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Abstract In this paper we give a lower estimate for the number of critical points
of the Lyapunov function for Pixton diffeomorphisms (i.e. Morse-Smale diffeo-
morphisms in dimension 3 whose chain recurrent set consists of four points: one
source, one saddle and two sinks). Ch. Bonatti and V. Grines proved that the class
of topological equivalence of such diffeomorphism f is completely defined by the
equivalency class of the Hopf knot Lf that is the knot in the generating class of
the fundamental group of the manifold S2 × S1. They also proved that there are
infinitely many such classes and that any Hopf knot can be realized by a Pixton
diffeomorphism. D. Pixton proved that diffeomorphisms defined by the standard
Hopf knot L0 = {s} × S1 have an energy function (Lyapunov function) whose set
of critical points coincide with the chain recurrent set whereas the set of critical
points of any Lyapunov function for Pixton diffeomorphism with nontrivial (i.e.
non equivalent to the standard) Hopf knot is strictly larger than the chain recur-
rent set of the diffeomorphism. The Lyapunov function for Pixton diffeomorphism
with minimal number of critical points is called the quasi-energy function. In this
paper we construct a quasi-energy function for Pixton diffeomorphisms defined by
a generalized Mazur knot.
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1 Introduction and the main results

Let Mn be a smooth closed n-manifold with a metric d and let f : Mn →
Mn be a diffeomorphism. For two given points x, y ∈ Mn a sequence of points
x = x0, . . . , xm = y is called an ε-chain of length m ∈ N connecting x to y if
d(f(xi−1), xi) < ε for 1 6 i 6 m (Fig. 1).
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Fig. 1 An ε-chain of length m ∈ N

A point x ∈Mn is called chain recurrent for the diffeomorphism f if for every
ε > 0 there is an ε-chain of length m connecting x to itself for some m (m depends
on ε > 0). The chain recurrent set, denoted by Rf , is the set of all chain recurrent
points of f . Define the equivalence on Rf by the rule: x ∼ y if for every ε > 0
there is are ε-chains connecting x to y and y to x. This equivalence relation defines
equivalence classes called chain components.

If the chain recurrent set of a diffeomorphism f is finite then it consists of
periodic points. A periodic point p ∈ Rf of period mp is said to be hyperbolic if

absolute values of all the eigenvalues of the Jacobian matrix
(
∂fmp

∂x

)
|p are not

equal to 1. If absolute values of all these eigenvalues are greater (less) than 1 then
p is called a sink (a source). Sinks and sources are called knots. If a periodic point
is not a knot then it is called a saddle.

Let p be a hyperbolic periodic point of a diffeomorphism f whose chain recur-
rent set is finite. The Morse index of p, denoted by λp, is the number of eigen-
values of Jacobian matrix whose absolute values are greater than 1. The stable
manifold W s

p = {x ∈ Mn : lim
k→+∞

d(fkmp(x), p) = 0} and the unstable manifold

Wu
p = {x ∈ Mn : lim

k→+∞
d(f−kmp(x), p) = 0} of p are smooth manifolds diffeo-

morphic to Rλp and Rn−λp , respectively. Stable and unstable manifolds are called
invariant manifolds. A connected component of the set Wu

p \ p (W s
p \ p) is called

a unstable (stable) separatrice of p.

A diffeomorphism f : Mn →Mn is called a Morse-Smale diffeomorphism if

1. its chain recurrent set Rf consists of finite number of hyperbolic points;
2. for any two points p, q ∈ Rf the manifolds W s

p , Wu
q intersect transversally.
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C Conley in [3] gave the following definition: a Lyapunov function for a Morse-
Smale diffeomorphism f : Mn → Mn is a continuous function ϕ : Mn → R
satisfying

– ϕ(f(x)) < ϕ(x) if x /∈ Rf ;
– ϕ(f(x)) = ϕ(x) if x ∈ Rf .

Notice that every Morse-Smale diffeomorphism f has a Morse-Lyapunov func-
tion 1, i.e. a Lyapunov function ϕ : Mn → R which is a Morse function such that
each periodic point p ∈ Rf is its non-degenerate critical point of index λp with
Morse coordinates (Vp, φp : y ∈ Vp 7→ (x1(y), . . . , xn(y)) ∈ Rn and

φ−1
p (Ox1 . . . xλp

) ⊂Wu
p , φ

−1
p (Oxλp+1 . . . xn) ⊂W s

p . (∗)

If the function ϕ has no critical points outside Rf then following [15] we call it
the energy function for the Morse-Smale diffeomorphism f .

