base</u> we start with the theories $\Delta_{\tilde{i}} := [\{C_i\} \cup \Box \ 1\}$, where [] denotes closure under \vdash_{QS5} (i.e. QS5- derivability, cf. subsection 2.2).	47 48

ARTICLE IN PRESS

V. Shehtman / Annals of Pure and Applied Logic ••• (••••) •••••

(1) Let us show their consistency.¹⁷ It is sufficient to show that $\{C_i\} \cup \Box^{-}\Gamma$ are consistent. So suppose $\Box^-\Gamma \vdash \neg C_i$. Since $\Box^-\Gamma$ is closed under conjunction, by Deduction theorem it follows that $\vdash G \rightarrow \neg C_i$ for some $G \in \Box^{-}\Gamma$. Recall that by Lemma 3.9, $\mathbf{QS5} \vdash A$ implies $\mathbf{Q}(\Box \cdot \mathbf{S5}) + \Box \forall ref \vdash \Box A$ and thus $L \vdash \Box A$. So we obtain $\vdash_L \Box(G \to \neg C_i)$, and thus $\vdash_L \Box G \to \neg \Diamond C_i$ (by **K**). Since $\Box G \in \Gamma$ and Γ is an L-place, it follows that $\neg \Diamond C_i \in \Gamma$, which contradicts $\Diamond C_i \in \Gamma$. Therefore Δ_i^0 is consistent. (2) We claim that $\Diamond \Delta_i^0 \subseteq \Delta_1^0$ for any *i*. Indeed, let $A \in \Delta_i^0$; then $C_i, B_1, \ldots, B_n \vdash A$ for some $B_1, \ldots, B_n \in \Box^- \Gamma$. Since $\Box^- \Gamma$ is closed under conjunction, there is $B \in \Box^{-}\Gamma$ such that $C_i, B \vdash A$, so by Deduction theorem $\vdash C_i \land B \to A$. Hence $\vdash \diamondsuit(C_i \land B) \to \diamondsuit A.$ g However, $\Diamond C_i, \Box B \in \Gamma$, and note that $\vdash \Diamond C_i \land \Box B \to \Diamond (C_i \land B)$ (by **K**). It follows that $\Diamond A \in \Gamma$, so $\Box \diamond A \in \Gamma$ (by **K5**); hence $\diamond A \in \Box^{-}\Gamma \subseteq \Delta_{1}^{0}$. Thus (2) holds. Step The further construction is ruled by a fixed enumeration of all possible pairs $(k, \exists x A(x))$, where k > 0 and $\exists x A(x)$ is a sentence (with x arbitrary) in the language of Γ with extra constants from a certain countable set S. Suppose we have a collection of consistent \wedge -closed theories Δ_i^n , $i = 1, 2, \ldots$ such that $\Diamond \Delta_i^n \subseteq \Delta_1^n$ for any i and infinitely many constants from S do not appear in these theories.¹⁸ Let us construct theories Δ_i^{n+1} with the same properties. Consider the first new pair $(k, \exists x A(x))$ and assume that $k \neq 1$. Then we create a witness for $\exists x A(x)$ in Δ_k^{n+1} : we choose a new constant $c \in S$ that does not occur in $\Delta_1^n \cup \Delta_k^n \cup \{A(x)\}$ and put $\Delta_{h}^{n+1} := [\Delta_{h}^{n} \cup \{\exists x A(x) \to A(c)\}],$ $\Delta_1^{n+1} := [\Delta_1^n \cup \Diamond \Delta_k^{n+1}], \ \Delta_i^{n+1} := \Delta_i^n \ \text{ for } i \neq 1, k.$ It is clear that the theories Δ_i^{n+1} are \wedge -closed. The consistency of Δ_k^{n+1} is checked as in classical logic; for Δ_i^{n+1} with $i \neq 1, k$ it holds by IH. (3) Let us prove that Δ_1^{n+1} is consistent. Suppose the contrary. Then $\Delta_1^n, \Diamond A_1, \ldots, \Diamond A_r \vdash \bot$ for some $A_1, \ldots, A_r \in \Delta_k^{n+1}$. Since $\Diamond (A_1 \land \ldots \land A_r) \vdash \Diamond A_1, \ldots \Diamond A_r$, we also have $\Delta_1^n, \diamondsuit(A_1 \land \ldots \land A_r) \vdash \bot.$ Since Δ_k^n is \wedge -closed, we can join the A_i from this set together, so we obtain $\Delta_1^n, \Diamond (B \land (\exists x A(x) \to A(c))) \vdash \bot$ for some $B \in \Delta_k^n$. However, by IH, $\Diamond \Delta_k^n \subseteq \Delta_1^n$, so $\Diamond B \in \Delta_1^n$, while $\Delta_1^n \cup \{ \diamondsuit(B \land (\exists x A(x) \to A(c))) \}$ is inconsistent. This contradicts Lemma 7.1. Therefore Δ_1^{n+1} is consistent, and we have $\Diamond \Delta_i^{n+1} \subseteq \Delta_1^{n+1}$ for $i \neq 1$ by construction and IH. The inclusion $\Diamond \Delta_1^{n+1} \subseteq \Delta_1^{n+1}$ also holds for i = 1, since $\vdash A \to \Diamond A$ for any A (remember that we argue in **QS5**) and Δ_1^{n+1} is closed under derivability. Henceforth in this proof, 'consistency' means 'QS5-consistency', \vdash means \vdash_{QS5} . ¹⁸ In [9] theories with infinitely many unused constants are called 'small'.

