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Abstract

A constant blood supply to the brain is required for mental function. Research with Doppler

ultrasonography has important clinical value and burgeoning potential with machine learning

applications in studies predicting gestational age and vascular aging. Critically, studies on

ultrasound metrics in school-age children are sparse and no machine learning study to date

has used color duplex ultrasonography to predict age and classify age-group. The purpose

of our study is two-fold: first to document cerebrovascular hemodynamics considering age,

gender, and hemisphere in three arteries; and second to construct machine learning models

that can predict and classify the age and age-group of a participant using ultrasonography

metrics. We record peak systolic, end-diastolic, and time-averaged maximum velocities

bilaterally in internal carotid, vertebral, and middle cerebral arteries from 821 participants.

Results confirm that ultrasonography values decrease with age and reveal that gender and

hemispheres show more similarities than differences, which depend on age, artery, and

metric. Machine learning algorithms predict age and classifier models distinguish cerebro-

vascular hemodynamics between children and adults. Blood velocities, rather than blood

vessel diameters, are more important for classifier models, and common and distinct vari-

ables contribute to age classification models for males and females.

Introduction

Cerebrovascular function has a measurable impact on health and cognitive outcomes.

Cerebrovascular hemodynamics rely on various measurements such as vessel diameter

(i.e., arterial stenosis), and blood flow velocities (i.e., arterial pressure) [1]. Doppler ultraso-

nography provides non-invasive, rapid, and real-time values associated with cerebrovascu-

lar function and has established utility in clinical practice and research applications [2].

Medical conditions such as hypoxic-ischemic encephalopathy [3] and sickle cell disease
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[4], have been associated with altered cerebrovascular hemodynamics. Ultrasonography

scores have been used with machine learning approaches to predict gestational age [5] and

vascular aging [6]. Critically, developmental values related to blood vessels that supply the

brain in school-age children are sparse and fragmented as information about gender, age,

and hemisphere in major blood vessels is not consistently reported. As average develop-

mental scores and predictions derived using machine learning algorithms can benefit clini-

cal practice and future research, the purpose of this study is to examine the effects of age,

gender, and hemisphere on ultrasound metrics from three major blood vessels (i.e., inter-

nal carotid, vertebral, and middle cerebral arteries) in a large sample of children and adults,

and model using machine learning approach, find the features that better predict age and

classify age-group.

The literature documents ranges of transcranial Doppler metrics in young adults [7] and

across adulthood [8]. Two studies with larger samples of healthy adult participants [9,10] dem-

onstrated that all individual vessel flows and total cerebral blood flow declined with age, at

about 2.6 mL/min per year. Relatively fewer studies have investigated cerebrovascular hemo-

dynamics in children. The first two studies with typically developing children that recorded

blood flow velocities in basal cerebral arteries were published in 1988, the first included 25 par-

ticipants under 20 years [11] and the second examined only 112 children showing that after

5–6 years of age, velocities decreased linearly [12]. These findings were later confirmed in dif-

ferent blood vessels by Schöning and Hartig [13] with a sample of 94 children. Critically, nor-

mative values in this study were reported in two age groups averaging values for children

under 10 and children between 10 to 18 years. Subsequent studies verified and extended devel-

opmental data to include, for example, indices from 50 pre-school children ages 4, 5 and 6

years [14]. Some studies reported gender effects [9], whereas others did not [15]. A review that

combines data from past studies [12,16,17], proposes normative bilateral values associated

with age [18]. Although the review recognizes that gender is also a factor that influences blood

flow velocities, developmental values by gender were not documented. Therefore, a need

remains to better document and understand developmental effects as a function of hemisphere

and gender.

Age dependency of cerebrovascular hemodynamics data may serve as a good factor for

formulating machine learning models that can predict or classify age. Gender, hemisphere,

and specific blood vessels may also relate differentially in age prediction and classification.

Knowledge on the variables and biomarkers that are more critical for such predictions can

be beneficial to targeted biometric research and decision support systems (e.g., computer-

ized programs that facilitate decision making in institutions) such as for clinical, educa-

tional, and forensic sectors. Ultrasonography and machine learning have been used in

medical research to predict gestational age [19,20] and biological age in aging adults [6].

The goal of our study was twofold: First, use Doppler ultrasonography to record cerebro-

vascular hemodynamics from internal carotid, vertebral, and middle cerebral arteries bilat-

erally, in a large sample of children and second use machine learning approaches to

estimate the chronological age and classify children and adults highlighting also the most

important contributing features of the model. Specifically, we hypothesized that age is neg-

atively correlated with blood flow velocities. We did not anticipate any effects due to gen-

der, and our investigation related to hemispheres was exploratory. Based on past machine

learning algorithms using cerebral biometrics we hypothesized that models using head and

neck ultrasonography metrics would be accurately predicting age and classifying age-

groups. Feature importance related to robust models (i.e., which variable was contributed

more to computational models) was exploratory.
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Materials and methods

Participants

Participants were children and young adults (N = 821; 380 females, 441 males, age range 6–25

years). Children were recruited from eight urban public schools in Moscow that agreed to col-

laborate as part of a larger project during the school year between September 2017 and May

2019. The study followed a quasi-experimental design. Adults were recruited from the com-

munity. Table 1 shows age (calculated using date of birth) and gender distribution for nine age

groups (i.e., 6–7 years, 8 years, 9 years, 10 years, 11 years, 12 years, 13–15 years, 16–19 years,

and 20–25 years). Adult participants or children’s parents provided signed informed consent;

children provided verbal assent. We did not screen for medical conditions, because the educa-

tional system in Russia offers education and social support for children with disabilities and

neurodevelopmental disorders in specialized institutions [21]. Parents, teachers or school psy-

chologists did not self-report any medical conditions. Other than attending classes in regular

public schools we did not have specific inclusion or exclusion criteria. The research ethics

board at HSE University approved all procedures.

Measurements

Parameters of cerebrovascular hemodynamics were measured by means of transcranial color

duplex ultrasonography. Measurements were recorded using a SonoSite M-Turbo ultrasound

machine (FUJIFILM SonoSite, Inc., Bothell, WA, USA) for both extracranial and transcranial

recordings. We used a L38x 10–5 MHz transducer probe to determine blood vessel diameters

and blood velocities of the internal carotid arteries and vertebral arteries and P21x 5–1 MHz

transducer probe on the transtemporal window to determine blood velocities of the middle

cerebral arteries in M1 segment. Fig 1 illustrates approximate locations of recordings and

some examples of dependencies between measured features of the right middle cerebral artery.

