
Phonetic fieldwork research and experiments with
the R package phonfieldwork*

George Moroz
HSE University

agricolamz@gmail.com

1. Introduction
Olga Krivnova was a prominent phonetician. She was enormously
influential in Russian linguistics and inspired, taught, and helped many
phonologists and phoneticians in Russia. She contributed to research
on Russian suprasegmental units like prosody and rhytmization, and
their applications in automatic speech synthesis. This paper introduces
the R package phonfieldwork, which is intended to perform better-
quality phonetic research. I devote this paper to the memory of Olga
Krivnova, whom I hold in high esteem.

From my point of view phonetic research should ideally consist of
the following steps:

 Formulating a research question; thinking of what kind of data is
necessary to answer the question, what is the appropriate amount
of data, what kind of annotation is needed, what kind of statistical
models and visualizations will be used, etc.

 Creating a list of stimuli.
 Eliciting the list of stimuli from speakers who signed an Informed

Consent statement, thus agreeing to participate in the experiment
and to be recorded on audio and/or video; monitoring recording
settings: sampling rate, resolution (bit), and number of channels
should be the same for all recordings.

 Annotating the collected data.
 Extracting the collected data.
 Creating visualizations and evaluating your statistical models.
 Reporting your results.
 Publishing your data.

* This article is the output of a research project implemented as part of the Basic

Research Program at the National Research University Higher School of Economics
(HSE University).

George Moroz. Phonetic fieldwork research 377

There are multiple ways of following this procedure. To make the
automatic annotation of data easier, I usually record each stimulus as
a separate file. While recording, I carefully listen to my consultants to
make sure that they are producing the kind of linguistic units I want:
three isolated pronunciations of the same stimulus separated by a
pause and contained in a carrier phrase. In case a speaker does not
produce three clear repetitions, I ask them to repeat the task, so that
as a result of my fieldwork session I will have:

 a collection of small soundfiles (video) with the same sampling
rate, resolution (bit), and number of channels;

 a list of successful and unsuccessful attempts to produce a
stimulus according to my requirements (usually I keep this list in
a regular notebook).

There are some phoneticians who prefer to record everything, for
language documentation purposes. I think that this should be a sepa-
rate task: you can’t have your cake and eat it too. But if you or your
research team insist on recording everything, you can run two re-
corders at the same time: one could run during the whole session,
while the other is used to produce small audio files. You can also use
a special software to record your stimuli automatically on a computer
(e.g. SpeechRecorder [Draxler 2011] or PsychoPy [Peirce 2007]).

You can show a native speaker your stimuli one by one or not
show them the stimuli but ask them to pronounce a certain stimulus
or its translation. I use presentations to collect all stimuli in a particu-
lar order without the risk of omissions.

Since each stimulus is recorded as a separate audiofile, it is possi-
ble to merge them into one file automatically and make an annotation
in a Praat TextGrid (the same result can be achieved with the Con-
catenate recoverably command in Praat). After this step, the re-
searcher needs to annotate the data according to their goals. When
the annotation part is finished, the annotated parts can be extracted
to Sound viewer. Sound viewer is a useful tool that combines your
annotations and makes them searchable. It also produces a ready to
go .html file that could be uploaded on the server (e.g., to Github
Pages) and be available for anyone. In Sound viewer you can see a
table, where each annotated object is a row characterized by some
features (stimulus, repetition, speaker, etc.). You can play the sound-
file and view its oscillogram and spectrogram (see Figure 1 for an
example of a Sound viewer).

IV. ТЕХНИЧЕСКИЕ РЕШЕНИЯ 378

Figure 1. Example of Sound viewer. By clicking on the eye icon, the user can see the
spectrogram and oscillogram. By clicking on the ear icon, the user can hear extracted

sound fragment.
The content, inventory, and names of columns are determined by the researcher

In the following section, I will show how to use the phonfield-
work R package to conduct phonetic fieldwork research.

2. Phonetic research steps with phonfieldwork

2.1. Reading a list of stimuli in R

There are several ways to read your stimuli list in R. First, one can
just list all stimuli within the c() command:

my_stimuli <- c("tip", "tap", "top")

The most convenient way is to store your stimuli list in a .csv or
.xlsx table and read it using standard tools for reading tables in R
such as the read.csv() function, read_csv()/read_tsv() and oth-
ers from the readr package, or the read_xlsx() function from the
readxl package.

my_stimuli <- read.csv("your_file.csv")
library(readxl)
my_stimuli <- read_xlsx("your_file.xlsx")

If you upload your data from a .csv or .xlsx file, you will proba-
bly have some column names in your table. Throughout the article I
will use the following table:

George Moroz. Phonetic fieldwork research 379

my_stimuli

 stimuli vowel
1 tip ı
2 tap æ
3 top ɒ

In this table, we can see a list of three stimuli (tip, tap, top) and the
target vowels (ı, æ, ɒ). In most cases, users more information is included,
e.g., stimuli translations, syllable type, syllable number, or any other
type of information. The content, inventory, and names of columns are
determined by the researcher.

