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Abstract

The classical approach to the study of dynamical systems consists in representing
the dynamics of the system in the form of a "source-sink", that means identifying an
attractor-repeller pair, which are attractor-repellent sets for all other trajectories of the
system. If there is a way to choose this pair so that the space orbits in its complement
(the characteristic space of orbits) is connected, this creates prerequisites for finding
complete topological invariants of the dynamical system. It is known that such a pair
always exists for arbitrary Morse-Smale diffeomorphisms given on any manifolds of
dimension n > 3. Whereas for n = 2 the existence of a connected characteristic space
has been proved only for orientation-preserving gradient-like (without heteroclinic
points) diffeomorphisms defined on an orientable surface. In the present work, it is
constructively shown that the violation of at least one of the above conditions (absence
of heteroclinic points, orientability of a surface, orientability of a diffeomorphism)
leads to the existence of Morse-Smale diffeomorphisms on surfaces that do not have a
connected characteristic space of orbits.

1 Introduction and the statement of the result

Let f : Mn → Mn be a Morse-Smale diffeomorphism defined on a closed connected n-
manifold. Denote by Ω0

f , Ω1
f , Ω2

f the set of sinks, saddles, and sources of the diffeomorphism
f . For any (possibly empty) f -invariant set Σ ⊂ Ω1

f such that cl(W u
Σ) \W u

Σ ⊂ Ω0
f , set

AΣ = Ω0
f ∪W u

Σ, RΣ = Ω2
f ∪W s

Ω1
f\Σ

.

It follows from [13] that AΣ and RΣ are an attractor and a repeller, which are called dual.
In the monograph [12] the set

VΣ = Mn \ (AΣ ∪RΣ)
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is called the characteristic space, and the orbit space V̂Σ of the action f on VΣ is called the
characteristic space of orbits.

There are a number of examples where a reasonable choice of a dual pair leads to
a complete topological classification of some subset of Morse-Smale dynamical systems
(look, for example, [1], [2], [8], [10], [3], and an overview of [9]). In most cases, finding
complete topological invariants is based on the existence of a connected characteristic space
of orbits for the class of systems under consideration. For example, according to [1], for
any Morse-Smale 3-diffeomorphism, the characteristic space of orbits constructed for the
set Σ of saddle points with a one-dimensional unstable manifold is connected. This fact
played a key role in obtaining a complete topological classification of such diffeomorphisms,
obtained in [1]. According to [13], any Morse-Smale diffeomorphism defined on a manifold
of dimension n > 3 also has a connected characteristic space of orbits. For orientation-
preserving gradient-like (without heteroclinic points) diffeomorphisms on surfaces there is
a result in the work [6] that the existence of a connected characteristic orbit space V̂Σ

homeomorphic to the two-dimensional torus T2.
The main result of the work is the proof of the fact that the violation of at least one of

the conditions (absence of heteroclinic points, orientability of the surface, orientability of
the diffeomorphism) leads to the existence of Morse-Smale diffeomorphisms on the surface
that do not have a connected characteristic space of orbits. Exactly, the following theorem
is proved.

Theorem 1.

1. On any orientable surface M2 there exists an orientation-changing gradient-like dif-
feomorphism that does not have a connected characteristic space of orbits.

2. On any non-orientable surface M2 there exists a gradient-like diffeomorphism that
does not have a connected characteristic space of orbits.

3. On any surfaceM2 there exists a Morse-Smale diffeomorphism with heteroclinic points
that does not have a connected characteristic space of orbits.

Acknowledgment: The work was supported by the Russian Science Foundation,
project no. 17-11-01041, except for section 3, supported by Laboratory of Dynamical
Systems and Applications NRU HSE, grant of the Ministry of science and higher education
of the RF, ag. № 075-15-2022-1101

2 Required information and facts

Let Mn be a smooth closed orientable manifold and f a diffeomorphism on Mn. For a
diffeomorphism f , a point x ∈ X is called wandering if there exists an open neighborhood
Ux of x such that f(Ux) ∩ Ux = ∅. Otherwise, the point x is called non-wandering. It
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is immediate from the definition that any point in the neighborhood Ux of a wandering
point x is wandering itself and therefore the set of wandering points is open while the set
of non-wandering points is closed.