The proof of existence of an energy Morse function for a Morse-Smale diffeo-
morphism of the circle is an easy exercise. D. Pixton [15] in 1977 proved that
every Morse-Smale diffeomorphism of a surface has an energy function. There he
also constructed an example of a Morse-Smale diffeomorphism on the 3-sphere
which admits no energy function. The obstacle to existence of an energy function
in his example was the wild embedding of the saddle separatrices in the ambient
manifold (i.e. the closure of the separatrice is not a submanifold of the ambient
space). From [11] it follows that there are Morse-Smale diffeomorphisms with no
energy function on manifolds of any dimension n > 2. Therefore, following [7]
for a Morse-Smale diffeomorphism f we call a Morse-Lyapunov function with the
minimal number of critical points (denote it by ρf ) a quasi-energy function. Notice
that ρf is a topological invariant, i.e. if two diffeomorphisms f, f ′ : Mn → Mn

are topologically conjugate (that is there is a diffeomorphism h : Mn →Mn such
that h ◦ f = f ′ ◦ h) then ρf = ρ

f′ .
In this paper we give a lower estimate of ρf for Pixton diffeomorphisms. The

class of Pixton diffeomorphisms P is defined in the following way. Every diffeo-
morphism f ∈ P is a Morse-Smale 3-diffeomorphism whose chain recurrent set
consists of four points: one source, one saddle and two sinks (for details see section
2). Notice that Pixton’s example is a diffeomorphism of this class. According to [2]
the class of topological conjugacy of a diffeomorphism f ∈ P is completely defined
by the equivalence class of the Hopf knot Lf , i.e. the knot in the generating class
of the fundamental group of the manifold S2 × S1 (see Proposition 1). Moreover,
any Hopf knot can be realized as a Pixton diffeomorphism.

Recall that a knot in S2 × S1 is a smooth embedding γ : S1 → S2 × S1 or the
image of this embedding L = γ(S1). Two knots L,L′ are said to be equivalent if
there is a homeomorphism h : S2 × S1 → S2 × S1 such that h(L) = L′. Two knots

1 This function can be constructed, for example, by suspension. Consider the topological
flow f̂ t on the manifold Mn × R defined by f̂ t(x) = x + t. Define the diffeomorphism g :
Mn×R→Mn×R by g(x, τ) = (f(x), τ − 1) and let G = {gk , k ∈ Z} and W = (Mn×R)/G.
Denote by pW : Mn ×R→W the natural projection and denote by f t the flow on W defined

by f t(x) = pW (f̂ t(p−1
W

(x))). The flow f t is called the suspension over f . By construction the

chain recurrent set of f t consists of the finite number of periodic orbits δi = pW (Oi × R), i ∈
{1, . . . , kf} and this means that the suspension f t is a Morse-Smale flow. A Lyapunov function
for these flows is constructed in [12]. Then the restriction of this function on M is the desired
Lyapunov function for f .
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γ, γ′ are smoothly homotopic if there exists a smooth map Γ : S1× [0, 1]→ S2×S1

such that Γ (s, 0) = γ(s) and Γ (s, 1) = γ′(s) for every s ∈ S1. If Γ |S1×{t} is an
embedding for every t ∈ [0, 1] then the knots are said to be isotopic.

Any Hopf knot L ⊂ S2 × S1 is smoothly homotopic to the standard Hopf
knot L0 = {s} × S1 (see, for example, [9]) but generally it is neither isotopic
nor equivalent to it. B. Mazur [10] constructed the Hopf knot LM which we call
the Mazur knot and which is non-equivalent and non-isotopic to L0 (see Fig. 2).
It follows from the results of [1] that there exists a countable family of pairwise

Fig. 2 Two non-isotopic and non equivalent Hopf knots L0 and LM : a) the standard Hopf
knot L0; b) the Mazur knot LM

non-equivalent Hopf knots Ln, n ∈ N which are generalized Mazur knots (Fig. 3).

Fig. 3 A generalized Mazur knot Ln

According to [6] a Pixton diffeomorphism f admits an energy Morse function
if and only if the knot Lf is trivial (i.e. equivalent to the standard one). If the
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knot Lf is not trivial then the number ρf of the critical points of a quasi-energy
Morse function of f is evidently even and

ρf > 6.