Recall that the above argument refers to the pair $(k, \exists x A(x))$ with $k \neq 1$. If the first new pair is

V. Shehtman / Annals of Pure and Applied Logic ••• (••••) •••••

 $(1, \exists x A(x))$, we choose a new constant c and put $\Delta_1^{n+1} := [\Delta_1^n \cup \{\exists x A(x) \to A(c)\}].$ $\Delta_i^{n+1} := \Delta_i^n \text{ for } i \neq 1.$ Then the consistency of Δ_1^{n+1} is proved by a standard classical argument; the inclusion $\Diamond \Delta_1^{n+1} \subseteq \Delta_1^{n+1}$ is explained as above. g Finally we put $\Delta_i := \bigcup_n \Delta_i^n.$ By the construction these theories are also \wedge -closed, consistent, satisfy the condition $\Diamond \Delta_i \subset \Delta_1$ (5)and enjoy the Henkin property. Indeed, if $\exists x A(x) \in \mathcal{L}(\Delta_k)$ and $(k, \exists x A(x))$ is the *n*-th pair in our fixed enumeration, then by construction, $\exists x A(x)$ gets a witness in Δ_k^{n+1} . Stage 2 Completing the theories Δ_i . We will now construct **QS5**-places Δ_i containing Δ_i . By Lindenbaum lemma there is a complete (i.e. maximal consistent) theory $\overline{\Delta}_1 \supseteq \Delta_1$. We also claim that for any i > 1 the theory $\Delta_i \cup \Box^- \overline{\Delta}_1$ is consistent. Indeed, suppose not. Since both Δ_i , $\Box^-\overline{\Delta}_1$ are \wedge -closed, there exist $A \in \Delta_i$, $B \in \Box^-\overline{\Delta}_1$ such that $\vdash B \to \neg A$, so $\vdash \Box B \to \Box \neg A$, and thus $\Box \neg A \in \overline{\Delta}_1$ by completeness of $\overline{\Delta}_1$. But $\Diamond A \in \Delta_1$ by (5), which contradicts the consistency of Δ_1 . Then we can also construct complete theories in the same language $\overline{\Delta}_i \supset \Delta_i \cup \Box^{-} \overline{\Delta}_1$ for all i > 1. Therefore due to Henkin property, we have **QS5**-places $\overline{\Delta}_1, \overline{\Delta}_2, \ldots$, and by construction $\Gamma R_L \overline{\Delta}_i$ for all $i, \overline{\Delta}_1 R_L \overline{\Delta}_i$ for all i > 1. All the theories Δ_i have the same set of constants S. So $\overline{\Delta}_i \in CW_{QS5}(S)$. Since the relation R_L on $CW_{QS5}(S)$ is an equivalence (Theorem 6.7), we obtain $\overline{\Delta}_i R_L \overline{\Delta}_i$ for all i, j. (6)Stage 3 Extending the model. This is done as in the proof of Theorem 6.13. Put $M := PM_L \upharpoonright (\{\Gamma\} \cup \{\Sigma \in R_L(\overline{\Delta}_1) \mid D_{\Sigma} = S\}).$ Since all the points except Γ are R_L -related, and Γ is not accessible from any other point (otherwise it would be reflexive by Lemma 6.8), the frame of M is Euclidean. The validity of $\Box \forall ref$ is checked as in the proof of Theorem 6.13. It remains to prove selectivity. This is done again as in Theorem 6.13, case 3, with the only difference in