The set of all nonwandering points of the diffeomorphism f is called the non-wandering
set and usually denoted by Ωf .

The simplest examples of hyperbolic sets are primarily the hyperbolic fixed points of a
diffeomorphism, which can be classified as follows. Let f : X → X be a diffeomorphism
and f(p) = p. A point p is hyperbolic if and only if the absolute value of each eigenvalue of
the Jacobi matrix

(
∂f
∂x

)
|p is not equal to 1. If the absolute values of all the eigenvalues are

less than 1, then p is called a attracting (a sink point, or sink); if the absolute values of all
the eigenvalues are greater than 1 then p is called a repelling (a source point, or source).
Attracting or repelling points are called a nodes. A hyperbolic fixed point that is not a
node is called a saddle point or saddle.

If the point p is a periodic point f with period per(p), then applying the previous
construction to the diffeomorphism fper(p), we obtain a classification of hyperbolic periodic
points similar to the classification of fixed hyperbolic points .

The hyperbolic structure of a periodic point p leads to its stable W s
p = {x ∈ Mn :

lim
k→+∞

d(fkper(p)(x), p) → 0} and unstable W u
p = {x ∈ Mn : lim

k→+∞
d(f−kper(p)(x), p) → 0}

diversities that are smooth embeddings of Rn−qp and Rqp respectively. Here qp is the number
of eigenvalues of the Jacobian matrix

(
∂fper(p)

∂x

)
|p modulo greater than 1.

For a hyperbolic fixed or periodic point p, the stable or unstable manifold is called the
invariant manifold of this point, the connected component of the set W u

p \ p (W s
p \ p) is

called unstable (stable) separatrix.
A closed f -invariant set A ⊂Mn is called an attractor of a discrete dynamical system f

if it has a compact neighborhood UA such that f(UA) ⊂ int UA and A =
⋂
k≥0

fk(UA). The

neighborhood of UA is called captivating or isolating. Repeller is defined as an attractor
for f−1. An attractor and a repeller are called dual if the complement to the exciting
neighborhood of the attractor is the exciting neighborhood of the repeller.

A diffeomorphism f : Mn →Mn is called a Morse-Smale diffeomorphism if
1) the nonwandering set Ωf consists of a finite number of hyperbolic orbits;
2) the manifolds W s

p , W u
q intersect transversally for any nonwandering points p, q.

A Morse-Smale diffeomorphism is called gradient-like if the condition W s
σ1
∩W u

σ2
6= ∅

for different points σ1, σ2 ∈ Ωf implies that dimW u
σ1
< dimW u

σ2
. In dimension n = 2, the

set of gradient-like diffeomorphisms coincides with the set of Morse-Smale diffeomorphisms
whose saddle separatrices do not intersect.

If Mn is an orientable manifold, then the diffeomorphism f : Mn → Mn is called
orientation-preserving, if f has a positive Jacobian at least at one point, otherwise the
diffeomorphism is called orientation-changing.

Let f : M2 →M2 be a gradient-like diffeomorphism defined on a closed surfaceM2. Let
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ω be the sink point of the periodmω of the diffeomorphism f . According to [5, Theorem 5.5],
the diffeomorphism fmω in some neighborhood of the point ω is topologically conjugate to

the linear diffeomorphism of the plane given by the matrix

(
1
2

0

0 ςω · 1
2

)
, where ςω = +1 (−1)

if fmω |W s
ω
preserves (changes) orientation. We say that the sink ω has a positive orientation

type if ςω = +1 and has a negative orientation type otherwise.
Denote by Oω the orbit of the point ω. Let Vω = W s

Oω \ Oω. Denote by V̂ω = Vω/f the
orbit space of the action of the group F = {fk, k ∈ Z} ∼= Z on Vω and by pω : Vω → V̂ω the
natural projection.

Proposition 2.1 ([11], Утверждение 1). The manifold V̂ω is diffeomorphic to a two-
dimensional torus if ςω = +1 and is diffeomorphic to a Klein bottle if ςω = −1. Moreover,
ηω(π1(V̂ω)) = mωZ.