Internal carotid arteries and vertebral arteries were evaluated bilaterally with high-resolution

B-mode ultrasonography. Peak systolic (pSV), end-diastolic (eDV), and time-averaged maxi-

mum (TAMAX) velocities were measured using extracranial Doppler for internal carotid

arteries (ICA) and vertebral arteries (VA), and using transcranial color duplex sonography for

middle cerebral arteries (MCA). All velocities were measured in cm/s and all vessel diameters

were measured in mm. Measurements were recorded in real-time, no images were collected.

Procedure

Children were individually examined by means of duplex ultrasonography at their school. The

sonography protocol was approximately 10 minutes and was completed in one session We

used imaging ultrasonography while participants were laying down. The study was performed

via scanning in color and pulse-wave Doppler mode. Diameters of the internal carotid arteries

and vertebral arteries were measured based on the image in B-mode and color Doppler. Pulsed

Doppler was used for the assessment of blood velocity in internal carotid arteries, vertebral

arteries, and middle cerebral arteries. Several consistently repeated, almost identical wave-

forms were visualized and then their values were measured. The quantitative assessment of

spectrum of Doppler shift was conducted by the peak systolic, maximum end-diastolic, and

time-averaged maximum blood flow velocity. All measurements were recorded by a single

experienced sonographer using a single ultrasound scanner and standardized protocol; thus,

no inter-rater variability was estimated. We did not screen for medical conditions and no

other vital signs (e.g., temperature, blood pressure) were recorded.
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Table 1. Developmental metrics of cerebrovascular hemodynamics by age group, gender, and hemisphere.

Left Hemisphere

MCA ICA VA

6–7 years age TAMAX eDV pSV TAMAX eDV pSV d TAMAX eDV pSV d

T = 64 Mean 7.52 101.80 69.67 141.56 67.28 44.04 105.54 4.32 38.29 23.34 68.65 3.50

SD 0.32 16.42 12.51 19.19 11.86 8.13 11.85 0.29 8.69 5.92 14.99 0.52

M = 37 Mean 7.55 98.88 67.74 138.24 67.25 44.21 104.81 4.35 38.13 23.55 69.81 3.58

SD 0.30 13.84 10.88 16.54 12.88 8.62 12.68 0.24 6.17 4.59 10.93 0.55

F = 27 Mean 7.48 105.81 72.33 146.11 67.32 43.80 106.54 4.29 38.51 23.06 67.06 3.40

SD 0.34 18.96 14.23 21.83 10.54 7.56 10.77 0.35 11.40 7.46 19.36 0.47

8 years

T = 176 Mean 8.53 99.97 69.17 137.52 65.77 43.76 100.34 4.24 38.13 23.59 64.65 3.43

SD 0.26 14.52 11.33 16.71 12.53 8.02 12.18 0.37 9.49 6.63 13.88 0.52

M = 78 Mean 8.55 100.32 69.19 138.12 68.15 45.48 101.89 4.37 39.05 23.78 66.84 3.56

SD 0.27 15.03 11.51 16.92 14.17 8.88 12.20 0.34 9.69 7.27 14.64 0.51

F = 98 Mean 8.51 99.69 69.16 137.04 63.88 42.39 99.10 4.13 37.40 23.44 62.90 3.33

SD 0.24 14.17 11.24 16.62 10.75 7.03 12.08 0.36 9.31 6.10 13.06 0.51

9 years

T = 247 Mean 9.48 97.95 68.03 134.85 66.34 43.71 100.85 4.34 37.62 23.56 64.06 3.42

SD 0.28 14.02 11.15 15.48 12.14 8.75 11.48 0.35 8.84 5.92 13.86 0.51

M = 135 Mean 9.46 97.12 67.15 133.03 67.85 44.66 101.82 4.44 38.58 24.33 65.40 3.52

SD 0.28 14.07 11.36 14.33 12.16 8.45 11.85 0.34 9.19 5.95 14.03 0.48

F = 112 Mean 9.50 98.95 69.09 137.04 64.52 42.56 99.69 4.22 36.47 22.63 62.43 3.30

SD 0.29 13.96 10.85 16.57 11.93 9.01 10.94 0.33 8.28 5.77 13.54 0.52

10 years

T = 173 Mean 10.50 96.89 68.68 133.92 63.71 42.56 98.70 4.35 37.32 23.46 64.68 3.38

SD 0.27 14.81 11.87 16.71 11.74 8.46 12.95 0.33 7.75 5.11 13.61 0.53

M = 102 Mean 10.53 95.66 67.68 131.70 66.48 44.40 100.46 4.42 38.65 24.32 66.11 3.46

SD 0.27 15.44 12.31 17.30 12.17 8.80 12.97 0.34 8.17 5.15 14.20 0.58

F = 71 Mean 10.45 98.65 70.11 137.11 59.74 39.93 96.17 4.25 35.41 22.22 62.63 3.28

SD 0.27 13.77 11.13 15.38 9.89 7.24 12.59 0.30 6.71 4.83 12.53 0.44

11 years

T = 41 Mean 11.37 91.50 65.53 131.05 62.17 41.60 97.84 4.34 37.42 23.84 64.28 3.43

SD 0.32 16.38 12.51 18.21 10.52 6.92 10.58 0.29 8.87 6.55 14.39 0.57

M = 25 Mean 11.36 89.97 64.65 129.00 62.35 42.08 99.59 4.36 37.92 24.14 64.64 3.45

SD 0.28 17.23 12.44 18.12 10.09 6.76 9.85 0.26 9.27 6.96 15.46 0.51

F = 16 Mean 11.39 93.90 66.90 134.25 61.88 40.85 95.10 4.32 36.64 23.37 63.70 3.39

SD 0.37 15.19 12.89 18.47 11.48 7.31 11.42 0.35 8.43 6.04 13.00 0.66

12 years

T = 33 Mean 12.39 89.00 63.52 128.88 59.53 39.14 101.03 4.19 33.81 21.11 61.81 3.25

SD 0.30 12.25 9.19 12.84 9.46 7.09 10.67 0.33 7.57 5.75 11.33 0.58

M = 19 Mean 12.45 87.59 61.00 127.16 59.62 39.60 103.51 4.27 33.46 20.13 60.44 3.34

SD 0.30 14.46 9.81 13.29 9.01 7.15 9.48 0.32 7.58 5.42 9.40 0.55

F = 14 Mean 12.30 90.90 66.93 131.21 59.41 38.52 97.67 4.09 34.29 22.44 63.67 3.12

