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Abstract. The description of an algorithm for numerical solution of the two-dimensional
Kardar-Parisi-Zhang equation with fractal initial condition and spatially inhomogeneous
stochastic source of particles has been presented. Using the Cole-Hopf substitution, the Kardar-
Parisi-Zhang equation is reduced to an auxiliary linear parabolic equation with a variable
coefficient. This reduction provides both compatibility of the algorithm with the concept of
mathematical technology and possibility of its practical realization on supercomputer using
the MPI parallel programming technology and the ROOT framework. The required profile of
the evolving surface is restored by the inverse substitution by solving the auxiliary equation,
Opportunity of estimation of its autocorrelation function and its spectral power density, as well
as the time dynamics of Shannon surface information, have been discussed.

1. Introduction
One of the key questions under implementation of nanotechnologies into practice is the question
about quality of the solid state surface. To clarify this question models for temporal evolution
of crystal surface under different technological processes are required. One of these models is
the Kardar-Parisi-Zhang (KPZ) equation, at present the KPZ-equation being the most popular
phenomenological equation for modelling of crystal growth (see [1] and references therein). This
equation was derived in paper [2] to describe the process of growth of the surface of a solid with
epitaxial technology. In accordance with this paper the KPZ-equation looks as follows:
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[(
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+ Q(x, y) , (1)

where h(x, y, t) is the height of the surface under investigation, x and y are spatial Cartesian
coordinates, c is the rate of growth and ν is coefficient of surface diffusion, function Q(x, y)
being additional source of sputtering substance in the vicinity of the surface [1].

Equation (1) ought to be provided by initial condition corresponding to initial shape of the
surface under investigation:

h(x, y, 0) = h0(x, y) , (x, y) ∈ Ω ⊂ R2 . (2)
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Figure 1. Structural scheme of mathematical technology concept

If Q(x, y) is stochastic field then input equation (1) becomes stochastic partial differential
equation.

There is a number of important values connected with solution of equation (1). The first of
them is autocorrelation function of height:

K(ξ, η, t) =< (h(x, y, t)− < h(x, y, t) >)(h(x + ξ, y + η, t)− < h(x + ξ, y + η, t) >) > , (3)

where angular brackets denote statistical averaging of function in them.
The two-dimensional spatial Fourier-transform from function (3) is known to be spectral

power density of roughness of the surface:

S(p, q, t) =
∫ ∫

K(ξ, η, t) exp(−i p ξ − i q η) dξdη . (4)

Function (4) is significant because at every moment of time t > 0 it can be extracted from
measurement of bistatic cross-section of monochromatic visible light with fixed polarization on
this surface [3]. If λ is wavelength of this light source then for validity of this extraction the
following inequality ought to be true [3]: |h(x, y, t)− < h(x, y, t) > | ¿ λ. Other conditions
for validity of this extraction namely

∣∣∣∂h(x,y,t)
∂x

∣∣∣ ¿ 1 and
∣∣∣∂h(x,y,t)

∂y

∣∣∣ ¿ 1 that is conjecture about
small angles of the surface [3] coincide with conditions of validity for input equation (1) [2].

Another important value which can be constructed via the solution h(x, y, t) of the Cauchy
problem (1) and (2) is the Shannon information for the surface:

I(t) =
∫

Ω
|h(x, y, t)| log2 |h(x, y, t)| dxdy . (5)

At last often initial shape of the surface (2) proves to be fractal (see [4] and references
therein). Moreover there is a variety of methods for estimation of fractal dimension D of network
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approximation for function h(x, y, t) [5]. And this value depends on time due to temporal
evolution of the solid state surface in accordance with the KPZ-equation (1): D = D(t).

Thus subject domain for the KPZ-equation (1) and values (3)-(5) connected to them is quite
wide. It means that one ought to use under solution of this series of connected problems
on supercomputer the concept of mathematical technology [6]. This concept includes two
chains namely the first of them contains subject domain¡ mathematical models of considered
subject domain and their mathenatical modelling and the second of them contains computer,
programming languages and technology of programming (see Figure 1).

The rest of the article is organized as follows: in Section 2 we construct algorithm for
numerical solution of the KPZ-equation (1). Section 3 deals with derivation of fractal initial
shapes (2). In section 4 methods of numerical calculation of values (3)-(5) related to the KPZ-
equation (1) are considered. In final section we summarize the results obtained and discuss
perspectives of further investigations.