The main result of this paper is the proof of Theorem 1.

Theorem 1 Let f be a Pixton diffeomorphism (f ∈ P) and let Ln, n ∈ N be
its knot. Then the number ρf of critical points of a quasi-energy function of f is
calculated by2

ρf = 4 + 2n.

2 Construction of Pixton diffeomorphisms

In dynamics a wild Artin-Fox arc was for the first time introduced by D. Pixton
in [15] where he constructed a Morse-Smale diffeomorphism on the 3-sphere with
the unique saddle whose invariant manifolds form an Artin-Fox arc. We give the
modern construction of these diffeomorphisms following Ch. Bonatti and V. Grines
[2] where Pixton diffeomorphisms were also classified (see also [8], [11]).

For x = (x1, . . . , xn) ∈ Rn denote ||x|| =
√
x2

1 + · · ·+ x2
n. Let h : R3 → R3

be the diffeomorphism defined by h(x1, x2, x3) =
(
x1

2 ,
x2

2 ,
x3

2

)
. Define the map

p : R3 \O → S2 × S1 by

p(x1, x2, x3) =

(
x1

||x|| ,
x2

||x|| , log2(||x||) (mod 1)

)
.

Let L ⊂ (S2×S1) be a Hopf knot and let U(L) be its tubular neighborhood. Then
the set L̄ = p−1(L) is the h-invariant arc in R3 and U(L̄) = p−1(U(L)) is its
h-invariant neighborhood diffeomorphic to D2 × R1 (Fig. 4).

Let C = {(x1, x2, x3) ∈ R3 : x2
2 + x2

3 6 4} and let gt : C → C be the flow
defined by

gt(x1, x2, x3) = (x1 + t, x2, x3).

Then there is a diffeomorphism ζ : U(L)→ C that conjugates h|U(L) and g = g1|C .

Define the flow φt on C by:

ẋ1 =

{
1− 1

9 (x2
1 + x2

2 + x2
3 − 4)2, x2

1 + x2
2 + x2

3 6 4

1, x2
1 + x2

2 + x2
3 > 4

ẋ2 =


x2

2

(
sin
(
π
2

(
x2

1 + x2
2 + x2

3 − 3
))
− 1
)
, 2 < x2

1 + x2
2 + x2

3 6 4

−x2, x2
1 + x2

2 + x2
3 6 2

0, x2
1 + x2

2 + x2
3 > 4

ẋ3 =


x3

2

(
sin
(
π
2

(
x2

1 + x2
2 + x2

3 − 3
))
− 1
)
, 2 < x2

1 + x2
2 + x2

3 6 4

−x3, x2
1 + x2

2 + x2
3 6 2

0, x2
1 + x2

2 + x2
3 > 4.

By construction the diffeomorphism φ = φ1 has two fixed points: the saddle
P (1, 0, 0) and the sink Q(−1, 0, 0) (Fig. 5), both being hyperbolic. One unstable

2 For n = 1 Theorem 1 is proved in [7].
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L

L
_

U(L)
_

Fig. 4 Suspension of a Hopf knot

1-1

2

O

Fig. 5 Trajectories of the flow φt

separatrice of the saddle P coincides with the open interval
{

(x1, x2, x3) ∈ R3 : |x1| < 1, x2 = x3 = 0
}

in the basin of the sinkQ while the other coincides with the ray
{

(x1, x2, x3) ∈ R3 : x1 > 1, x2 = x3 = 0
}

.

Notice that φ coincides with the diffeomorphism g = g1 outside the ball {(x1, x2, x3) ∈
C : x2

1 + x2
2 + x2

3 6 4}.
Define the diffeomorphism f̄L : R3 → R3 so that f̄L coincides with h outside

U(L) and it coincides with ζ−1φζ on U(L). Then f̄L has in U(L) two fixed points:
the sink ζ−1(Q) and the saddle ζ−1(P ), both being hyperbolic. The unstable
separatrice of the saddle ζ−1(P ) lies in L (Fig. 6).