SD 0.27 8.54 7.28 12.30 10.39 7.24 11.61 0.33 7.82 6.12 13.68 0.61

13–15 years

T = 41 Mean 14.67 84.06 57.83 122.99 56.83 37.09 96.40 4.33 30.50 19.25 57.26 3.28

SD 0.54 12.88 9.18 14.94 8.15 5.85 12.85 0.29 7.35 5.81 15.20 0.52

M = 22 Mean 14.60 81.58 55.60 120.96 57.20 36.24 101.83 4.41 31.61 19.25 63.53 3.40

(Continued)
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Table 1. (Continued)

Left Hemisphere

MCA ICA VA

6–7 years age TAMAX eDV pSV TAMAX eDV pSV d TAMAX eDV pSV d

SD 0.57 13.29 9.72 15.00 7.50 3.99 10.14 0.26 8.78 6.80 17.36 0.50

F = 19 Mean 14.76 86.93 60.42 125.34 56.39 38.07 90.12 4.24 29.20 19.24 50.01 3.15

SD 0.49 12.09 7.99 14.93 9.04 7.45 13.01 0.31 5.18 4.58 7.61 0.51

16–19 years

T = 19 Mean 17.31 88.49 63.53 127.32 51.37 34.39 93.56 4.21 28.63 17.55 51.47 3.04

SD 1.42 10.35 6.15 11.23 6.10 5.56 10.25 0.31 4.37 3.66 8.24 0.61

M = 8 Mean 17.30 84.40 61.33 125.38 49.44 33.11 92.21 4.28 28.66 17.78 51.21 3.15

SD 1.55 12.21 7.24 9.94 6.11 4.72 11.63 0.29 4.44 4.72 8.36 0.70

F = 11 Mean 17.32 91.47 65.14 128.73 52.78 35.33 94.55 4.15 28.60 17.39 51.65 2.95

SD 1.39 8.08 4.97 12.35 5.98 6.15 9.59 0.34 4.53 2.92 8.56 0.55

20–25 years

T = 27 Mean 21.92 78.79 56.26 117.67 48.33 32.64 80.32 4.39 31.30 19.29 55.00 3.41

SD 1.31 14.06 9.33 17.58 9.04 6.94 13.40 0.37 4.98 3.77 8.76 0.53

M = 15 Mean 22.73 72.39 52.40 109.67 46.29 31.37 75.69 4.51 31.40 19.59 53.29 3.47

SD 1.16 13.48 9.05 19.05 8.66 6.60 10.52 0.36 5.16 4.65 7.10 0.61

F = 12 Mean 20.90 86.78 61.08 127.67 50.89 34.24 86.11 4.25 31.18 18.92 57.14 3.34

SD 0.57 10.51 7.49 8.51 9.22 7.31 14.76 0.35 4.98 2.43 10.40 0.43

Right hemisphere

MCA ICA VA

6–7 years age TAMAX eDV pSV TAMAX eDV pSV d TAMAX eDV pSV d

T = 64 Mean 7.52 93.83 64.40 130.10 69.06 46.00 104.99 4.16 34.95 20.78 63.30 3.22
SD 0.32 16.53 12.21 18.80 13.42 9.50 13.64 0.31 9.76 6.40 16.16 0.53

M = 37 Mean 7.55 89.93 62.63 126.54 71.64 47.63 106.53 4.21 34.35 19.98 63.81 3.34

SD 0.30 11.92 10.87 14.35 13.49 8.72 13.02 0.31 8.22 4.42 15.77 0.53

F = 27 Mean 7.48 99.16 66.82 134.97 65.52 43.75 102.88 4.09 35.79 21.88 62.60 3.06

SD 0.34 20.35 13.68 22.99 12.73 10.22 14.43 0.28 11.67 8.38 16.96 0.49

8 years

T = 176 Mean 8.53 94.34 65.55 129.33 64.22 43.90 98.25 4.12 34.46 21.09 58.57 3.14
SD 0.26 14.76 11.37 16.11 11.78 8.47 12.15 0.36 7.72 5.15 12.95 0.49

M = 78 Mean 8.55 92.12 64.59 127.47 65.62 44.83 99.99 4.23 34.68 20.78 59.52 3.33
SD 0.27 14.49 11.50 15.71 11.71 8.24 11.20 0.33 8.20 5.05 12.63 0.46

F = 98 Mean 8.51 96.11 66.32 130.81 63.11 43.16 96.86 4.02 34.29 21.34 57.82 2.99
SD 0.24 14.80 11.26 16.36 11.78 8.63 12.74 0.36 7.35 5.23 13.23 0.47

9 years

T = 247 Mean 9.48 90.45 62.63 125.69 64.71 43.63 99.41 4.25 34.28 21.34 58.94 3.21
SD 0.28 12.90 10.27 14.51 10.83 7.59 11.02 0.36 9.01 5.67 13.91 0.48

M = 135 Mean 9.46 89.94 62.68 124.24 66.05 44.59 100.82 4.35 34.06 21.35 59.43 3.29
SD 0.28 13.01 10.37 13.98 10.43 7.39 10.67 0.33 9.20 5.62 13.68 0.47

F = 112 Mean 9.50 91.06 62.56 127.45 63.09 42.47 97.71 4.12 34.54 21.32 58.36 3.11
SD 0.29 12.80 10.20 15.00 11.13 7.71 11.25 0.35 8.80 5.75 14.21 0.47

10 years

T = 173 Mean 10.50 90.00 62.85 125.33 63.08 43.22 97.25 4.25 32.31 19.95 55.51 3.20
SD 0.27 14.07 10.94 16.35 11.23 8.43 12.20 0.35 7.81 4.93 12.24 0.53

M = 102 Mean 10.53 88.98 61.79 123.83 64.47 44.42 97.58 4.33 33.07 20.43 56.40 3.31

SD 0.27 13.85 11.13 16.45 11.96 8.97 12.48 0.33 8.34 5.11 12.55 0.56

(Continued)
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Table 1. (Continued)

Left Hemisphere

MCA ICA VA

6–7 years age TAMAX eDV pSV TAMAX eDV pSV d TAMAX eDV pSV d

F = 71 Mean 10.45 91.47 64.38 127.49 61.07 41.49 96.77 4.14 31.22 19.26 54.24 3.05