Similarly denote the orientation type ςα for the periodic source α of the diffeomorphism
f , the space of orbits V̂α and the projection of the stable separatrix of the saddle point into
it.

Let σ be a saddle point of the period mσ of the diffeomorphism f . According to [5,
Theorem 5.5], the diffeomorphism fmσ in some neighborhood of the point σ is topologically

conjugate to the linear diffeomorphism of the plane given by the matrix

νσ · 1

2
0

0 λσ · 2

 ,

where νσ = +1 (−1) if f |W s
p
preserves (changes) orientation; λσ = +1 (−1) if f |Wu

p
preserves

(changes) orientation. A pair ςσ = (νσ, λσ) will be called the orientation type of the saddle
point σ and denote by aςσ : R2 → R2 a corresponding linear diffeomorphism. If νσ >

0, λσ > 0, then the type of orientation will be called positive, and negative otherwise.
Denote by Oσ the orbit of the saddle point σ and set Nu

σ = NOσ \ W s
Oσ . Then the

group F acts on Nu
σ , generating the orbit space N̂u

σ = Nu
σ /f and the natural projection

puσ : Nu
σ → N̂u

σ (see Figure 1 for the case ςσ = (+1,+1)).

Figure 1: An orbit space N̂u
σ

Denote similarly by the orbit space N̂ s
σ = N s

σ/f of the action of the group F on
N s
σ = NOσ \ W u

Oσ , the natural projection psσ : N s
σ → N̂ s

σ and mapping ηsσ composed of
homomorphisms into the group Z from the fundamental group of each connected compo-
nent of the space N̂ s

σ.
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In addition, the map
ψ̂σ = psσ(puσ)−1 : ∂N̂u

σ → ∂N̂ s
σ

is well defined and it will be called the rearrangement map (see Figure 2 for the case
ςσ = (+1,+1)).

Figure 2: Rearrangement map

Denote by Ω0
f , Ω1

f , Ω2
f the set of sinks, saddles, and sources of the diffeomorphism f .

For any (possibly empty) f -invariant set Σ ⊂ Ω1
f such that cl(W u

Σ) \W u
Σ ⊂ Ω0

f , we set

AΣ = Ω0
f ∪W u

Σ, RΣ = Ω2
f ∪W s

Ω1
f\Σ

.

The set
VΣ = M2 \ (AΣ ∪RΣ)

is called the characteristic space. The factor space

V̂Σ = VΣ/f

is called the characteristic space of orbits. Let V 1
Σ = p−1

Σ
(V̂ 1

Σ), . . . , V k
Σ = p−1

Σ
(V̂ k

Σ ) and denote
by m1, . . . ,mk the number of connected components in the sets V 1

Σ , . . . , V
k

Σ respectively.

Proposition 2.2 ([7], Proposition 1). Each connected component of the characteristic orbit
space V̂Σ is homeomorphic either to a two-dimensional torus or to a Klein bottle.

Proposition 2.3 ([4] Lemma 4.1). Let Σ′ = Σ∪Oσ for some saddle orbit Oσ and v̂, v̂′ be
the disjoint union of the connected components of the spaces V̂Σ, V̂Σ′ which have non-empty
intersection with N̂u

σ , N̂
s
σ, respectively. Then

V̂Σ′
∼= (V̂Σ \ int N̂u

σ ) ∪ψ̂σ N̂
s
σ.

Wherein
V̂Σ′
∼= (V̂Σ \ v̂) t v̂′ (1)

Corollary 2.1. If σ is a saddle point with a positive orientation ςσ = (+1,+1), then for
the sets v̂, v̂′ in the formula (1) the following features are implemented:
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• v̂ – a disjoint union of two Klein bottles, v̂ – a disjoint union of two Klein bottles (see
Figure 3(1));

• v̂ – a torus, v̂′ – a disjoint union of two tori (see Figure 3(2));

• v̂ – a disjoint union of two tori and v̂′ – a torus;

• v̂ – a disjoint union of a torus and a Klein bottle and v̂′ — a Klein bottle;

• v̂ – a Klein bottle and v̂′ – a disjoint union of a torus and a Klein bottle;

• v̂ – a torus and v̂′ — a torus (if M2-nonorientable surface).