If you are not familiar with R, it is important to note that one can
visualize the content of a certain column by using the dollar sign and
the column name:

my_stimuli$stimuli

[1] "tip" "tap" "top"

2.2. Creating a presentation based on a list of stimuli

When the list of stimuli is loaded into R, you can create a presenta-
tion for elicitation. It is important to define an output directory, so in
the following example I use the getwd() function, which returns the
path to the current working directory. You can set any directory as
your current one by using the setwd() function (run ?setwd, ?getwd
to see the documentation). It is also possible to provide a path to your
intended output directory with the output_dir argument (e.g. "/home/
user_name/…"). This command (unlike setwd()) does not change
your working directory.

create_presentation(stimuli = my_stimuli_df$stimuli,
 output_file = "first_example",
 output_dir = getwd())

As a result, a file named first_example.html was created in the
output folder, see Figure 2. You can change the name of this file by
changing the output_file argument. It is also possible to change the
output format by using the output_format argument. By default it is
html, but you can also use pptx. The additional argument transla-
tions can be used to provide translation vector and make them ap-
peared near the stimuli on the slide.

IV. ТЕХНИЧЕСКИЕ РЕШЕНИЯ 380

Figure 2. Example of an automatically compiled presentation based on a list of stimuli.
You can use arrows for scrolling back and forth. It is possible to add translations,

pictures, or animated .gif images.

2.3. Renaming the collected data

Let us imagine that we collected data from two speakers, s1 and s2.
After collecting data and removing soundfiles with unsuccessful elici-
tations, one could end up with the following file structure:

├── s1
│ ├── 01.wav
│ ├── 02.wav
│ └── 03.wav
└── s2
 ├── 01.wav
 ├── 02.wav
 └── 03.wav

As shown in the scheme above, there are two separate folders, and
in both of them files are named 01.wav, 02.wav and 03.wav. Sound
recorders often provide more meaningful names by adding a prefix
with the date of the recording, but the rest is simple enumeration,
since the sound recorder cannot retrieve information on what has
been recorded and rename the files accordingly. So, this task is up to
the researcher. It is important to keep in mind that numbering corre-
sponds to the order in which the stimuli were presented to the speaker
and not to alphabetic order. So, both for the analysis, for language
documentation, and for simple file management, it makes sense to

George Moroz. Phonetic fieldwork research 381

rename files by using more meaningful names. In our example, we have
just three stimuli, but in projects with hundreds or even thousands of
stimuli manual file renaming can be a highly time-consuming task.

For each speaker, s1 and s2, there is a folder that contains three
audiofiles. It is possible to rename soundfiles in phonfieldwork using
the rename_soundfiles() command:

rename_soundfiles(stimuli = my_stimuli_df$stimuli,
 prefix = "s1_",
 path = "s1/")
You can find change correspondences in the following file:
.../s1/backup/logging.csv

As a result, we obtain the following file structure:

├── s1
│ ├── 1_s1_tip.wav
│ ├── 2_s1_tap.wav
│ ├── 3_s1_top.wav
│ └── backup
│ ├── 01.wav
│ ├── 02.wav
│ ├── 03.wav
│ └── logging.csv
└── s2
 ├── 01.wav
 ├── 02.wav
 └── 03.wav

The rename_soundfiles() function created a backup folder with
non-renamed files, and renamed all files by using the prefix provided
in the prefix argument (“s1_” in our example). The additional argu-
ment backup in the rename_soundfiles() function can be set to
FALSE (it is TRUE by default) in case you are sure that the renaming
function will work properly with your files and stimuli, and you do
not need a backup of the unrenamed files. A message after the func-
tion run informs us that a logging.csv file was created as a result.
This file contains the correspondences between old and new file
names. Here are the contents of the logging.csv file:

 from to
1 01.wav 1_s1_tip.wav
2 02.wav 2_s1_tap.wav
3 03.wav 3_s1_top.wav

IV. ТЕХНИЧЕСКИЕ РЕШЕНИЯ 382

The additional argument logging in the rename_soundfiles() fun-
ction (TRUE by default) that creates a logging.csv file in the backup
folder (or in the original folder if the backup argument has value FALSE).