SD 0.27 14.34 10.56 16.08 9.84 7.31 11.87 0.36 6.89 4.61 11.75 0.43

11 years

T = 41 Mean 11.37 85.82 60.36 121.50 62.89 41.57 96.98 4.17 32.37 20.52 55.92 3.07
SD 0.32 13.18 9.33 10.93 10.66 7.98 11.85 0.40 6.46 4.28 9.92 0.40

M = 25 Mean 11.36 83.98 59.01 120.34 63.78 42.41 98.57 4.30 32.09 20.27 55.56 3.12

SD 0.28 12.14 9.32 11.38 11.24 8.59 12.48 0.29 5.81 3.95 9.43 0.42

F = 16 Mean 11.39 88.71 62.46 123.31 61.51 40.25 94.50 3.96 32.82 20.91 56.49 2.99

SD 0.37 14.60 9.23 10.27 9.88 6.97 10.69 0.47 7.56 4.86 10.94 0.37

12 years

T = 33 Mean 12.39 82.81 57.99 122.38 59.31 39.38 98.60 4.15 29.75 19.08 56.08 3.25

SD 0.30 13.87 10.48 13.59 9.28 7.51 12.58 0.30 6.92 4.23 14.39 0.50

M = 19 Mean 12.45 82.59 56.97 121.98 60.01 39.42 99.61 4.15 29.10 18.64 55.33 3.22

SD 0.30 15.73 12.39 15.52 8.71 6.96 12.73 0.35 6.95 3.74 14.67 0.61

F = 14 Mean 12.30 83.10 59.37 122.93 58.36 39.34 97.24 4.16 30.64 19.69 57.09 3.28

SD 0.27 11.42 7.35 10.97 10.25 8.49 12.72 0.24 7.05 4.90 14.48 0.33

13–15 years

T = 41 Mean 14.67 80.62 56.26 118.56 52.69 34.39 91.62 4.14 26.17 16.30 48.57 3.02

SD 0.54 12.39 11.18 14.98 8.93 6.54 15.47 0.44 8.07 5.54 15.50 0.62

M = 22 Mean 14.60 76.90 53.33 115.26 53.18 34.82 96.64 4.31 27.68 16.82 54.35 3.10

SD 0.57 12.70 11.22 15.32 7.52 5.07 14.65 0.46 7.62 5.81 14.66 0.66

F = 19 Mean 14.76 84.93 59.65 122.37 52.11 33.88 85.82 3.93 24.43 15.69 41.88 2.93

SD 0.49 10.78 10.41 14.00 10.51 8.04 14.68 0.32 8.42 5.30 13.96 0.58

16–19 years

T = 19 Mean 17.31 79.98 56.17 117.32 51.16 34.09 91.77 4.23 30.30 19.86 52.40 3.36

SD 1.42 14.78 10.75 16.33 9.59 7.11 15.53 0.47 7.62 6.10 13.85 0.43

M = 8 Mean 17.30 74.04 53.43 111.80 52.48 33.45 95.25 4.44 28.65 19.06 49.88 3.35

SD 1.55 13.21 7.41 15.32 8.76 5.79 15.54 0.39 6.65 4.49 14.41 0.40

F = 11 Mean 17.32 84.30 58.17 121.34 50.21 34.55 89.24 4.08 31.50 20.45 54.24 3.37

SD 1.39 14.91 12.61 16.54 10.46 8.18 15.77 0.48 8.35 7.21 13.82 0.46

20–25 years

T = 27 Mean 21.92 75.79 53.20 113.50 47.07 31.89 78.69 4.24 24.51 16.01 43.99 2.88
SD 1.31 14.85 11.01 17.76 10.02 6.27 13.13 0.42 4.86 3.21 7.81 0.53

M = 15 Mean 22.73 68.16 47.89 103.16 45.27 30.79 77.61 4.41 23.98 15.82 42.59 2.95

SD 1.16 13.38 9.30 14.95 7.00 4.56 12.47 0.30 4.76 3.72 7.69 0.58

F = 12 Mean 20.90 85.32 59.83 126.42 49.32 33.26 80.03 4.02 25.18 16.25 45.73 2.80

SD 0.57 10.73 9.50 11.55 12.85 7.93 14.35 0.45 5.11 2.58 7.93 0.47

MCA = middle cerebral artery; ICA = internal carotid artery; VA = vertebral artery; TAMAX = time-averaged maximum flow velocity; eDV = end diastolic velocity;

pSV = peak systolic velocity; d = vessel diameter; T = total number of participants; M = number of male participants; F = number of female participants; SD = standard

deviation; Bold or Italics font = statistically significant difference between hemispheres at p = 0.05 corrected for multiple comparisons using Bonferroni, bold indicates

the hemisphere with the largest value; orange = females have statistically significant higher scores than males at p = 0.05 corrected for multiple comparisons using

Bonferroni; blue = males have statistically significant higher scores than females at p = 0.05 corrected for multiple comparisons using Bonferroni. All velocities were

measured in cm/s and all vessel diameters were measured in mm.

https://doi.org/10.1371/journal.pone.0263106.t001

PLOS ONE Cerebral hemodynamics by age, gender, and hemisphere: Developmental scores and machine learning classifiers

PLOS ONE | https://doi.org/10.1371/journal.pone.0263106 February 4, 2022 6 / 18

https://doi.org/10.1371/journal.pone.0263106.t001
https://doi.org/10.1371/journal.pone.0263106


Statistical analyses. Descriptive and inferential statistics were calculated using SPSS (IBM

SPSS Statistics 26). Descriptive statistics (mean and standard deviation) were derived as a func-

tion of age, gender, and hemisphere. Bivariate correlations (Pearson’s r, and Spearman’s ρ
(rho)), within group, and between group sample contrasts (corrected using Bonferroni, α =

0.05) were performed to examine age, hemispheric, and gender effects, respectively. Normality

was examined for all ultrasound metrics by age group using the Kolmogorov-Smirnov Test

(corrected using Bonferroni, α = 0.05; n = 22 variables for each age group; 163 of 198 tests (i.e.,

82%) were normally distributed). Pearson’s correlations that examine linear relations do not

assume normality. Similarly, standard machine learning algorithms for construction of predic-

tive models do not rely on the normality assumption of data [22].