If σ is a saddle point with negative orientation ςσ = (−1,−1), then the following possibilities
are realized:

• v̂ — a Klein bottle and v̂′ — a Klein bottle;

• v̂ — a torus and v̂′ – a torus.

1. 2.

Figure 3: Illustration for the collary 2.1

3 Construction of model diffeomorphisms

In this section, we construct several basic diffeomorphisms, the proof of the theorem 1
will be based on them.

3.1 Gradient-like diffeomorphism ψ0 on the sphere S2

Define polar coordinates (r, ϕ) on the plane R2. Denote by %(r) the function depicted
on the graph(see Figure 4),which has the property %(r) = %(1

r
). Also define a vector field
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r

r21/2 10

( )ᵨ
1

Figure 4: Function graph %.

on the plane R2 using the following system of differential equations:
ṙ =

−r(r − 1), 0 6 r 6 1;

1− r, r > 1;

ϕ̇ = %(r)sin2ϕ.

Denote by χt the flow induced by this vector field, and denote by χt the diffeomorphism,
which is the shift of the flow χt per unit of time. The result is a diffeomorphism that has a
hyperbolic source at the origin O, hyperbolic saddles at points A1, A3 and hyperbolic drains
at points A0, A2 (see Figure 5) .

Figure 5: Phase portrait of a diffeomorphism χ

Let a diffeomorphism θ : R2 → R2 be as follows as θ(r, ϕ) = (r,−ϕ). We define the
diffeomorphism ψ̄0 : R2 → R2 by the formula

ψ̄0 = θ ◦ χ.

By the construction, the nonwandering set of the diffeomorphism ψ̄0 coincides with a non-
wandering diffeomorphism set χ. Consider the standard two-dimensional sphere

S2 = {(x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 = 1}.

7



Figure 6: Stereographic projection

Denote by N(0, 0, 1) north pole and define a stereographic projection (see Figure 6) ϑ :

S2 \ {N} → R2 formula

ϑ(x1, x2, x3) =

(
x1

1− x3

,
x2

1− x3

)
.

Define a diffeomorphism ψ0 : S2 → S2 by the formula

ψ0(x) =

ϑ−1 ◦ ψ̄0 ◦ ϑ(x), x ∈ S2 \ {N},

N, x = N.

By construction, ψ0 is an orientation-changing gradient-like 2-sphere diffeomorphism whose
nonwandering set consists of two fixed sources α1 = N , α2 = ϑ−1(O) of negative orientation
(ςα1 = ςα2 = −1); two fixed sinks ω0 = ϑ−1(A0), ω1 = ϑ−1(A2) of negative orientation
(ςω0 = ςω1 = −1) and saddle orbit Oσ = {σ = ϑ−1(A1), ψ0(σ) = ϑ−1(A3)} of period 2 with
orientation type ςσ = (+1,+1) (see Figure 7):

Ωψ0 = {α1, α2, ω0, ω1, σ, ψ0(σ)}.

3.2 Gradient-like diffeomorphism ψ̃1 on the projective plane RP 2

Consider the diffeomorphism ψ0 : S2 → S2 defined in 3.1 and the group Z2 = {+1,−1}
acting on the two-dimensional sphere S2 = {(x1, x2, x3) ∈ R3 : x2

1 + x2
2 + x2

3 = 1} as follows:

±1 · x = ±x, x = (x1, x2, x3) ∈ S2.

Then the orbit space S2/Z2 of the action of the group Z2 on S2 is the projective plane RP 2.
Let p : S2 → RP 2 be the natural projection. Let the diffeomorphism ψ̃1 : RP 2 → RP 2 be
defined by the formula

ψ̃1(x) = p ◦ ψ0 ◦ p−1(x), , x ∈ RP 2.
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(   )

Figure 7: Diffeomorphism ψ0

By construction, the nonwandering set of the constructed diffeomorphism consists of three
fixed points: the source α̃ of negative orientation (ςα̃ = −1), the sink ω̃ of negative orien-
tation (ςω̃ = −1) and saddle σ̃1 with orientation type ςσ̃1 = (−1,−1) (see Figure 8):

Ωψ̃1
= {α̃, ω̃, σ̃1}.