Please cite this article in press as: V. Shehtman, On Kripke completeness of modal predicate logics around quantified K5, Ann. Pure Appl. Logic (2023), https://doi.org/10.1016/j.apal.2022.103202

the subcase (b). Namely, if $B = \Diamond C \in \Gamma$, C is some C_i (see Stage 1), so by construction $C \in \overline{\Delta}_i$.

	AKTICLE IN PRESS
JID:APAL AID:1	03202 /FLA [m3L; v1.323] P.33 (1-40)
8. Remarks o	on iterated boxing
	Ŭ
Definition 8.1	• For a modal predicate logic L we define $\Box^n \bullet L$ by recursion:
	$\Box^{0} \bullet L := L, \ \Box^{n+1} \bullet L := \Box \bullet (\Box^{n} \bullet L).$
Similarly for	a modal propositional logic $\mathbf{\Lambda}$ we define $\Box^n \cdot \mathbf{\Lambda}$.
a	
Some resul	ts on boxing are rather easily transferred to iterated boxing.
From Prop	osition 3.13 we obtain
Droposition 6	9 Iterated having embeds the neast of model predicate locies in iteelf:
r roposition e	.2. Iterated boxing embeds the poset of moduli predicate logics in tiself.
	$L_1 \subset L_2$ iff $\Box^n \bullet L_2 \subset \Box^n \bullet L_2$
	$D_1 \subseteq D_2 \text{with} = D_1 \subseteq \Box = D_2.$
Theorem 8.3.	Iterated boxing preserves canonicity and strong \mathcal{KE} -completeness for modal predicate loaics.
Proof. Follow	s from Theorems 4.1, 4.4. \Box
In the nex	t lemma $\mathbf{F} = (F, D)$ is a predicate Kripke frame with a propositional base $F = (W, R)$. The
set $V := \{ v \in$	$W \mid R^{-1}(v) \neq \emptyset$ is stable in F, so we have generated subframes $\mathbf{F}^- := \mathbf{F} \upharpoonright V, \ F^- := F \upharpoonright V$
(cf. Definition	n 2.8).
Λ denotes	an arbitrary modal propositional logic, L an arbitrary modal predicate logic.
Lemma 8.4.	
(1) For any (2)	modal sentence A, $\mathbf{F} \models \Box A$ iff $\mathbf{F}^- \models A$.
(2) For any (2)	modal propositional formula A, $F \models \Box A$ iff $F \models A$.
(3)	
	$\mathbf{F} \vDash \sqcup \bullet L \ i \! j \! j \ \mathbf{F} \ \vDash L.$
(A)	
(4)	$F\vDash \Box\cdot \mathbf{\Lambda} \ iff \ F^{-}\vDash \mathbf{\Lambda}.$
(5)	$\mathbf{F} \vDash \Box^n \cdot \mathbf{\Lambda} i f f \mathbf{F} \vDash \Box^n ullet \mathbf{Q} \mathbf{\Lambda}.$
	•
(6)	$\Box^n \widehat{\mathbf{OA}} \subset \mathcal{O} \left(\mathbf{O} \left(\Box^n \mathbf{A} \right) \right)$
	$\Box^* \bullet \mathbf{Q} \mathbf{\Lambda} \subseteq C_{\mathcal{K}}(\mathbf{Q}(\Box^* \cdot \mathbf{\Lambda})).$
(7)	
(•)	$\mathbf{Q}(\Box^n\cdot \mathbf{\Lambda})\subseteq \Box^n \bullet \mathbf{Q}\mathbf{\Lambda}\subseteq \Box^n \bullet \widehat{\mathbf{Q}}\tilde{\mathbf{\Lambda}}\subseteq C_\mathcal{K}(\mathbf{Q}(\Box^n\cdot \mathbf{\Lambda}))=\Box^{\widehat{n}}\bullet \widehat{\mathbf{Q}}\mathbf{\Lambda}.$
Proof. (1) As	ssume $\mathbf{F}^- \models A$. Then $\mathbf{F}, v \models A$ for any $v \in V$, by Lemma 2.9 (2). Since $R(u) \subseteq V$ for any
$u \in W$, it foll	ows that $\mathbf{F}, u \models \Box A$ (Lemma 2.4 (1)). Thus $\mathbf{F} \models \Box A$.
The other	way round, assume $\mathbf{F} \models \Box A$. Since every $v \in V$ is in some $R(u)$, we have $\mathbf{F}, v \models A$ (Lemma 2.4)
(1), and thus	s $\mathbf{F}^-, v \models A$ (Lemma 2.9 (2)). Hence $\mathbf{F}^- \models A$.
(2) The sa	me argument as in (1) can be applied to the propositional frames F and F^- .
(3) We have	The $\mathbf{F} \vDash \mathbf{L} \Leftrightarrow \mathbf{F} \vDash \mathbf{L}$ by Lemma 3.11, and $\mathbf{F} \vDash \mathbf{L} \Leftrightarrow \mathbf{F}^- \vDash L$ by (1). Obviously,