Before applying machine learning algorithms, we preprocessed the data: removed the mean

value, scaled each feature to unit variance separately and checked to identify features with

non-zero variance in order to avoid having features with the same or almost the same values

remaining in the dataset. The whole procedure is common and useful for many machine learn-

ing algorithms such as Logistic Regression [23], K-Nearest Neighbours Classifier [24], Support

Vector Classifier [25]. Also, the dataset was screened for missing values. Missing data values

(3.6%) mainly related to velocities in middle cerebral arteries were due to temporal bone thick-

ness (i.e., although the temporal bone window is the thinnest area of the lateral skull, some par-

ticipants had insufficient acoustic temporal bone window to insonate the circulation in the

middle cerebral artery). We chose to account for missing values because some age groups have

a modest number of participants. To account for missing values in the dataset, we tested sev-

eral imputation methods to generate scores that replace those values; the most common meth-

ods include replacement with mean, median, mode, and K-Nearest Neighbours (KNN)—that

assigns a value to the missing cell based on the nearest neighbours [26]. Although all imputa-

tion methods yielded comparable results, the best method to replace missing values was the

mode of the feature, likely because of the small number of missing values. We confirmed that

Fig 1. Anatomy of cerebral vasculature with approximate locations of measurement and example of doppler

ultrasonography dependencies in the right middle cerebral artery. On the left, for the middle cerebral arteries

measurements are taken in the M1 segment. For the internal carotid arteries measurements are taken 1.5 cm distal to

the bifurcation (i.e., where the common carotid artery divides into the internal and external carotid arteries) for the

internal carotid artery. For the vertebral arteries measurements are taken in the C4-C5 inter-transverse segment

(between the C4 and C5 vertebrae). On the right, we illustrate doppler dependencies among peak systolic velocities

(SV), end-diastolic velocities (DV), and time-averaged maximum (TAMAX) velocities. Histograms are on the diagonal

and scatter plots for corresponding pairs of features are given off the diagonal.

https://doi.org/10.1371/journal.pone.0263106.g001
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data processing pipelines where mode imputation method was selected showed better results

in classification and regression tasks, with F1 score for classification and Mean Absolute Error

for regression quality metric.

Exploratory data analysis was performed to find hidden patterns in the dataset using special

visualization and statistical tools [27]. In particular, a correlation matrix among features was

computed [28] to detect highly correlated features (see Fig 1 for an example). Presence of such

features in the dataset can lead to instability of machine learning models and can decrease the

accuracy of predictions. The dataset was also split into males and females, thus, a total of three

datasets were used for building models.

Machine learning approaches. Machine learning approaches were used to predict a

child’s age and distinguish between children and adults, from hemodynamic responses

recorded using ultrasonography. Data from each participant was represented by a feature vec-

tor that includes bilateral indices (e.g., peak systolic velocity, end-diastolic velocity, vessel

diameter, time-averaged maximum velocity), from three main arteries that supply the cortex

with blood. A total of 22 features related to ultrasonography metrics. Additional features indi-

cating participant characteristics include gender, school grade and age. Some features, such as

the school grade of the child, were redundant and posed a data leak in building the predictive

model, because the age of a child can be accurately reconstructed from the school grade; thus,

we removed/reduced such features.

First, we provide a regression analysis for age prediction. We used a standard pipeline of

data processing [29]. The pipeline consisted of the following steps: feature selection and

dimensionality reduction, various machine learning models fitting and their hyperparameters

search. Models were evaluated in the process of cross-validation. More details on steps taken

for the regression analysis are reported in supplementary materials (S1 Appendix).

Distinguishing children and adults with a binary classification task. Our sample con-

sists of a large sample of younger children, and a modest sample of adolescents and adults. It

was practically reasonable to combine adolescents and adults. This decision was also based on

past research in biology and psychology. Specifically, research demonstrates that most biologi-

cal maturation indices peak by the age of 16 years [30]. Theoretically, according to a develop-

mental cognitive framework we expected that children of 15–16 year-olds would reach

cognitive abilities (e.g., mental-attentional capacity) similar to young adults [31–33], giving

justification to our choice of merging data from older adolescents with young adults. There-

fore, to classify children and adults we adjusted our standard pipeline [29] of data processing

for imbalanced classification tasks [34] due to unequal sample sizes in age groups.

First, we labeled participants according to their age in the following way: we introduced

two classes—children (< 16 years old) and adults (� 16 years old). Next, we applied sampling

methods to balance classes and a dimensionality reduction step. The dimensionality reduction

step includes both feature extraction and feature selection procedures. To extract features we

applied Principal Component Analysis (PCA) [35] and Locally Linear Embedding (LLE) [36].

For feature selection we used ready-to-use Python routines SelectKBest and SelectPercentile

from the Scikit-learn library [37]. Following, we tested different machine learning models:

Logistic Regression [23], K-Nearest Neighbours Classifier [24], XGBoost Classifier [38], Sup-

port Vector Classifier [25], Random Forest Classifier [39], and Gaussian Naïve Bayes Classifier

[40]. We used a stratified cross-validation technique and used another accuracy score to evalu-

ate classification results, namely, we used macro averaged F1 score, which can be defined as a

weighted average of the precision and recall. Further, we applied a cross-validation approach

called “Stratified K-fold” [41]. Its main concept is the same as of “Shuffled K-fold”, but in this

approach the dataset was split preserving the initial percentage of each class. During the cross-

validation procedure we applied an oversampling or undersampling technique to k-1 groups
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and fitted the proposed model on sampled data. Preferred approaches of oversampling and

undersampling, which tend to show good results in practice were applied: Synthetic Minority

Over-sampling Technique [42], Adaptive Synthetic [43], Random Over Sampler [44], Random

Under Sampler [45], All K-Nearest Neighbors [46]. The impurity-based feature importances

were calculated within Random Forest Classifier Python routine. Here the importance of a

particular feature is computed as the normalized total reduction of the criterion brought by

that feature [47].

Results

Data associated with blood vessel, age group, gender, and hemisphere are illustrated in Figs 2

and 3, and tabulated in Table 1. Between-group comparisons showing significant gender

effects are marked with red when females show higher values and blue when males show

higher values (Table 1). Within-group comparisons showing significant effects of the hemi-

sphere are marked in green; all significant hemispheric effects show higher values in the left

hemisphere (Table 1). Note that some metrics show both gender and hemispheric effects.

Overall, there are more similarities between genders (~80% of comparisons show no signifi-

cant differences), whereas about 40% of comparisons between hemispheres show significant

differences; males show more hemispheric differences than females. Statistically significant

correlations with age are observed for all variables, except for blood vessel diameters (Table 2).