Now project the dynamics onto the 3-sphere. Denote by N(0, 0, 0, 1) the North
Pole of the sphere S3 = {x = (x1, x2, x3, x4) : ||x|| = 1}. For every point x ∈ (S3 \
{N}) there is the unique line passing through N and x in R4. This line intersects
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R

Fig. 6 The phase portrait of the diffeomorphism f̄L

R3 in exactly one point ϑ+(x) (Fig. 7). The point ϑ+(x) is the stereographic
projection of the point x. One can easily check that

ϑ+(x1, x2, x3, x4) =

(
x1

1− x4
,

x2

1− x4
,

x3

1− x4

)
.

Thus, the stereographic projection ϑ+ : S3 \ {N} → R3 is a diffeomorphism.

N

x

J+(x)

Fig. 7 The stereographic projection.

By construction f̄L coincides with h in some neighborhood of the point O and
in some neighborhood of the infinity. Therefore, it induces on S3 the Morse-Smale

fL(x) =

{
ϑ−1

+ (f̄L(ϑ+(x))), x 6= N ;

N, x = N
.

It follows directly from the construction that the non-wandering set of fL consists
of exactly four fixed hyperbolic points: two sinks ω = ϑ−1

+ (ζ−1(Q)), S, one saddle

σ = ϑ−1
+ (ζ−1(P )) and one source N . We say the constructed diffeomorphism to

be model and it is of Pixton class.
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Proposition 1 ([2])

– Any diffeomorphism f ∈ P is topologically conjugate to some model diffeomor-
phism fL.

– Two model diffeomorphisms fL, fL′ are topologically conjugate if and only if
their knots L,L′ are equivalent.

3 Genus of Hopf knot

In this section we introduce the notion of genus for a Hopf knot and use it to
estimate the number of critical points of the quasi-energy function of the Pixton
diffeomorphism defined by this knot.

Let L be a Hopf knot and let L̄ = p−1(L) be its cover in R3\O. We say a closed
orientable surface Σ ⊂ S2 × S1 to be a secant surface of the knot L if it intersects
L in a unique point and there is an h-compressible 3-manifold QΣ ⊂ R3 (that is
h(QΣ) ⊂ intQΣ) with the boundary Σ̄ such that Σ = p(Σ̄) and the intersection
L̄∩ Σ̄ is the unique point ȳ. The minimally possible genus gL of the secant surface
is called the genus of the knot L. The secant surface of L of genus gL is said to be
minimal.

Lemma 1 If Σ is a minimal secant surface of the knot L then the surface Σ̄ \ ȳ
is non-compressible in R3 \ (O∪ L̄), i.e. any simple closed curve c ⊂ int (Σ̄ \ ȳ) is
contractible on Σ̄\ ȳ if it bounds a smoothly embedded 2-disk D ⊂ int (R3\(O∪L̄))
such that D ∩ (Σ̄ \ ȳ) = ∂D = c.

Proof Let Σ be a minimal secant surface of L and let ȳ be the unique point of
the intersection L̄ ∩ Σ̄. Assume the opposite: the surface Σ̄ \ ȳ is compressible in
R3 \ (O ∪ L̄). Then there is a non-contractible simple closed curve c ⊂ int (Σ̄ \ ȳ)
and there is the smoothly embedded 2-disk D ⊂ int (R3 \ (O ∪ L̄)) such that
D ∩ (Σ̄ \ ȳ) = ∂D = c (see, for example, [14]). Then we have two possibilities:

(intD) ∩

(⋃
k∈Z

hk(Σ̄)

)
= ∅, (1)

(intD) ∩

(⋃
k∈Z

hk(Σ̄)

)
6= ∅. (2)

In case (1) two subcases are possible: (1a) D ⊂ QΣ , (1b) D ⊂ (R3 \ intQΣ). For
case 1a) let N(D) ⊂ QΣ be a tubular neighborhood of the disk D. Then exactly
one connected component of the set QΣ \ intN(D) intersects L̄. According to (1)
this component is h-compressible and its boundary intersects L̄ at a unique point.
The projection of this boundary into S2 × S1 is, therefore, the secant surface of
L of genus less than gL. This contradicts the fact that the surface Σ is minimal.
In case 1b) let N(D) ⊂ (R3 \ intQΣ) be a tubular neighborhood of D. Then due
to (1) the set QΣ ∪ N(D) is h-compressible and its boundary intersects L̄ at a
unique point. The projection of this boundary into S2×S1 is, therefore, the secant
surface of L of genus less than gL and we have the same contradiction.
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In case (2) without loss of generality assume the intersection intD∩(
⋃
k∈Z

hk(Σ̄))