Figure 8: Diffeomorphism ψ̃1

3.3 Gradient-like diffeomorphism ψ̃q on a non-orientable surface of

genus q

Let S−q = S2]RP 2] . . . ]RP 2︸ ︷︷ ︸
q

. Construct a model diffeomorphism ψ̃q : S−q → S−q . The

source α̃ and the sink ω̃ of the diffeomorphism ψ̃1 should be considered. Whereas they
are hyperbolic, there are non-intersecting 2-discs around them Bω̃, Bα̃, что ψ̃1(Bω̃) ⊂
intBω̃, ψ̃

−1
1 (Bα̃) ⊂ intBα̃. Then the connected sum of two copies of projective planes

along the disks Bω̃, Bα̃ is a non-orientable surface S−2 of genus 2 (see Figure 9). Since the
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dynamics in the disk Bω̃ is inverse to the dynamics in the disk Bα̃, a diffeomorphism ψ̃2 is
well defined on the surface S−2 , which coincides with ψ̃1 to RP2 \ Bα̃ and to RP2 \ Bω̃. We
say that the diffeomorphism ψ̃2 is the connected sum of two copies of the diffeomorphism
ψ̃1 (ψ̃2 = ψ̃1]ψ̃1) along the sink ω̃ and source α̃.

2 2

Figure 9: Diffeomorphism ψ̃2

By induction, a diffeomorphism ψ̃q : S−q → S−q on a nonorientable surface of genus q > 2

is constructed as a connected sum of diffeomorphisms ψ̃q−1 and ψ̃1 (ψ̃q = ψ̃q−1]ψ̃1) along
the ω̃ sink and α̃ source. By construction, the nonwandering set of the diffeomorphism ψ̃q

consists of q + 2 fixed points: the source α̃ of negative orientation (ςα̃ = −1), the sink ω̃
negative orientation (ςω̃ = −1) and q saddles σ̃1, . . . , σ̃q with orientation type ςσ̃i = (+1,+1)

(see Figure 9 for q = 2):
Ωψ̃q

= {α̃, ω̃, σ̃1, . . . , σ̃q}.

3.4 Gradient-like diffeomorphism ψ1 on a torus T2

We construct a diffeomorphism ψ1 on the two-dimensional torus T2 as a cartesian prod-
uct of two orientation-preserving source-sink diffeomorphisms on the circle S1. For this we
should consider the function F̄ : R→ R given by the formula:

F̄ (x) = x+
1

6π
sin2πx

(see Figure 10).
Consider the projection π : R→ S1 given by the formula π(x) = e2πix. Since the function

F̄ is strictly monotonically increasing and satisfies the condition F̄ (x + 1) = F̄ (x) + 1, it
admits a projection onto a circle in diffeomorphism F : S1 → S1 given by

F (z) = πF̄π−1(z), z ∈ S1.

By construction, the diffeomorphism F has a fixed hyperbolic sink and source and is an
orientation-preserving source-sink diffeomorphism. Define a diffeomorphism F1 : T2 → T2
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Figure 10: Function Graph F̄

by the formula
F1(z, w) = (F (z), F (w)), z, w ∈ S1.

Then the diffeomorphism F1 is orientation-preserving, and its nonwandering set consists
of four fixed points: a source α of positive orientation (ςα = +1), a sink ω of positive
orientation (ςω = +1) and two saddles σ1, σ2 of positive orientation type (see Figure 11):

ΩF = {α, ω, σ1, σ2}.

Figure 11: Diffeomorphism F1

Let us represent the two-dimensional torus T2 as the factor group of the group R2 with

respect to the integer lattice Z2 : T2 = R2/Z2. Consider the matrix A =

(
0 1

1 0

)
∈ GL(2,Z)

and the algebraic torus automorphism Â : T2 → T2,

Â(x, y) = (y, x) (mod 1)
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Let
ψ1 = Â ◦ F1 : T2 → T2.