Negative relations indicate a decrease in velocities as a function of age, with shared variance

ranging from 4.49% in the vertebral arteries to 13.6% in the internal carotid arteries.

Predictive models

Regression results. Mean absolute error scores for machine learning models built to pre-

dict a child’s age are tabulated for all participants, and males and females separately (Table 1).

The best predictive model with all participants could predict a child’s age within mean absolute

error of 0.82 ± 0.06 (i.e. with accuracy about 10 months). The top performing machine learn-

ing model is based on Lasso Regression. Separate predictive models for males and females also

had high predictive power with mean absolute error of 0.819 ±0.079 for males and

0.799 ± 0.099 for females. More details on the regression analyses can be found in Supplemen-

tary materials S1 Appendix.

Classification results. Top results associated with distinguishing age groups using

machine learning classification models are listed in Table 3. We present results by machine

learning task, considering experiments with and without oversampling and as a function of

gender. The best model is obtained using the Gaussian Naive Bayes Classifier with mean F1

score of 0.67 ± 0.08. The best of the four classification models was obtained with sampling

techniques. The best model in this experiment is obtained using Random Forest Classifier

with SMOTE oversampling technique and the F1 score of 0.73 ± 0.04. By applying Random

Forest Classifier with Random Oversampling Technique we achieve the F1 score of 0.77 ± 0.06

in males. The best model for females is the Random Forest Classifier without using sampling

techniques; its F1 score is equal to 0.69 ± 0.17.

To evaluate our machine learning models we provide Paired Stratified KFold t-test [48]

based on 100 iterations for every combination of best models from each experiment at

p = 0.05. Results show that the model for males is significantly different from the model for

females (p = 0.001). The models for males and females are also significantly different from the

model derived from all participants with p = 0.009 and p = 0.021, respectively. Feature impor-

tance values by group and hemisphere are illustrated on Fig 4.
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Discussion

Metrics associated with blood vessels that supply the brain are examined using transcranial

and extracranial color duplex sonography. We report for the first time ultrasonography met-

rics of cerebrovascular hemodynamics from a large sample of school-aged children and young

adults considering age, gender, and hemisphere in middle cerebral, internal carotid and verte-

bral arteries. Machine learning approaches are also used for the first time to predict and clas-

sify age and age groups in our sample. We highlight three main findings: (a) Results confirm

age dependency of blood flow velocities, however hemispheric and gender effects depend on

age group and blood vessel. Specifically, most hemispheric asymmetries are observed in chil-

dren under 11 years old in the middle cerebral and vertebral arteries, and all significant hemi-

spheric effects show higher values in the left hemisphere. Males and females show more

similarities than differences in cerebrovascular hemodynamics; when significant differences

were observed females showed higher values in all comparisons involving the middle cerebral

artery, whereas males showed higher values in comparisons involving internal carotid and ver-

tebral arteries with one exception in peak systolic velocity of the left internal carotid artery in

Fig 2. Velocities as a function of age, gender, blood vessel and hemisphere for the total sample. MCA = middle

cerebral artery; ICA = internal carotid artery; VA = vertebral artery; TAMAX = time-averaged maximum flow velocity;

eDV = end-diastolic velocity; pSV = peak systolic velocity.

https://doi.org/10.1371/journal.pone.0263106.g002
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young adults. (b) Although machine learning approaches for quantitative age prediction per-

form with low mean absolute error scores, this is likely due to a narrow continuous age range

of children, as verified by simple models performing constant prediction (i.e. mean group age;

please see supplementary material S1 Appendix). Machine learning classification models with

and without sampling techniques distinguish children from young adults with high accuracy.

Notably top models that distinguish age groups in males, females and with the total sample are

different. (c) Results of feature importance show common and distinct features (i.e., ultraso-

nography metrics) that contribute highly to the classification models of cerebrovascular hemo-

dynamics for males and females. Specifically, values in the internal carotid artery, particularly

in the left hemisphere make high contributions to models of both males and females, whereas

values in the vertebral arteries contributed highly to the model for females. This is consistent

with elementary analyses showing higher age dependencies in internal carotid metrics and

more gender and hemispheric differences in middle cerebral and vertebral arteries. Develop-

mental values of cerebrovascular blood flow parameters and machine learning approaches that

consider features of age, gender, and hemisphere may benefit clinical evaluations and future

research.

Age significantly relates to blood flow velocities. The strongest relations with age are

observed in the right internal carotid artery showing 13% of common variance in the total

sample, about 17% of common variance for males and about 10% of common variance for

females. The current results are consistent and replicate with a larger sample size results of pre-

vious empirical studies that document negative relations with age [10,13,49,50].

Hemispheric asymmetries are observed in about 40% of left versus right hemisphere com-

parisons of the total sample; males showed hemispheric asymmetries in 28% of comparisons,

and females showed hemispheric asymmetries in 19% of comparisons. Blood flow velocities

associated with the internal carotid artery reveal no significant hemispheric differences,

whereas a few differences are observed in vessel diameters particularly in younger age groups.

The majority of hemispheric differences are observed mainly in metrics associated with the

middle cerebral and vertebral arteries with the left hemisphere showing higher values. Hemi-

spheric asymmetries in these blood vessels are more prevalent in younger age groups, particu-

larly in children under 11 years. These results add to past adult studies that examined

Fig 3. Velocities as a function of age, gender, blood vessel and hemisphere for males and females. MCA = middle cerebral artery;

ICA = internal carotid artery; VA = vertebral artery; TAMAX = time-averaged maximum flow velocity; eDV = end-diastolic velocity;

pSV = peak systolic velocity.

https://doi.org/10.1371/journal.pone.0263106.g003
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hemispheric effects [10,49]. Some adult studies found no significant differences between hemi-

spheres [51,52]. Krakauskaite [7] examined two age groups (14–19 and 20–29 year-olds) and

found no differences between left- and right-side segments of the circle of Willis, with the

exception of the distal M1 (p = 0.022) of the middle cerebral artery and the C1 (p< 0.0001) of

the internal carotid artery, both showing higher velocities in the left hemisphere. Albayarak

[49] in another study with adults showed hemispheric differences in blood flow volume in

both vertebral and internal carotid arteries. Hemispheric asymmetries primarily favoring the

left hemisphere with higher velocities certainly mark a topic for further research. We speculate

Table 2. Correlations with age.