to be transversal and denote it by Γ . Let γ be a curve from Γ . We say the curve
γ to be innermost if it is the boundary of the disk Dγ ⊂ D such that intDγ
contains no curves of Γ . Consider this innermost curve γ ⊂ fk(Σ). There are
two subcases: a) γ is essential on fk(Σ) and b) γ is contractible on fk(Σ). In
case a) the arguments of the case (1) apply for the body fk(QΣ) and the disk
Dγ and we get the contradiction to the minimality of the surface Σ. In case b)
denote by dγ ⊂ fk(Σ) the 2-disk bounded by γ and denote by Bγ ⊂ (R3 \ O)
the 3-ball bounded by the 2-sphere Dγ ∪ dγ . Consider: b1) Bγ ⊂ fk(QΣ) and b2)
Bγ ⊂ (R3 \ int fk(QΣ)). For b1) let N(Bγ) ⊂ fk(QΣ) be a tubular neighborhood
of Bγ . Then the set QΣ \ intN(Bγ) is h-compressible because the curve γ lies in
its interior and the boundary of QΣ \ intN(Bγ) intersects L̄ at a unique point.
The projection of this boundary into S2×S1 is, therefore, the secant surface of the
knot L of genus gL for which the number of connected components of the set Γ is
less. We get the same result for b2) for the set QΣ ∪ N(Bγ). Thus, iterating the
process we come either to the case a) or to the case (1) and get a contradiction.

Lemma 2 For any diffeomorphism f ∈ P the following estimation holds

ρf > 4 + 2gLf
. (3)

Proof Since Proposition 1 is true and since the number ρf of the critical points of a
quasi-energy function of f ∈ P is invariant, from now on we consider model Pixton
diffeomorphismsfL with the Hopf knot L. Denote by ` the non-stable separatrice
of the saddle σ lying in the basin of the sink S. Let

pS : W s
S \ S → S2 × S1

be the natural projection sending a point w ∈ (W s
S\S) to the point p(fkw(w)), fkw(w) ∈

VS . Since the diffeomorphism fL coincides with the homothety h in some neigh-
borhood VS of S, the natural projection pS is well defined and pS(`) = L by
construction.

Consider an arbitrary Morse-Lyapunov function ϕ : S3 → R of the diffeomor-
phism fL. To be definite let ϕ(S) = 0, ϕ(σ) = 1 and ϕ(N) = 3. From the definition
of the Morse-Lyapunov function it follows that ϕ|` monotonically decreases in some
neighborhood of the saddle σ. Therefore, there is ε1 ∈ (0, 1) such that the interval
(1− ε1, 1) contains no critical values of ϕ and the connected component Σ̄1 of the
level set ϕ−1(1− ε1) intersects the separatrice ` at the unique point. Denote this
point by w1.

Let Q̄1 be the connected component of the set ϕ−1([0, 1− ε1]) which contains
the segment [w1, S] of the closure of the separatrice `. Since ϕ decreases along
the trajectories of f , the values of ϕ on W s

σ are greater than 1. Therefore, the
manifold Q̄1 lies in the manifold W s

S diffeomorphic to R3. Let the function ϕ|Q̄1

have kq, q ∈ {0, . . . , 3} critical points of index q. Due to [5, Theorem 6.1] on the
manifold Q̄1 there exists a self-indexing Morse function ψ (the value of the function
in a critical point equals the index of this point) which has kq critical points of
index q and which is constant on ∂Q̄1. Thus, the manifold Q̄1 is the surface Q̃1 of
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genus g1 = 1 + k1 − k0 with attached handles of indexes 2 and 3. Then the genus
of any surface of the set ∂Q̄1 cannot be greater than g1.

On the other hand, the number of critical points of ϕ|Q̄1
is not less than k0+k1.

If k0 > 1 and g1 = 1 +k1−k0 then one gets k0 +k1 = g1 + 2k0−1 > g1 + 1. Thus,
ϕ|Q̄1

has at least g1 + 1 critical points.
Denote by Σ̄1 the connected component of ∂Q̄1 which intersects the separatrice

`. Then the surface Σ̄1 divides the manifold W s
S
∼= R3 into two parts, one of which

Q1 being an h-compressible body. This means that Σ1 = pS(Σ̄1) is the secant
surface of L and, therefore,

g1 > gL .