ARTICLE IN PRESS

[m3L; v1.323] P.34 (1-40)

V. Shehtman / Annals of Pure and Applied Logic ••• (••••) •••••

(4) We have $F \vDash \Box \cdot \mathbf{\Lambda} = \mathbf{Q}\mathbf{K} + \Box \mathbf{\Lambda} \Leftrightarrow F \vDash \Box \mathbf{\Lambda}$ by soundness, and $F \vDash \Box \mathbf{\Lambda} \Leftrightarrow F^- \vDash \mathbf{\Lambda}$ by (2). (5) By induction on n. Denote $L_n := \Box^n \bullet \mathbf{QA}, \mathbf{A}_n := \Box^n \cdot \mathbf{A}$. The case n = 0 is obvious, by soundness. For the induction step, suppose the equivalence holds for n. Note that $L_{n+1} = \Box \bullet L_n$, $\Lambda_{n+1} = \Box \cdot \Lambda_n$. Then by (3), IH and (4) $\mathbf{F} \models L_{n+1}$ iff $\mathbf{F}^- \models L_n$ iff $F^- \models \mathbf{\Lambda}_n$ iff $F \models \mathbf{\Lambda}_{n+1}$. Finally, $F \vDash \mathbf{\Lambda}_{n+1} \Leftrightarrow \mathbf{F} \vDash \mathbf{\Lambda}_{n+1}$ by Lemma 2.4 (2). (6) Also by induction. The case n = 0 is trivial. q g Assuming $\Box^n \bullet \widehat{\mathbf{Q}} \widehat{\mathbf{\Lambda}} \subseteq C_{\mathcal{K}}(\mathbf{Q}(\Box^n \cdot \mathbf{\Lambda}))$ we obtain $\Box^{n+1} \bullet \widehat{\mathbf{Q}\Lambda} \subseteq \Box \bullet C_{\mathcal{K}}(\mathbf{Q}(\Box^n \cdot \Lambda)) \subset C_{\mathcal{K}}(\mathbf{Q}(\Box^{n+1} \cdot \Lambda))$ by monotonicity of boxing and Lemma 3.14 (or Proposition 3.15). (7) For the first inclusion it is sufficient to show that $\Box^n \cdot \Lambda \subset \Box^n \bullet Q\Lambda$. The latter follows easily by induction: $\Lambda \subseteq \mathbf{Q}\Lambda$ is obvious, and $\square^n \cdot \Lambda \subseteq \square^n \bullet \mathbf{Q}\Lambda$ implies $\square(\square^n \cdot \Lambda) \subseteq \square(\square^n \bullet \mathbf{Q}\Lambda)$, and hence $\Box \cdot (\Box^n \cdot \mathbf{\Lambda}) \subseteq \Box \bullet (\Box^n \bullet \mathbf{Q}\mathbf{\Lambda}).$ The second inclusion follows from $\mathbf{QA} \subset \widehat{\mathbf{QA}}$ by monotonicity of boxing. The third inclusion is (6). The last equality follows from (5). Indeed, $A \in C_{\mathcal{K}}(\mathbf{Q}(\Box^n \cdot \mathbf{\Lambda}))$ if and only if $\mathbf{F} \models A$ for any predicate frame **F** validating $\mathbf{Q}(\Box^n \cdot \mathbf{\Lambda})$, or $\Box^n \cdot \mathbf{\Lambda}$ (by soundness), or $\Box^n \cdot \mathbf{Q}\mathbf{\Lambda}$ (by (5)). \Box Now we prove an analogue of Theorem 4.8: **Theorem 8.5.** If \mathbf{QA} is strongly Kripke complete, then $\Box^n \bullet (\mathbf{QA})$ is strongly Kripke complete. **Proof.