2. The algorithm for numerical solution of the KPZ-equation
Let us introduce a new unknown function ϕ(x, y, t) as follows:

h(x, y, t) = c t +
2 ν

c
lnϕ(x, y, t) . (6)

The expression (6) is known to be the Cole-Hopf substitution [2]. By means of this formula,
one can reduce the nonlinear equation (1) to a linear parabolic equation with a variable
coefficient:

∂ϕ

∂t
= ν
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∂2ϕ

∂x2
+

∂2ϕ

∂y2

)
+

cQ(x, y)
2 ν

ϕ . (7)

In accordance with (6) initial condition for equation (7) is equal to:

ϕ(x, y, 0) = exp
[

h0(x, y)
2 ν

]
, (x, y) ∈ Ω ⊂ R2 . (8)

To solve numerically the auxiliary linear Cauchy problem (7)-(8) at first let us suppose that
domain Ω in (8) is a rectangular domain. Further one ought to segment the rectangular domain
Ω into M rectangular subdomains Ωm (

⋃M
m=1 Ωm = Ω) and to define on each Ωm the simple

problem in the framework of the method of fractional steps [7]:
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where τ and ∆ are steps on time and space respectively, ϕk
ij and Qij are network functions

corresponding to continuous functions ϕ(x, y, t) and Q(x, y) and

Λ̂x ϕk
ij ≡ −ν

ϕk
i+1,j − 2ϕk

ij + ϕk
i−1,j

∆2
, Λ̂y ϕk

ij ≡ −ν
ϕk

i,j+1 − 2ϕk
ij + ϕk

i,j−1

∆2
.

To join solution of the simple problem (9)-(10) on subdomain Ωm with solutions on
neighboring subdomains one should impose exchange boundary conditions [6].

After that one can restore network function hk
ij using discrete analog of formula (6).
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Figure 2. Regularized fractal initial shape

3. Regularization of fractal initial condition
Fractal functions are known to be nowhere differentiable (see [5] and references therein). For
instance the well-known Weierstrass function

W (x, ~µ) =
∞∑

n=1

an cos
π bn x

L
, (11)

where ~µ = (a, b, L) is vector of its parameters under 0 < a < 1 and a b > 1 has no derivative but
possesses by fractal dimension D = 2 + ln a/ ln b [5].

From function (11) it is easy to construct two-dimensional fractal surface:

W (x, y, ~µ) = W (x, ~µ) W (y, ~µ) . (12)

On the other hand for parabolic equations existence and uniqueness theorems require that
initial conditions (2) and (8) for the KPZ-equation (1) or auxiliary equation (7) must be quite
smooth [8].

One can overcome this obstacle by means of some regularization of function (12) namely let
us consider truncated Weierstrass function:

WN (x, ~µ) =
N∑

n=1

an cos
π bnx

L
. (13)

It is not difficult to check that direct product of functions (13) obeys to the next inequality:

|W (x, y, ~µ)−WN (x, y, ~µ)| ≤ 2 aN+2

(1− a)2
, (14)

where
WN (x, y, ~µ) = WN (x, ~µ) WN (y, ~µ) . (15)
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Thus inequality (14) means that for any fixed accuracy smooth function (15) can approximate
fractal function (12) under quite large number N of terms in sum (13) hence regularized fractal
function (15) can be chosen as initial condition (2) h0(x, y) for the KPZ-equation (1). The result
of such approximation under a = 0.5, b = 5.0 and N = 11 is presented on Figure 2.

It is obvious that the above described approach can be generalized on unequal numbers of
terms and unequal vectors of parameters under taking direct product on x and y of truncated
Weierstrass functions (13).

4. Estimation of values connected with the KPZ-equation
In order to calculate numerically autocorrelation function (3) it is necessary to describe a
procedure for statistical averaging of different functions of height h(x, y, t).

The most trivial algorithm of averaging is the following one. At first one ought to solve the
simple problem (9)-(10) on each rectangular subdomain Ωm for different realizations of source
Qα(x, y), α = 1, 2, . . . , A. After that average value of function f is equal to:

< f >=
1
A

A∑

α=1

fα , (16)

where value fα corresponds to realization Qα(x, y).
Further spectral power density of roughness of the surface (4) it is convenient to estimate as

discrete Fourier transform because of there are parallel algorithms to perform this operation [9].
The Shannon information for the surface (5) is additive function of domain Ω:

I(t) =
M∑

m=1

Im(t) , (17)

where
Im(t) =

∫

Ωm

|h(x, y, t)| log2 |h(x, y, t)| dxdy . (18)

To calculate integrals (18) on the basis of network functions ϕk
ij one ought to use different

cubature formulae [10].
In addition, a triple autocovariation function can be calculated on individual lines as a

characteristic of the non-Gaussianity of the process.

5. Conclusion
This article presents the algorithm of numerical solution of the two-dimensional KPZ-equation
with a time-independent random surface source of particles and a regularized fractal initial
condition adjusted to the concept of mathematical technology [6]. Such a reanimation of
the concept of mathematical technology is currently extremely relevant in anticipation of the
emergence of supercomputer exaflop performance [11].

This algorithm is expected to be realized on the Lomonosov supercomputer [12] using the
MPI parallel programming technology and the ROOT object oriented data analysis framework
[9].

The elaborated algorithm is very important for practice because of the study of the properties
of solutions of the KPZ-equation is essential for understanding the processes of nanoengineering
[13].
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