Analogously, there is ε2 ∈ (0, 1) for which the interval (1, 1 + ε2) contains no
critical points of ϕ and the connected component Q̄2 of the level set ϕ−1([0, 1+ε2)]
contains cl(Wu

σ ) in its interior while the intersection Q̄2 with W s
σ is the unique

2-disk. Due to construction the function ϕ|Q̄2
has at least g1 + 3 critical points

and genus of the connected components of ∂Q̄2 is less or equals g1. Denote by Σ̄2

the connected component of ∂Q̄2 which intersects W s
σ and denote by g2 its genus.

The surface Σ̄2 divides the manifold Wu
N
∼= R3 into two parts, one of which Q2

being an h−1-compressible body. Arguing as above one comes to conclusion that
the number of critical points of ϕ|Q2

is at least g2 +1. Therefore, the total number
of critical points of ϕ is greater or equal to

g1 + 3 + g2 + 1 > 4 + 2g1 > 4 + 2gLf
.

4 The generalized Mazur knot Ln

In this section we show that the genus gLn
of a generalized Mazur knot equals n.

At first we give a detailed description of construction of Ln.

4.1 Construction of the generalized Mazur knot Ln

Recall that h : R3 → R3 is the homothety defined by

h(x1, x2, x3) =
(x1

2
,
x2

2
,
x3

2

)
and p : R3 \O → S2 × S1 is the natural projection defined by

p(x1, x2, x3) =

(
x1

||x|| ,
x2

||x|| , log2(||x||) (mod 1)

)
.

Consider the annulus

K =

{
(x1, x2, x3) ∈ R3 :

1

4
≤ x2

1 + x2
2 + x2

3 ≤ 1

}
bounded by the spheres

S2 =
{

(x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 = 1

}
, h(S2).
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Pick on the circle

S1 =
{

(x1, x2, x3) ∈ R3 : x2
1 + x2

2 = 1, x3 = 0
}

pairwise distinct points α1, . . . , α2n+1 numbered in counter-clockwise order (Fig. 8).
Let ai, i ∈ {1, . . . , 2n} be the arc of the circle S1 bounded by αi, αi+1 whose inte-
rior contains no points of {α1, . . . , α2n+1}. Let B, Ai ⊂ intK, i ∈ {1, . . . , 2n} be
pairwise disjoint smooth arcs such that:

1. the boundary points of B are α2n+1, h(α1); the boundary points of A2j−1

are α2j−1, α2j and the boundary points of A2j are h(α2j), h(α2j+1) for j ∈
{1, . . . , n};

2. the closed curves c2j−1 = cl(a2j−1 ∪A2j−1), c2j = cl(h(a2j)∪A2j) bound the
2-disks d2j−1, d2j , the transversal intersection of these disks being the arc lj
with the boundary points b2j−1 = d2j−1 ∩A2j and b2j = d2j ∩A2j−1;

3. the arc cl(h(A1) ∪A2 ∪ · · · ∪ h(A2n−1) ∪A2n ∪B) is smooth.

Fig. 8 Construction of the knot Ln

Let

L̄n =
⋃
k∈Z

hk(B ∪A1 ∪ · · · ∪A2n), Ln = p(L̄n).

4.2 The genus of the knot Ln

Lemma 3 The genus gLn
of the knot Ln equals n.
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Fig. 9 A secant surface of Ln of genus n

Proof Since there is a secant surface of Ln of genus n, we have gLn
6 n (Fig. 9).

Now we show that gLn
> n. To that end we prove that for Ln there exists a

minimal secant surface Σ such that Σ̄ ⊂ K and L̄n ∩ Σ̄ = h(α1).

Indeed, let Σ0 be some minimal secant surface of Ln. Then there exists the
connected component Σ̄0 of p−1(Σ0) such that it intersects the curve L̄n at the
point ȳ0 situated on L̄n between α1, h(α1) and that bounds the h-compressible
body QΣ0

. Without loss of generality let ȳ0 = h(α1) (otherwise the desired surface
is constructed by removing the tubular neighborhood of the arc [ȳ0, h(α1)] ⊂ L̄n
from QΣ0

).

Denote by k+, k− > 0 the maximal integers for whichfk(Σ̄0)∩Σ̄0 6= ∅, f−k(Σ̄0)∩
Σ̄0 6= ∅, k > 0, respectively. If k+ = k− = 0 then Σ̄0 is the desired surface. Other-
wise we show the way to decrease by 1 the number k+ > 0 (for k− the arguments
are the same) using isotopy of the secant surface.