Left Hemisphere

MCA ICA VA

TAMAX DV SV TAMAX DV SV d TAMAX DV SV d

Total r -.342�� -.268�� -.290�� -.346�� -.316�� -.310�� 0.025 -.242�� -.213�� -.212�� -0.089

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.476 0.000 0.000 0.000 0.011

R2 0.117 0.072 0.084 0.120 0.100 0.096 0.059 0.045 0.045

ρ (rho) -.293�� -.210�� -.242�� -.273�� -.254�� -.207�� 0.028 -.199�� -.167�� -.166�� -.093

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.428 0.000 0.000 0.000 0.008

Males r -.391�� -.312�� -.347�� -.384�� -.368�� -.349�� 0.021 -.247�� -.220�� -.235�� -0.095

p 0.000 0.000 0.000 0.000 0.000 0.000 0.667 0.000 0.000 0.000 0.045

R2 0.153 0.097 0.120 0.147 0.135 0.122 0.061 0.048 0.055

ρ (rho) -.325�� -.245�� -.288�� -.283�� -.278�� -.195�� -0.001 -.191�� -.159�� -.183�� -.115�

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.979 0.000 0.001 0.000 0.016

Females r -.273�� -.208�� -.215�� -.308�� -.260�� -.269�� 0.015 -.246�� -.210�� -.193�� -0.097

p 0.000 0.000 0.000 0.000 0.000 0.000 0.771 0.000 0.000 0.000 0.059

R2 0.075 0.043 0.046 0.095 0.068 0.072 0.061 0.044 0.037

ρ (rho) -.257�� -.168�� -.185�� -.289�� -.252�� -.239�� 0.030 -.218�� -.183�� -.153�� -0.089

p-value 0.000 0.001 0.000 0.000 0.000 0.000 0.565 0.000 0.000 0.003 0.083

Right Hemisphere

MCA ICA VA

TAMAX DV SV TAMAX DV SV d TAMAX DV SV d

Total r -.301�� -.250�� -.231�� -.369�� -.363�� -.323�� 0.031 -.278�� -.213�� -.261�� -0.076

p 0.000 0.000 0.000 0.000 0.000 0.000 0.380 0.000 0.000 0.000 0.029

R2 0.091 0.063 0.053 0.136 0.132 0.104 0.077 0.045 0.068

ρ (rho) -.258�� -.212�� -.191�� -.273�� -.275�� -.209�� .069 -.247�� -.164�� -.226�� -0.035

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.050 0.000 0.000 0.000 0.323

Males r -.358�� -.309�� -.304�� -.419�� -.414�� -.351�� 0.077 -.276�� -.209�� -.273�� -0.134

p 0.000 0.000 0.000 0.000 0.000 0.000 0.105 0.000 0.000 0.000 0.005

R2 0.128 0.095 0.092 0.176 0.171 0.123 0.076 0.044 0.075

ρ (rho) -.268�� -.240�� -.212�� -.324�� -.316�� -.223�� 0.087 -.224�� -.118 -.224�� -.106

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.068 0.000 0.013 0.000 0.026

Females r -.230�� -.172�� -0.142 -.318�� -.312�� -.303�� -0.039 -.282�� -.218�� -.251�� -0.017

p 0.000 0.001 0.006 0.000 0.000 0.000 0.453 0.000 0.000 0.000 0.736

R2 0.053 0.030 0.101 0.097 0.092 0.080 0.048 0.063

ρ (rho) -.246�� -.180�� -.159�� -.231�� -.242�� -.206�� 0.012 -.276�� -.217�� -.236�� 0.023

p-value 0.000 0.000 0.002 0.000 0.000 0.000 0.822 0.000 0.000 0.000 0.652

�� Significant at p < 0.0022 (p = 0.05 corrected for multiple comparisons using Bonferroni). MCA = middle cerebral artery; ICA = internal carotid artery;

VA = vertebral artery; TAMAX = time-averaged maximum flow velocity; eDV = end-diastolic velocity; pSV = peak systolic velocity; d = vessel diameter.

https://doi.org/10.1371/journal.pone.0263106.t002
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that in school-aged children this asymmetry may be related to hemispheric synchronization

showing alternating patterns between the left and right hemispheres as documented using

electroencephalography [53,54]. Such patterns have been interpreted to correspond to devel-

opmental stages. Alternatively, also from a developmental perspective, hemispheric differences

in ultrasonography metrics may correspond to differences in cognitive abilities, Further

research is needed to examine these possibilities.

Gender effects are less frequent than hemispheric effects, with about 22% of comparisons

being significantly different. In the instance of significant effects, females show higher scores

in comparisons associated with the middle cerebral arteries. Males show higher values in com-

parisons that involve the internal carotid and vertebral arteries. A significant gender effect in

the left hemisphere did not necessarily translate into a significant gender effect in the right

hemisphere. The majority of gender effects for both hemispheres are observed in 10 year-olds

in the left hemisphere, followed by the right hemisphere in the same age group. Although gen-

der effects have been reported by some studies [10] but not others [15], the factors that drive

these effects remain to be studied.

Machine learning classification models were used to examine whether we can distinguish

children from adults from doppler ultrasonography indices. Imbalanced classification (i.e., in

our data a large sample of children compared to adults) is commonly resolved by applying

oversampling or undersampling techniques [43,45]. For comparison, we provide results of

machine learning models with and without the application of these techniques (Table 3).

Results show that oversampling improves classification models. The overall F1 score becomes

higher with a lower standard deviation suggesting that it is more stable. This could be

explained by the fact that such techniques may lower the variance of the classifier. Moreover,

Table 3. Best classification models.

Model Task Mean F1 STD F1

GNB Without sampling 0.67 0.08

KNC Without sampling 0.66 0.08

RFC Without sampling 0.62 0.09

LR Without sampling 0.55 0.10

RFC + SMOTE With sampling 0.73 0.04

RFC + ADS With sampling 0.73 0.02

RFC + ROS With sampling 0.65 0.03

GNB + SMOTE With sampling 0.64 0.04

RFC + ROS Male 0.77 0.06

KNC Male 0.76 0.02

GNB Male 0.75 0.11

RFC + ADS Male 0.73 0.3

RFC Female 0.69 0.17

RFC + ROS Female 0.66 0.03

RFC + SMOTE Female 0.64 0.11

RFC + ADS Female 0.64 0.09

Classification methods: GNB—Gaussian Naïve Bayes Classifier, XGBC—XGBoost Classifier, RFC—Random Forest

Classifier, KNC—K-Nearest Neighbours Classifier. Sampling methods: SMOTE—Synthetic Minority Over-sampling

Technique, ROS—Random Oversampling, ADS—Adaptive Synthetic Over-sampling Technique. Tasks: Without

Sampling—Experiments without sampling techniques, With sampling—Experiments with sampling techniques,

Male—Experiments with male sample, Female—Experiments with Female sample. Mean F1, STD F1—mean value

and standard deviation of F1 score values after all iterations of cross-validation are performed.

https://doi.org/10.1371/journal.pone.0263106.t003
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weak models which initially accurately classified the majority class (i.e., children), started to

distinguish the minority class (i.e., adults) after sampling techniques were applied. By adjusting

class distribution machine learning models become consistent and are able to detect depen-

dencies in each class, providing further support for the application of oversampling or under-

sampling techniques [43,45].