** By induction. Denote again $L_n := \Box^n \bullet (\mathbf{Q} \mathbf{\Lambda}), \mathbf{\Lambda}_n := \Box^n \cdot \mathbf{\Lambda}$. The base is trivial. For the induction step, suppose L_n is strongly Kripke complete. Let Γ be an L_{n+1} -place. The further argument follows the proof of Theorem 4.8, where we replace L with L_n and Λ with Λ_n . So for every $\Delta \in R_{L_{n+1}}(\Gamma)$ we construct a model M_{Δ} over a frame \mathbf{F}_{Δ} with root 0_{Δ} and an interpretation δ_{Δ} such that $M_{\Delta}, 0_{\Delta} \models \delta_{\Delta} \cdot \Delta$ and $\mathbf{F}_{\Delta} \models L_n$. The latter is equivalent to $\mathbf{F}_{\Delta} \models \mathbf{\Lambda}_n$, by Lemma 8.4 (5). Next, in two steps we construct the models M''_{Δ} over frames \mathbf{F}''_{Δ} such that $M''_{\Delta}, 0_{\Delta} \models \Delta$. Since the propositional bases of frames \mathbf{F}_{Δ} and \mathbf{F}_{Δ}'' are the same, it follows that $\mathbf{F}_{\Delta}' \vDash \mathbf{\Lambda}_n$ and $\mathbf{F}_{\Delta}'' \vDash L_n$ (Lemma 8.4) (5)).Finally, from the models M'_{Δ} we construct the model M^* with root Γ over a frame **G** and show by the same argument as in Theorem 4.8 that $M^*, \Gamma \vDash \Gamma$. Since \mathbf{G}^- is a disjoint union of frames \mathbf{F}'_{Δ} , it follows that $\mathbf{G}^- \models L_n$, and thus by Lemma 8.4 (3), $\mathbf{G} \models \Box \bullet L_n = L_{n+1}$. Therefore L_{n+1} is strongly Kripke complete. \Box The previous theorem can be slightly generalized. **Theorem 8.6.** Assume that a logic $\widehat{\mathbf{Q}}\widehat{\mathbf{\Lambda}}$ is strongly Kripke complete. Then (1) $\Box^n \bullet \mathbf{Q} \mathbf{\Lambda}$ is strongly Kripke complete. (2) $\Box^n \bullet \widehat{\mathbf{Q}\Lambda} = \Box^n \bullet \widehat{\mathbf{Q}}\Lambda = C_{\mathcal{K}}(\mathbf{Q}(\Box^n \cdot \Lambda)).$ **Proof.** We can almost repeat the proof of Theorem 8.5 and argue by induction. Let $L'_n := \Box^n \bullet \widehat{\mathbf{Q}} \widehat{\mathbf{A}}$,

 $oldsymbol{\Lambda}_n := igsquare n \cdot oldsymbol{\Lambda}.$

ARTICLE IN PRESS

Fig. 4. Kripke bundle \mathbb{F}' .

If n = 0, there is nothing to prove. For the step, suppose L'_n is strongly Kripke complete and satisfies (2), and consider an L'_{n+1} -place Γ . Every $\Delta \in R_{L'_{n+1}}(\Gamma)$ is an L'_n -place and so satisfiable at the root of some model M_Δ over an L'_n -frame \mathbf{F}_Δ with a propositional base F_Δ .