Users might be surprised by the fact that the default behavior of
the function is to create a backup folder and a logging.csv file.
However, in case something goes wrong, users will need to check and
rename all the files manually (and it could be hundreds or thousands
of files). So, to prevent users from incidentally corrupting their files, I
made this backup creation the default behavior. However, if a user
has a large number of files (e.g., 10GB), this backup will harm, since
it might be the case that there is not enough space on the user’s hard
drive. This is one the possible scenarios in which it makes sense to set
the backup argument to FALSE.

2.4. Merging the data

Once all files have been renamed, you can merge them into one long
file. Remember that sampling rate, resolution (bit), and number of
channels should be the same across for recordings. It is possible to
resample files with the resample() function from bioacoustics.
concatenate_soundfiles(path = "s1/",
 result_file_name = "s1_all")

As we can see from Figure 3, this command creates a new soundfile
s1_all.wav and an associated Praat TextGrid s1_all.TextGrid (the
same result can be achieved with the Concatenate recoverably
command in Praat). As a result, we obtain the following file structure:

├── s1
│ ├── 1_s1_tip.wav
│ ├── 2_s1_tap.wav
│ ├── 3_s1_top.wav
│ ├── backup
│ │ ├── 01.wav
│ │ ├── 02.wav
│ │ ├── 03.wav
│ │ └── logging.csv
│ ├── s1_all.TextGrid
│ └── s1_all.wav
└── s2
 ├── 01.wav
 ├── 02.wav
 └── 03.wav

George Moroz. Phonetic fieldwork research 383

Figure 3. Result of the concatenate_soundfiles() function. All files are merged into

one long file and an associated Praat TextGrid contains all file names.

Sometimes recorded sounds do not have fragments of silence at
the beginning or at the end, so, after merging, the resulting utterances
will be too close to each other. This problem can be fixed by using the
argument separate_duration of the concatenate_soundfiles()
function: just put the desired duration of the separator in seconds.

Although this is not the kind of task envisaged by the phonfield-
work philosophy, multiple .TextGrids with the same tier structure
can in principle be merged by using the concatente_textgrids()
function.

2.5. Annotating the data

As shown in Figure 3, the annotation provided so far is just file names.
We can improve it by using the existing annotation that we provided
earlier:

annotate_textgrid(annotation = my_stimuli_df$stimuli,
 textgrid = "s1/s1_all.TextGrid")

IV. ТЕХНИЧЕСКИЕ РЕШЕНИЯ 384

The result can be seen in Figure 4 on the left side. As you can see
from the example, the annotate_textgrid() function creates a
backup of the tier and adds a new tier on top of the previous one. It is
possible to prevent the function from doing so by setting the backup
argument to FALSE. Imagine that we are interested in annotation of
vowels. The most common solution is to open Praat and create new
annotations manually. But it is also possible to create them in ad-
vance by using subannotations. The idea is that you choose some
baseline tier that later will be automatically cut into smaller pieces in
the other tier. In the following example we have one utterance per
word, so we want to create three subannotations for each annotation
in the word tier.

create_subannotation(textgrid = "s1/s1_all.TextGrid",
 tier = 1, # this is a baseline tier
 n_of_annotations = 3) # how many
empty annotations per unit?

After creating the subannotations, we can annotate the new tier.
However, we need to pass a complex vector with the following values:
"" "ı" "" "" "æ" "" "" "ɒ" ""

In our example, we could have provided it just as a simple vector
manually. However, if there are hundreds or thousands of stimuli,
this might be an inconvenient solution. To create such a vector, we
can use the following code:
vowel_annotation <- unlist(lapply(my_stimuli$vowel,
function(x) c("", x, "")))
vowel_annotation

[1] "" "ı" "" "" "æ" "" "" "ɒ" ""

Note that this code is based on my_stimuli$vowel, so this works
based on the data that we provided at the beginning. Now we are fi-
nally ready to perform automatic annotation:
annotate_textgrid(annotation = vowel_annotation,
 textgrid = "s1/s1_all.TextGrid",
 tier = 3,
 backup = FALSE)

We created a third tier with annotation, which is shown in Figure 4
on the right side. The only passage left is moving annotation boundaries
in Praat. This task can not be automated unless you use some forced