Age group classification shows results, which are significantly different from random

guesses. Although classification models are close in terms of standard deviation, model perfor-

mance scores were significantly different from each other, with the model built on data from

males performing with the highest accuracy. Our metrics show that scores from males have

stronger relation with age in middle and internal carotid arteries than scores from females.

They also show the strongest bivariate relations with age and lack of hemispheric asymmetries

in the internal carotid arteries render it a more stable artery for building models. Indeed, this

is confirmed with statistical analyses related to feature importance that shows internal carotid

artery values are the strongest contributors in the classification models for both males and

females (Fig 4). The features with the lowest importance are observed in the middle carotid

artery, consistent with increased hemispheric variability we observe particularly in younger

age groups. Metrics from the vertebral artery show high importance for models classifying

female participants, consistent with fewer hemispheric differences observed for females in this

blood vessel. The model that considers the total sample shows common important features

with the model of males in the right internal carotid artery and with the model of females in

the left vertebral artery. Past studies that considered age classification mainly examine digital

images of faces [55,56]. Further, in these past studies neural networks were used to predict age

groups based on face images or features extracted from them during pre-processing, thus this

is the first study to consider age classification using ultrasonography metrics.

In interpreting the data from the current study, we point to three considerations. First, our

sample is imbalanced with many more children compared to adults, therefore we have used

recommended techniques for oversampling and undersampling for cross-validation. Second,

Fig 4. Feature importance of best models for the combined total sample, males and females. MCA = middle cerebral artery;

ICA = internal carotid artery; VA = vertebral artery; TAMAX = time-averaged maximum flow velocity; eDV = end-diastolic velocity;

pSV = peak systolic velocity; d = vessel diameter; � top five features.

https://doi.org/10.1371/journal.pone.0263106.g004
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we did not screen for medical conditions or other vital signs, because children were recruited

from public schools and were attending regular classes. Although teachers, parents or school

psychologists did not self-report a disability and neurodevelopmental disorder, we cannot

eliminate the possibility that some children may have had a disability or medical condition

that was undetected or unreported. Third, an inherent limitation of Doppler ultrasonography

is reproducibility as images are reproduced after echoes between the distance from the probe

to the objective, and observations are operator dependent. We have used a single operator for

measurements; however, further research is needed to replicate and verify the applicability of

the current models in different samples.

Conclusions

Our data present for the first time individual differences related to age, gender, and hemi-

sphere from three blood vessels in the same large sample of school-aged children and young

adults. This is also the first machine learning study that demonstrates the feasibility of predic-

tive and classification models. Findings demonstrate more similarities than differences as a

function of gender and hemisphere, however, the existent significant differences are congruent

with results observed in machine learning classification models, which show high accuracy.

Our developmental scores and machine learning models can inform theoretical models of

development and benefit future research and clinical practice in typical and atypically develop-

ing samples of children, such as those with neurodevelopmental disorders or vascular diseases.

Applications may also be possible in educational and forensic sectors. Critically, the current

study raises awareness of the possibilities machine learning in this field can offer and points to

further directions for research that would replicate and clarify variability observed as a func-

tion of age, gender, and hemisphere.
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52. Barrientos-Guerra JD, Flores-Silva F, Cantú-Brito C, Chiquete E. Evaluation of Cerebral Hemodynam-

ics with Color-Coded Duplex Sonography: Normative Values with Correction of Insonation Angles. Jour-

nal of Stroke and Cerebrovascular Diseases. 2020 Mar 1; 29(3):104595. https://doi.org/10.1016/j.

jstrokecerebrovasdis.2019.104595 PMID: 31917090

53. Thatcher RW. Cyclic cortical reorganization during early childhood. Brain and cognition. 1992 Sep 1; 20

(1):24–50. https://doi.org/10.1016/0278-2626(92)90060-y PMID: 1389121

54. Thatcher RW, North DM, Biver CJ. Development of cortical connections as measured by EEG coher-

ence and phase delays. Human brain mapping. 2008 Dec; 29(12):1400–15. https://doi.org/10.1002/

hbm.20474 PMID: 17957703

55. Levi G, Hassncer T. Age and gender classification using convolutional neural networks. In: IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer

Society, 2015, pp 34–42.

56. Nithyashri J, Kulanthaivel G. Classification of human age based on Neural Network using FG-NET

Aging database and Wavelets. In: 4th International Conference on Advanced Computing, ICoAC 2012.

2012 https://doi.org/10.1109/ICoAC.2012.6416855

PLOS ONE Cerebral hemodynamics by age, gender, and hemisphere: Developmental scores and machine learning classifiers

PLOS ONE | https://doi.org/10.1371/journal.pone.0263106 February 4, 2022 18 / 18

https://doi.org/10.1023/A%3A1010933404324
https://doi.org/10.1162/089976698300017197
http://www.ncbi.nlm.nih.gov/pubmed/9744903
https://doi.org/10.1002/jcu.20301
http://www.ncbi.nlm.nih.gov/pubmed/17149761
https://doi.org/10.1161/JAHA.115.002657
http://www.ncbi.nlm.nih.gov/pubmed/26727967
https://doi.org/10.1088/0967-3334/37/9/1485
http://www.ncbi.nlm.nih.gov/pubmed/27511128
https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104595
https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104595
http://www.ncbi.nlm.nih.gov/pubmed/31917090
https://doi.org/10.1016/0278-2626%2892%2990060-y
http://www.ncbi.nlm.nih.gov/pubmed/1389121
https://doi.org/10.1002/hbm.20474
https://doi.org/10.1002/hbm.20474
http://www.ncbi.nlm.nih.gov/pubmed/17957703
https://doi.org/10.1109/ICoAC.2012.6416855
https://doi.org/10.1371/journal.pone.0263106