¹¹ Then (2) implies $\mathbf{F}_{\Delta} \models \Box^{\widehat{n}} \bullet \mathbf{Q} \Lambda$, which is obviously equivalent to $\mathbf{F}_{\Delta} \models \Box^{n} \bullet \mathbf{Q} \Lambda$, or to $\mathbf{F}_{\Delta} \models \Lambda_{n}$ ¹² (Lemma 8.4 (5)), or to $F_{\Delta} \models \Lambda_{n}$ (Lemma 2.4(2)).

¹³ By the same construction as in Theorems 4.8, 8.5 we obtain models M''_{Δ} satisfying Δ over frames \mathbf{F}''_{Δ} ¹⁴ with the same propositional bases F_{Δ} . Thus $\mathbf{F}''_{\Delta} \models \mathbf{\Lambda}_n$, hence $\mathbf{F}''_{\Delta} \models \Box^n \bullet \mathbf{Q} \mathbf{\Lambda}$ by Lemma 8.4 (5) and $\mathbf{F}''_{\Delta} \models L'_n$ ¹⁵ by (2).

¹⁶ Next, as in Theorem 8.5, we obtain a model M^* with the root Γ over a frame **G** such that $M^*, \Gamma \vDash \Gamma$. By ¹⁷ Lemma 8.4 (3) we also have $\mathbf{G} \vDash \Box \bullet L'_n = L'_{n+1}$, since $\mathbf{G}^- \vDash L'_n$ as a disjoint sum of frames \mathbf{F}'_{Δ} . Therefore ¹⁸ L'_{n+1} is strongly Kripke complete.

By Lemma 8.4 (7) we have

 $\Box^{n+1} \bullet \mathbf{Q} \mathbf{\Lambda} \subseteq \Box^{n+1} \bullet \widehat{\mathbf{Q} \mathbf{\Lambda}} \subseteq \Box^{n+1} \bullet \widehat{\mathbf{Q} \mathbf{\Lambda}} = C_{\mathcal{K}}(\mathbf{Q}(\Box^n \cdot \mathbf{\Lambda})).$

The logic $L'_{n+1} = \Box^{n+1} \bullet \widehat{\mathbf{Q}\Lambda}$ is Kripke complete by (1), so from these inclusions it follows that $\Box^{n+1} \bullet \widehat{\mathbf{Q}\Lambda} = \Box^{n+1} \cdot \widehat{\mathbf{Q}\Lambda}$, thus (2) holds for n+1. \Box

Theorem 8.7. Let Λ be a modal propositional logic between $\Box^n \cdot \mathbf{T}$ and $\mathbf{SL4}_n$ (for n > 0). Then

 $\mathbf{Q}\mathbf{\Lambda} \subset \mathbf{Q}\mathbf{\Lambda} + \Box^n orall ref \subset \widehat{\mathbf{Q}\mathbf{\Lambda}}.$

Thus $\mathbf{Q}\mathbf{\Lambda}$ is Kripke incomplete.

³² **Proof.** By an easy generalization of Theorem 5.11.

First note that $\mathbf{QT} \vdash \forall ref$ obviously implies $\Box^n \bullet \mathbf{QT} \vdash \Box^n \forall ref$ by induction. Hence by Lemma 8.4 (6), $\Box^n \forall ref \in \mathbf{Q}(\Box^n \cdot \mathbf{T}) \subseteq \widehat{\mathbf{QA}}.$

³⁵ We also have ³⁶

³⁷ Lemma 8.8. QSL4_n $\nvDash \Box^n \forall ref.$

Proof. We construct a Kripke bundle F' = (F, D') strongly validating QSL4_n and refuting □ⁿ∀ref.
The propositional base F is again a reflexive singleton ({u}, {(u, u)}). The frame (D', ρ') determines
SL4_n. Viz.,

 $D' = \{a_0, \dots, a_n\}, a_i \rho' a_j \text{ iff } j = i + 1 \lor i = j = n,$

see Fig. 4.