George Moroz. Phonetic fieldwork research 385

alignment, e.g., MAUS (Munich Automatic Segmentation, [Kisler et al.
2012]). The output of the annotate_textgrid() and create_sub-
annotation() functions is a .TextGrid in which the only task for
the annotator is to move boundaries. First, this is faster for the anno-
tator, since they do not need to type. Second, this strategy prevents
the annotator from incidentally pasting something wrong in the anno-
tation (e.g., spaces, new lines, or similar commands from other key-
board layouts). In case you want to create an empty .TextGrid, you can
use the create_empty_textgrid() function, which takes duration as
an argument. It is also possible to remove a tier from the .TextGrid
by using the remove_textgrid_tier() function.

Figure 4. Results of the annotate_textgrid() function: adding stimuli (on the left),
and vowel annotation (on the right)

2.6. Extracting the data

Once the annotation task is completed, it is possible to extract all an-
notations. In principle, at this stage, it is possible to extract all rele-
vant information by using Praat scripts. However, this annotation ex-

IV. ТЕХНИЧЕСКИЕ РЕШЕНИЯ 386

traction can be useful for creating an .html Sound viewer (see Sec-
tion 1). First, it is important to create a folder where all the extracted
files will be stored. In the following example, this folder is named
s1_sounds:

dir.create("s1/s1_sounds")

Then, we can use the extract_intervals() function to extract of
all annotated subfiles based on one of the annotation tiers:
extract_intervals(file_name = "s1/s1_all.wav",
 textgrid = "s1/s1_all.TextGrid",
 tier = 3,
 path = "s1/s1_sounds/",
 prefix = "s1_")

As a result, we obtain the following file structure:
├── s1
│ ├── 1_s1_tip.wav
│ ├── 2_s1_tap.wav
│ ├── 3_s1_top.wav
│ ├── backup
│ │ ├── 01.wav
│ │ ├── 02.wav
│ │ ├── 03.wav
│ │ └── logging.csv
│ ├── s1_all.TextGrid
│ ├── s1_all.wav
│ └── s1_sounds
│ ├── 1_s1_ı.wav
│ ├── 2_s1_æ.wav
│ └── 3_s1_ɒ.wav
└── s2
 ├── 01.wav
 ├── 02.wav
 └── 03.wav

As you can see, in the s1_sounds folder there are three new files
1_s1_ı.wav, 2_s1_æ.wav and 3_s1_ɒ.wav, which have been ex-
tracted based on the annotation provided in the .TextGrid.

2.7. Visualizing the data

The phonfieldwork package allows viewing an oscillogram and spec-
trogram of any sound file:

George Moroz. Phonetic fieldwork research 387

draw_sound("s1/s1_all.wav",
 "s1/s1_all.TextGrid")

The result of this command can be seen on the Figure 4 (right
side). It is not better than visualization from Praat, however, this
can be useful for creating an .html Sound viewer that I introduced
at the introduction section. It is also possible to create visualizations
of all sound files in a folder. For this purpose you need to specify a
source folder with the argument sounds_from_folder and a target
folder for the images (pic_folder_name). The new image folder is
automatically created in the upper level folder, so that sound and
image folders are on the same level in the tree structure of your di-
rectory.

draw_sound(sounds_from_folder = "s1/s1_sounds/",
 pic_folder_name = "s1_pics")

As a result, we obtain the following file structure:

├── s1
│ ├── 1_s1_tip.wav
│ ├── 2_s1_tap.wav
│ ├── 3_s1_top.wav
│ ├── backup
│ │ ├── 01.wav
│ │ ├── 02.wav
│ │ ├── 03.wav
│ │ └── logging.csv
│ ├── s1_all.TextGrid
│ ├── s1_all.wav
│ ├── s1_pics
│ │ ├── 1_s1_ı.png
│ │ ├── 2_s1_æ.png
│ │ └── 3_s1_ɒ.png
│ ├── s1_sounds
│ │ ├── 1_s1_ı.wav
│ │ ├── 2_s1_æ.wav
│ │ └── 3_s1_ɒ.wav
│ └── s1_tip.png
└── s2
 ├── 01.wav
 ├── 02.wav
 └── 03.wav

IV. ТЕХНИЧЕСКИЕ РЕШЕНИЯ 388

As we can see, there are three .png files corresponding to each
audio file in the s1_sounds folder. It is also possible to use the argu-
ment textgrid_from_folder in order to specify the folder contain-
ing .TextGrids for annotation (it could be the same folder as the
sound one). By default, the draw_sound() function with the
sounds_from_folder argument adds a title with the file name to
each picture, but it is possible to turn it off by using the argument
title_as_filename = FALSE.