By construction, the diffeomorphism ψ1 is an orientation-changing gradient-like diffeomor-
phism whose nonwandering set consists of a source α and a sink ω of negative orientation
types (ςα = ςω = −1), as well as periodic saddle orbit Oσ1 = {σ1, ψ1(σ1)} of period 2 and
orientation type ςσ1 = (+1,+1) (see Figure 12):

Ωψ1 = {α, ω, σ1, ψ1(σ1)}.

(   )

Figure 12: Diffeomorphism ψ1

3.5 Gradient-like diffeomorphism ψg on an orientable surface of

genus g

Let S+
g = S2]T2] . . . ]T2︸ ︷︷ ︸

g

. Let us construct a model diffeomorphism ψg : S+
g → S+

g . To

do this, firstly, we should construct a diffeomorphism ψ2 : S+
2 → S+

2 as a connected sum of
two copies of the diffeomorphism ψ1 (ψ2 = ψ1]ψ1) along the sink ω and the source α (see
Fig. 13). Then, by induction, we define the diffeomorphism ψg : S+

g → S+
g as a connected

sum of diffeomorphisms ψg−1 and ψ1 (ψg = ψg−1]ψ1) along the sink ω and the source α. By
construction, the nonwandering set of the diffeomorphism ψg consists of a fixed source α
and a fixed sink ω of negative orientation types (ςα = ςω = −1), and g saddle periodic orbits
Oσ1 = {σ1, ψ1(σ1)}, . . . ,Oσg = {σg, ψ1(σg)} of period 2 and orientation type ςσi = (+1,+1)

(see Figure 13 for g = 2):

Ωψg = {α, ω, σ1, ψg(σ1), . . . , σg, ψg(σg)}.
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(   )

(   ) (   )

(   )

Figure 13: Diffeomorphism ψ2

3.6 Non-gradient-like Morse-Smale diffeomorphism ξ0 on the

sphere S2

Consider the diffeomorphism h : R2 → R2given in polar coordinates (r, ϕ), ϕ ∈
(
−π

2
, 3π

2

]
by the formula h(r, ϕ) =

(
r
2
, ϕ
)
. Let A− = {(r, ϕ) ∈ R2 \ {0} : 3π

4
6 ϕ 6 5π

4
}, A+ =

{(r, ϕ) ∈ R2 \ {0} : |ϕ| 6 π
4
}. Let C = R × [−2, 2] and define the diffeomorphisms

η− : A− → C, η+ : A+ → C by the formulas

η−(r, ϕ) =
(

3− log2r, 8
(ϕ
π
− 1
))

, η+(r, ϕ) =

(
−3− log2r,

8ϕ

π

)
.

It is directly verified that the diffeomorphism η− (η+) conjugates the diffeomorphism h

with the diffeomorphism g : C → C defined by the formula g(x, d) = (x + 1, d) and
η−(2, π) = (2, 0) (η+(1/2, 0) = (−2, 0)). It is obvious that the diffeomorphism g is included
in the flow gt : C → C defined by the formula

gt(x, d) = (x+ t, d).

We define the flow φt− on C using the formulas

ẋ =

1− 1
9
(x2 + d2 − 4)2, x2 + d2 ≤ 4

1, else

ḋ =


d
2

(
sin
(
π
2

(
x2 + d2 − 3

))
− 1
)
, 2 < x2 + d2 ≤ 4

−d, x2 + d2 ≤ 2

0, else

By construction, the flow φt− coincides with the flow gt for |x| > 2. Moreover, the diffeo-
morphism φ− = φ1

− has exactly two fixed points: the saddle P−(1, 0) and the sink Q−(−1, 0)

(see Figure 14), besides both points are hyperbolic. One unstable separatrix of the P− sad-
dle is an open interval (−1, 1)×{0} belonging to the Q− sink basin, and the other is a ray
(1,+∞)× {0}.
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x

Figure 14: Flow paths φt−

Define the flow φt+ on C by the formulas

ẋ =

1− 1
9
(x2 + d2 − 4)2, x2 + d2 ≤ 4

1, else

ḋ =


−d

2

(
sin
(
π
2

(
x2 + d2 − 3

))
− 1
)
, 2 < x2 + d2 ≤ 4

d, x2 + d2 ≤ 2

0, else

By construction, the flow φt+ coincides with the flow gt for |x| > 2. In this case, the

x

Figure 15: Flow paths φt+

diffeomorphism φ+ = φ1
+ has exactly two fixed points: the saddle P+(−1.0) and the source