Then D'^{m} consists of *m*-tuples of individuals with the relation

 $\mathbf{d}\rho'^{\,m}\mathbf{e} \text{ iff } \forall i \leq m \, d_i \rho' e_i.$

ci f in Prf

V. Shehtman / Annals of Pure and Applied Logic ••• (••••) •••••

(sub does not matter here, since ρ' is functional.) So ρ'^m is functional, and $(\underbrace{a_n, \ldots, a_n}_m)$ is the successor of itself. The *n*th and the (n+1)th iterations of ρ'^m coincide. Hence $F'_m \models \mathbf{SL4}_n$, and thus $\mathbb{F}' \models^+ \mathbf{QSL4}_n$ by Proposition 5.10. On the other hand, consider a model $M = (\mathbb{F}, \xi)$, where $\xi_u(P) := \{a_1\}$. Then $M, u \not\models \Box^n \forall ref$, since $M, u \models \Box P(a_0) \land \neg P(a_0)$ implies $M, u \models \Diamond^n \exists x (\Box P(x) \land \neg P(x))$. \Box Eventually we obtain $\mathbf{Q}\mathbf{\Lambda} \models_{\mathcal{K}} \Box^n \forall ref, \ \mathbf{Q}\mathbf{\Lambda} \nvDash \Box^n \forall ref. \ \Box$ q **Remark 8.9.** A similar assertion holds for Kripke sheaf semantics. We leave the corresponding proofs to the reader. 9. Conclusion This paper makes a little next step in systematic study of completeness for modal predicate logics of the form \mathbf{QA} , and large *terra incognita* is lying ahead. Let us outline some topics for further development. 1. Axiomatization of completions. For logics considered in this paper Kripke completions are obtained by adding a single axiom $\Box \forall ref$ (or $\Box^n \forall ref$). How far do these results extend? In particular, is it true that $\mathbf{Q} \mathbf{\Lambda} + \Box \forall ref$ is Kripke complete

for any Λ between $\Box \cdot S5$ and SL4?

2. Finite axiomatizability of boxing.

The general Theorems 3.21, ?? suggest infinite axiomatizations for boxing and iterated boxing. However, the logics $\Box \bullet \mathbf{Q} \mathbf{\Lambda}$ for $\mathbf{\Lambda}$ containing \mathbf{T} are finitely axiomatizable (Proposition 3.10). It seems we are lucky here. What happens for other propositional logics? We conjecture that in many cases $\Box \bullet QA$ should not be finitely axiomatizable, in particular, for $\Lambda = \mathbf{K5}$ and $\Lambda = \mathbf{SL4}$. Finite axiomatizability of iterated boxing is also an open problem. We hope to return to this topic in later publications.

3. Boxing vs Δ -operation.

A certain analogue of boxing is Suzuki's Δ -operation for superintuitionistic logics [18]. The definitions and properties of these two operations are very similar. Is it always the case, i.e. do general theorems on boxing for modal predicate logics transfer to Δ -operation and vice versa?

In particular, from sections 4, 5 we know that boxing preserves strong Kripke sheaf completeness, but does not preserve strong Kripke completeness. However, for Δ -operation there is a better result ([9], Proposition 6.9.9): it preserves Kripke completeness for *intermediate* predicate logics. A modal analogue of this result might be the following: boxing preserves Kripke completeness for modal predicate logics included in **QTriv**. Is this assertion true?

4. Correlation between Kripke completeness and strong Kripke completeness.

For intermediate predicate logics these two properties are non-equivalent. It is very likely that similar counterexamples can be constructed for modal predicate logics. However, we do not know if Kripke completeness implies strong Kripke completeness for logics of the form \mathbf{QA} (modal or superintuitionistic).

5. Correlation between Kripke completeness and Kripke sheaf completeness.

There are many examples of Kripke sheaf complete, but Kripke incomplete predicate logics, both in the modal and the intuitionistic fields. On the other hand, Suzuki showed that Kripke and Kripke sheaf completeness are equivalent for logics of the form $\mathbf{Q}\mathbf{\Lambda} + CD$, where $\mathbf{\Lambda}$ is an intermediate propositional logic, CD is the axiom of constant domains [17]. Apparently this result extends to modal logics of the form $\mathbf{Q}\mathbf{\Lambda} + Ba$, where Ba is the Barcan formula. But for the logics $\mathbf{Q}\mathbf{\Lambda}$ the problem remains open. Moreover, the following weaker problem is open: does there exist a propositional logic Λ such that $C_{\mathcal{K}\mathcal{E}}(\mathbf{Q}\Lambda) \neq \mathbf{Q}\Lambda$?