Notice that Σ̄0 ∩ fk+(c2j−1) = ∅, j ∈ {1, . . . , n}. Without loss of generality let

the intersection Γ =
n⋃
j=1

fk+(d2j−1) ∩ Σ̄0 be transversal. Let γ be a curve from

Γ . Then γ bounds the unique disk Dγ ⊂ fk+(d2j−1). There are two possibilities:
1) b2j−1 /∈ Dγ , 2) b2j−1 ∈ Dγ . In case 1) we say the curve γ to be innermost
if it bounds the disk Dγ ⊂ fk+(d2j−1) such that intDγ contains no curves of
Γ . Consider this innermost curve γ. Due to Lemma 1 the surface Σ̄0 \ ȳ0 is non-
compressible in R3 \ (O ∪ L̄n) and, therefore, there exists the disk dγ ⊂ (Σ̄0 \ ȳ0)
bounded by γ. Denote by Bγ ⊂ (R3 \(O∪ L̄n)) the 3-ball bounded by the 2-sphere
Dγ ∪ dγ . Consider two subcases: 1a) Bγ ⊂ QΣ0

and 1b) Bγ ⊂ (R3 \ intQΣ0
).

In case 1a) let N(Bγ) ⊂ QΣ0
be a tubular neighborhood of the ball Bγ . Then

the set QΣ \ intN(Bγ) is h-compressible because the curve γ lies in its interior
and its boundary intersects L̄n at a unique point. The projection of this boundary
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to S2 × S1 is, therefore, a secant surface of Ln of the same genus as Σ0. For it the
number of the connected components of the set Γ is less. One gets the same result
in case 1b) for the set QΣ0

∪N(Bγ).

If we continue this process then we get the secant surface of Ln of the same
genus as Σ0 and for which the set Γ contains no curves of type 1). Denote the
resulting surface again by Σ0. Now the set Γ consists only of the curves γ bounding
the disk Dγ ⊂ b2j−1 which contains the point b2j−1. Since (b2j−1 t c2j−1) ⊂
(R3 \QΣ0

), the number of these curves on the disk d2j−1 is even. Since the surface
Σ̄0\ȳ0 is non-compressible in R3\(O∪L̄n), all these curves are pairwise homotopic
on Σ̄0 \ ȳ0 and, therefore, they lie in the annulus κ ⊂ (Σ̄0 \ ȳ0) bounded by the
pair of these curves γ1, γ2. Denote by κ̃ ⊂ d2j−1 the annulus bounded by the same
curves on the disk d2j−1. Let Σ̃0 = Σ̄0 \ κ ∪ κ̃. Due to construction the surface
Σ̃0 is of the same genus as the surface Σ̄0 and it bounds an h-compressible body.
Having removed a tubular neighborhood of the annulus κ̃ from this body we get a
h-compressible body whose boundary does not intersect the disk d2j−1 and whose
projection to S2×S1 is the secant surface of the knot Ln of the same genus as Σ0.

If we continue this process then we get a secant surface of Ln of the same
genus as Σ0 and for which the set Γ is not empty. Denote this surface again by
Σ0. Without loss of generality let the intersections of the surface Σ̄0 with the
spheres fk(S2) be transversal. Denote by F the set of the connected components
of the intersection fk+(K)∩ Σ̄0. Now we show the way to reduce by 1 the number
of the components in F using isotopy of the secant surface.

Denote by Q the set obtained by removal from the annulus fk+(K) of the
tubular neighborhoods of the disks d2j−1 as well as the tubular neighborhoods of
the curves A2j , j ∈ {1, . . . , n}. Then Q is homeomorphic to the direct product
of the 2-sphere with 2n + 1 deleted points and the segment. Since Q ∩ Σ̄0 =
fk+(K)∩Σ̄0 and since Σ̄0\ ȳ0 is non-compressible in R3\(O∪L̄n), each connected
component of F ∈ F is non-compressible in Q. Due to [16, Corollary 3.2] there
exists a surface F̃ ⊂ fk+−1(S2) diffeomorphic to F for which ∂F = ∂F̃ and the
surface F∪F̃ bounds in Q the body ∆ diffeomorphic to the direct product F×[0, 1].
Then we replace the part F of Σ̄0 with F̃ . If we continue the process we get the
desired secant surface Σ ⊂ K.