2.8. Creating a Sound viewer

Sound viewer (see Figure 1) is a useful tool that combines your anno-
tations and makes them searchable. It also produces a ready to go
.html file that could be uploaded on the server (e.g., to Github Pages)
and be available for anyone in the web.

To create a sound viewer, you need three things:
 a folder with sound files (see Section 2.6);
 a folder with pictures (see Section 2.7);
 a table including different types of information (e.g., annotation,

utterance number, etc.; see Section 2.1).
Now we can create a Sound viewer:

create_viewer(audio_dir = "s1/s1_sounds/",
 picture_dir = "s1/s1_pics/",
 table = my_stimuli,
 output_dir = "s1/",
 output_file = "stimuli_viewer")
Output created: s1/stimuli_viewer.html

As a result, a stimuli_viewer.html was created in the s1 folder.
By default, sorting in the resulting annotation viewer will be based on
file names in the system. If you want to have another type of sorting,
you can specify the columns based on which the resulting table
should be sorted by using the sorting_columns argument.

3. Reading linguistic files in R
The phonfieldwork package also provides several methods for read-
ing different file types in R. This makes it possible to analyze them and
convert them into .csv or .xlsx files (e.g. by using the write.csv()
function or the write_xlsx() function from the writexl package).
The main advantage of using those functions is that they return tables
with the columns time_start, time_end, content and source, so it

George Moroz. Phonetic fieldwork research 389

is easy to stock multiple files in one table. This makes it easier to ma-
nipulate existing annotation, e.g., for the purposes of online corpus
creation, or in the process of data analysis. The functions to be used
are the following:

 the textgrid_to_df() function for Praat .TextGrid files;
 the eaf_to_df() function for ELAN1 .eaf files;
 the exb_to_df() function for EXMARaLDA2 .exb files;
 the srt_to_df() function for .srt subtitles files;
 the audacity_to_df() function for Audacity .txt files.
As one can see, these are the most popular sound annotation stan-

dards in linguistics. For some of them (like Praat .TextGrid files,
ELAN .eaf files, and EXMARaLDA .exb files), there is also a con-
verter from the table format to the original file format. This make it
possible, for example, to change something in the data when it is in
the table format, and then convert it back to the original format.

4. Conclusions
In this article, I introduced the phonfieldwork package, which allows
solving a number of common tasks in phonetic research. I described
one of the possible ways of working with phonetic material by illus-
trating each of the steps that such a work requires, and showed how
the phonfiledwork package can handle some of these tasks. In the
last section, I presented a list of functions that allow for conversion
between simple tables and different sound annotation formats like
Praat .TextGrid files, ELAN .eaf files, EXMARaLDA .exb files, .srt
subtitles files, and Audacity .txt files. The package is conceived as a
dynamic project, so any problems or bugs can be fixed with the help
of the user community.

References
Boersma P., Weenink D. Praat: Doing phonetics by computer [Computer program].

URL: http:// www.praat.org/, 2022.
Draxler Ch. Speech recorder quick start and user manual. Institute of Phonetics

and Speech Processing, University of Munich, Tech. Rep. www.speechrecorder.
org, 2011.

Kisler T., Schiel F., Sloetjes H. Signal processing via web services: The use case
WebMAUS. Talk presented at Digital Humanities Conference 2012. Hamburg,
Germany. 2012.

1 [Sloetjes, Wittenburg 2008].
2 [Schmidt, Wörner 2014].

IV. ТЕХНИЧЕСКИЕ РЕШЕНИЯ 390

Peirce J.W. PsychoPy — psychophysics software in Python. Journal of neuroscience
methods 162, 2007. P. 8–13.

R Core Team. R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing. 2022.

Schmidt Th., Wörner K. EXMARaLDA. Durand J., Gut U., Kristoffersen G. (eds.).
The Oxford handbook of corpus phonology. Oxford: Oxford University Press, 2014.
P. 402–419.

SIL: Speech analyzer [Computer program]. URL: https://software.sil.org/speech-
analyzer/, 2011.

Sloetjes H., Wittenburg P. Annotation by category-ELAN and ISO DCR. Proceedings
of the Sixth International Conference on Language Resources and Evaluation
(LREC'08), Marrakech, Morocco. European Language Resources Association
(ELRA), 2008. P. 816–820.