Q+(1.0) (see Figure 15), similarly, both points are hyperbolic. One stable separatrix of the
saddle P+ is the open interval (−1, 1)×{0} belonging to the source basin Q+, and the other

14



is the ray (−∞,−1)× {0}.
Define diffeomorphism f̄ : R2 → R2 so that f̄ coincides h outside A+∪A− and coincides

η−1
− φ−η− and η−1

+ φ+η+ to A− and A+ respectively.
Consider on R2 the annulus K = {(x1, x2) ∈ R2 : 1 6 x2

1 + x2
2 6 4}.Define the function

ν : [1, 2]→ [1, 2] (see Figure 17) by the formula:

ν(t) =


1, t = 1,

1 + 1

1+exp

(
3
2−t

(t−1)2(t−2)2

) , 1 < t < 2,

2, t = 2.

On the annulus K we can define the Dehn twist d̄ : K → K formula

x

Figure 16: Function Graph ν : [1, 2]→ [1, 2]

d̄(t, eiφ) =
(
t, ei(φ+2πν(t))

)
.

Let ξ̄0 = d̄ ◦ f̄ : R2 → R2 (see Figure 17).
By construction, the diffeomorphism ξ̄0 coincides with h in some neighborhood of the

point O and the point at infinity, therefore, it induces on S2 a Morse-Smale diffeomorphism
ξ0 : S2 → S2 by the formula

ξ0(x) =

ϑ−1 ◦ ξ̄0 ◦ ϑ(x), x ∈ S2 \ {N},

N, x = N.

It follows directly from the construction that the nonwandering set of the diffeomorphism ξ0

consists of six fixed points of positive orientation: two sources α1 = N , α2 = ξ0(ϑ−1(Q+)),
two sinks ω0 = ξ0(ϑ−1(Q−)), ω = S and two saddles σ = ξ0(ϑ−1(P−)), σ0 = ξ0(ϑ−1(P+))
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Figure 17: Diffeomorphism ξ̄0

(see Figure 18):
Ωξ0 = {α1, α2, ω0, ω, σ0, σ}.

Figure 18: Phase portrait of a diffeomorphism ξ0

4 Proof of the main result

In this section, we will prove the theorem 1, each item in a separate lemma below.

Lemma 4.1. On any orientable surface M2 there exists an orientation-changing gradient-
like diffeomorphism that does not have a connected characteristic space of orbits.

Proof. To prove the lemma, consider a diffeomorphism fg : S+
g → S+

g such that f0 = ψ0

and fg (g > 0) is the connected sum of the diffeomorphism ψ0 with the diffeomorphism ψg

along sink ω0 and source α respectively. By construction, the diffeomorphism fg changes
orientation, and its nonwandering set consists of two fixed sources α1, α2, two fixed sinks
ω, ω1 of negative orientation (ςα1 = ςα2 = ςω = ςω1 = −1) and g + 1 saddle periodic orbits
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Oσ = {σ, fg(σ)},Oσ1 = {σ1, fg(σ1)}, . . . ,Oσg = {σg, fg(σg)} of period 2 and orientation
type (+1,+1) (see Figure 13):

Ωfg = {α, ω, σ, fg(σ1), σ1, fg(σ1), . . . , σg, fg(σg)}.

Let us show that the diffeomorphism fg does not have a connected characteristic space of

f

Figure 19: Diffeomorphism fg

orbits.
Indeed, by the proposition 2.1, each of the orbit spaces V̂ω, V̂ω1 is homeomorphic to a

Klein bottle. Therefore, if Σ = ∅, then the characteristic orbit space V̂Σ is not connected and
consists of two Klein bottles. Since all saddle points of the diffeomorphism fg have a positive
orientation type, then, according to the corollary 2.1, adding the orbits of such saddles to
the set Σ does not decrease the number of connected components of the characteristic space
of orbits.