Notice (see, for instance, [4, Exercise 2.8.1]) that the fundamental group π1(K\
L̄n) has 2n generators γ1, . . . , γ2n, each of which γi, i ∈ {1, . . . , 2n} being the
generator of the punctured disk di \ bi (Fig. 10). Since b2j−1 ∈ intQΣ and c2j−1∩
QΣ = ∅, there exists the connected component of d̃2j−1 of the intersection d2j−1∩
QΣ which contains the point b2j−1. This component is the 2-disk bounded by the
curve γ̃2j−1 ⊂ (Σ̄ \ h(α1)) with holes and the curves γ2j−1, γ̃2j−1 are homotopic
on the punctured disk d2j−1 \ b2j−1. In the same way one finds the curves γ̃2j ⊂
(Σ̄ \ h(α1)) homotopic to the curves γ2j on the punctured disk d2j \ b2j (Fig. 10).
Due to Lemma 1 the surface Σ̄ \ h(α1) is non-compressible in K \ L̄n. Then the
curves γ̃1, . . . , γ̃2n are pairwise non-homotopic to the generators on the surface
Σ̄ \ h(α1). Therefore, the genus of the surface Σ̄ cannot be less than n.
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Fig. 10 Generators of the group π1(K \ L̄n)

5 Construction of a quasi-energy function for a Pixton diffeomorphism
with the Hopf knot Ln

Let f be a Pixton diffeomorphism constructed for a generalized Mazur knot Ln.
Then its non-wandering set Ωf consists of four points: two sinks ω, S, a source N
and a saddle σ. Then Wu

σ \σ consists of two separatrices `ω, `S respective closures
of which contain the sinks ω, S, the separatrice `ω being tame while `S being wild.
Let Σ̄ be the surface of genus n bounding the handle-body QΣ of the same genus.
Now we construct for f a Morse-Lyapunov function with 6 + 2n critical points.

Our construction of a quasi-energy function is analogous to the construction
of an energy function in [7].

1. Choose an energy function ϕp : Up → R in the neighborhood of each fixed
point p of f so that ϕp(p) = dim Wu

p . Let Bω, BS be the 3-balls which are the
level sets of respective functions ϕω, ϕS and such that BS ⊂ intQΣ . Choose a
tubular neighborhood Tσ of the arc Wu

σ \ (Bω ∪QΣ) so that the handle-body
Bω ∪ QΣ ∪ Tσ of genus n is f -compressible and its intersection with W s

σ is
the 2-disk. Denote by P+ the smoothing of this body by addition of a small
exterior collar.

2. Due to [7, Section 4.3] there exists an energy function ϕ : P+ \ intQΣ whose
value on ∂P+ is 4/3, whose value on Σ̄ is 2/3 and which has exactly two critical
points ω, σ of respective Morse indexes 0, 1. The disks d1, . . . , d2n−1 cut the
handle-body QΣ making the 3-ball. Denote by BΣ the smoothing of this ball
by removal of the interior collar. The results of the classic Morse theory (see,
for example, [13]) allow to extend the function ϕ to the set QΣ \ intBΣ in
such way that it has n critical points of Morse index 1, one point lying on
each disk d1, . . . , d2n−1, while the value of ϕ on ∂BΣ is 1/3. Due to [7, Lemma
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4.2] the function ϕ can be extended to the ball BΣ by an energy function
with the unique critical point S of Morse index 0. Since f(QΣ) ⊂ intBΣ , the
constructed function decreases along the trajectories of the diffeomorphism f .

3. It follows from the definition of the knot Ln that P− = S3 \ int P+ is the
handle-body of genus n. Moreover, the disks d2, . . . , d2n cut P− making the
3-ball. Denote by B− smoothing of this ball by removal of the interior collar.
The results of the classic Morse theory (see, for example, [13]) allow extension
of the function ϕ to the set P− \ intB− in such way that it has n critical
points of Morse index 2, one point lying on each disk d2, . . . , d2n, while the
value of ϕ on ∂B− is 5/3. According to [7, Lemma 4.2] the function ϕ can be
extended to the ball B− by an energy function with unique critical point N
of Morse index 3. Since f(B−) ⊂ int P−, the constructed function decreases
along the trajectories of the diffeomorphism f and, therefore, it is the desired
quasi-energy function.
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