6. Completeness of $\mathbf{Q}\mathbf{\Lambda}$ in other semantics.

ARTICLE IN PRESS

V. Shehtman / Annals of Pure and Applied Logic ••• (••••) •••••

When syntax and semantics mismatch, one can try to change semantics appropriately. There is a sequence of generalizations leading from Kripke to simplicial semantics, cf. [9], [16].¹⁹ For Kripke incomplete logics considered in this paper simplicial semantics can be helpful: viz., for d-persistent (in particular, Sahlqvist) propositional logics Λ , both $Q\Lambda$ and $Q\Lambda + Ba$ are simplicially complete [16]. But the general case makes a problem: e.g. for QGL and QGrz we do not know any semantical characterization. 7. Reflexive boxing. $\Box \cdot \Lambda$ -frames for are obtained from Λ -frames by adding an irreflexive root below. So boxing destroys reflexivity. To stay within reflexive frames, we should add a reflexive root or a reflexive cluster. Both options lead to some operations on modal logics similar to Suzuki's Δ . These operations deserve a special study. Note that iterated reflexive boxing of QS5 gives predicate modal logics of finite depth. In particular, the logic $\mathbf{QS4.4}$ axiomatized by M. Cresswell [7] is a singleton reflexive boxing of $\mathbf{QS5}$. **Declaration of competing interest** The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Acknowledgements I would like to thank the anonymous referee whose comments helped me essentially improve the style and structure of the paper. References [1] A. Bavart, Quasi-adéguation de la logique modale du second ordre S5 et adéguation de la logique modale du premier ordre S5, Log. Anal. 2 (1959) 99-121. A. Chagrov, M. Zakharyaschev, Modal Logic, Oxford University Press, 1997. [3] G. Corsi, A logic characterized by the class of linear Kripke frames with nested domains, Stud. Log. 48 (1989) 15–22. [4] G. Corsi, Quantified modal logics of positive rational numbers and some related systems, Notre Dame J. Form. Log. 34 (1993) 263–283. [5] G. Corsi, S. Ghilardi, Directed frames, Arch. Math. Log. 29 (1989) 53-67. [6] M. Cresswell, Some incompletable modal predicate logics, Log. Anal. 160 (1997) 321–334. [7] M. Cresswell, How to complete some modal predicate logics, in: M. Zakharyaschev, K. Segerberg, M. de Rijke, H. Wansing (Eds.), Advances in Modal Logic, Volume 2, CSLI Publications, 2001, pp. 155–178. [8] K. Fine, An ascending chain of S4 logics, Theoria 40 (1974) 110–116. [9] D. Gabbay, V. Shehtman, D. Skvortsov, Quantification in Nonclassical Logic, vol. 1, Elsevier, 2009. [10] S. Ghilardi, Incompleteness results in Kripke semantics, J. Symb. Log. 56 (2) (1991) 517–538. [11] G. Hughes, M. Cresswell, A New Introduction to Modal Logic, Routledge, 1996. [12] S.A. Kripke, A completeness theorem in modal logic, J. Symb. Log. 24 (1959) 1–14. [13] M.C. Nagle, S.K. Thomason, The extensions of the modal logic K5, J. Symb. Log. 50 (1985) 102–109. V. Shehtman, On some modal logics related to K5, in: 10th Smirnov Readings, International Conference, Moscow, June [14]15-17, 2017, 2017, pp. 58-60, Sovremennye tetradi. [15] V.B. Shehtman, On Kripke completeness of some modal predicate logics with the density axiom, in: G. Bezhanishvili, G. D'Agostino, G. Metcalfe, T. Studer (Eds.), Advances in Modal Logic, Volume 12, College Publications, 2018, pp. 559–576. [16] D.P. Skvortsov, V.B. Shehtman, Maximal Kripke-type semantics for modal and superintuitionistic predicate logics, Ann. Pure Appl. Log. 63 (1993) 69-101. [17] N.-Y. Suzuki, Some results on the Kripke sheaf semantics for superintuitionistic predicate logics, Stud. Log. 52 (1993) 73 - 94.[18] N.-Y. Suzuki, A remark on the delta operation and the Kripke sheaf semantics in superintuitionistic predicate logics, Bull. Sect. Log. 25 (1996) 21-28. 19 An earlier name for simplicial semantics was 'metaframe semantics'.