Lemma 4.2. On any non-orientable surface M2 there exists a gradient-like diffeomorphism
that does not have a connected characteristic space of orbits.

Proof. Define a diffeomorphism f̃q : S−q → S−q , q ∈ N as a connected sum of diffeomorphisms
ψ0 and ψ̃q (f̃q = ψ0]ψ̃q) along the sink ω0 of the diffeomorphism ψ0 and the source α̃ of
the diffeomorphism ψ̃q (see Fig. 20 for q = 1). By construction, the nonwandering set Ωf̃q

consists of two sources α1, α2 and two sinks ω1, ω̃ of negative orientation types (ςω1 = ςω̃ =

ςα1 = ςα2 = −1), also of q fixed saddles σ̃1, . . . , σ̃q of orientation type ςσ̃i = (−1,−1) and a
saddle orbit Oσ = {σ, f̃q(σ)} of period 2 with a positive orientation type (see Figure 20 for
q = 1):

Ωf̃q
= {α1, α2, ω1, ω̃, σ, f̃q(σ1), σ̃1, . . . , σ̃q}.

17
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Figure 20: Diffeomorphism f̃1

Let us show that the diffeomorphism f̃q does not have a connected characteristic space
of orbits.

By the construction and proposition 2.1, each of the orbit spaces V̂ω̃, V̂ω1 is homeomor-
phic to a Klein bottle. If Σ = ∅, then the characteristic orbit space V̂Σ is not connected
and consists of two Klein bottles. Since all saddle points of the diffeomorphism f̃q have ori-
entation type either (+1,+1) or (−1,−1), then, according to the corollary 2.1, adding the
orbits of such saddles to the set Σ does not decrease the number of connected components
of the characteristic space of orbits.

Lemma 4.3. On any surface M2 there exists a Morse-Smale diffeomorphism with hetero-
clinic points that does not have a connected characteristic space of orbits.

Proof. We construct a diffeomorphism ξg : S+
g → S+

g as a connected sum of diffeomorphisms
ξ0 and ψ2

g (ξg = ξ0]ψ
2
g) along the sink ω0 of the diffeomorphism ξ0 and the source α of

the diffeomorphism ψ2
g . By construction, the diffeomorphism ξg preserves orientation, its

nonwandering set consists of points of positive orientation type: two sinks ω, ω1 and two
sources α1, α2 and 2 + 2g saddles σ0, σ, σ1, . . . , σ2g (a special case for g = 1 is shown in
Figure 21).

Let us show that the diffeomorphism ξg does not have a connected characteristic space
of orbits.

Let the set Σ = ∅, then the characteristic orbit space consists of two tori V̂ω1 and V̂ω.
Since the unstable saddle point manifolds σ1, . . . , σ2g contain the only one sink ω in their
closures, then adding these saddles to the set Σ does not reduce the number of components
of the characteristic space of orbits. The unstable manifold of the saddle σ0 contains the
only one sink ω1 in its closure, then adding this saddle to the set Σ increases the number
of connected components of the characteristic space to three. The saddle σ is above the
saddle σ0 by the Smale order, so the saddle σ can be added to the set Σ only together with
the saddle σ0. Whence it follows that for any set Σ the number of connected components
of the characteristic space is greater than one.

ALos, let us construct a diffeomorphism ξ̃q : S−q → S−q as a connected sum of diffeo-
morphisms ξ0 and ψ̃2

q (ζq = ξ0]ψ̃
2
q ) along the sink ω0 of the diffeomorphism ξ0 and the

18
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Figure 21: Diffeomorphism ξ1

source α̃ of the diffeomorphism ψ̃2
q (a special case for q = 1 is shown in Figure 22). The

nonwandering set of the diffeomorphism ζq consists of points of positive orientation type:
two sources α1, α2, two sinks ω1, ω̃ and q + 2 saddles σ, σ0, σ̃1, . . . σ̃q.

Figure 22: Connected sum of diffeomorphisms ξ0 and ψ̃2
1

Similar Arguments to the case of orientable surfaces prove that the diffeomorphism ξ̃q

does not have a connected characteristic space of orbits.
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